图像中角点(特征点)提取与匹配算法
基于光场成像的三维图像特征点提取与匹配
![基于光场成像的三维图像特征点提取与匹配](https://img.taocdn.com/s3/m/9e496e61e3bd960590c69ec3d5bbfd0a7956d5a3.png)
基于光场成像的三维图像特征点提取与匹配光场成像技术是一种新兴的三维图像获取方法,具有非常大的应用潜力。
在这种技术下,相机能够同时获取到目标物体在不同位置的多个角度的图像,从而获得物体的三维信息。
然而,由于光场图像的特殊性质,传统的特征点提取与匹配方法在光场图像上的效果并不理想。
在光场图像中,一个像素点不仅包含了颜色信息,还包含了光线的方向和强度等信息。
因此,在进行特征点提取时,需要综合考虑这些信息来选择合适的特征点。
一种常用的方法是基于梯度的角点检测算法。
通过计算光场图像中像素点的梯度,可以找到具有明显变化的角点。
同时,还可以利用光线的方向信息来进一步筛选特征点,保留那些在光线方向上变化明显的点。
在特征点提取之后,还需要进行特征点的匹配。
由于光场图像具有多个视角的信息,因此可以利用这些信息来进行更准确的匹配。
一种常用的方法是基于多视角的特征描述子匹配。
通过计算特征点在不同视角下的描述子,可以找到相似的特征点,并将它们进行匹配。
同时,还可以利用光线的方向信息来进行更精确的匹配,提高匹配的准确性。
基于光场成像的三维图像特征点提取与匹配在许多领域中具有广泛的应用。
例如,在机器人导航中,可以利用光场图像的三维信息来进行地图构建和路径规划;在增强现实中,可以利用光场图像的特征点提取与匹配来实现虚拟物体的叠加显示;在医学影像中,可以利用光场图像的三维信息来进行病灶的定位和识别等。
总之,基于光场成像的三维图像特征点提取与匹配是一个具有挑战性的问题。
通过综合考虑光场图像的特殊性质,可以设计出更适用于光场图像的特征点提取与匹配方法,进一步推动光场成像技术的发展与应用。
Python技术实现图像特征提取与匹配的方法
![Python技术实现图像特征提取与匹配的方法](https://img.taocdn.com/s3/m/5adf99e3cf2f0066f5335a8102d276a201296049.png)
Python技术实现图像特征提取与匹配的方法随着科技的不断进步,图像处理技术在各个领域得到了广泛应用。
图像特征提取与匹配是图像处理中的重要环节之一,它能够通过识别图像中的关键特征点,进行图像的检索、识别和对比。
Python作为一门功能强大的编程语言,提供了各种库和工具,可以方便地实现图像特征提取与匹配的方法。
一、图像特征提取图像特征是指在图像中具有独特而稳定的可视化特性,例如边缘、角点、颜色分布等。
图像特征提取的目的就是从图像中找到这些独特的特征点,以便后续的处理和分析。
1. 边缘检测边缘是图像中不同区域之间的分界线,是图像中的显著特征。
Python的OpenCV库提供了Sobel算子、Canny算子等用于边缘检测的函数,可以方便地实现边缘检测的过程。
2. 角点检测角点是图像中具有明显曲率或者弯曲的地方,是图像中的显著特征。
OpenCV 中的Harris角点检测算法和Shi-Tomasi角点检测算法提供了在Python中实现角点检测的函数。
3. SIFT和SURF特征提取SIFT(尺度不变特征变换)和SURF(加速稳健特征)是两种经典的特征提取算法,它们可以提取图像中的局部特征,并具有旋转、尺度不变性。
Python中的OpenCV库提供了SIFT和SURF算法的实现,可以方便地提取图像的特征。
二、图像特征匹配图像特征匹配是将两幅或多幅图像中的特征点进行对齐和匹配。
通过图像特征匹配,可以实现图像的检索、识别和对比,是图像处理中的重要环节。
1. 特征点描述在进行图像特征匹配之前,需要对特征点进行描述。
描述子是一种对特征点进行数学表示的方法,可以用于特征点的匹配和对比。
OpenCV中的SIFT和SURF 算法可以提取特征点的描述子。
2. 特征点匹配特征点匹配是将两个图像中的对应特征点连接起来,实现图像的对齐和匹配。
OpenCV中提供了FLANN(最近邻搜索)库,可以高效地实现特征点的匹配。
同时,还可以使用RANSAC算法进行特征点匹配的筛选和优化。
