高中数学必修2期末测试试卷
高一数学必修2期末试题及答案doc
高一数学必修2期末试题及答案doc一、选择题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3,则f(2)的值为:A. -1B. 1C. 3D. 5答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 若a > 0,b > 0,则a + b的最小值是:A. 0B. 1C. 2D. 无法确定答案:D4. 函数y = 2^x的图象在点(1, 2)处的切线斜率为:A. 0B. 1C. 2D. 4答案:D5. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,则a_5的值为:A. 7B. 9C. 11D. 13答案:C6. 已知函数y = x^3 - 3x + 1,则y' =:A. 3x^2 - 3B. x^2 - 3C. 3x^2 + 3D. x^2 + 3答案:A7. 已知圆C的方程为(x - 2)^2 + (y - 3)^2 = 9,则圆心C的坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A8. 若直线y = 2x + 3与抛物线y = x^2 - 4x + 5相交,则交点的个数为:A. 1B. 2C. 3D. 0答案:B9. 已知向量a = (2, 3),b = (-1, 2),则a·b的值为:A. 1B. 2C. 3D. 4答案:C10. 已知函数f(x) = x^3 - 6x^2 + 11x - 6,求f'(x):A. 3x^2 - 12x + 11B. x^2 - 4x + 11C. 3x^2 - 12x + 5D. 3x^2 - 6x + 11答案:A二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的首项a_1 = 2,公比q = 3,则a_3的值为______。
答案:182. 已知函数y = x^2 - 6x + 8,求函数的对称轴方程为______。
数学必修二期末测试题(含答案)
xyOxyOxyOxyO数学必修二综合测试题一. 选择题*1.下列叙述中,正确的是( )(A )因为,P Q αα∈∈,所以PQ ∈α(B )因为P α∈,Q β∈,所以αβ⋂=PQ(C )因为AB α⊂,C ∈AB ,D ∈AB ,所以CD ∈α(D )因为AB α⊂,AB β⊂,所以()A αβ∈⋂且()B αβ∈⋂ *2.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( ).(A)30 (B)45 (C)60 (D)135 *3.已知点(,1,2)A x B 和点(2,3,4),且AB =,则实数x 的值是( ). (A)-3或4 (B)–6或2 (C)3或-4 (D)6或-2*4.长方体的三个面的面积分别是632、、,则长方体的体积是( ).A .23B .32C .6D .6*5.棱长为a 的正方体内切一球,该球的表面积为 ( ) A 、2a π B 、22a π C 、32a π D 、a π24 *6.若直线a 与平面α不垂直,那么在平面α内与直线a 垂直的直线( ) (A )只有一条 (B )无数条 (C )是平面α内的所有直线 (D )不存在 **7.已知直线l 、m 、n 与平面α、β,给出下列四个命题: ①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥ ,m ∥, 则⊥β③若m ∥ ,n ∥ ,则m ∥n ④若m ⊥ , ⊥β ,则m ∥ 或m ⊂≠α其中假命题是( ).(A) ① (B) ② (C) ③ (D) ④**8.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ).**9.如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( * ). (A) 4π (B) 54π(C) π (D) 32π **10.直线3y 2x =--与圆9)3y ()2x (22=++-交于E 、F 两点,则∆EOF(O 是原点)的面积为( ).A .52B .43C .23D .556**11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB 相交,则直线l 的斜率的取值k 范围是 ( )A 、34k ≥或4k ≤- B 、34k ≥或14k ≤- C 、434≤≤-k D 、443≤≤k ***12.若直线k 24kx y ++=与曲线2x 4y -=有两个交点,则k 的取值范围是( ).A .[)∞+,1 B .)43,1[-- C . ]1,43( D .]1,(--∞ 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.**13.如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么点A 的坐标是 .**14.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球面的面积是 . **15.已知222212:1:349O x y O x y +=+=圆与圆(-)(+),则12O O 圆与圆的位置关系为 .***16.如图①,一个圆锥形容器的高为a ,内装一定量的水.如果将容器倒置,这时所形成的圆锥的高恰为2a(如图②),则图①中的水面高度为 .三.解答题:**17.(本小题满分12分)如图,在OABC 中,点C (1,3). (1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程 .**18.(本小题满分12分)如图,已知正四棱锥V -ABCD 中,AC BD M VM 与交于点,是棱锥的高,若6cm AC =,5cm VC =,求正四棱锥V -ABCD 的体积.***19.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点.(1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1.***20. (本小题满分12分)已知直线1l :mx-y=0 ,2l :x+my-m-2=0王新敞(Ⅰ)求证:对m ∈R ,1l 与 2l 的交点P 在一个定圆上;(Ⅱ)若1l 与定圆的另一个交点为1P ,2l 与定圆①②BA1F的另一交点为2P ,求当m 在实数范围内取值时,⊿21P PP 面积的最大值及对应的m .***21. (本小题满分12分)如图,在棱长为a 的正方体ABCD D C B A -1111中,(1)作出面11A BC 与面ABCD 的交线l ,判断l 与线11A C 位置关系,并给出证明; (2)证明1B D ⊥面11A BC ; (3)求线AC 到面11A BC 的距离; (4)若以D 为坐标原点,分别以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出1,B B 两点的坐标.****22.(本小题满分14分)已知圆O :221x y +=和定点A (2,1),由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足PQ PA =.(1) 求实数a 、b 间满足的等量关系; (2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.参考答案一.选择题 DBACA BDCCD AB二.填空题 13. )2,1(- 14. 2a 3π 15. 相离 16.(1a三.解答题 17. 解: (1)点O (0,0),点C (1,3),OC 所在直线的斜率为30310OC k -==-. (2)在OABC 中,//AB OC,CD ⊥AB , CD ⊥OC .CD 所在直线的斜率为13CD k =-.CD 所在直线方程为13(1)3y x -=--,3100x y +-=即.18. 解法1:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ∴===⨯=(cm). 且11661822ABCDS AC BD =⨯⨯=⨯⨯=(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为111842433ABCD S VM ⨯=⨯⨯=(cm 3).解法2:正四棱锥V -ABCD 中,ABCD 是正方形,11163222MC AC BD ===⨯=(cm).且AB BC AC === .2218ABCD S AB ===(cm 2).VM 是棱锥的高,Rt △VMC中,4VM ==(cm).正四棱锥V -ABCD 的体积为113S 319. (1)证明:连结BD .在长方体1AC 中,对角线11//BD B D . 又 E 、F 为棱AD 、AB 的中点, //EF BD ∴.11//EF B D ∴. 又B 1D 1⊂≠ 平面11CB D ,EF ⊄平面11CB D ,∴ EF ∥平面CB 1D 1.(2)在长方体1AC 中,AA 1⊥平面A 1B 1C 1D 1,而B 1D 1⊂≠ 平面A 1B 1C 1D 1,∴ AA 1⊥B 1D 1.又在正方形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∴ B 1D 1⊥平面CAA 1C 1. 又B 1D 1⊂≠ 平面CB 1D 1,平面CAA 1C 1⊥平面CB 1D 1.20. 解:(Ⅰ)1l 与 2l 分别过定点(0,0)、(2,1),且两两垂直,∴ 1l 与 2l 的交点必在以(0,0)、(2,1)为一条直径的圆:0)1y (y )2x (x =-+- 即0y x 2y x 22=--+王新敞(Ⅱ)由(1)得1P (0,0)、2P (2,1),∴⊿21P PP 面积的最大值必为45r r 221=⋅⋅. 此时OP 与12P P 垂直,由此可得m=3或13-.21.解:(1)在面ABCD 内过点B 作AC 的平行线BE ,易知BE 即为直线l , ∵AC ∥11A C ,AC ∥l ,∴l ∥11A C .(2)易证11A C ⊥面11DBB D ,∴11A C ⊥1B D ,同理可证1A B ⊥1B D , 又11A C ⋂1A B =1A ,∴1B D ⊥面11A BC .(3)线AC 到面11A BC 的距离即为点A 到面11A BC 的距离,也就是点1B 到面11A BC 的距离,记为h ,在三棱锥111B BA C -中有111111B BA C B A B C V V --=,即1111111133A BC ABC S h S BB ∆∆⋅=⋅,∴3h =.(4)1(,,0),(,,)C a a C a a a 22. 解:(1)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222PQ OP OQ =-.又由已知PQ PA =,故22PQ PA =. 即:22222()1(2)(1)a b a b +-=-+-.化简得实数a 、b 间满足的等量关系为:230a b +-=. (2)由230a b +-=,得23b a =-+.PQ ===故当65a =时,minPQ =即线段PQ解法2:由(1)知,点P 在直线l :2x + y -3 = 0 上.∴ | PQ |min = | PA |min ,即求点A 到直线 l 的距离. ∴ | PQ |min =| 2×2 + 1-3 |2 2 + 12 = 255 . (3)设圆P 的半径为R ,圆P 与圆O 有公共点,圆 O 的半径为1,1 1.R OP R ∴-≤≤+即1R OP ≥-且1ROP ≤+.而OP ==故当65a =时,minOP =此时, 3235b a =-+=,min 1R =.得半径取最小值时圆P 的方程为22263()()1)55x y -+-=.解法2: 圆P 与圆O 有公共点,圆 P 半径最小时为与圆O 外切(取小者)的情形,而这些半径的最小值为圆心O 到直线l 的距离减去1,圆心P 为过原点与l 垂直的直线l ’ 与l 的交点P 0.r = 32 2 + 1 2 -1 = 355 -1.又 l ’:x -2y = 0,解方程组20,230x y x y -=⎧⎨+-=⎩,得6,535x y ⎧=⎪⎪⎨⎪=⎪⎩.即P 0( 65 ,35).∴ 所求圆方程为22263()()1)55x y -+-=.。
高中数学选择性必修二 高二上学期数学期末测试卷(A卷 夯实基础)同步单元AB卷(含答案)
班级 姓名 学号 分数高二上学期数学期末测试卷(A 卷·夯实基础)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.过两点()()5,,3,1A y B -的直线的倾斜角是135°,则y 等于( ) A .2 B .2- C .3 D .3-【答案】D 【详解】因为斜率tan1351k ︒==-,所以1153y k +==--,得3y =-. 故选:D.2.40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是( ) A50y ++= B.40x += C.50x += D.0x +=【答案】C 【详解】40y --=,令0x =,解得4y =-, 设()0,4A -,关于直线10x y +-=的对称点为(),B m n , 则4141022n mm n +⎧=⎪⎪⎨-⎪+-=⎪⎩,解得51m n =⎧⎨=⎩,即()5,1B ,40y --=,令x =1y =-,设)1C-,关于直线10x y +-=的对称点为(),D a b ,则11102b =--=,解得21a b =⎧⎪⎨=⎪⎩(2,1D ,BD k ==直线BD:)15y x -=-,即50x =。
故选:C3.已知异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==,则,a b 夹角的大小是( ) A .56πB .34π C .3π D .6π【答案】C 【详解】异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==∴21132371cos ,1424m n m n m n⨯+⨯-+⨯-⋅-====-, 异面直线,a b 所成角为范围为02πθ<≤,,a b ∴夹角的大小是3π故选:C4.设数列{}n a 的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16C .49D .64【答案】A 【详解】878644915a S S =-=-= 故选:A5.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【详解】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.6.直三棱柱111ABC A B C -中,90BCA ∠=,M 、N 分别是11A B 、11A C 的中点,1BC CA CC ==,则BM 与NA 所成的角的余弦值为( )A .BCD . 【答案】C 【详解】由题意可知1CC ⊥平面ABC ,且90BCA ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设12BC CA CC ===,则()2,0,0A 、()0,2,0B 、()1,0,2N 、()1,1,2M ,()1,0,2AN =-,()1,1,2BM =-,30cos ,56AN BM AN BM AN BM⋅<>===⨯⋅故BM 与NA 30故选:C.7.设抛物线C :y 2=4x 的焦点为F ,M 为抛物线C 上一点,N (2,2),则MF MN +的最小值为( ) A .3 B .2C .1D .4【答案】A 【详解】因为抛物线C :y 2=4x 的焦点为F (1,0),准线为1x =-, 根据抛物线定义可知MF =1M x +,所以当MN 垂直抛物线准线时,MF MN +最小, 最小值为:13N x +=. 故选:A .8.