《概率论》期末考试试题(A卷答案)
概率论期末试题及答案
概率论期末试题及答案一、选择题(每题2分,共20分)1. 随机事件A的概率为P(A),则其对立事件的概率为:A. P(A) + 1B. 1 - P(A)C. P(A) - 1D. P(A) / 22. 某校有男女生比例为3:2,随机抽取1名学生,该学生是男生的概率为:A. 1/5B. 3/5C. 2/5D. 5/73. 抛一枚均匀硬币两次,至少出现一次正面的概率是:A. 1/2B. 1/4C. 3/4D. 5/84. 设随机变量X服从二项分布B(n, p),若n=15,p=0.4,则P(X=7)是:A. C^7_15 * 0.4^7 * 0.6^8B. C^7_15 * 0.6^7 * 0.4^8C. C^7_15 * 0.4^15D. C^8_15 * 0.4^7 * 0.6^85. 若随机变量Y服从泊松分布,λ=2,则P(Y=1)是:A. e^(-2) * 2B. e^(-2) * 2^2C. e^(-2) * 2^1D. e^(-2) * 2^06. 设随机变量Z服从标准正态分布,则P(Z ≤ 0)是:A. 0.5B. 0.25C. 0.75D. 0.337. 若两个事件A和B相互独立,P(A)=0.6,P(B)=0.7,则P(A∩B)是:A. 0.42B. 0.35C. 0.6D. 0.78. 随机变量X服从均匀分布U(0, 4),则E(X)是:A. 2B. 4C. 0D. 19. 设随机变量X和Y的协方差Cov(X, Y)=-2,则X和Y:A. 正相关B. 负相关C. 独立D. 不相关10. 若随机变量X服从指数分布,λ=0.5,则P(X > 1)是:A. e^(-0.5)B. e^(-1)C. 1 - e^(-0.5)D. 2 - e^(-1)二、填空题(每题3分,共30分)11. 若随机变量X服从参数为θ的概率分布,且P(X=θ)=0.3,P(X=2θ)=0.4,则P(X=3θ)=________。
08-09概率论期末考试试卷A (1)
《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。
《概率论与数理统计》期末考试试题(A)及解答
0 1
1 4
0
1 2
1 4
1 2 1 2
0
1 4
0
1 4
1 2
………….4 分 (2) 因为 所以
P X 0 , Y 0 0 P X 0 P Y 0 1 2 1 2 1 4
X
与 Y 不相互独立 …………8 分
七、 8 (
分)
1 2
解: (1) P ( 0 X 1, 0 Y 2 ) dx 12 e ( 3 x 4 y ) dy
)
(B) P ( A ) P ( A1 ) P ( A 2 ) 1 (D) P ( A ) P ( A1 ) P ( A 2 ) 1
(C ) N ( 0 , 4 6 );
(5)设 X 1, X 2 , , X n 为正态总体 N ( , 2 ) 的一个简单随机样本,其中 2 ,
0 . 7 0 . 7 0 . 6 0 . 28
…………6 分
四、 6 分) (
解:用 X 表示时刻 T 运行的电梯数, 则 X ~ b ( 4 , 0 . 7 ) 所求概率
P X 1 1 P X 0
1 C 4 ( 0 . 7 ) (1 0 . 7 )
《概率论与数理统计》期末考试试题(A)
专业、班级: 题 号 得 分 一、单项选择题(每题 3 分 共 18 分)
(1)
若 事 件 A 、B 适 合 P ( A B ) 0 , 则 以 下 说 法 正 确 的 是 ( (A ) (B ) (C ) (D ) A 与 B 互 斥 ( 互 不 相 容 ); P ( A) 0 或 P (B ) 0 ; A 与 B 同时出现是不可能事件 ; P ( A) 0 , 则 P ( B A ) 0. ).
概率论期末试卷A及答案
学院 系 班级 学号 姓名---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------扬州大学试题纸( 2009-2010学年第 一 学期 )物 理 学院 微电、电科、光科09级 课程 概率论与数理统计(A )卷题目 一 二 三 总分 得分一、填空题(共22分,2分/空)1. 设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P .2.已知连续型随机变量的分布函数为30,1()(1),111,x F x a x x x <-⎧⎪=+-≤<⎨⎪≥1⎩,则常数a = ,概率密度函数()f x = .3. 设随机变量X 在(0,4)上服从均匀分布,则=)(X E ,()D X = .4.设随机变量X 的概率密度函数为/1e ,0(),0,x x f x θθ-⎧>⎪=⎨⎪⎩其它 则()E X = ,()D X = .5.设随机变量,X Y 相互独立,且~(10,0.5)X b ,~(1,4)Y N ,记2Z X Y =-,则()E Z = ,()D Z = .6.设()E X μ=,2()(0)D X σ=>,则利用切比雪夫不等式估计()≤≥-σμ5||X P .7.设总体()~0,1X N ,()1021,,,X X X 是从X 中抽取的一个样本,则()1021,,,X X X 的联合概率密度函数()1210,,f x x x = .概率论与数理统计A 卷 第1页 共6页二、单项选择题 (共24分,3分/题)1. 设C B A ,,是3个随机事件,则C B A 表示 .A . CB A ,,都发生 B .C B A ,,都不发生 C . C B A ,,至少有一个发生D . C B A ,,不多于一个发生 2. 三人独立地猜一谜语,已知各人能猜出的概率分别为1/5, 1/3, 1/4. 则三人中至少有一人能猜出此谜语的概率是 .A . 3/5B . 2/5C . 1/60D . 59/603. 设Y X ,是相互独立的两个随机变量,它们的分布函数分别为),)(y F x F YX (、则),max(Y X Z =的分布函数为 .A . {}()max (),()Z X Y F z F z F z =B . {}()max (),()Z X Y F z F z F z =C . ()()()Z X Y F z F z F z =D . ()()()Z X Y F z F z F z =4.设随机变量()2,1~-N X ,()2,1~N Y ,令2U X Y =+,2V X Y =-,则Cov(,)U V = ..A 0 .B 2 .C 3 D .65.