图像匹配的算法种类和原理
![图像匹配的算法种类和原理](https://img.taocdn.com/s3/m/84c70cba8662caaedd3383c4bb4cf7ec4afeb6dd.png)
图像匹配的算法种类和原理
图像匹配是一种广泛应用于计算机视觉领域的技术,用于判断两个或多个图像之间的相似性或是否存在某种关联。
以下是几种常见的图像匹配算法和其原理:
1. 直方图匹配:该算法基于图像的颜色分布,通过比较两个图像的直方图来评估它们的相似性。
直方图是一种将图像像素值与其频率关联起来的统计工具。
2. 特征点匹配:该算法通过提取图像中的特征点,如角点、边缘等,然后比较两个图像中的特征点之间的距离或相似性来确定它们之间的匹配关系。
常见的特征点匹配算法包括SIFT、SURF 和ORB。
3. 模板匹配:该算法使用一个预先定义好的模板图像,将其与输入图像进行比较,找出最佳匹配的位置。
模板匹配算法通常使用相关性或差异性度量来评估匹配程度。
4. 形状匹配:该算法旨在比较图像中的形状特征,例如提取图像边界上的轮廓,并计算它们之间的相似性。
形状匹配通常与图像分割和轮廓提取技术结合使用。
5. 神经网络匹配:近年来,深度学习和卷积神经网络(CNN)等技术的发展为图像匹配带来了新的突破。
使用深度神经网络,可以学习到更高级别的特征表示,并通过训练模型来实现图像匹配任务。
这些算法各有优缺点,并且在不同应用场景下具有不同的适用性。
在实际应用中,经常需要结合多种算法来实现更准确的图像匹配结果。
图像识别技术中的特征提取与匹配算法研究
![图像识别技术中的特征提取与匹配算法研究](https://img.taocdn.com/s3/m/e6e3e66fe3bd960590c69ec3d5bbfd0a7956d503.png)
图像识别技术中的特征提取与匹配算法研究随着计算机视觉领域的快速发展,图像识别技术在各个领域得到了广泛应用。
图像识别技术的核心问题之一是如何从大量的图像数据中提取出有效的特征,以便进行图像匹配和识别。
本文将重点讨论图像识别技术中的特征提取与匹配算法的研究。
一、特征提取算法特征提取算法是图像识别技术中最基础、最关键的环节之一,它通过对图像中的有效信息进行提取和表示,以便后续的匹配和识别过程。
常用的特征提取算法包括SIFT(尺度不变特征变换)、SURF(加速稳健特征)、ORB(旋转矩不变特征)等。
SIFT算法是一种基于尺度空间的特征提取算法,它通过检测尺度不变的局部极值点,并在多个尺度下提取出稳定的特征。
SIFT算法对图像的旋转、缩放、平移等变换具有较好的不变性,是目前应用最广泛的特征提取算法之一。
SURF算法是一种基于Hessian矩阵的特征提取算法,它通过检测图像中的兴趣点,并计算其局部特征向量来描述图像信息。
与SIFT算法相比,SURF算法在保留了较好的特征表达能力的同时,大大加快了计算速度,因此在实时图像处理中得到了广泛应用。
ORB算法是一种结合了FAST特征检测和BRIEF特征描述的特征提取算法,它通过检测图像中的FAST角点,并用二进制位串来描述角点周围的灰度信息。
ORB算法既具有较好的特征表达能力,又在计算速度上有很大优势,因此在大规模图像检索等应用中表现出色。
二、特征匹配算法特征提取后,需要进行特征匹配以实现图像的识别和检索。
特征匹配算法的目标是找出两幅图像中相似的特征,并建立它们之间的对应关系。
在特征匹配过程中,常用的算法包括暴力搜索、k-d树算法和近似最近邻搜索算法等。
暴力搜索是一种简单直观的特征匹配算法,它通过遍历所有特征点对之间的距离来实现匹配。
暴力搜索算法的优点是简单易实现,但由于计算量大,在大规模图像匹配中往往不够高效。
k-d树算法是一种基于树结构的特征匹配算法,它通过构建k-d树来实现对特征点的快速搜索。
医学图像配准与配对的基本步骤与算法
![医学图像配准与配对的基本步骤与算法](https://img.taocdn.com/s3/m/8c7666b970fe910ef12d2af90242a8956becaa0b.png)
医学图像配准与配对的基本步骤与算法随着互联网时代的到来,互联网思维逐渐渗透到各个领域,包括医学图像处理。
作为一位现代互联网思维的老师,我将为大家介绍医学图像配准与配对的基本步骤与算法,并探讨其在医学领域的应用。