已知椭圆C :2222x y a b +=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为34,点P 为椭圆上一点,若∠F 1PF 2=π2,且F 1PF 2内切圆的半径为1,则C 的方程为( ) A .22167x y +=1B .223214x y +=1C .24x +y 2=1D .22447x y +=1【答案】A 【详解】易知F 1PF 2中,内切圆半径r =1212-2PF PF F F +=a -c =1,又离心率为34c a =,解得a =4,c =3,所以椭圆C 的方程为22167x y +=1. 故选:A二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则( ) A .2d =- B .124a =C .2628a a +=D .n S 取得最大值时,11n =【答案】AC 【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项) 选项D 错误. 故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误; 对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误. 故选:AC10.已知直线:440l kx y k -+-=与圆22:4440M x y x y +--+=,则下列说法中正确的是( )A .直线l 与圆M 一定相交B .若0k =,则直线l 与圆M 相切C .当1k =时,直线l 被圆M 截得的弦最长D .圆心M 到直线l的距离的最大值为【答案】BCD【详解】22:4440M x y x y +--+=,即()()22224x y -+-=,是以()2,2为圆心,以2为半径的圆,A.因为直线:440l kx y k -+-=,直线l 过()4,4,2244444440+-⨯-⨯+>,则()4,4在圆外,所以直线l 与圆M 不一定相交,故A 错误;B.若0k =,则直线:4l y =,直线l 与圆M 相切,故B 正确;C.当1k =时,直线l 的方程为0x y -=,过圆M 的圆心,即直线l 是直径所在直线,故C 正确;D.由圆的性质可知当直线l 与过点()4,4的直径垂直时,圆心M 到直线l 的距离的最大,此时=故D 正确,故选:BCD.11.已知点P 在双曲线22:1169x y C -=上,1F ,2F 分别为双曲线的左、右焦点,若12PF F △的面积为20,则下列说法正确的是( ) A .点P 到x 轴的距离为4 B .12523PF PF += C .12PF F △为钝角三角形 D .1260F PF ∠=︒【答案】AC 【详解】由双曲线的方程可得4a =,3b =,则5c =,由12PF F △的面积为20,得112102022P P c y y ⨯⨯=⨯⨯=,解得4P y =,即点P 到x 轴的距离为4,故A 选项正确; 将4P y =代入双曲线方程可得203P x =,根据双曲线的对称性可设20,43P ⎛⎫⎪⎝⎭,则2133PF =,由双曲线的定义知1228PF PF a -==,则11337833PF =+=, 则12133750333PF PF +=+=,故B 选项错误; 在12PF F △中,12371321033PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则12PF F △为钝角三角形,故C 选项正确;()2222121212121212122100cos 22PF PF PF PF PF PF F F F PF PF PF PF PF -+-+-∠==13376410021891331133713372233-+⨯⨯⨯==-≠⨯⨯⨯, 则1260F PF ∠=︒错误, 故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立 【答案】ACD 【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确; 对于选项B ,2ln 2ln 1fxx x x x x ,令()0f x '>可得2ln 10x ,有x >知函数()f x 的减区间为⎛⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x '-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确. 故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.与直线3250x y -+=的斜率相等,且过点()4,3-的直线方程为_________ 【答案】392y x =+【详解】直线3250x y -+=的斜率为32,故所求直线方程为()3342-=+y x ,即392y x =+.故答案为:392y x =+. 14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________ 【答案】13【详解】 122nn n a a a +=+,11a =, 则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+. 故答案为:13.15.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________. 【答案】2 【详解】∵()ln f x x x =+, ∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行, ∴2k =. 故答案为:2.16.设5(4P -是双曲线2222:1(0,0)x y C a b a b -=>>上一点,1(2,0)F -是C 的左焦点,Q 是C右支上的动点,则C 的离心率为______,1PQF △面积的取值范围是_______. 【答案】2)+∞ 【详解】双曲线C 的右焦点为2(2,0)F,则13||2PF =,27||2PF ,因点P 在双曲线C 上,则由双曲线定义得2122a PF PF =-=,即1a =,又2c =, 所以双曲线C 的离心率为2ce a==;因直线PF 1的斜率1PF k =ba=1PF 与双曲线C 在第一、三象限的渐近线平行,则这条渐近线与直线1PF 0y -+的距离d ==上的点Q 到直线PF 1距离h d >=,于是得11113222PQF SPF h =⋅⋅>⨯所以1PQF △面积的取值范围是)+∞.故答案为:2;)+∞ 四、解答题(本大题共6小题,共70分)17.已知圆()22:20C x y mx y m R ++-=∈,其圆心在直线0x y +=上.(1)求m 的值;(2)若过点()1,1的直线l 与C 相切,求l 的方程. 【答案】 (1)2m =(2)20x y +-=或0x y -= 【详解】 (1)圆C 的标准方程为:222(1)124m m x y ⎛⎫++-=+⎪⎝⎭, 所以,圆心为,12m ⎛⎫- ⎪⎝⎭由圆心在直线0x y +=上,得2m =. 所以,圆C 的方程为:22(1)(1) 2.x y ++-=(2)由题意可知直线l 的斜率存在,设直线l 的方程为:()11y k x -=-, 即10,kx y k --+=由于直线l 和圆C解得:1k =±所以,直线方程为:20x y +-=或0x y -=.18.如图,在三棱锥P -ABC 中,△ABC 是以AC 为底的等腰直角三角形,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求直线PC 与平面PAM 所成角的正弦值. 【答案】 (1)证明见解析. (2【详解】 (1)证明:连接BO,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =,又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥,OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC ,(2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+,所以PC 与平面PAM 所成角的正弦值为则平面PAC 的法向量为() 1,0,0m =, 设平面MPA 的法向量(,,),n x y z =则(0,2,PA =--20,n PA y ⋅=--= ()()22220n AM x y λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即=13λ= 或 3λ=( 舍),设平面MPA的法向量(23,n =,(0,2,PC =-,设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>==+19.已知椭圆与双曲线221169x y -=具有共同的焦点1F 、2F ,点P 在椭圆上,12PF PF ⊥,____________①椭圆过点(),②椭圆的短轴长为10,③(①②③中选择一个) (1)求椭圆的标准方程; (2)求12PF F △的面积. 【答案】(1)条件选择见解析,椭圆方程为2215025x y += (2)1225PF F S=【详解】 (1)解:设椭圆方程()222222210,x y a b c a b a b+=>>=-.因为椭圆与双曲线221169x y -=具有共同的焦点,则225c =.选①:由已知可得a =225b =,椭圆方程为2215025x y +=; 选②:由已知可得5b =,则250a =,椭圆方程为2215025x y +=;选③得c a =,则250a =,椭圆方程为2215025x y +=. (2)解:由椭圆定义知122PF PF a +==, 又12PF PF ⊥,222124100PF PF c ∴+==②,由①可得2212121221002200PF PF PF PF PF PF ++⋅=+⋅=,解得1250PF PF ⋅=, 因此,12121252PF F SPF PF =⋅=. 20.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【答案】(1)7100x y ++=;(2)极小值点为1x =-,极大值点为13x =; (3)()min 1f x =,()max 97f x =.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x ∴在2x =-处的切线方程为()472y x -=-+,即7100x y ++=; (2)令()23210f x x x '=--+=,解得:1x =-或13x =, 则()(),,x f x f x '变化情况如下表:()f x ∴的极小值点为1x =-,极大值点为3x =; (3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增; 又()5125255297f -=--+=,()02f =,()111121f -=--+=, ()()min 11f x f ∴=-=,()()max 597f x f =-=.21.已知椭圆C 的离心率e =()1A ,)2A (1)求椭圆C 的方程;(2)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q ,求证:以PQ 为直径的圆过定点()1,0N .【答案】(1)2212x y +=; (2)证明见解析.【详解】(1)椭圆长轴端点在x 轴上,∴可设椭圆方程为()222210x y a b a b+=>>,由题意可得:222a b c c e a a ⎧=+⎪⎪==⎨⎪⎪=⎩,解得:11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2212x y +=; (2) 由2212x y y kx b ⎧+=⎪⎨⎪=+⎩得:()222124220k x kbx b +++-=,曲线C 与直线l 只有一个公共点,()228120k b ∴=+-=,即2221b k =+,设(),P P P x y ,则()22422212P kb kb k x b b k =-=-=-+, 222221p P k b k y kx b b b b b-∴=+=-+==,21,k P b b ⎛⎫∴- ⎪⎝⎭; 由2y kx b x =+⎧⎨=⎩得:22x y k b =⎧⎨=+⎩,即()2,2Q k b +; ()1,0N ,211,k NP bb ⎛⎫∴=-- ⎪⎝⎭,()1,2NQ k b =+, 2210k k b NP NQ b b+∴⋅=--+=,即NP NQ ⊥, ∴以PQ 为直径的圆恒过定点()1,0N .22.已知函数()ln xe f x ax a x x=-+. (1)若a e =,求()f x 的极值点;(2)若()0f x ≥,求a 的取值范围.【答案】(1)极小值点为1,无极大值点(2)(,]e -∞【详解】(1)解:(1)()f x 定义域为(0,)+∞,222(1)(1)(1)()()x x x x xe e e x e e x x e ex f x e x x x x x -----'=-+=-=, 令(),(0,)x g x e ex x =-∈+∞,则()x g x e e '=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()10g x g ≥=,即0x e ex -≥,当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在()0,1上递减,在()1,+∞上递增,()f x ∴的极小值点为1,无极大值点;(2)由()0f x ≥得ln (ln )x x e a x x --≥,令ln ,(0,)t x x x =-∈+∞,则t e at ≥,111x t x x-'=-=, 当01x <<时,0t '<,当1x >时,0t '>,所以函数ln ,(0,)t x x x =-∈+∞在()0,1上递减,在()1,+∞上递增,所以当1x =时,min 1t =,[1+t ∴∈∞,),te a t∴≤, 令(),[1,)te m t t t =∈+∞,则2(1)()0t e t m t t -'=≥, 所以函数()t e m t t=在[1,)t ∈+∞上递增,所以min ()(1)m t m e ==, 所以a e ≤,所以a 的取值范围为(,]e -∞.。
高中数学选择性必修二 北京市朝阳区高二上学期期末考试数学试题(含答案)
故答案为:①③④
16.把正奇数列按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,则在第n(n∈N*)组里有________个数;第9组中的所有数之和为________.
【答案】①. ②.2465
【解析】
②函数 在 和 分别单调递减,故②错误;
③因为 ,则当 时, ,故 时的瞬时速度是10 m/s,故③正确;
④ , ,由 解得 ,由 解得 ,
所以当 时, 的图象更“陡峭”,当 时, 的图象更“陡峭”,故④错误.
故选:A.
8.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()
点 在抛物线上,
所以 ,
则 ,又 ,
所以直线 方程为 ,
联立抛物线方程 得到 ,
解得 或 ,
因为点 在 轴下方,所以 ,
由焦半径公式得: ,
故选:D.
7.下列有四个说法:
①若直线与抛物线相切,则直线与抛物线有且只有一个公共点:
②函数 在定义域上单调递减;
③某质点沿直线运动,位移 (单位:m)与时间t(单位:s)满足关系式 则 时的瞬时速度是10 m/s;
(II)选①:当直线 斜率不存在时, 的方程为 ,恰好与圆相切,满足题意;
当直线 斜率存在时,设 的方程为 ,即 ,
则圆心到直线 的距离为 ,解得 ,
此时直线 的方程为 ,即 ,
综上,直线 的方程为 或 ;
选②,可得 在圆上,即 为切点,
则切点与圆心连线斜率为 ,则切线斜率为 ,
所以直线 的方程为 ,即 .
故选:B.
10.如图,在三棱锥O-ABC中,三条侧棱OA,OB,OC两两垂直,且OA,OB,OC的长分别为a,b,c.M为△ABC内部及其边界上的任意一点,点M到平面OBC,平面OAC,平面OAB的距离分别为a0,b0,c0,则 ()
【易错题】高中必修二数学下期末试题(含答案)
故选 D. 【点睛】 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想 象能力.
6.D
解析:D 【解析】
试题分析: AB 2a, AC 2a b , AC AB b ,b AC AB BC .