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自该总体的样本,X 为样本均值,则X ~ .A . 2(10)N μσ,B .2()N μσ, C. 2()10N σμ, D .2()10N σμ,6. 设总体X ~N (0, 1),X 1,X 2,…,X n 为来自该总体的样本,则统计量12ni i X =∑~ . .A ()2n χ .B ()21n χ- .C ()t n .D ()1t n -概率论与数理统计A 卷 第2页 共6页7. 设总体X 与Y 相互独立,且都服从正态分布()10,N .()91X X ,, 是从总体X 中抽取的一个样本,()91Y Y ,, 是从总体Y 中抽取的一个样本,则统计量192219X X U Y Y++=+~ ..A ()92χ .B ()82χ .C ()9t .D ()8t8. 设总体()20~σ,N X ,()n X X X ,,, 21是从该总体中抽取的一个简单随机样本,则下列表达式可以作为2σ的无偏估计量的是_________..A ∑=-=n i i X n 12211ˆσ .B 2211ˆn i i X n σ==∑ .C 2211ˆ1n i i X n σ==+∑ .D ()∑=+=ni iXn n 12221ˆσ三.计算题(共54分,9分/题)1.将两信息分别编码为A 和B 发送出去,接收站收到时,A 被误收作B 的概率为04.0;而B 被误收作A 的概率为07.0,信息A 与信息B 传送频繁程度为2:3.若已知接收到的信息是A ,求原发信息也是A 的概率.概率论与数理统计A 卷 第3页 共6页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------2. 盒子中有5个球,编号分别为5,1.从中随机取出3个球,引入,2,3,4随机变量X,表示取出的3个球中的最大号码.(1) 求随机变量X的分布律;(2) 求随机变量X的分布函数.3.设随机变量()1~NX,21,0=+,试求随机变量Y的概率密度函数.Y X概率论与数理统计A卷第4页共6页4.设(,)X Y 的联合概率密度函数为()2221140x y x y f x y ⎧≤≤⎪=⎨⎪⎩,其它,(1)求{}P Y X ≤;(2)求(,)X Y 的边缘概率密度函数(),()X Y f x f y ; (3)判断随机变量X 与Y 是否相互独立.5.某运输公司有500辆汽车参加保险,在一年内每辆汽车出事故的概率为0.006,每辆参加保险的汽车每年交保险费800元,若一辆车出事故保险公司最多赔偿50000元.试利用中心极限定理计算,保险公司一年赚钱不小于200000元的概率.附:标准正态分布分布函数()x Φ表:x0.56 0.57 0.58 0.59 ()x Φ0.71230.71570.71900.7224概率论与数理统计A 卷 第5页 共6页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------6.设总体X 的概率密度函数为()()⎪⎩⎪⎨⎧<<-=其它0063θθθx x xx f ,其中0>θ是未知参数,()n X X ,, 1是从该总体中抽取的一个样本.(1) 求未知参数θ的矩估计量θˆ; (2) 求()θˆD .概率论与数理统计A 卷 第6页 共6页09级概率论与数理统计(A)卷 参考答案及评分标准一、填空题(共22分,2分/空).1. 4/7 2. 1/2, 23,11(),20,x x f x ⎧-≤<⎪=⎨⎪⎩其它3. 2, 4/34.,θ 2θ 5. 3, 18.5 6. 0.04 7.()10212512ii x eπ=-∑二、单项选择题(共24分,3分/题).1.C 2.A 3.C 4.D 5.C 6.A 7.C 8.B 三、计算题(共54分,9分/题).1. 解: 设{}A A 原发信息是=,{}B B 原发信息是=. {}A A 接收信息是=',{}B B 接收信息是='. 则由题设,()53=A P ,()52=B P ,()04.0='A B P ,()07.0='B A P . (3分) (1) 根据全概率公式,()()()()()320.960.070.60455P A P A P A A P B P A B '''=+=⨯+⨯= (3分)根据Bayes 公式,得()()()()()()()9536.007.05296.05396.053=⨯+⨯⨯='+''='B A P B P A A P A P A A P A P A B P (3分) 2.解: ⑴ X 的可能取值为5,4,3.且{}1011335===C X P ,{}10343523===C C X P ,{}10653524===C C X P所以,随机变量X 的分布律为:X 3 4 5P101 103 106 ( 6分)⑵随机变量X 的分布函数为:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=51541044310130x x x x x F .( 3分) 3解: 随机变量X 的概率密度函数为()2221x ex f -=π()+∞<<∞-x (2分)设随机变量Y 的分布函数为()y F Y ,则有 (){}{}{}1122-≤=≤+=≤=y XP y X P y Y P y F Y (2分)①. 如果01≤-y ,即1≤y ,则有()0=y F Y ;(1分)②. 如果1>y ,则有(){}{}1112-≤≤--=-≤=y X y P y X P y F Y⎰⎰------==12112222221y x y y x dx edx eππ即()⎪⎩⎪⎨⎧≤>=⎰--122122y y dxey F y x Y π(2分)()()1221122100y Y Y e y f y F y y y π--⎧⋅>⎪'∴==-⎨⎪≤⎩即 ()⎪⎩⎪⎨⎧≤>-=--00112121y y e y y f y Y π(2分)4. 解:(1)()(,)xP Y X dx f x y dy ∞-∞-∞≤=⎰⎰=2112460021213()4820xx dx x ydy x x dx =-=⎰⎰⎰(3分) ⑵ 当11≤≤-x 时,()()()421218214212x x ydy x dy y x f x f x X -===⎰⎰+∞∞-, 所以,随机变量X 的边缘密度函数为()()⎪⎩⎪⎨⎧≤≤--=其它011182142x x x x f X ;(2分)当10≤≤y 时,()()250322727421y yx ydx x dx y x f x f yyyY ====⎰⎰-+∞∞-, 所以,随机变量X 的边缘密度函数为()⎪⎩⎪⎨⎧≤≤==其它102725y yy f Y (2分) ⑶()()(),X Y f x y f x f y ≠,∴X 与Y 不独立.