医学图像配准是指将不同时间、不同模态或不同患者的医学图像进行对齐,以实现图像的统一和比较。
配准的基本步骤包括:图像预处理、特征提取、特征匹配和变换模型。
首先,图像预处理是为了去除图像中的噪声和不必要的信息,以提高后续处理的准确性和效率。
常用的预处理方法包括平滑滤波、边缘检测和图像增强等。
通过这些方法,可以使图像更加清晰、明确,为后续的特征提取和匹配打下良好的基础。
接下来,特征提取是将图像中的关键信息提取出来,以便进行后续的匹配和变换。
常用的特征包括角点、边缘、纹理等。
特征提取的方法有很多,例如Harris角点检测、SIFT特征提取等。
通过这些方法,可以从图像中提取出具有独特性和稳定性的特征点或特征描述子,为后续的匹配和变换提供可靠的依据。
然后,特征匹配是将两幅图像中的特征进行对应,以找到它们之间的关系。
特征匹配的目标是找到最佳的匹配对,即使得两幅图像中的特征点之间的距离最小。
常用的特征匹配算法包括暴力匹配、K近邻匹配和RANSAC匹配等。
通过这些算法,可以实现特征点的准确匹配,为后续的变换模型提供准确的输入。
最后,变换模型是根据特征匹配的结果,将一个图像变换到另一个图像的空间中。
常用的变换模型包括仿射变换、透视变换和非刚性变换等。
这些变换模型可以将图像进行旋转、平移、缩放等操作,从而实现图像的对齐和配准。
医学图像配准与配对在医学领域有着广泛的应用。
例如,在医学影像诊断中,医生可以通过将多个时间点的同一患者的图像进行配准,来观察病变的演变和治疗效果的评估。
此外,在医学研究中,医学图像配准可以用于分析不同患者之间的结构和功能的差异,从而帮助研究人员更好地理解疾病的发生和发展机制。
总之,医学图像配准与配对是一项重要的技术,它可以将不同时间、不同模态或不同患者的医学图像进行对齐,为医学影像诊断和研究提供可靠的基础。
图像特征点提取及匹配算法研究论文
![图像特征点提取及匹配算法研究论文](https://img.taocdn.com/s3/m/5ac67a75f011f18583d049649b6648d7c1c70890.png)
图像特征点提取及匹配算法研究论文1.SIFT算法:SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征点提取算法。
该算法首先使用高斯滤波器对图像进行多尺度的平滑处理,然后使用差分算子来检测图像中的关键点,最后计算关键点的主方向和描述符。
SIFT算法具有尺度不变性和旋转不变性,对于图像中存在较大尺度和角度变化的情况下仍能提取出稳定的特征点。
2.SURF算法:SURF(Speeded Up Robust Features)算法是一种快速的特征点提取算法,它在SIFT算法的基础上进行了优化。
SURF算法使用Haar小波响应来检测图像中的特征点,并使用积分图像来加速计算过程。
此外,SURF算法还使用了一种基于方向直方图的特征描述方法,能够提取出具有旋转不变性和尺度不变性的特征点。
3.ORB算法:ORB(Oriented FAST and Rotated BRIEF)算法是一种快速的特征点提取和匹配算法。
该算法结合了FAST角点检测算法和BRIEF描述符算法,并对其进行了改进。
ORB算法利用灰度值的转折点来检测图像中的角点,并使用二进制字符串来描述关键点,以提高特征点的匹配速度。
ORB算法具有较快的计算速度和较高的匹配精度,适用于实时应用。
4.BRISK算法:BRISK(Binary Robust Invariant Scalable Keypoints)算法是一种基于二进制描述符的特征点提取和匹配算法。
该算法首先使用田字形格点采样方法检测关键点,然后使用直方图来描述关键点的方向和纹理特征。
最后,BRISK算法使用二进制字符串来表示关键点的描述符,并使用汉明距离来进行特征点的匹配。
BRISK算法具有较快的计算速度和较高的鲁棒性,适用于大规模图像匹配任务。
总结起来,图像特征点提取及匹配算法是计算机视觉领域中的重要研究方向。
本文介绍了一些常用的特征点提取及匹配算法,并对其进行了讨论。
特征 图像匹配算法
![特征 图像匹配算法](https://img.taocdn.com/s3/m/60b2e19351e2524de518964bcf84b9d528ea2ca4.png)