由题意知 b
2, a b
a b cos120
1
2
1 2
棱 CC1 的中点,则异面直线 AB1 和 BM 所成的角为( )
A.
B.
C.
D.
2
3
11.已知 f x 是定义在 R 上的奇函数,当 x 0 时, f x 3 2x ,则不等式
f x 0 的解集为( )
A.
,
3 2
0,
3 2
B.
,
3 2
3 2
,
C.
3 2
,
3 2
【详解】
因为 b 在 a 上的投影(正射影的数量)为 2 ,
所以| b | cos a, b 2 ,
即
|
b
|
cos
2 a,
b
,而
1
cos
a,
b
0
,
所以| b | 2 ,
因为
a
2b
2
(a
2b)2
2
a
4a b
2
4b
|
a
|2
4
|
a
||
b|
cos
a, b
4
| b|2
=16 4 4 (2) 4 | b |2 48 4 | b |2
16.在四面体 ABCD中, AB=AD 2, BAD 60,BCD 90,二面角 A BD C 的大小为150 ,则四面体 ABCD 外接球的半径为__________.
人教版高中数学必修二期末测试卷及答案详解
人教版高中数学必修二期末检测卷一、单项选择题(本大题共8小题,共40.0分)1.如图,在正方体EFGH−E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A. 平面E1FG1与平面EGH1B. 平面FHG1与平面F1H1GC. 平面F1H1H与平面FHE1D. 平面E1HG1与平面EH1G2.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出如下命题:①若α⊥β,α∩β=m,n⊂a,n⊥m,则n⊥β;②若α⊥γ,β⊥γ,则α//β;③若α⊥β,m⊥β,m⊄α.则m//α;④若α⊥β,m//α,则m⊥β.其中正确命题的个数为()A. 1B. 2C. 3D. 43.如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l//α,m⊂α和m⊥γ,那么()A. α⊥γ且l⊥mB. α⊥γ,且m//βC. m//β且l⊥mD. α//β且α⊥γ4.著名数学家华罗庚曾说过,“数无形时少直觉,形少数时难入微”,事实上,很多代数问题都可以转化为几何问题加以解决,如:√(x−a)2+(y −b)2可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得f(x)=√x2+4x+20+√x2+2x+10的最小值为()A. 2√5B. 5√2C. 4D. 85.已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A. −1或2B. 0或2C. 2D. −16.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A. b>0,d<0,a<cB. b>0,d<0,a>c1C. b <0,d >0,a >cD. b <0,d >0,a <c7. 对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1:ax +3y +6=0,l 2:2x +(a +1)y +6=0,圆C:x 2+y 2+2x =b 2−1(b >0)的位置关系是“平行相交”,则b 的取值范围为 ( )A. (√2,3√22)B. (0,√2)C. (0,3√22)D. (√2,3√22)∪(3√22,+∞) 8. 直线y =kx +3与圆(x −3)2+(y −2)2=4相交于M ,N 两点,若|MN|=2√3,则k 的值是( )A. −34B. 0C. 0或−34D. 34 二、填空题(本大题共5小题,共25.0分)9. 如图所示,在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 .10. 过两圆x 2+y 2−2y −4=0与x 2+y 2−4x +2y =0的交点,且圆心在直线l :2x +4y −1=0上的圆的方程是_________________.11. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是_____________.12. 如图所示,在棱长为2的正方体ABCD −A 1B 1C 1D 1中,A 1B 1的中点是P ,过点A 1作与截面PBC 1平行的截面,则截面的面积为 .13. 已知点M 是点P(4,5)关于直线y =3x −3的对称点,则过点M 且平行于直线y =3x −3的直线的方程是________.三、解答题(本大题共7小题,共84.0分)14. 如图,在三棱柱ABC −A 1B 1C 1中,O 为AB 的中点,CA =CB ,AB =AA 1,∠BAA 1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.15.已知直线m:(a−1)x+(2a+3)y−a+6=0,n:x−2y+3=0.(1)当a=0时,直线l过m与n的交点,且它在两坐标轴上的截距相反,求直线l的方程;(2)若坐标原点O到直线m的距离为√5,判断m与n的位置关系.16.求过点P(4,−1)且与直线3x−4y+6=0垂直的直线方程.317.在平面直角坐标系xOy中,O为坐标原点,点A(0,3),设圆C的半径为1,圆心C(a,b)在直线l:y=2x−4上.(1)若圆心C也在直线y=−x+5上,求圆C的方程;(2)在上述的条件下,过点A作圆C的切线,求切线的方程;(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.18.如图,在直三棱柱ABC−A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1//平面DEC1;(2)BE⊥C1E.19.已知ΔABC的顶点B(3,4),AB边上的高所在的直线方程为x+y−3=0,E为BC的中点,且AE所在的直线方程为x+3y−7=0.(Ⅰ)求顶点A的坐标;(Ⅱ)求过E点且在x轴、y轴上的截距相等的直线l的方程.20.已知直线l:x−ay+1=0与圆C:x2+y2−4x−2y+1=0交于A,B两点,|AB|=2√3.(1)求a的值;(2)求与直线l平行的圆C的切线方程.答案和解析1.【答案】A【解析】【分析】本题考查了线面平行的判定,面面平行的判定,属于中档题.根据几何体中的线段特征确定平行关系,再确定线面的平行关系,E1G1//面EGH1,E1F//面EGH1,即可得出确定的平行平面.【解答】解:如图:在正方体EFGH−E1F1G1H1中,连接EG,E1F,E1G1,H1E,H1G,∵EG//E1G1,EG⊂面EGH1,E1G1⊄面EGH1,∴E1G1//面EGH1,∵E1F//H1G,H1G⊂面EGH1,E1F⊄面EGH1,∴E1F//面EGH1,∵E1G1∩E1F=E1,E1G1,E1F⊂面E1FG1,∴面EGH1//面E1FG1,故选A.2.【答案】B【解析】【分析】本题以命题的真假判断为载体,考查了空间直线与平面的位置关系及平面与平面的位置关系,熟练掌握空间线面关系的几何特征及判定方法是解答的关键.根据空间线面平行和垂直的几何特征及判定方法,逐一分析四个命题的真假,最后综合讨论5结果,可得答案.【解答】解:根据面面垂直的性质,故①正确;由α⊥γ,β⊥γ,得到α//β或相交,故②错误;由α⊥β,且m⊥β,得到m与α可能平行,也可能m在平面面α内,又m⊄α,则m//α,故③正确;若α⊥β,m//α,则m与β可能平行,可能相交,也可能线在面内,故④错误;其中正确命题的个数为2.故选B.3.【答案】A【解析】【分析】本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,属于基础题.m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.【解答】解:∵m⊂α且m⊥γ,∴α⊥γ,∵l=β∩γ,∴l⊂γ.又∵m⊥γ,∴l⊥m,即α⊥γ且l⊥m,故选A.4.【答案】B【解析】【分析】本题考查利用函数的几何意义求函数的最值,考查两点之间的距离公式的运用,属于中档题.由题意得到f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离,即要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|即可求解.【解答】解:∵f(x)=√x2+4x+20+√x2+2x+10=√(x+2)2+(0−4)2+√(x+1)2+(0−3)2,∴f(x)的几何意义为点M(x,0)到两定点A(−2,4)与B(−1,3)的距离之和.设点A(−2,4)关于x轴的对称点为A′,则A′的坐标为(−2,−4).要求f(x)的最小值,可转化为求|MA|+|MB|的最小值,利用对称思想可知|MA|+|MB|=|MA′|+|MB|≥|A′B|=√(−1+2)2+(3+4)2=5√2,即f(x)=√x2+4x+20+√x2+2x+10的最小值为5√2.故选B.5.【答案】D【解析】【分析】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题.由a·a−(a+2)=0,即a2−a−2=0,解得a.经过验证即可得出.【解答】解:由题意知a⋅a−(a+2)=0,即a2−a−2=0,解得a=2或−1.经过验证可得:a=2时两条直线重合,舍去.∴a=−1.故选D.6.【答案】C【解析】【分析】本题考查直线的一般式向斜截式转化,属于基础题.将直线转化成斜截式,根据图象得两直线斜率、截距的不等关系,解不等式即可得解.【解答】解:l1 :y=−1a x−ba,l2 : y=−1cx−dc,由图象知:①−1a >−1c>0,②−ba<0,③−dc>0,,故选C.77.【答案】D【解析】【分析】本题主要考查直线与圆的位置关系及应用,属于中档题.结合新定义,求出圆心到直线的距离,根据相离相切的条件求出b 的范围,进而求出平行相交时b 的范围.【解答】解:圆C 的标准方程为(x +1)2+y 2=b 2,由两直线平行得a(a +1)−6=0,解得a =2或a =−3.又当a =2时,直线l 1,l 2重合,应舍去,∴两平行线的方程分别为x −y −2=0和x −y +3=0.由直线x −y −2=0与圆(x +1)2+y 2=b 2相切,得b =√2=3√22; 由直线x −y +3=0与圆相切,得b =√2=√2.当两直线与圆都相离时,b <√2.∴“平行相交”时,b 满足{b >√2,b ≠3√22, ∴b 的取值范围是(√2,3√22)∪(3√22,+∞). 故选D . 8.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于中档题. 由点到直线距离公式可得弦心距d =√k 2+1,再由弦长,半径,弦心距之间关系列出关于k 的等式,由此解得k 的值.【解答】解:圆心(3,2)到直线y =kx +3的距离d =√k 2+1,则|MN|=2 √4−(3k+1)2k 2+1=2√3,解得k =0或k =−34. 故选C .9.【答案】√105.【解析】【分析】本题主要考查直线与平面所成的角、线面垂直的判定,属于中档题.根据正方形条件得到线线垂直,再由线面垂直得到线线垂直,进而证明线面垂直找到点C1在面BB1D1D上的射影O,即线面角∠OBC1,进一步利用锐角三角形求解.【解答】解:如图所示,在长方体ABCD−A1B1C1D1中,连接A1C1、B1D1,交于O点,连接OB,由已知四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又∵BB1⊥平面A1B1C1D1,OC1⊂平面A1B1C1D1,∴OC1⊥BB1,而BB1∩B1D1=B1,∴OC1⊥平面BB1D1D.∴OB是BC1在平面BB1D1D内的射影.∴∠C1BO是BC1与平面BB1D1D所成的角.在正方形A1B1C1D1中,OC1=12A1C1=12√22+22=√2.在矩形BB1C1C中,BC1=√BC2+CC12=√4+1=√5.9∴sin∠C1BO=OC1BC1=√2√5=√105.故答案为√105.10.【答案】x2+y2−3x+y−1=0【解析】【分析】本题考查求圆的一般方程,圆系方程及其应用,属于中档题.可设新圆方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1),通过整理,不难表示出新圆的圆心坐标,接下来根据新圆的圆心在直线l上,将所得圆心坐标代入,解方程即可得解.【解答】解:设所求圆的方程为x2+y2−4x+2y+λ(x2+y2−2y−4)=0(λ≠−1).整理得x2+y2+−41+λx+2−2λ1+λy−4λ1+λ=0,所以圆心坐标为(21+λ,λ−11+λ),因为圆心在直线2x+4y=1上,故41+λ+4(λ−1)1+λ=1,解得λ=13.所以所求圆的方程为x2+y2−3x+y−1=0.故答案为x2+y2−3x+y−1=0.11.【答案】(x−2)2+(y−2)2=2【解析】【试题解析】【分析】本题考查直线与圆相切的性质的应用,求圆的标准方程,难度一般.先求出圆心C1(6,6)到直线x+y−2=0的距离为d=√2=5√2.再求过点C1且垂直于x+ y−2=0的直线y=x,所求的最小圆的圆心C2在直线y=x上,圆心C2到直线x+y−2=0的距离为5√2−3√22=√2,则圆C2的半径长为√2.