(2分)5. 解: 设{}某辆汽车出事故=A ,则()006.0=A P .(1分)设X :运输公司一年内出事故的车数.则()~5000.006X b , .(3分)保险公司一年内共收保费400000500800=⨯,若按每辆汽车保险公司赔偿50000元计算,则保险公司一年赚钱不小于200000元,则在这一年中出事故的车辆数不能超过4辆.因此所求概率为()⎪⎪⎭⎫⎝⎛⨯⨯⨯-≤⨯⨯⨯-=≤994.0006.0500006.05004994.0006.0500006.05004X P X P⎪⎭⎫⎝⎛≤⨯⨯⨯-=58.0994.0006.0500006.0500X P ()7190.058.0=Φ≈(5分)6. 解: ⑴. ()()()26032θθθθ=-==⎰⎰+∞∞-dx x x dx x xf X E ,(3分)所以,()X E 2=θ ,将()X E 用样本均值∑==ni i X n X 11来替换,得未知参数θ的矩估计为X 2ˆ=θ(2分) ⑵. ()()()()X D nX D X D D 442ˆ===θ,(1分) 而 ()()()[]22X E X E X D -=()()20462223322θθθθθθ=--=⎪⎭⎫⎝⎛-=⎰⎰+∞∞-dx x x dx x f x (2分)所以,()()nn X D n D 52044ˆ22θθθ=⨯== . (1分)第9页---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------第10页。
概率论期末考试试卷试题A卷包括答案
07 级?概率论?期末考试试题 A 卷及答案一、填空题〔总分值 15 分〕:1.一部五卷的文集,按任意次序放到书架上,那么“第一卷及第五卷出现在旁边〞的概率为1。
1023!1解答: p15!102.设 P( A) p, P( B)q, P( A B)r , 那么 P( AB )r q。
解答: P( AB )P( A B)P[( A B) B)] P( A B) P(B)r q3.设随机变量的分布列为P( X k )a k, k0,1,2,...3则a =2. 3解答: 1a a113 a a2k 03k12334. 设随机变量为与, D=25,D=36,,0.4 ,那么 D( -)= 37.解答:D ()D D 2 cov(, ),cov(,) D DD () D D 2 D D,25 36 2 5 6 0.4 375. 设随机变量服从几何分布 P(k )q k 1 p,k 1,2,... 。
那么的特征函数f (t )。
解 : f t E(e it)e itk q k1 p pe it qe it itk 1pe it .k1k 11qe二、单项选择题〔总分值15 分〕:1.设 .A 、 B、 C 为三个事件 , 用 A、 B、 C 的运算关系表示“三个事件至多一个发生〞为(④).① A B C .②AB C A BC AB C③ABC .④ A BC ABC ABC A BC2. 以下函数中, ()可以作为连续型随机变量的分布函数.①. F x e xx0②G xe x x01x01x0③ x0x0④ H x0x01e x x0 1 e x x03. 下面是几个随机变量的概率分布,其中期望不存在的为〔②〕。
① P(k )n p k (1p) n k ,0 p 1, k 0,1,..., n .k② P((1) k 3k)1, k 1,2,... .k3kk③ P(k )e,0, k0,1,2.. .k!④ . P(k )(1p)k 1 p, 0p 1, k1,2,...4. 设( ,) 服从二维正态分布 N ( a1 , a2 ; 1 2 ,22 ; r ) ,r0是,独立的〔③ 〕。
2020-2021大学《概率论》期末课程考试试卷A(含答案)
第1页共2页 第1页共2页12020-2021大学《概率论》期末课程考试考试卷A适用专业: 考试日期: 考试时间:120分钟试卷总分:100分 试卷类型:闭卷一、(共10小题,每空2分)填空题:1. 比较概率P(A)、P(A+B)、P(AB)与P(A)+P(B)大小2.试用事件A 、B 、C 表示下列事件:(1)A 、B 、C 同时发生 ;(2) A 、B 、C 至少有一个发生 ;(3)仅A 发生 ;(4) A 、B 、C 不可能同时发生 .3.设P(A)=0.5,P(B)=0.4.则(1)当A 、B 互斥时,P(AUB)= ; (2)当A 、B 独立时,P(AB)= ; (3)当A 包含B 时, P(AUB)= . (4)当A 、B 独立时,P(AUB)= ;4.设P(A)=41, P(B)= 51 , P(AUB)=31 , 则P(AB)= . 5.设E ξ=5,则E(3ξ+2)= . 6. 设 D ξ=9 ,则D(2ξ +3)= .7. 设ξ服从正态N(2,9)分布, 则E ξ= ,2ξ+1服从____________.8.设A i 表示某人第i 次摸球中奖 (i=1,2,3),则A 1A 2A 3表示 ,A 1UA 2UA 3表示 . A 1A 23A 表示 . 9.若E ξ=4,D ξ=0.2,则≥≤≤)53(ξP .10. 设随机变量ξ服从()5,2上的均匀分布,则方程42X +4ξX -2=0有实根的概率是____________,且E ()32-ξ=_____________.二、(共4小题,每小题6分)计算下列各题1.一袋中有五个红球,三个白球,二个黑球,求任取三个球中恰好有一红,一白,一黑的概率。