特征图像匹配算法1. 简介特征图像匹配算法是一种计算机视觉中常用的算法,用于在两幅图像之间找到相对应的特征点,并将它们匹配起来。
这种算法在多个应用领域都有广泛的应用,包括图像检索、三维重建、目标跟踪等。
特征图像匹配算法的核心思想是通过提取图像中的关键特征点,然后计算这些特征点的描述子,在不同图像中进行匹配,找到相对应的特征点。
这些特征点通常是图像中的角点、边缘或者纹理等具有区分性的部分。
2. 特征提取在特征图像匹配算法中,特征点的提取是首要任务。
常用的特征点提取算法包括Harris角点检测、SIFT(Scale-Invariant Feature Transform)、SURF (Speeded-Up Robust Features)等。
•Harris角点检测是一种通过计算图像中像素点周围的灰度变化来检测图像中的角点的算法。
它主要是通过计算图像中每个像素点的窗口内的像素梯度的方差来确定是否为角点。
•SIFT是一种尺度不变特征变换的算法,它可以在不同大小和旋转角度的图像中匹配特征点。
SIFT算法首先通过高斯滤波器进行图像平滑,然后通过DoG(Difference of Gaussians)算子检测图像中的极值点作为特征点。
•SURF是一种类似于SIFT的特征提取算法,但它具有更快的计算速度和更好的旋转不变性。
SURF算法通过检测图像中的极值点,并计算它们的Haar小波特征来提取特征点。
3. 特征描述在特征提取之后,需要对特征点进行描述,以便在不同图像中进行匹配。
常用的特征描述算法包括ORB(Oriented FAST and Rotated BRIEF)、BRISK(Binary Robust Invariant Scalable Keypoints)等。
•ORB是一种具有旋转不变性和尺度不变性的特征描述算法。
它通过计算特征点周围的像素点在不同方向上的灰度变化来生成特征点的描述子。
最后,ORB算法将描述子通过二进制编码,以降低计算复杂度。
图像中角点提取与匹配算法
![图像中角点提取与匹配算法](https://img.taocdn.com/s3/m/2fca4d09a22d7375a417866fb84ae45c3a35c27a.png)
图像中角点提取与匹配算法角点提取与匹配算法是计算机视觉领域中的一项重要技术,用于在图像中寻找具有明显角度变化的特征点,并将这些特征点进行匹配。
这些算法在很多应用中都起到了关键作用,如图像配准、目标跟踪、三维重建等。
角点是图像中具有明显角度变化的点,它们在不同尺度和旋转下具有稳定性,因此可以用来作为图像的特征点。
在角点提取算法中,常用的方法有Harris角点检测算法、Shi-Tomasi角点检测算法、FAST角点检测算法等。
Harris角点检测算法是最早提出的角点检测算法之一,它通过计算图像中每个像素点周围区域的灰度变化来判断该点是否为角点。
具体来说,该算法计算每个像素点的特征值,通过特征值的大小来确定角点。
如果特征值较大,则该点为角点;反之,则该点为平坦区域或边缘。
Shi-Tomasi角点检测算法是对Harris角点检测算法的改进,它使用特征值中较小的一个来表示角点的稳定性,从而提高了检测的准确性和稳定性。
该算法首先计算每个像素点的特征值,然后选择特征值较小的一部分像素点作为角点。
FAST角点检测算法是一种高效的角点检测算法,它通过比较像素点周围的相邻像素点的灰度值来判断该点是否为角点。
该算法通过快速地检测像素点的灰度值变化来提高检测的速度,同时保持了较高的准确性。
在角点匹配算法中,常用的方法有基于特征描述子的匹配算法,如SIFT(尺度不变特征变换)算法、SURF(加速稳健特征)算法、ORB (Oriented FAST and Rotated BRIEF)算法等。
SIFT算法是一种基于尺度不变特征变换的特征描述子算法,它通过检测图像中的关键点,并计算每个关键点周围区域的特征描述子。
这些特征描述子具有尺度不变性和旋转不变性,因此可以用来进行图像匹配。
SURF算法是一种加速稳健特征算法,它通过使用快速哈尔小波变换来计算图像中的特征点,并使用加速积分图像来加速特征点的计算。
这些特征点具有尺度不变性和旋转不变性,可以用来进行图像匹配。