设C2的坐标为(x0,x0),则00√2=√2,解得x0=2(x0=0舍去),所以圆心坐标为(2,2),即可求出所求.【解答】解:曲线化为(x−6)2+(y−6)2=18,=5√2.其圆心C1(6,6)到直线x+y−2=0的距离为d=|6+6−2|√2过点C1且垂直于x+y−2=0的直线为y−6=x−6,即y=x,所以所求的最小圆的圆心C2在直线y=x上,如图所示,=√2,圆心C2到直线x+y−2=0的距离为5√2−3√22则圆C2的半径长为√2.设C2的坐标为(x0,x0),=√2,解得x0=2(x0=0舍去),则00√2所以圆心坐标为(2,2),所以所求圆的标准方程为(x−2)2+(y−2)2=2.故答案为(x−2)2+(y−2)2=2.12.【答案】2√6【解析】【分析】本题考查截面面积的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连接MN,作A1H⊥MN于H,由题意能求出截面的面积.【解答】解:分别取AB,C1D1的中点M,N,连接A1M,MC,CN,NA1,11∵A1N//PC1//MC,且A1N=PC1=MC,∴四边形A1MCN是平行四边形.又∵A1N//PC1,A1N⊄平面PBC1,PC1⊂平面PBC1,∴A1N//平面PBC1,同理可证A1M//平面PBC1,∵A1N∩A1M=A1,且A1N,A1M⊂平面A1MCN,∴平面A1MCN//平面PBC1,因此,过点A1与截面PBC1平行的截面是平行四边形A1MCN,连接MN,作A1H⊥MN于点H,∵A1M=A1N=√5,MN=2√2,∴△A1MN为等腰三角形.∴A1H=√3,∴S△A1MN =12×2√2×√3=√6.故S▱A1MCN =2S△A1MN=2√6.故答案为2√6.13.【答案】3x−y+1=0【解析】【分析】本题考查了点关于直线的对称点的求法,考查了直线方程的点斜式,是基础题.设出M的坐标,利用点到直线的距离以及两平行线间的距离公式求解.【解答】解:因为点M是点P(4,5)关于直线y=3x−3的对称点,所以两点到直线y=3x−3的距离相等,所以过点M且平行于直线y=3x−3的直线与y=3x−3之间的距离等于点P到直线y=3x−3的距离.点P(4,5)到直线3x−y−3=0距离为√12+32=√10.设过点M且与直线y=3x−3平行的直线的方程为3x−y+c=0,13所以由两平行线间的距离公式有√12+32=√10,即|c +3|=4,解得c =1或c =−7, 即所求直线的方程为3x −y −7=0或3x −y +1=0.由于点P(4,5)在直线3x −y −7=0上,故过M 点且平行于直线y =3x −3的直线方程是3x −y +1=0.14.【答案】(1)证明:∵CA =CB ,O 为AB 的中点,∴OC ⊥AB .∵AB =AA 1,∠BAA 1=60∘,∴△AA 1B 为等边三角形,∴OA 1⊥AB ,又OC ∩OA 1=O ,∴AB ⊥平面A 1OC .(2)解:∵AB =CB =2,∴△ABC 为边长是2的等边三角形,则S △ABC =12×2×√3=√3.∵OA 1⊥AB ,OA 1⊥OC ,AB ∩OC =O ,∴OA 1⊥平面ABC ,即OA 1是三棱锥A 1−ABC 的高,又OA 1=√3,∴三棱锥A 1−ABC 的体积V =13×√3×√3=1.【解析】本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.(1)推导出CO ⊥AB ,A 1O ⊥AB ,由此能证明AB ⊥平面A 1OC .(2)推导出A 1O ⊥平面ABC ,由此能求出三棱锥A 1−ABC 的体积.15.【答案】解:(1)当a =0时,直线m:x −3y −6=0,由{x −3y −6=0x −2y +3=0,解得{x =−21y =−9, 即m 与n 的交点为(−21,−9).当直线l 过原点时,直线l 的方程为3x −7y =0; 当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入得b =−12,所以直线l 的方程为x −y +12=0.故满足条件的直线l 的方程为3x −7y =0或x −y +12=0.(2)设原点O 到直线m 的距离为d ,则d =√(a−1)2+(2a+3)2=√5,解得a =−14或a =−73,当a =−14时,直线m 的方程为x −2y −5=0,此时m//n;当a =−73时,直线m 的方程为2x +y −5=0,此时m ⊥n.【解析】本题主要考查了直线的截距式方程,两条直线平行与垂直的判定,点到直线的距离公式,属于中档题.(1)当a =0时,由题意可求出x 与y ,可求出m 与n 的交点,当直线l 过原点时,直线l 的方程为3x −7y =0,当直线l 不过原点时,设l 的方程为x b +y −b =1,将(−21,−9)代入即可求解.(2)求出原点O 到直线m 的距离d ,求出a ,当a =−14时,证明m//n ,当a =−73时,证明m ⊥n. 16.【答案】解:∵所求直线与直线3x −4y +6=0垂直,∴设其为4x +3y +m =0.∵该直线过点P(4,−1),∴4×4+3×(−1)+m =0,解得m =−13.故所求直线方程为4x +3y −13=0.【解析】考查对于直线方程的求解问题,利用垂直性质求解,属于基础.17.【答案】解:(1)由{y =2x −4y =−x +5 得圆心C 为(3,2),∵圆C 的半径为1,∴圆C 的方程为:(x −3)2+(y −2)2=1;(2)由题意知切线的斜率一定存在,设所求圆C 的切线方程为y =kx +3,即kx −y +3=0,∴√k 2+1=1,∴|3k +1|=√k 2+1,∴2k(4k +3)=0,∴k =0或者k =−34,∴所求圆C 的切线方程为:y =3或者y =−34x +3,即y =3或者3x +4y −12=0;(3)设M 为(x,y),由√x 2+(y −3)2=√x 2+y 215整理得直线m :y =32, ∴点M 应该既在圆C 上又在直线m 上,即:圆C 和直线m 有公共点,∴|2a −4−32|≤1,∴94≤a ≤134,终上所述,a 的取值范围为:[94,134].【解析】此题考查了圆的切线方程,点到直线的距离公式,涉及的知识有:两直线的交点坐标,直线的点斜式方程,圆的标准方程,是一道综合性较强的试题.(1)联立直线l 与直线y =−x +5,求出方程组的解得到圆心C 坐标,可得圆C 的方程;(2)根据A 坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k 的方程,求出方程的解得到k 的值,确定出切线方程即可;(3)设M(x,y),由|MA|=|MO|,利用两点间的距离公式列出关系式,整理后得到点M 的轨迹为直线y =32,由M 在圆C 上,得到圆C 与直线相交,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.18.【答案】证明:(1)∵在直三棱柱ABC −A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,∴DE//AB ,AB//A 1B 1,∴DE//A 1B 1,∵DE ⊂平面DEC 1,A 1B 1⊄平面DEC 1,∴A 1B 1//平面DEC 1.解:(2)∵在直三棱柱ABC −A 1B 1C 1中,E 是AC 的中点,AB =BC .∴BE ⊥AA 1,BE ⊥AC ,又AA 1∩AC =A ,∴BE ⊥平面ACC 1A 1,∵C 1E ⊂平面ACC 1A 1,∴BE ⊥C 1E .【解析】(1)推导出DE//AB ,AB//A 1B 1,从而DE//A 1B 1,由此能证明A 1B 1//平面DEC 1.(2)推导出BE ⊥AA 1,BE ⊥AC ,从而BE ⊥平面ACC 1A 1,由此能证明BE ⊥C 1E .本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.【答案】解:(1)AB 边上的高所在的直线方程为x +y −3=0,∴k AB =−1−1=1. ∴直线AB 方程为:y −4=x −3,化为:x −y +1=0,联立{x −y +1=0x +3y −7=0,解得x =1,y =2.∴A(1,2).(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得a =4,b =1.∴E(4,1). 由直线l 与x 轴、y 轴截距相等,①当直线l 经过原点时,设直线l 的方程为:y =kx .把E 的坐标代入可得:1=4k ,解得k =14.∴直线l 的方程为:y =14x.②当直线l 不经过原点时,设直线l 的方程为:x +y =m .把E 的坐标代入可得:m =5.∴直线l 的方程为:x +y =5.综上直线l 的方程为:x −4y =0或x +y −5=0.【解析】本题考查了直线的方程、直线的交点、相互垂直的直线斜率之间的关系、中点坐标公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.(1)AB 边上的高所在的直线方程为x +y −3=0,可得k AB =1.把直线AB 方程与AE 的方程联立解得A 的坐标.(2)设E(a,b),则C(2a −3,2b −4).联立{(2a −3)+(2b −4)−3=0a +3b −7=0,解得E 坐标.由直线l 与x 轴、y 轴截距相等,对截距分类讨论即可得出.20.【答案】解:(1)∵圆C :(x −2)2+(y −1)2=4,∴圆心为(2,1),半径r =2,∴圆心到直线x −ay +1=0的距离为:d =√12+a 2=√r 2−(√3)2=√4−3=1, 解得a =43,(2)由(1)知直线l :3x −4y +3=0,因为切线与直线l 平行,所以设所求的切线方程为3x −4y +D =0.因为直线与圆相切,所以圆心到切线的距离d =√32+(−4)2=|2+D |5=2.所以D =8或D =−12.所以所求切线方程为3x −4y +8=0或3x −4y −12=0.【解析】本题主要考查了点到直线的距离公式,考查直线与圆的位置关系,属于基础题.(1)首先确定圆心和半径,然后利用点到直线的距离公式可以列出等式,由此求出a的值.(2)由(1)知直线l:3x−4y+3=0,依题意,设所求切线方程为3x−4y+D=0,则圆心到=2.求解即可得结果切线的距离d=|2+D|517。
高中数学必修二 北京市丰台区 — 学年度 高一下学期期末练习数学试题(含答案)
【答案】
【解析】
【分析】
先求解出分层抽样的抽样比,然后根据每一层入样的个体数等于该层个体数乘以抽样比,由此可计算出结果 .
【详解】因为分层抽样的抽样比为 ,
9.如图所示,在复平面内,复数 , 所对应的点分别为A,B,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
根据 并结合复数的几何意义得到 的表示.
【详解】因为 , 与 对应, 与 对应,
所以 ,
故选:C.
【点睛】本题考查复数的几何意义的简单运用,难度较易.复数 和复平面内的点 一一对应,同时复数 和平面向量 也一一对应.
丰台区2019~2020学年度第二学期期末练习
高一数学
注意事项:
1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码.
2.本次考试所有答题均在答题卡上完成.选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项.非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚.
【答案】D
【解析】
【分析】
根据球与正方体位置关系,分析出球 半径,由此球的体积可求.
【详解】因为球内切于正方体,所以球的半径等于正方体棱长的 ,
所以球的半径为 ,所以球的体积为 ,
故选:D.
【点睛】本题考查根据正方体与球的相切关系求球的体积,难度较易.当球内切于正方体时,球的半径为正方体棱长的 ;当球外接于正方体时,球的半径为正方体棱长的 .
(完整版)高中数学必修二测试卷及答案,推荐文档
(D)2
10、在正方体 ABCD A1B1C1D1 中,下列几种说法正确的是
A、 A1C1 AD
B、 D1C1 AB
C、 AC1与 DC 成 45 角 D、 A1C1与 B1C 成 60 角
11
、a,b,c 表示直线,M 表示平面,给出下列四个命题:①若 a∥M,b∥M,则
a∥b;②若 b M,a∥b,则 a∥M;③若 a⊥c,b⊥c,则 a∥b;④若 a⊥M,b⊥M,则
.
2
16、平行四边形的一个顶点 A 在平面 内,其余顶点在 的同侧,已知其中 有两个顶点到 的距离分别为 1 和 2 ,那么剩下的一个顶点到平面 的距离可能是:
①1; ②2; ③3; 以上结论正确的为
④4; 。(写出所有正确结论的编号)
三、解答题:本大题共 6 题,共 74 分,解答应写出文字说明,证明过程或演算步骤.
a∥b.其中正确命题的个数有
A、0 个
B、1 个
C、2 个
D、3 个
12 、 点 (1,1)在圆(x a)2 ( y a)2 4 的 内 部 , 则 a 的 取 值 范 围 是 ( )
(A) 1 a 1
(B) 0 a 1
(C) a 1或 a 1 (D) a 1
第Ⅱ卷(非选择题 共 90 分) 二、填空题:本大题 4 小题,每小题 4 分,共 16 分. 把正确答案填在题中横线上.