2. 设随机变量ξ的密度函数为)(x ϕ==⎩⎨⎧0sin x k ()()ππ,0,0∉∈x x 求(1)常系数k 及概率P(4π<ξ<2π).院系______________专业班级_____________姓名_____________序号______--------------------------------密------------------------------------封------------------------------------线-----------------------------------第2页共2页 第2页共2页 23.甲、乙二人同时射击,甲击中目标的概率为0.8, 乙击中目标的概率为0.9求:(1)两人同时击中目标的概率, (2)至少有一人击中目标的概率.4.N 个人同乘一辆长途汽车,沿途有n 个车站,每到一个车站时,如果没有人下车,则不停车.设每个人在任一车站下车是等可能的,求停车次数的数学期望.三、(共3小题,每小题10分)解答下列各题1.某批产品废品率为0.03,进行20次重复抽样检查.问抽取20件产品中,(1)恰好有2件为废品的概率是多少?(2) 至少有一件为废品的概率是多少?2. 某测量误差ξ∽N(0,1).求(1)误差绝对值不超过2的概率.(已知0Φ(2)=0.97725).(2)三次测量中至少有一次误差绝对值不超过2的概率.3.设()ηξ,的联合密度函数为ϕ(x ,y)=其它,2,0,0)sin(21π<<⎪⎩⎪⎨⎧+y x y x ,试求 E(ηξ+).四、(6分)证明题在某一试验中事件A 出现的概率为p,试证明在n 次重复独立试验中事件A 出现奇数次的概率为2)21(1np --.院系______________专业班级_____________姓名_____________序号______----------------------------------密------------------------------------封------------------------------------线-----------------------------------第3页共2页 第3页共2页32020-2021大学《概率论》期末课程考试考试卷A 答案适用专业: 考试日期: 考试时间:120分钟 试卷总分:100分 试卷类型:闭卷一、(共10小题,每空2分)填空题:1.比较概率P(A)、P(A+B)、P(AB)与P(A)+P(B)大小P(A)+P(B)≥ P(A+B)≥P(A)≥ P(AB);2.试用事件A 、B 、C 表示下列事件: (1)A 、B 、C 同时发生 ABC ; (2) A 、B 、C 至少有一个发生 C B A ; (3)仅A 发生 C B A ;(4) A 、B 、C 不可能同时发生 A C C B B A . 3.设P(A)=0.5,P(B)=0.4.则(1)当A 、B 互斥时,P(AUB)= 0.9 ; (2)当A 、B 独立时,P(AB)= 0.2 ; (3)当A 包含B 时, P(AUB)= 0.5 . (4)当A 、B 独立时,P(AUB)= 0.7 ;4.设P(A)=41 , P(B)= 51 , P(AUB)=31, 则P(AB)=607 .5.设E ξ=5,则E(3ξ+2)= 17 . 6. 设 D ξ=9 ,则D(2ξ +3)= 36 .7. 设ξ服从正态N(2,9)分布, 则E ξ= 2 ,2ξ+1服从N(5,36). 8.设A i 表示某人第i 次摸球中奖 (i=1,2,3),则A 1A 2A 3表示三次都未中奖 ,A 1UA 2UA 3表示至少有一次中奖 . A 1A 23A 表示 只有第三次未中奖. 9.若E ξ=4,D ξ=0.2,则≥≤≤)53(ξP 0.8 .10. 设随机变量ξ服从()5,2上的均匀分布,则方程42X +4ξX -2=0有实根的概率是__1__,且E ()32-ξ=__4__. 二、(共4小题,每小题6分)计算下列各题1. 一袋中有五个红球,三个白球,二个黑球,求任取三个球中恰好有一红,一白,一黑的概率。
16-17《概率论》试卷A
河北科技大学理工学院2016--2017学年第一学期《概率论》期末考试试卷(A )学院 班级 姓名 学号一. 填空题(每小题3分,共30分)1. 设A 与B 相互独立,()0.5,()0.9P A P A B ==U ,则()P B = .2. 三人独立地破译一密码,他们能单独破译出的概率分别为13,14,15,则此密码被破译出的概率为 .3. 设随机变量X 的分布律为()3{},1,2,4kP X k c k ===L ,则c = .4. 设随机变量X 服从参数为2的泊松分布,则{()}P X E X == .5. 设随机变量~(1,6)K U ,则关于x 的方程240x x K ++=有实根的概率是 .6. 已知随机变量X 与Y 独立同分布,且1{0}{1}2P X P X ====,设Z X Y =+,则{0}P Z == .7. 设()1,()2E X D X =-=,则2(32)E X -= .8. 设随机变量X 与Y 的方差分别为1和4,相关系数为0.25,则=+)(Y X D . 9. 设随机变量X 的方差为1,则由切比雪夫不等式可知{|()|2}P X E X -≥≤ . 10. 设n μ是n 次独立重复试验中事件A 出现的次数,p 是A 在每次试验中出现的概率,则对任意的0ε>,有lim n n P p n με→∞⎧⎫-<=⎨⎬⎩⎭.二. 单项选择题(每小题3分,共18分)1. 设随机事件A 与B 互不相容,则 【 】 (A)()0P AB =(B)()()()P AB P A P B =⋅ (C)()1()P A P B =- (D)()1P A B =U2. 设某连续型随机变量X 的分布函数是(1),0()0,0x k x e x F x x -⎧-+≥=⎨<⎩则常数k 的值是 【 】(A)1k = (B) 0k = (C) 1k =- (D) k 为任意常数 3. 设2~(,4)X N μ,2~(,5)Y N μ,记1{4}p P X μ=≤-,2{5}p P X μ=>+,则 【 】(A) 对任何实数μ ,都有12p p = (B) 对任何实数μ ,都有12p p < (C) 对任何实数μ ,都有12p p > (D) 只对个别的μ ,才有12p p =4. 设随机变量X 的密度函数为()f x ,则23Y X =-的密度函数()Y f y 为 【 】(A) 13()22y f +-(B) 13()22y f -- (C) 13()22y f + (D) 13()22y f - 5. 若随机变量X 与Y 满足)()()(Y E X E XY E =,则 【 】(A)X 与Y 相互独立 (B) ()()()D X Y D X D Y -=+ (C)1XY ρ= (D) ()()()D X Y D X D Y -=-6. 设随机变量Y X ,分别服从(0,1)N 和(1,1)N ,且X 与Y 相互独立,则 【 】(A)1{0}2P X Y +≤= (B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤= (D)1{1}2P X Y -≤=三.计算题(共52分)1.