20、解:设圆台的母线长为l ,则 圆台的上底面面积为 S上 22 4 圆台的上底面面积为 S下 5225 所以圆台的底面面积为 S S上 S下 29 又圆台的侧面积S侧 (25)l 7 l 于是7 l25 29 即l 为所求. 7
6
1分 3分 5分 6分 8分
9分 10 分
高一数学必修二期末测试题及答案解析
(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。
高一数学必修二期末试题及答案
(4)(3)(1)俯视图俯视图俯视图侧视图侧视图侧视图侧视图正视图正视图 正视图正视图(2)俯视图·高一数学(必修二)期末质量检测试题1.若直线l 经过原点和点A (-2;-2);则它的斜率为( ) A .-1B .1C .1或-1D .02.各棱长均为a 的三棱锥的表面积为( ) A .234aB .233aC .232aD .23a3. 如图⑴、⑵、⑶、⑷为四个几何体的三视图;根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台4.经过两点(3;9)、(-1;1)的直线在x 轴上的截距为( )A .23-B .32-C .32 D .25.已知A (1;0;2);B (1;,3-1);点M 在z 轴上且到A 、B 两点的距离相等;则M 点坐标为( )A .(3-;0;0)B .(0;3-;0)C .(0;0;3-)D .(0;0;3)6.如果AC <0;BC <0;那么直线Ax+By+C=0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知圆心为C (6;5);且过点B (3;6)的圆的方程为( ) A .22(6)(5)10x y -+-= B .22(6)(5)10x y +++= C .22(5)(6)10x y -+-=D .22(5)(6)10x y +++=8.在右图的正方体中;M 、N 分别为棱BC 和棱CC 1的中点;则异面直线AC 和MN 所成的角为( ) A .30° B .45°C .90°D . 60°9.给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个10.点),(00y x P 在圆222r y x =+内;则直线200r y y x x =+和已知圆的公共点的个数为( )A .0B .1C .2D .不能确定二、填空题(每题4分;共20分)111.已知原点O (0;0);则点O 到直线x+y+2=0的距离等于 .12.经过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程 13.过点(1;2);且在两坐标轴上截距相等的直线方程 14.一个圆柱和一个圆锥的底面直径..和它们的高都与某一个球的直径相等;这时圆柱、圆锥、球的体积之比为 .15.已知两条不同直线m 、l ;两个不同平面α、β;给出下列命题: ①若l 垂直于α内的两条相交直线;则l ⊥α; ②若l ∥α;则l 平行于α内的所有直线; ③若m ⊂α;l ⊂β且l ⊥m ;则α⊥β; ④若l ⊂β;α⊥l ;则α⊥β;⑤若m ⊂α;l ⊂β且α∥β;则m ∥l ;其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题(5道题;共40分)16.(本大题6分)如图是一个圆台形的纸篓(有底无盖);它的母线长为50cm ;两底面直径分别为40 cm 和30 cm ;现有制作这种纸篓的塑料制品50m 2;问最多可以做这种纸篓多少个?17.(本大题8分)求经过直线L 1:3x + 4y – 5 = 0与直线L 2:2x – 3y + 8 = 0的交点M ;且满足下列条件的直线方程M(1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;18.(本大题8分)求圆心在03:1=-x y l 上;与x 轴相切;且被直线0:2=-y x l 截得弦长为72的圆的方程.19. (本大题8分)在正方体ABCD-A 1B 1C 1D 1中;E 、F 分别是BB 1、CD 的中点. (1).证明:;1F D AD ⊥ (2). 求AE 与D 1F 所成的角;ED 1C 1B 1A 1(3). 设AA 1=2;求点F 到平面A 1ED 1的距离.20.(本大题10分)已知方程04222=+--+m y x y x . (1)若此方程表示圆;求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M ;N 两点;且OM ⊥ON (O 为坐标原点)求m的值;(3)在(2)的条件下;求以MN 为直径的圆的方程.参考答案一、选择题:二、填空题:11.212. 4 x+3y+13=0 13.3,2+==x y x y 14.3:1:2.15. ①④ 三、 解答题:16.解:)('2'rl l r r S ++=π-----------1分=)5020501515(2⨯+⨯+π)(2m π----------3分≈=Sn 5080(个)-------5分 答:(略)--------6分17.解:⎩⎨⎧-=-=+832543y x y x 解得⎩⎨⎧=-=21y x --------2分所以交点(-1;2) (1)2-=k -----3分直线方程为02=+y x --------5分 (2)21=k ---------6分 直线方程为052=+-y x --------8分 18.解:由已知设圆心为(a a 3,)--------1分与x 轴相切则a r 3=---------2分圆心到直线的距离22a d =----------3分弦长为72得:229247a a =+-------4分 解得1±=a ---------5分圆心为(1;3)或(-1;-3);3=r -----------6分 圆的方程为9)3()1(22=-+-y x ---------7分或9)3()1(22=+++y x ----------8分19.证明:(1). 正方体ABCD-A 1B 1C 1D 1; C C DD AD 11面⊥∴;C C DD F D 111面⊂;.1F D AD ⊥∴ -------------------2分(2) 取AB 的中点;并连接A 1P ; 易证ABE AP A ∆≅∆1; 可证;AE P A ⊥1;即F D AE 1⊥;所以AE 与D 1F 所成的角为.90︒-------------------4分(3) 取CC 1中点Q ; 连接FQ ;11//D A FQ 又作FQD A FH 1平面⊥; 又 111,,A FQD FH FQ FH Q D FH 平面⊥∴⊥⊥;所以FH 即为F 到平面FQD 1A 1的距离; -------------------6分 解得:,553=FH 所以F 点到平面A 1ED 1的距离为.553-------------------8分20.解:(1)04222=+--+m y x y x D=-2;E=-4;F=mF E D 422-+=20-m 40>5<m …………2分(2)⎩⎨⎧=+--+=-+04204222m y x y x y x y x 24-=代入得 081652=++-m y y ………..3分51621=+y y ;5821my y += ……………4分 ∵OM ⊥ON得出:02121=+y y x x ……………5分 ∴016)(852121=++-y y y y ∴58=m …………….7分 (3)设圆心为),(b a582,5421121=+==+=y y b x x a …………….8分 半径554=r …………9分 圆的方程516)58()54(22=-+-y x ……………10分。
高中数学必修二期末考试试卷(三)(含答案解析)
高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。
高中数学必修二 期末模拟卷03(无答案)
期末模拟卷3一.选择题(共8小题)1.复数z满足z(1+i)=1﹣i,则z的虚部等于()A.﹣i B.﹣1C.0D.12.在一个随机试验中,彼此互斥的事件A,B,C,D发生的概率分别为0.1,0.1,0.4,0.4,则下列说法正确的是()A.A与B+C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+B与C+D是互斥事件,但不是对立事件D.A+C与B+D是互斥事件,也是对立事件3.已知△ABC中,AB=2,BC=3,AC=,则cos B=()A.B.C.D.4.如图,非零向量,,且BC⊥OA,C为垂足,若,则λ=()A.B.C.D.5.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为、s2,新平均分和新方差分别为、s12,若此同学的得分恰好为,则()A.=,s2=s12B.=,s2<s12C.=,s2>s12D.<,s2=s126.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA'B'C',且直观图OA'B'C'的面积为2,则该平面图形的面积为()A.2B.4C.4D.27.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件A的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384B.0.65C.0.9D.0.9048.已知三棱锥P﹣ABC的各顶点都在同一球面上,且P A⊥平面ABC,AB=2,AC=1,∠ACB=90°,若该棱锥的体积为,则此球的表面积为()A.16πB.20πC.8πD.5π二.多选题(共4小题)9.某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公司的产品质量,公司质监部要抽取57辆进行检验,则下列说法正确的是()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的概率都是相等的10.下列叙述中,正确的是()A.若||=0,则=0B.若||=0,则∥C.若∥,∥,则∥D.若=,=,则=11.雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.为比较甲,乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B.甲的数学建模能力指标值优于乙的直观想象能力指标值C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D.甲的数学运算能力指标值优于甲的直观想象能力指标值12.如图,棱长为2的正方体ABCD﹣A1B1C1D1中,P在线段BC1(含端点)上运动,则下列判断正确的是()A.A1P⊥B1DB.三棱锥D1﹣APC的体积不变,为C.A1P∥平面ACD1D.A1P与D1C所成角的范围是三.填空题(共4小题)13.如表为武汉市2018年月平均降水量:月份123456789101112月平均降水量/cm5.8 4.8 5.3 4.6 5.6 5.6 5.17.1 5.6 5.36.4 6.6则武汉市2018年月平均降水量的三个四分位数分别为cm,cm,cm .14.已知i是虚数单位,则=.15.已知等边△ABC,D 为BC中点,若点M是△ABC 所在平面上一点,且满足,则=.16.某广场设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样大的四面体得到的(如图).则该几何体共有个面;如果被截正方体的棱长是50cm,那么石凳的表面积是cm2.四.解答题(共6小题)17.设=(2,0),=(1,).(1)若(﹣λ)⊥,求实数λ的值;(2)若=x+y(x,y∈R),且||=2,与的夹角为,求x,y的值.18.甲,乙,丙三名射击运动员分别对一目标射击1次,甲射中的概率为0.90,乙射中的概率为0.95,丙射中的概率为0.95.求:(1)三人中恰有一人没有射中的概率;(2)三人中至少有两人没有射中的概率.(精确到0.001)19.如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB.20.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①=;②2c cos C=a cos B+b cos A;③△ABC的面积为c(a sin A+b sin B﹣c sin C).已知△ABC的内角A,B,C的对边分别为a,b,c,且_____.(1)求C;(2)若D为AB中点,且c=2,CD=,求a,b.21.“肥桃”因产于山东省泰安市肥城市境内而得名,已有1100多年的栽培历史.明代万历十一年(1583年)的《肥城县志》载:“果亦多品,惟桃最著名”.2016年3月31日,原中华人民共和国农业部批准对“肥桃”实施国家农产品地理标志登记保护.某超市在旅游旺季销售一款肥桃,进价为每个10元,售价为每个15元销售的方案是当天进货,当天销售,未售出的全部由厂家以每个5元的价格回购处理.根据该超市以往的销售情况,得到如图所示的频率分布直方图:(1)估算该超市肥桃日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个肥桃,假设当天的需求量为x个(x∈N,0≤x≤240),销售利润为y元.(ⅰ)求y关于x的函数关系式;(ⅱ)结合上述频率分布直方图,以频率估计概率的思想,估计当天利润y不小于650元的概率.22.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P﹣ABC中,P A⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空:⊥,则三棱锥P﹣ABC 为“鳖臑”;(2)如图,已知AD⊥PB,垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(ⅰ)证明:平面ADE⊥平面P AC;(ⅱ)设平面ADE与平面ABC的交线为l,若P A=2,AC=2,求二面角E﹣l﹣C的大小.。
新人教A版高中数学必修2期末考试试卷附参考答案
期末测试题考试时间:90分钟 试卷满分:100分、选择题点(1, - 1)到直线x — y + 1 = 0的距离是(过点(1 , 0)且与直线x — 2y — 2= 0平行的直线方程是(F 列直线中与直线 2x + y + 1 = 0垂直的一条是x — 2y + 1 = 0已知圆的方程为 x 2 + y 2 — 2x + 6y + 8 = 0,那么通过圆心的一条直线方程是(B. 2x + y + 1 = 06.直线3x + 4y — 5 = 0与圆2x 2 + 2y 2—4x —2y + 1 = 0的位置关系是 A .相离C. 相交但直线不过圆心D. 相交且直线过圆心7.过点P(a , 5)作圆(x + 2) 2+ (y — 1)2= 4的切线,切线长为2・..3,则a 等于(C .3. 21. 2. x — 2y — 1 = 0B . x — 2y + 1= 0C . 2x + y — 2 = 0 x + 2y — 1 = 03. 2x — y — 1 = 0 C . x + 2y + 1 = 0D .X + 丄 y — 1 =0 24. 2x — y — 1 = 0 C . 2x — y + 1 = 0 D . 2x + y — 1 = 05. 如图(1)、(2)、(3)、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为A .三棱台、三棱柱、 圆锥、 圆台 C .三棱柱、四棱锥、 圆锥、 圆台(2)(3)B .三棱台、三棱锥、 D .三棱柱、三棱台、 圆锥、 圆锥、 圆台 圆台B .相切).b5E2RGbCAP(4)& 圆 A : X 2 + y 2+ 4x + 2y + 1 = 0 与圆 B : x 2+ y 2— 2x — 6y + 1 = 0 的位置关系是( ).p1EanqFDPwA .相交B .相离C .相切D .内含9.已知点 A(2, 3, 5) , B( — 2, 1 , 3),则 | AB| =( ).A . ,6B . 2 . 6C .2D . 2 .. 2 10 .如果一个正四面体的体积为 9 dm 3,则其表面积S 的值为().点,则异面直线 A 1E 与GF 所成角余弦值是( ).DXDiTa9E3dD 1 _______________________13 .直角梯形的一个内角为 45 °下底长为上底长的-,此梯形绕下底所在直线旋转一周所成的旋转体15 、2 c /0A .BC .D . 0525312 .正六棱锥底面边长为 a ,体积为 a ,则侧棱与底面所成的角为2( ) A . 30 ° B45 °C . 60 °D . 75 °Fa(第11题)A . 18、3dm 22B . 18 dmC . 12 3 dm 22D . 12 dm11.如图,长方体 ABCD — A 1B 1C 1D 1 中, AA 1 = AB = 2, AD = 1 , E , F , G 分别是DD 1, AB , CC 1的中JiG C2D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30 °二、填空题15. __________________________________________________________________ 在y轴上的截距为—6,且与y轴相交成30。
高中数学必修二 期末考测试(提升)(含答案)
期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。
高中数学必修二 期末测试卷02-新教材-2021学年下学期期末考试全真模拟卷(人教A2019)
2020-2021学年高一数学下学期期末考试全真模拟卷(二)测试时间:120分钟 测试范围:人教A2019必修第一册+第二册满分:150分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若集合{}21A x x =-≤≤,{}2log 1B x x =≤,则A B =( )A .12x xB .{}01x x <≤C .{}22x x -≤≤D .{2x x <-或}2x >【答案】C 【详解】由{}2log 1B x x =≤,得{}02B x x =<≤. 又{}21A x x =-≤≤, 所以{}22AB x x =-≤≤.故选:C . 2、复数113i-的虚部是( )A .310-B .110-C .110D .310【答案】D 【详解】 因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.3、某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A 【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确; 新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;4、已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D 【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.5、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514- B .512- C .514+ D .512+ 【答案】C 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去). 故选:C.6、已知π2tan tan()74θθ-+=,则tan θ=( )A .–2B .–1C .1D .2【答案】D 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.7、如图是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中3sin 5BAC ∠=,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图的数学风车,若在该数学风车内随机取一点,则该点恰好取自“赵爽弦图”外面(图中阴影部分)的概率为( )A .2543B .1843C .2549D .2449【答案】D 【详解】在Rt ABC ∆中,3sin 5BAC ∠=不妨设3BC =,则5AB =,4AC =则阴影部分的面积为1434242⨯⨯⨯=;数学风车的面积为224549+=∴所求概率2449P =本题正确选项:D 8、已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 平面ABC 的距离为( )A .3B .32C .1D .32【答案】C 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C.二、多项选择题(本题共4小题,每小题5分,共16分,在每小题给出的四个选项中,不止有一项是符合题目要求的)9、下列说法正确的是( ) A .随着试验次数的增加,频率一般会越来越接近概率B .连续10次掷一枚骰子,结果都是出现1点,可以认为这枚骰子质地不均匀C .某种福利彩票的中奖概率为11000,那么买1000张这种彩票一定能中奖D .某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为不降水 【答案】AB 【详解】对于A ,试验次数越多,频率就会稳定在概率的附近,故A 正确对于B ,如果骰子均匀,则各点数应该均匀出现,所以根据结果都是出现1点可以认定这枚骰子质地不均匀,故B 正确. 对于C ,中奖概率为11000是指买一次彩票,可能中奖的概率为11000,不是指1000张这种彩票一定能中奖,故C 错误.对于D ,“明天本市降水概率为70%”指下雨的可能性为0.7,故D 错. 故选:AB .10、有以下四种说法,其中正确的有( ) A .“2x >且3y >”是“5x y +>”的充要条件B .直线l ,m ,平面α,若m α⊂,则“l α⊥”是“l m ⊥”的充分不必要条件C .“3x =”是“2230x x --=”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab =”的既不充分也不必要条件【答案】BD 【详解】对于A ,由“2x >且3y >”,根据不等式的性质可得5x y +>,充分性满足;反之,5x y +>推不出“2x >且3y >”,必要性不满足,故A 不正确; 对于B ,根据线面垂直的定义:“l α⊥”可推出“l m ⊥”,反之,由线面垂直的判定定理可知:仅“l m ⊥”,不一定得出“l α⊥”,故B 正确; 对于C ,“3x =”可得“2230x x --=”,充分性满足;反之,“2230x x --=”可得“3x =”或“1x =-”,必要性不满足, 所以“3x =”是“2230x x --=”的充分不必要条件,故C 不正确; 对于D ,若“0a ≠且0b =”可推出“0ab =”; 反之,若“0ab =”,可得“0a =”或“0b =”,所以“0a ≠”是“0ab =”的既不充分也不必要条件,故D 正确; 故选:BD11、已知函数()sin()f x x ωϕ=-(0,||2πωϕ><)的部分图象如图所示,则下列选项正确的是( )A .函数()f x 的最小正周期为3πB .5(,0)4π为函数()f x 的一个对称中心 C .1(0)2f =-D .函数()f x 向右平移2π个单位后所得函数为偶函数【答案】ACD 【分析】根据图象,先由144T ππ=-得,求ω,判断A 正确,再利用五点法定位确定ϕ得到解析式,结合利用正弦函数性质逐一判断BCD 的正误即可. 【详解】根据函数()sin(),0,||2f x x πωϕωϕ⎛⎫=-><⎪⎝⎭的部分图象,由144T ππ=-,所以3T π=,故A 正确; 由23ππω=,可得23ω=, 由点,04π⎛⎫⎪⎝⎭在函数图像上,可得2sin 034πϕ⎛⎫⨯-= ⎪⎝⎭,可得2,34k k πϕπ⨯-=∈Z ,解得,6k k πϕπ=-∈Z , 因为||2ϕπ<,可得6π=ϕ,可得2()sin 36f x x π⎛⎫=- ⎪⎝⎭,因为52523sin sin 0434632f ππππ⎛⎫⎛⎫=⨯-==≠⎪ ⎪⎝⎭⎝⎭,故B 错误; 由于1(0)sin 62f π⎛⎫=-=- ⎪⎝⎭,故C 正确; 将函数()f x 向右平移2π个单位后所得函数为2f x π⎛⎫- ⎪⎝⎭22sin cos 3263x x ππ⎡⎤⎛⎫=--=- ⎪⎢⎥⎝⎭⎣⎦为偶函数,故D正确. 故选:ACD.12、如图,棱长为1的正方体1111ABCD A B C D -中,点E 为11A B 的中点,则下列说法正确的是( )A .DE 与1CC 为异面直线B .DE 与平面11BCC B 所成角的正切值为24C .过,,D CE 三点的平面截正方体所得两部分的体积相等D .线段DE 在底面ABCD 的射影长为2【答案】ABC 【详解】由图可知:DE 与CC1为异面直线,∴A 正确;因为平面11//BCC B 平面11ADD A ,所以DE 与平面11BCC B 所成角即DE 与平面11ADD A 所成角,连接A1D ,显然,1A DE ∠是DE 与平面11ADD A 所成角.在直角三角形EA1D 中:111122tan 42A E A DE A D ∠===,∴B 正确;过D 、C 、E 三点的平面截正方体所得两部分的体积关系即为平面A1B1CD 截正方体所得两部分的体积关系,由正方体的对称性可知截得两部分几何体的体积相等,∴C 正确; 取AB 中点F ,连接EF 、DF ,∵EF //B1B 且B1B ⊥底面ABCD ,∴EF ⊥底面ABCD ,∴DF 的长为线段DE 在底面ABCD 的射影长,在直角三角形DFE 中:EF=1,DE=32,∴DF=2235122⎛⎫-= ⎪⎝⎭,∴D 错. 故选:ABC.三、填空题(本题共4小题,每小题5分,共20分)13、已知不等式220ax bx ++>的解集为{|12}x x -<<,则不等式220x bx a ++<的解集为__________________. 【答案】1{|1}?2x x -<< 【分析】 【详解】不等式220ax bx ++>的解集为{|12}x x -<<,220ax bx ∴++=的两根为1-,2,且0a <,即12b a-+=-,()212a -⨯=,解得1a =-,1b =,则不等式可化为2210x x +-<,解得112x -<<,则不等式220x bx a ++<的解集为1{|1}2x x -<<.14、在ABC ∆中,2cos ,4,33C AC BC ===,则tan B =____________.【答案】45【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴= 22221145cos sin 1()tan 452999a cb B B B ac +-==∴=-=∴=15、在四边形ABCD 中,AD BC ∥,23AB =,5AD =,30A ∠=︒,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-. 【详解】建立如图所示的直角坐标系,则(23,0)B ,535(,)22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒, 所以直线BE 的斜率为33,其方程为3(23)3y x =-,直线AE 的斜率为33-,其方程为33y x =-. 由3(23),333y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩得3x =,1y =-, 所以(3,1)E -.所以35(,)(3,1)122BD AE =-=-. 16、设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是____________. 【答案】1(,1)3【详解】试题分析:()()21ln 11f x x x =+-+,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得()()21f x f x >-成立,∴,∴,∴的范围为1,13⎛⎫⎪⎝⎭故答案为A.四、解答题(17题10分,其余每题12分,共70分,解答应写出文字说明、证明过程或演算步骤,考生根据要求作答)17、成年人收缩压的正常范围是(90,140)(单位:mmHg ),未在此范围的献血志愿者不适合献血,某血站对志愿者的收缩压进行统计,随机抽取男志愿者100名、女志愿者100名,根据统计数据分别得到如下直方图:(1)根据直方图计算这200名志愿者中不适合献血的总人数; (2)估计男志愿者收缩压的中位数;(3)估计女志愿者收缩压的平均值(同一组中的数据用该组区间的中点值为代表). 【答案】(1)20人;(2)115mmHg ;(3)125mmHg . 【详解】解:(1)由(0.0100.01520.0200.030)101m +++⨯+⨯=得0.005m =, 故这些男志愿者中有5人不适合献血;由(0.0050.01020.0200.035)101n ++++⨯=得0.015n =, 故这些女志愿者中有15人不适合献血. 综上所述,这些志愿者中共有20人不适合献血.(2)设男志愿者收缩压的中位数为(mmHg)x ,则110120x <<.由0.015100.02010(110)0.0300.5x ⨯+⨯+-⨯=得115x =, 因此,可以估计男志愿者收缩压的中位数为115(mmHg).(3)950.051050.101150.151250.351350.201450.15125⨯+⨯+⨯+⨯+⨯+⨯=, 因此,可以估计女志愿者收缩压的平均值为125(mmHg).18、在ABC ∆中,角,,A B C 所对的边分别为,,a b c.已知5,a b c === (Ⅰ)求角C 的大小; (Ⅰ)求sin A 的值; (Ⅰ)求πsin(2)4A +的值. 【答案】(Ⅰ)4C π;(Ⅰ)sin A =(Ⅰ)sin 2426A π⎛⎫+=⎪⎝⎭. 【详解】(Ⅰ)在ABC中,由5,a b c ===222cos 22a b c C ab +-===, 又因为(0,)C π∈,所以4Cπ;(Ⅰ)在ABC 中,由4Cπ,a c ==可得sin sin a CA c===13; (Ⅰ)由a c <知角A为锐角,由sin A =,可得cos A ==进而2125sin 22sin cos ,cos22cos 11313A A A A A ===-=,所以125sin(2)sin 2coscos2sin444132132A A A πππ+=+=⨯+⨯=26.19、如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内20、已知()22sin ,cos ,(3cos ,2),()a x x b x f x a b ===⋅. (1)求()f x 的最小正周期及单调递减区间; (2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)T π=,单调递减区间为2,,63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)见解析【详解】(1)2()23sin cos 2cos f x a b x x x =⋅=+2cos 212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭,∴()f x 的最小正周期22T ππ==. 由3222,262k x k k Z πππππ+++∈,得2,63k x k k Z ππππ++∈, ∴()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴72,666x πππ⎡⎤+∈⎢⎥⎣⎦, 当7266x ππ+=,即2x π=时,函数()f x 取得最小值,为72sin106π+=; 当262x ππ+=,即6x π=时,函数()f x 取得最大值,为2sin 132π+=.故函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为0.21、在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos cos cos A B C ++的取值范围. 【答案】(I )3B π=;(II)3]2【详解】(I)由2sin b A =结合正弦定理可得:2sin sin ,sin B A A B =∴= △ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 32A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,113sin ,2232A π⎛⎤⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.22、有一种鱼的身体吸收汞,当这种鱼身体中的汞含量超过其体重的1.00ppm (即百万分之一)时,人食用它,就会对人体产生危害.现从一批该鱼中随机选出30条鱼,检验鱼体中的汞含量与其体重的比值(单位:ppm ),数据统计如下:0.07 0.24 0.39 0.54 0.61 0.66 0.73 0.82 0.82 0.820.87 0.91 0.95 0.98 0.98 1.02 1.02 1.08 1.14 1.201.20 1.26 1.29 1.31 1.37 1.40 1.44 1.58 1.62 1.68(1)求上述数据的中位数、众数、极差,并估计这批鱼该项数据的80%分位数;(2)有A ,B 两个水池,两水池之间有10个完全相同的小孔联通,所有的小孔均在水下,且可以同时通过2条鱼.(Ⅰ)将其中汞的含量最低的2条鱼分别放入A 水池和B 水池中,若这2条鱼的游动相互独立,均有13的概率进入另一水池且不再游回,求这两条鱼最终在同一水池的概率;(Ⅰ)将其中汞的含量最低的2条鱼都先放入A 水池中,若这2条鱼均会独立地且等可能地从其中任意一个小孔由A 水池进入B 水池且不再游回A 水池,求这两条鱼由不同小孔进入B 水池的概率.【答案】(1)中位数为1;众数为0.82;极差为1.61;估计这批鱼该项数据的80百分位数约为1.34;(2)(Ⅰ)49;(Ⅰ)910. 【详解】解:(1)由题意知,数据的中位数为0.98 1.0212+=数据的众数为0.82数据的极差为1.680.07 1.61-=估计这批鱼该项数据的80百分位数约为1.31 1.371.342+= (2)(Ⅰ)记“两鱼最终均在A 水池”为事件A ,则212()339P A =⨯=记“两鱼最终均在B 水池”为事件B ,则212()339P B =⨯=∵事件A 与事件B 互斥,∴两条鱼最终在同一水池的概率为224()()()999P AB P A P B =+=+= (Ⅰ)记“两鱼同时从第一个小孔通过”为事件1C ,“两鱼同时从第二个小孔通过”为 事件2C ,依次类推;而两鱼的游动独立∴12111()()1010100P C P C ===⨯=记“两条鱼由不同小孔进入B 水池”为事件C ,则C 与1210...C C C 对立,又由事件1C ,事件2C ,10C 互斥∴121011()(...)1010010P C P C C C ==⨯=即12109()1(...)10P C P C C C =-=。