(10分)现有一批零件是由甲、乙两人共同加工而成的,其中甲加工了60%,乙加工了40%,甲加工的零件的次品率为10%,乙加工的零件的次品率为15%, (1) 从这批零件中任取一只,求取到次品的概率; (2) 若已知取到的是次品,求它是甲生产的概率.101111424X P -011122Y P 2. (10分)设连续型随机变量X 的概率密度函数为23(1),118()0,x x f x ⎧--<<⎪=⎨⎪⎩其他求(1)X 的分布函数F (x );(2)概率{02}P X <≤;(3)()E X .3. (10分)设X 与Y 为相互独立的离散随机变量,概率分布律分别为求 (1)(,)X Y 的联合分布律;(2){}P X Y =.分)设二维随机变量(,)X Y 的联合密度函数4,01,01(,)0,xy x y f x y <<<<⎧=⎨⎩其他求 (1)X 的边缘概率密度函数()X f x ;(2){}P X Y ≤; (3)()E XY .5. (10分) 某保险公司多年的统计资料表明,在索赔户中被盗索赔户中占20%.现随意抽查100个索赔户,设X 表示这100个索赔户中因被盗向保险公司索赔的户数. (1) 写出X 的概率分布律;(2) 利用中心极限定理,求被盗索赔户不少于14户的概率的近似值. 注:(1.5)0.933Φ=。
《概率论与数理统计》期末考试试卷(A)答案
2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)
2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
概率论与数理统计 期末试卷及答案 A
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
《概率论》期末考试试题A卷和答案
07级《概率论》期末考试试题A 卷及答案一、 填空题(满分15分):1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为101。
解答:101!5!321=⨯=p 2.设,)(,)(,)(r B A P q B P p A P =⋃==则=)(B A P q r - 。
解答:q r B P B A P B B A P B A P B A P -=-⋃=-⋃=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3)(===k ak X P k则a =32. 解答:32233111310=⇒=-⋅==∑∞=a a a a kk 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答:374.065236252)(),cov(),cov(2)(,,=⨯⨯⨯-+=-+=-=-+=-ηξηξρηξηξηξηξηξρηξηξηξD D D D D D D D D D5. 设随机变量ξ服从几何分布,...2,1,)(1===-k p qk P k ξ。
则ξ的特征函数=)(t f ξ 。
()().1)(:1111it it k k it itk k itk it qepe qe pep qe e E tf -====∑∑∞=--∞=ξξ解 二、 单项选择题(满分15分):1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ).① C B A ⋃⋃. ② C B A C B A C B A ++③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.下列函数中,( )可以作为连续型随机变量的分布函数.①.()⎪⎩⎪⎨⎧≥<=010x x e x F x②()⎪⎩⎪⎨⎧≥<=-010x x e x G x③()⎩⎨⎧≥-<=Φ0100x e x x x④()⎩⎨⎧≥+<=-0100x e x x H x3.下面是几个随机变量的概率分布,其中期望不存在的为(② )。
概率论期末考试试卷(A卷)答案
设随机变量 X 服从泊松分布,且 P ( X ≤ 1) = 4 P ( X = 2) ,求 P( X = 3) 的值。 (提示:若 X ∼ π (λ ) ,即 P ( X = k ) = λ k e − λ , k = 0,1, 2, )
k! 解答: P( X ≤ 1) = P( X = 0) + P( X = 1) = e−λ + λe−λ , P( X = 2) = λ2 e−λ
2、在一标准字典中有 55 个由两个不相同的字母所组成的单词,若从 26 个英文字母中任取
两个字母予以排列,能排列上述单词的概率是 11/130
。。
3、已知随机变量 X ,Y 相互独立,且 X ∼ N (1, 3) ,Y ∼ N (2, 4) ,若 Z = 3X − 2Y ,则 Z 服
从分布为 N (−1, 43)
∫ ∫ 故: P ⎧⎨0 < X < 1 ,e < Y < 6⎫⎬ =
1 2
6 2xe−( y−5)dxdy = 1 (1− e−1)
⎩
2
⎭ 05
4
……………………………… 2 分
(2)因为: E(3X + Y ) = E(3X ) + E(Y ) = 3E( X ) + E(Y )
……………………………… 3 分
第5页共6页
而
∫ ∫ ∫ ∫ E(X ) =
+∞
+∞
xf (x, y)dxdy =
1
+∞ 2x2e−( y−5)dxdy
−∞ −∞
05
∫ ∫ = 1 +∞ 2x2e−( y−5)dxdy = 2
05
3
∫ ∫ ∫ ∫ E(Y ) =
《概率论》期末考试试卷(A卷)答案.pdf_51bkki9d6e1bkisq1bs2bsqnhtm0bt0c0c1b5btono0bs0bu12f00f02z(1)
……2 分
……………………2 分
解法二: 设三大部件中第 i 个部件需要调整的事件为 Ai(i=1,2,3),则………1 分
P ( X = 0) = P ( A1 A2 A3 ) = 0.9 × 0.8 × 0.7 = 0.504. ………………1 分
3
P ( X = 1) = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P( A1 A2 A3 ) = 0.1× 0.8 × 0.7 + 0.9 × 0.2 × 0.7 + 0.9 × 0.8 × 0.3 = 0.398. P( X = 2) = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P( A1 A2 A3 ) = 0.1× 0.2 × 0.7 + 0.1× 0.8 × 0.3 + 0.9 × 0.2 × 0.3 = 0.092.