北师大版高中数学必修第二册期末质量检测试卷(含答案)
北师大版高中数学必修第二册期末质量检测试卷本试卷共150分,考试时长120分钟一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-i 1+2i=()A .1B .-1C .iD .-i2.已知OA →=(-1,2),OB →=(3,m),若OA →⊥OB →,则m 的值为()A .1B .32C .2D .43.现有四个函数:①y =x·sin x ;②y =x·cos x ;③y =x·|cos x|;④y =x·2x 的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A .①④②③B .①④③②C .④①②③D .③④②①4.已知a ,b 为直线,α,β为平面,给出下列四个命题:①若a ⊥α,b ⊥α,则a ∥b ;②a ∥α,b ∥α,则a ∥b ;③若a ⊥α,a ⊥β,则α∥β;④若b ∥α,b ∥β,则α∥β.其中真命题的个数是()A .0B .1C .2D .35.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为()A .32B .22C .12D .-126.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →=()A .14a +12bB .12a +14bC .23a +13bD .13a +23b 7.下列命题中正确的是()A .y =cos x 的图象向右平移π2个单位长度得到y =sin x 的图象B .y =sin x 的图象向右平移π2个单位长度得到y =cos x 的图象C.当φ<0时,y=sin x的图象向左平移|φ|个单位长度可得y=sin(x+φ)的图象D.y=sin(2x+π3)的图象是由y=sin2x的图象向左平移π3个单位长度得到的8.在三棱锥PABC中,PA⊥平面ABC,AB⊥BC,AB=BC=1,PA=3,则该三棱锥外接球的表面积为()A.5πB.2πC.20πD.4π二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.设a,b是两个非零向量,则下列说法不正确的是()A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|10.在△ABC中,下列命题正确的是()A.若A>B,则cos A>cos BB.若sin2A=sin2B,则△ABC一定为等腰三角形C.若a cos B-b cos A=c,则△ABC一定为直角三角形D.若三角形的三边的比是3∶5∶7,则此三角形的最大角为钝角11.对于函数f(x)x,sin x≤cos x,x,sin x>cos x,下列四个结论正确的是()A.f(x)是以π为周期的函数B.当且仅当x=π+kπ(k∈Z)时,f(x)取得最小值-1 C.f(x)图象的对称轴为直线x=π4+kπ(k∈Z)D.当且仅当2kπ<x<π2+2kπ(k∈Z)时,0<f(x)≤2 212.如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为棱DD1,AB上的点.下列命题中正确的是()A.A1C⊥平面B1EFB.在平面A1B1C1D1内总存在与平面B1EF平行的直线C.△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形D.当E,F为中点时,平面B1EF截该正方体所得的截面图形是五边形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知tanθ=2,则cos2θ=__________,tan=________.14.已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________.15.设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.16.如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD →=λBC →,AD →·AB →=-32,则实数λ的值为________,若M ,N 是线段BC 上的动点,且|MN →|=1,则DM →·DN →的最小值为________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在平面直角坐标系xOy 中,角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,以角α的终边为始边,逆时针旋转π4得到角β.(1)求tan α的值;(2)求cos (α+β)的值.18.(12分)在△ABC 中,a +b =11,再从条件①、条件②这两个条件中选择一个作为已知,求:(1)a 的值;(2)sin C 和△ABC 的面积.条件①:c =7,cos A =-17;条件②:cos A =18,cos B =916.注:如果选择条件①和条件②分别解答,按第一个解答计分.19.(12分)在①函数f为奇函数;②当x =π3时,f (x )=3;③2π3是函数f (x )的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数f (x )=2sin (ωx+φ>0,0<φ,f (x )的图象相邻两条对称轴间的距离为π,________.(1)求函数f (x )的解析式;(2)求函数f (x )在[0,2π]上的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)在①ac=3,②c sin A=3,③c=3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC,它的内角A,B,C的对边分别为a,b,c,且sin A=3sin B,C=π6,________?注:如果选择多个条件分别解答,按第一个解答计分.21.(12分)如图,已知直四棱柱ABCDA1B1C1D1的底面是菱形,F是BB1的中点,M 是线段AC1的中点.(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.22.(12分)已知四棱锥PABCD的底面ABCD是菱形.(1)求证:AD∥平面PBC;(2)若PB=PD,求证:BD⊥平面PAC;(3)下面两问任选一问作答.①E、F分别是AB、PD上的点,若EF∥平面PBC,AE=2EB,求PFPD的值;②若∠DAB=60°,平面PAD⊥平面ABCD,PB⊥PD,判断△PAD是不是等腰三角形,并说明理由.参考答案与解析1.解析:解法一:2-i 1+2i =(2-i )(1-2i )(1+2i )(1-2i )=2-2-5i5=-i ,选D.解法二:利用i 2=-1进行替换,则2-i 1+2i =-2×(-1)-i 1+2i =-2i 2-i 1+2i=-i (1+2i )1+2i =-i ,选D.答案:D2.解析:由OA →⊥OB →,得OA →·OB →=-3+2m =0,故m =32.答案:B 3.解析:①y =x ·sin x 为偶函数,y 轴对称,②y =x ·cosx 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x ,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.答案:A4.解析:由“垂直于同一平面的两直线平行”知①是真命题;由“平行于同一平面的两直线平行或异面或相交”知②是假命题;由“垂直于同一直线的两平面平行”知③是真命题;在长方体ABCD A 1B 1C 1D 1中,易知A 1B 1∥平面DCC 1D 1,A 1B 1∥平面ABCD ,但以上两平面却相交,故④是假命题.答案:C5.解析:由余弦定理的推论,得cos C =a 2+b 2-c 22ab =a 2+b 24ab≥12,当且仅当a =b 时取“=”.答案:C6.解析:如图,∵AC →=a ,BD →=b ,∴AD →=AO →+OD →=12AC →+12BD →=12a +12b .∵E 是OD 的中点,∴DE EB =13.∴DF =13AB ,∴DF →=1AB →=13(OB →-OA →)=13-12→-12AC =16AC →-16BD →=16a -16b ,AF →=AD →+DF →=12a +12b +16a -16b =23a +13b ,故选C.答案:C7.解析:y =cos x 的图象向右平移π2个单位长度得到y =cos =sin x 的图象,故A 正确;y =sin x 的图象向右平移π2个单位长度得到y =sin =-cos x 的图象,故B 错误;y =sin x 的图象向左平移|φ|个单位长度得到y =sin (x +|φ|)=sin (x -φ)的图象,故C错误;y =sin 2x 的图象向左平移π3个单位长度得到y =sin 2=sin x 的图象,故D 错误.答案:A 8.解析:如图,取PC 的中点O ,连接OA ,OB ,∵PA ⊥平面ABC ,AC ⊂平面ABC ,BC ⊂平面ABC .∴PA ⊥AC ,PA ⊥BC .在Rt △PAC 中,∵O 为PC 的中点,∴OA =12PC ,又PA ⊥BC ,AB ⊥BC ,PA ∩AB =A ,∴BC ⊥平面PAB ,∴BC ⊥PB ,在Rt △PBC 中,可得OB =12PC ,∴OA =OB =OC =OP ,∴O 是三棱锥P ABC 的外接球的球心,∵Rt △PAC 中,AC =2,PA =3,∴PC =5,∴三棱锥P ABC 的外接球的半径R =12PC =52,∴该三棱锥外接球的表面积S =4πR 2=5π.答案:A9.解析:若|a +b |=|a |-|b |,则a ,b 反向共线,且|a |>|b |,即存在实数λ,使得b =λa ,故A 不正确,C 正确;若a ⊥b ,显然在以a ,b 对应的线段为邻边的长方形中|a +b |=|a |-|b |不成立,故B 不正确;若λ>0,则a ,b 为同向的共线向量,显然|a +b |=|a |-|b |不成立,故D 不正确.故选ABD.答案:ABD10.解析:在△ABC 中,若A >B ,则a >b ,sin A >sin B ,但cos A >cos B 不正确,A 错误;若sin 2A =sin 2B ,则2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,B 错误;若a cos B -b cos A =c ,则sin A ·cos B -sin B cos A =sin C =sin(A +B ),所以sin B cos A =0,即cos A =0,A =π2,所以△ABC 定为直角三角形,C 正确;三角形的三边的比是3∶5∶7,设最大边所对的角为θ,则cos θ=32+52-722×3×5=-12,因为π3<θ<π,所以θ=2π3,D 正确.故选CD.答案:CD11.解析:函数f (x )x ,sin x ≤cos x ,x ,sin x >cos x的最小正周期为2π,画出f (x )在一个周期内的图象,可得当2k π+π4≤x ≤2k π+5π4,k ∈Z 时,f (x )=cos x ,当2k π+5π4<x ≤2k π+9π4,k ∈Z 时,f (x )=sin x ,可得f (x )的对称轴方程为x =π4+k π,k ∈Z ,当x =2k π+π或x =2k π+3π2,k ∈Z 时,f (x )取得最小值-1;当且仅当2k π<x <π+2k π(k ∈Z )时,f (x )>0.f (x )的最大值为=22,可得0<f (x )≤22,综上可得,正确的有CD.答案:CD 12.解析:连接AB 1,B 1D 1,AD 1,由正方体的性质可得A 1C ⊥平面AB 1D 1,而平面AB 1D 1与平面B 1EF 不可能平行,所以显然有A 1C 与平面B 1EF 不垂直,故A 错误;由题图可知,平面A 1B 1C 1D 1与平面B 1EF 相交,则一定有一条交线,所以在平面A 1B 1C 1D 1内一定存在直线与此交线平行,则此直线与平面B 1EF 平行,故B 正确;点F 在侧面BCC 1B 1上的投影为点B ,点E 在侧面BCC 1B 1上的投影在棱CC 1上,所以投影三角形的面积为S =12BB 1·BC =12,为定值,故C 正确;在D 1C 1上取点M ,使D 1M =14D 1C 1,在AD 上取点N ,使AN =23AD ,连接B 1M ,EM ,EN ,FN ,则五边形B 1MENF 即为截面,故D 正确,故选BCD.答案:BCD13.解析:解法一:因为tan θ=2,所以sin θ=2cos θ,由22θ=1可知,sin 2θ=45,cos 2θ=15,所以cos2θ=cos 2θ-sin 2θ=15-45=-35,=tan θ-11+tan θ=2-11+2=13.解法二:因为tan θ=2,所以cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-41+4=-35,=tan θ-11+tan θ=2-11+2=13.答案:-351314.解析:解法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2=2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,则2πR =2π,解得R =1.解法二:设该圆锥的底面半径为R ,则该圆锥侧面展开图中的圆弧的弧长为2πR .因为侧面展开图是一个半圆,设该半圆的半径为r ,则πr =2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.答案:115.解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3+i ,∴a +c =3,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2=a 2+b 2+c 2+d 2-(2ac +2bd )=8-(-4)=23.答案:2316.解析:依题意得AD ∥BC ,∠BAD =120°,由AD →·AB →=|AD →|·|AB →|·cos ∠BAD =-32|AD →|=-32,得|AD →|=1,因此λ=|AD →||BC →|=16.取MN 的中点E ,连接DE ,则DM →+DN→=2DE →,DM →·DN →=14[(DM →+DN →)2-(DM →-DN →)2]=DE →2-14NM →2=DE →2-14.注意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin ∠B =332,因此DE →2-142-14=132,即DM →·DN →的最小值为132.答案:1613217.解析:(1)∵角α的顶点与原点O 重合,始边与x 轴的正半轴重合,它的终边过点-35,,∴tan α=45-35=-43.(2)以角α的终边为始边,逆时针旋转π4得到角β,∴β=α+π4.由(1)利用任意角的三角函数的定义可得cos α=-35,sin α=45.∴sin 2α=2sin αcos α=-24,cos 2α=2cos 2α-1=-725.∴cos(α+β)=cos α=cos 2αcosπ4-sin 2αsin π4=22(cos 2α-sin 2α)=17250.18.解析:方案一:选条件①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7,得a 2=(11-a )2+49-2(11-a )×7,∴a =8.(2)∵cos A =-17,A ∈(0,π),∴sin A =437.由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,∴S △ABC =12ab sin C =12×8×3×32=63.方案二:选条件②(1)∵cos A =18,∴A,sin A =378.∵cos B =916,∴B ,sin B =5716.由正弦定理a sin A =bsin B ,得a378=11-a 5716,∴a =6.(2)sin C =sin (π-A -B )=sin (A +B )=sin A cos B +cos A sin B =74.∵a +b =11,a =6,∴b =5.∴S △ABC =12ab sin C =12×6×5×74=1574.19.解析:∵函数f (x )的图象相邻对称轴间的距离为π,∴T =2πω=2π,∴ω=1,∴f (x )=2sin (x +φ).方案一:选条件①∵=+φ为奇函数,∴=2sin =0,解得:φ=π3+k π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案二:选条件②=2sin =3,∴sin =32,∴φ=2k π,k ∈Z 或φ=π3+2k π,k ∈Z ,(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π];方案三:选条件③∵23π是函数f (x )的一个零点,∴=2sin +=0.∴φ=k π-2π,k ∈Z .(1)∵0<φ<π2,∴φ=π3,∴f (x )=2sin ;(2)由-π2+2k π≤x +π3≤π2+2k π,k ∈Z ,得-56π+2k π≤x ≤π6+2k π,k ∈Z .∴令k =0,得-5π6≤x ≤π6,令k =1,得7π6≤x ≤13π6,∴函数f (x )在[0,2π]上的单调递增区间为[0,π6],[76π,2π].20.解析:方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b2=32,由此可得b =c .由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1.方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3.由②c sin A =3,所以c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =23.方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab=32.由sin A =3sin B 及正弦定理得a =3b .于是3b 2+b 2-c 223b 2=32,由此可得b =c .由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在.21.证明:(1)连接BD ,设AC ,BD 相交于点O ,连接MO ,因为M 是线段AC 1的中点,所以在△ACC 1中,MO 綊12CC 1.又F 是BB 1的中点,所以BF 綊12CC 1,所以BF 綊MO ,故四边形MOBF 是平行四边形,所以MF∥BO.又MF⊄平面ABCD,BO⊂平面ABCD,所以MF∥平面ABCD.(2)由(1)知OB∥MF,在菱形ABCD中,OB⊥AC,所以MF⊥AC.在直四棱柱ABCDA1B1C1D1中,CC1⊥平面ABCD,BO⊂平面ABCD,所以BO⊥CC1,即MF⊥CC1.又MF⊥AC,CC1∩AC=C,AC⊂平面ACC1A1,CC1⊂平面ACC1A1,所以MF⊥平面ACC1A1.因为MF⊂平面AFC1,所以平面AFC1⊥平面ACC1A1.22.解析:(1)证明:因为四边形ABCD是菱形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.(2)证明:设AC、BD交于点O,连接PO.因为四边形ABCD是菱形,所以AC⊥BD,DO=OB.因为PB=PD,所以PO⊥BD.因为AC∩PO=O,PO,AC⊂平面PAC,所以BD⊥平面PAC.(3)①过F作FG∥DC交PC于G,连接BG.在菱形ABCD中,AB=DC,AB∥DC,所以FG∥AB.所以E,F,G,B共面.因为EF∥平面PBC,平面FEBG∩平面PBC=BG,所以EF∥BG.所以四边形FEBG为平行四边形,所以EB=FG.所以AE=2EB,所以PFPD=FGDC=EBAB=13.②△PAD不是等腰三角形,理由如下:作BQ⊥AD交AD于点Q,连接PQ.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BQ⊂平面ABCD,所以BQ⊥平面PAD.所以BQ⊥PD.因为PD⊥PB,PB∩BQ=B.所以PD⊥平面PBQ.所以PD⊥PQ.所以AD>PD,AD>PA,QD>PD,∠PQD<90°.所以∠PQA>90°.所以PA>AQ.在菱形ABCD中,∠DAB=60°,所以△ABD是等边三角形.所以Q为AD的中点.所以AQ=QD.所以PA>PD.所以△PAD不可能为等腰三角形.。
(完整word版)高中数学必修二期末测试题二及答案
高中数学必修二期末测试题二一、选择题。
1. 倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x 2. 原点在直线l 上的射影是P(-2,1),则直线l 的方程是 ( )A .02=+y xB .042=-+y xC .052=+-y xD .032=++y x 3. 如果直线l 是平面α的斜线,那么在平面α内( )A .不存在与l 平行的直线B .不存在与l 垂直的直线C .与l 垂直的直线只有一条D .与l 平行的直线有无穷多条 4. 过空间一点作平面,使其同时与两条异面直线平行,这样的平面( )A .只有一个B .至多有两个C .不一定有D .有无数个5. 直线093=-+y ax 与直线03=+-b y x 关于原点对称,则b a ,的值是 ( )A .a =1,b = 9B .a =-1,b = 9C .a =1,b =-9D .a =-1,b =-96. 已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 ( )A .2211k x x +⋅-B .k x x ⋅-21C .2211kx x +- D .kx x 21-7. 直线l 通过点(1,3)且与两坐标轴的正半轴所围成的三角形面积为6,则直线l 的方程是( )A .063=-+y xB .03=-y xC .0103=-+y xD .083=+-y x8. 如果一个正三棱锥的底面边长为6)A.92 B.9 C.2729. 一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是 ( )SB 1C 1A 1CBAA .31003cm πB .32083cm πC .35003cm π D .341633cm π 10.在体积为15的斜三棱柱ABC -A 1B 1C 1中,S 是C 1C 上的一点,S -ABC 的体积为3,则三棱锥S -A 1B 1C 1的体积为 ( )A .1B .32C .2D .3 11.已知点)3,2(-A 、)2,3(--B 直线l 过点)1,1(P ,且与线段AB相交,则直线l 的斜率的取值k 范围是 ( ) A .34k ≥或4k ≤- B .34k ≥或14k ≤- C .434≤≤-k D .443≤≤k 12.过点(1,2),且与原点距离最大的直线方程是( )A .052=-+y xB .042=-+y xC .073=-+y xD .032=+-y x 二、填空题。
(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)
高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。
4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。
)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。
6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。
7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。
若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。
8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。
9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。
10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。
11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。
高中数学必修2测试试卷
高中数学测试试卷(4)1)0(0=+≠=++y x abc c by ax 与圆|b|,|c|的三角形( )A .是锐角三角形B .是直角三角形C .是钝角三角形D .不存在 2. a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件3.点M (x 0,y 0)是圆x 2+y 2=a 2 (a>0)内不为圆心的一点,则直线x 0x+y 0y=a 2与该 圆的位置关系是( )A .相切B .相交C .相离D .相切或相交 4.圆x 2+2x+y 2+4y-3=0上到直线x+y+1=0的距离为2的点共有( ) A .1个 B .2个 C .3个D .4个5.命题“∀x >0,都有x 2-x ≤0”的否定是 ( ).A .∃x 0>0,使得x 02-x 0≤0B .∃x 0>0,使得x 02-x 0>0C .∀x >0,都有x 2-x >0D .∀x ≤0,都有x 2-x >06.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27π B .56π C .14π D .64π7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 28.如图8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是( )9.如图8-25,在三棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q ,且满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1B .2∶1C .4∶1D .3∶110.图8-23中多面体是过正四棱柱的底面正方形ABCD 的顶点A 作截面AB 1C 1D 1而截得的,且B 1B=D 1D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y O x y O x y O x
y
O
高中数学必修2模块测试试卷
一、选择题
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x 3. 下列说法不正确的....
是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )
A .
B .
C .
D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( )
A.一定是异面
B.一定是相交
C.不可能平行
D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( ) (A )①和② (B )②和③
(C )③和④ (D )①和④
8. 圆22
(1)1x y -+=
与直线y x =
的位置关系是( ) A .相交 B. 相切 C.相离 D.直线过圆心
9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( )
A .-1
B .2
C .3
D .0
10. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( )
A .点P 必在直线AC 上 B.点P 必在直线BD 上
C .点P 必在平面DBC 内 D.点P 必在平面ABC 外 11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是( ) A.MN ∥β B.MN 与β相交或MN ⊂≠β
C. MN ∥β或MN ⊂≠β
D. MN ∥β或MN 与β相交或MN ⊂≠β
12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( ) A.垂直 B.平行 C.相交 D.位置关系不确定 二 填空题 13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ; 15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _____; 16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 三 解答题
17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0,求AC 边上的高所在的直线方程.
18(12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂
直于平面ABC ,且EA=AB=2a,DC=a,F
是BE 的中点,求证:(1) FD ∥平面ABC; (2) AF ⊥平面EDB.
19.(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,
(1)求证:平面A B1D1∥平面EFG;
20.(12分) 已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为27;
③圆心在直线x-3y=0上. 求圆C的方程.
21.(12分) 设有半径为3km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇.设A 、B 两人速度一定,其速度比为3:1,问两人在何处相遇?
22.(14分)已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B
两点.
(1) 当l 经过圆心C 时,求直线l 的方程;
(2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.。