………………1 分
………………1 分
P ( X = 3) = P( A1 A2 A3 ) = 0.1× 0.2 × 0.3 = 0.006. ………………………1 分
所以
E ( X ) = 0 × 0.504 + 1× 0.398 + 2 × 0.092 + 3 × 0.006 = 0.6. ………2 分
六、简答题(10 分)
解:(1) P{ X < 200} =
∫
200
0
x 1 − 1 − 600 e dx = 1 − e 3 。……………………………4 分 600
− 1
(2) 设 Y 为 3 个元件在最初 200 小时损坏的个数,则 Y ~ B (3, 1 − e 3 ) ,……3 分
概率论与数理统计期末考试试卷及答案
概率论与数理统计期末考试试卷及答案专业概率论与数理统计课程期末试卷A卷1.设随机事件A、B互不相容,p(A)=0.4,p(B)=0.2,则p(AB)=0.A。
2B。
4C。
0D。
62.将两封信随机地投入四个邮筒中,则未向前两个邮筒中投信的概率为3/16.A。
2B。
2/3C。
3/16D。
13/163.填空题(每空2分,共30分)1)设A、B是两个随机变量,p(A)=0.8,p(B)=。
则p(AB)=0.3.2)甲、乙两门彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.3、0.4,则飞机至少被击中一次的概率为0.58.3)设随机变量X的分布列如右表,记X的分布函数为F(x),则F(2)=0.6.X。
1.2.3p(X) 0.2.0.4.0.44)把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为3/5.5)设X为连续型随机变量,c是一个常数,则p(X=c)=0.6)设随机变量X~N(μ,1),Φ(x)为其分布函数,则Φ(x)+Φ(-x)=1.7)设随机变量X、Y相互独立,且p(X≤1)=1/2,p(Y≤1)=1/3,则p(X≤1,Y≤1)=1/6.8)已知P(X=0)=1/2,P(X=1)=1/4,P(X=2)=1/8,则E(X^2)=1/2.9)设随机变量X~U[0,1],由切比雪夫不等式可得P(|X-1/2|≥1/4)≤1/4.4.答案解析1)p(B)=0.375由乘法公式p(AB)=p(A)p(B)可得,0.3=0.8p(B),解得p(B)=0.375.2)P(未击中)=0.3×0.6+0.4×0.7=0.58由概率加法公式可得,P(未击中)=P(甲未击中且乙未击中)=P(甲未击中)×P(乙未击中)=0.3×0.6+0.4×0.7=0.58.3)F(2)=P(X≤2)=0.2+0.4=0.6由分布函数的定义可得,F(2)=P(X≤2)=P(X=1)+P(X=2)=0.2+0.4=0.6.4)P(两个空盒)=3/5将三个球分别放入三个盒子中,共有3×2×1=6种方案。
概率论试题(A卷)答案
《概率论》A 卷参考答案一、填空题(15分,每小题3分) 1、已知11()()(),()(),()0,46P A P B P C P AB P BC P AC ====== 则事件,,A B C 全不发生的概率为________。
2、设11()(),(|)26P A P B P A B ===,则(|)P A B =________。
3、设随机变量X 服从正态分布2(,)(0)N m s s >,且二次方程240y y X ++=无实根的概率为12,则m = ________。
4、随机变量X 在[1,4]上服从均匀分布,则概率2{3}P X ≤=________。
5、设随机变量X 和Y 的数学期望相同,方差分别为1和4,X 与Y 的相关系数为0.5,则根据切比雪夫不等式,有{||6}P X Y -≥≤ 。
1、712; 2、16; 3、4; 4、13; 5、112。
二、选择题(15分,每小题3分)1、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 .(A) r n r r n p p C ----)1(11; (B) rn r r n p p C --)1(; (C) 1111)1(+-----r n r r n p p C ; (D) rn r p p --)1(. 2、设随机变量X 与Y 相互独立且同分布,1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( )。
(A )1{1}4P XY ==。
(B ){}1P X Y ==;(C )1{0}4P X Y +==; (D )1{}2P X Y ==;3、设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ=-,()F x 是X 的分布函数,则对任意实数a ,有( )。
(A )()2()1F a F a -=-; (B )()()F a F a -=;(C )01()()2a F a x dx ϕ-=-⎰; (D )0()1()a F a x dx ϕ-=-⎰。
概率论期末试题答案
概率论期末试题答案1. (a) 解:根据题意,已知事件A和事件B相互独立,可以得到以下关系式:P(A | B) = P(A) (由事件A和事件B相互独立可得)P(B | A) = P(B) (由事件A和事件B相互独立可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) = P(B | A) * P(A) / P(B)(b) 解:根据题意,已知事件A和事件B相互依赖,可以得到以下关系式:P(A | B) ≠ P(A) (由事件A和事件B相互依赖可得)P(B | A) ≠ P(B) (由事件A和事件B相互依赖可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) ≠ P(B | A) * P(A) / P(B)2. 此题为条件概率的计算。
根据题意,已知P(A) = 0.4,P(B) = 0.6,P(A | B) = 0.5,求P(A ∪ B)。
解:根据概率公式,可以得知:P(A ∪ B) = P(A) + P(B) - P(A | B)将已知的数值代入上述公式,即可求解:P(A ∪ B) = 0.4 + 0.6 - 0.5 = 0.5所以,P(A ∪ B) = 0.5。
3. 解:根据题意,已知事件A和事件B相互独立,且P(A) = 0.2,P(B) = 0.3,求P(A' ∪ B')。
首先,我们可以得到以下关系式:P(A' ∪ B') = 1 - P((A' ∪ B')') (根据全概率公式)= 1 - P((A ∩ B)') (德摩根定律)= 1 - (1 - P(A ∩ B)) (补集的概率为1减去该集合的概率)= P(A ∩ B)由于事件A和事件B相互独立,可以得到以下关系式:P(A ∩ B) = P(A) * P(B)将已知的数值代入上述关系式,即可求解:P(A' ∪ B') = P(A ∩ B) = P(A) * P(B) = 0.2 * 0.3 = 0.06所以,P(A' ∪ B') = 0.06。
概率论期末试题(带答案)
草纸:
试卷纸
共4页
第1页
试题要求:1、试题后标注本题得分;2、试卷应附有评卷用标准答案,并有每题每步得分标准;3、试卷必须装订,拆散无效;4、试卷必须
用碳素笔楷书,以便誉印;5、考试前到指定地点领取试卷。
学号:
姓名:
班级:
..........................................................密.......................................................封..........................................................线..........................................................
..
27
解
19
8
设每次试验成功的概率为 p, 由题意知至少成功一次的概率是 ,那么一次都没有成功的概率是
. 即 (1 − p)3 =
8
,故
p=1.
27
27
27
3
4. 设随机变量 X, Y 的相关系数为 0.5 , E(X ) = E(Y ) = 0, E= (X 2) E= (Y 2) 2 , 则 E[( X + Y )2 ] =(空 4)
8. 设 zα , χα2 (n), tα (n) , Fα (n1, n2 ) 分别是标准正态分布 N(0,1)、χ 2 (n)分布、t 分布和 F 分布的上α 分位点, 在
下列结论中错误的是(
).
(A) zα = −z1−α .
(B)
χ
2 α
(n)=-
χ2 1−α
概率论考试试题及答案(含ABC三套)
1 ,则恰有 3 个水龙头同时 10
三、计算题 (65 分) 1、一个袋内有 5 个红球,3 个白球,2 个黑球,计算任取 3 个球恰为一红、一白、一黑的概 率。 (10 分)
2、朋自远方来,他乘火车、轮船、汽车、飞机来的概率分为 0.3,0.2,0.1,0.4,如果他乘 火车、轮船、汽车的话,迟到的概率分别为 (1)求他迟到的概率。 (2)如果它迟到了,求他乘火车来的概率。
1 1 1 , , ,而乘飞机则不会迟到。 (12 分) 4 3 12
第 2 页 共 12 页
3、设有一大批电子元件,一级品率为 0.2,现从中随机抽查 20 个,试求: (1)一级品小于 2 个的概率。 (2)至少有一个一级品的概率。 (10 分)
4、 随机变量 X 概率密度为:
P( x )=
k 1 (k=0,2,5),则 P{X﹥1}=_________________。 10
三、计算题 (65 分) 1、 一袋子中装有 10 个大小相同的球, 其中 3 个黑球, 7 个白球。 从袋中任取两球, 求:率。 (10 分)
5、随机地掷一枚均匀的骰子两次,则这两次出现的点数之和为 8 的概率为__________。 a、
3 36 5 c、 36
b、
4 36 2 d、 36
第 5 页 共 12 页
二、 填空题(每小题 2 分,共 10 分) 1、事件 A 与 B 恰有一个发生表示为_________________。 2、100 件产品中有 5 件次品,任取 10 件,恰有 2 件为次品的概率为_________________。 6、 事件 A,B 互不相容,且 P(A)=0.4,P(B)=0.3,则 P( AB )=_________________。 4、已知事件 A、B 相互独立,且 P(A+B)=a,P(A)=b,则 P(B)= _________________。 5、某随机变量 X 的分布律为 P{X=k}=
《概率统计》期末考试题(有答案)
《概率论》期末 A 卷考试题一填空题(每小题2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为()。
2.设,则().3.设随机变量的分布函数为,则(),( ).4.设随机变量服从参数为的泊松分布,则( )。
5.若随机变量X的概率密度为,则()6.设相互独立同服从区间(1,6)上的均匀分布,().7.设二维随机变量(X,Y)的联合分布律为X Y 1 21则8.设二维随机变量(X,Y)的联合密度函数为,则()9.若随机变量X与Y满足关系,则X与Y的相关系数()。
10.设二维随机变量,则( ).二.选择题(每小题2分,共10 分)1.设当事件同时发生时事件也发生,则有().2.假设事件满足,则()。
(a) B是必然事件(b)(c) (d)3.下列函数不是随机变量密度函数的是( ).(a) (b)(c)(d)4.设随机变量X服从参数为的泊松分布,则概率( )。
5.若二维随机变量(X,Y)在区域内服从均匀分布,则=().三、解答题(1—6小题每题9分,7-8小题每题8分,共70分)1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三车间的正品率分别为0。
95, 0。
96, 0.98。
现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。
2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数的概率分布;(2)求的分布函数.3.设随机变量的密度函数为.(1)求参数;(2)求的分布函数;(2)求.4.设随机变量的密度函数为,求的密度。
5.设二维随机变量(X,Y)在区域内服从均匀分布,求(X,Y)的联合密度函数与两个边缘密度函数,并判断是否独立。
6.设随机变量的数学期望均为0,方差均为1,且任意两个变量的协方差均为.令,求的相关系数。
.7.设X与Y相互独立且同服从参数为的指数分布,求的密度函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论》期末考试试题(A卷答案)
考试时间:120分钟(2005年07月)
班级姓名成绩
1.设甲、乙两人在同样条件下各生产100天,在一天中出现废品的概率分布分别如下:
求甲、乙两人生产废品的数学期望,比较甲、乙两人谁的技术高?()
A甲好B乙好C一样好D无法确定
2.某厂产品的合格率为96%,合格品中一级品率为75%。
从产品中任取一件为一级品的概率是多少?()
A 0.72
B 0.24
C 0.03
D 0.01
3. 任一随机事件A的概率P(A)的取值在()
A (0,1)
B [0,1]
C [-1,0]
D (0,∞)
4.已知P(A)=1,P(B)=0,则()
A. A为必然事件,B为不可能事件
B. A为必然事件,B不是不可能事件
C. A不必为必然事件,B为不可能事件
D. A不一定是必然事件,B不一定是不可能事件
5. 设A、B两个任意随机事件,则=
A
P ()
(B
)
A. P(A)+ P(B)
B. P(A)-P(B)+ P(AB)
C. P(A)+ P(B)-P(AB)
D. P(AB)-P(A)-P(B)
6.若已知φ
A ,且已知P(A)=0,则()
B
=
A.A与B独立
B. A与B不独立
C.不一定
D.只有当φ=A ,φ=B 时,A 、B 才独立 7.已知X ~B (n ,p ),则D (X )=( )
A.np
B.p (1-p )
C.n (1-p )
D.np (1-p ) 8.设),(~2σμN X ,将X 转化为标准正态分布,转化公式Z =( ) A.
2
σ
μ
-x B.
σ
μ
-x C.
σ
μ
+x D.
μ
σ
-x
9. 设),(~2
σμN X ,P (a ≤x ≤b )=( ) A.()()a b φφ- B.⎪⎭
⎫
⎝⎛--⎪⎭⎫
⎝⎛-σμφσμφa b
C.⎪⎭⎫ ⎝⎛-+⎪⎭⎫
⎝⎛-σμφσμφa b D.⎪⎭
⎫
⎝⎛--⎪⎭⎫ ⎝⎛-σμφσμφb a 10. )1,0(~N X ,P (X ≤2)=( ) A.0.6826 B.0.9545
C.0.9973
D.0.5 二、 多项选择题(3*8=24分)
1. 设A 、B 是两个独立随机事件,则( ) A.)()()(B P A P B A P ⋅= B. )()|(A P B A P = C. )()|(B P A B P = D. )()()(B P A P B A P += E. )()|()(B P B A P B A P ⋅=
2. 离散型随机变量的概率分布具有性质( )
A P {}i x X ==P i ≥0, i=1,2,3,…,n B
{}1x X
P n
1
i i ==∑=
C X 取某一特定值x i 的概率均为0≤P i ≤1
D 离散型随机变量的概率分布表示它取值某一区间的概率
E
1P
n
1
i i
=∑=
3. 连续性随机变量X 具有性质( )
A.连续性随机变量通常研究它某一特定值的概率
B.连续性随机变量X 的取值在(0,1)范围之内
C.密度函数f (x )的曲线与实数轴所围成的面积等于1
D.⎰
∞
-=
x
dx x f X F )()( (-∞<x <∞)
E.P{a <x <b}=F (b )-F (a )=⎰b
a
dx x f )(
4. 离散型随机变量X 的方差D (X )=( )
A.i n
i i p X E x 2
)]([∑-
B.dx x f X E x )()]([2
⎰+∞
∞
--
C.E[X -E (X )]2
D.E (X 2)-[E (X )]2
E. E[X 2-E (X )] 2
5. 贝努力试验是满足下列哪些条件的随机试验( ) A 每次试验都有两种可能结果
B 试验结果对应于一个离散型随机变量
C 试验可以在相同条件重复进行
D 每次试验“成功”的概率p 不变,“失败”的概率1-p 也不变
E 各次试验的结果相互独立
6. 二项分布的概率分布为P{X =x}=C x
n p x (1-p) x 其中( )
A.n 为试验次数
B.p 为一次试验“成功”的概率
C. 一次试验“失败”的概率为1-p
D.x 为n 次试验“成功”的次数
E.C x
n 表示从n 个元素中抽取x 个元素的组合
7. 已知X ~B (n ,p ),n =6,p =0.6,则P{X >3}=( ) A. 1-P{X ≤3} B. 1-P{X <3}
C. P{X =4}+P{X =5}+P{X =6}
D. 1-∑=--30)
1(x x
n x x n p p C
E.0
666155
62
4
4
64.06.04.06.04.06.0C C C ++
8. 如果向上抛一枚硬币100次,出现正面10次,反面90次,说明( ) A 硬币的质量不均匀 B 出现正面的概率为0.1
C 出现正面的概率小于出现反面的
D 出现反面的频率为0.9
E 不能说明任何问题 三、 填空题(1*6=6分)
1. 一批产品共10个,其中6个是合格品,4个次品,从这批产品任取3个,其中
有次品的概率为___________。
2. 根据某地气象和地震资料知:大旱年、大涝年、正常年的概率分别为0.2,0.3,
0.5。
而大旱年、大涝年、正常年的地震的概率分别为0.6,0.3,0.4,该地发生地震的概率为__0.41_____。
3. 某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订两种报纸
的一种,同时订这两种报纸的住户的概率为 0.3 。
4. 某种品牌的电视机用到5000小时未坏的概率为
4
3,用到10000小时未坏的概率
为
2
1。
现在有一台这样的电视机已经用了5000小时未坏,它能用到10000小时
概率为 3
2 。
5. 设X 是连续型随机变量,则E (X )=
⎰
∞
∞
-dx x xf )( 。
6. X ~N (0,1),则P (a ≤X ≤b )= ()()a b φφ- 。
四、 计算题(8*5=40分)
1.某人花2元钱买彩票,他抽中100元奖的概率是1‟,抽中10元奖的概率是1%,抽中1元奖的概率是2/10,假设各种奖不能同时抽中。
问:(1)求出此人收益的概率分布(写出分布律);
(2)求此人收益的期望值。
0.4
2.在一条生产线上加工的某种产品有5%是次品,而该生产线生产产品是否有次品完全是随机出现的。
现在随机的选取5个产品,则记X 为选取的五个产品种次品的个数。
求:(1)X 的均值和方差;0.25;0.2375 (2)求P(X=2)。
0.021
3.有四个车间A 、B 、C 、D 生产同种产品,日产量分别占全厂产量的30%,27%,25%,18%。
若已知这四个车间产品的次品率分别为0.10,0.05,0.20和0.15,从该厂任意抽取一件产品。
问:(1)发现为次品的概率是多少?
(2)这个次品是由A 、B 车间生产的概率各为多少?0.249;0.112
4.若某高校录取人数为报考第一志愿人数的20%,而报考人的成绩服从正态分布,已知平均总分为500分,标准差为40分,试问录取的成绩应定在多少分为宜。
533.6
5. 设随机变量X 的概率密度是3
2
3)(θ
x
x f =
,
(1)求8
7)1(=>X P ,求θ的值;2
(2)求X 的期望与方差。
1.5;0.15。