计算机视觉中的角点提取与描述技术
![计算机视觉中的角点提取与描述技术](https://img.taocdn.com/s3/m/3c8ffa7782c4bb4cf7ec4afe04a1b0717fd5b337.png)
计算机视觉中的角点提取与描述技术角点是指在图像或视觉场景中具有明显变化或特征的位置。
在计算机视觉中,角点提取与描述技术是一种重要的图像处理方法,用于检测和描述图像中的角点。
本文将介绍计算机视觉中的角点提取与描述技术的原理、方法和应用。
一、角点提取技术的原理和方法1. Harris角点检测算法Harris角点检测算法是最早的角点检测算法之一。
它基于图像灰度在不同方向上的变化,通过计算像素点周围的灰度变化来判断是否为角点。
该算法通过计算图像中每个像素的梯度矩阵,再计算矩阵的特征值来判断是否为角点。
2. Shi-Tomasi角点检测算法Shi-Tomasi角点检测算法是对Harris算法的改进。
它使用了特征值的最小值来判断像素是否为角点,相比于Harris算法更稳定且具有更好的鲁棒性。
该算法计算了图像中每个像素的特征点得分,然后选择得分最高的像素作为角点。
3. FAST角点检测算法FAST角点检测算法是一种高效的角点检测算法。
它通过比较周围像素的灰度值来检测角点。
该算法快速地选择候选角点并进行特征点检测,具有较快的速度和较好的鲁棒性。
4. 角点描述算法角点的描述是指将检测到的角点进行特征描述,以便后续的匹配和识别。
常用的角点描述算法包括SIFT(Scale-Invariant Feature Transform)、SURF(Speeded Up Robust Features)和ORB(Oriented FAST and Rotated BRIEF)等。
二、角点提取与描述技术的应用1. 物体识别与跟踪角点提取与描述技术在物体识别与跟踪中发挥了重要作用。
通过提取图像中的角点,并进行描述和匹配,可以实现对物体的识别和跟踪。
例如,在机器人导航中,可以利用角点提取与描述技术来实现对环境中的障碍物进行识别和跟踪。
2. 图像配准与拼接在图像拼接和图像配准中,角点提取与描述技术也是关键的步骤。
通过提取图像中的角点,并进行特征描述和匹配,可以对多幅图像进行配准和拼接。
图像特征提取及描述算法分析
![图像特征提取及描述算法分析](https://img.taocdn.com/s3/m/d75886586ad97f192279168884868762caaebbc4.png)
图像特征提取及描述算法分析图像特征提取及描述算法是计算机视觉领域的核心内容之一,其在图像处理、模式识别和计算机视觉任务中扮演着重要的角色。
本文将分析一些常用的图像特征提取及描述算法,包括边缘检测、角点检测、尺度不变特征变换(SIFT)和高级表观算子(HOG),以及它们在实际应用中的优缺点。
边缘检测是图像处理中常用的特征提取方法之一。
边缘是图像中灰度变化最明显的地方,通常包含了物体的轮廓和纹理信息。
常用的边缘检测算法有Sobel算子、Prewitt算子和Canny边缘检测算法。
Sobel算子和Prewitt算子是基于局部差分的算法,通过计算像素点邻域内灰度值的差异来检测边缘。
Canny边缘检测算法在Sobel算子的基础上添加了非最大抑制和双阈值处理,能够在减少噪声的同时保留重要的边缘信息。
边缘检测算法在许多图像处理和计算机视觉任务中都有广泛的应用,例如目标检测、图像分割和图像识别等。
角点检测是另一种常用的图像特征提取算法,它主要用于寻找图像中的角点或感兴趣点。
角点是图像中两条或多条边缘相交的地方,通常具有良好的鲁棒性和唯一性。
常用的角点检测算法有SIFT算法、Harris角点检测算法和FAST角点检测算法。
SIFT算法通过在不同尺度空间上进行高斯模糊和建立尺度空间极值点来寻找图像中的关键点。
Harris角点检测算法基于图像灰度的变化率来检测角点,通过计算图像的梯度和结构矩阵的特征值来判断像素点是否为角点。
FAST角点检测算法则是通过快速的像素比较来寻找图像中的角点。
角点检测算法在图像配准、目标跟踪和三维重建等领域有广泛的应用。
尺度不变特征变换(SIFT)是一种用于图像特征提取和描述的经典算法。
SIFT 算法通过在不同尺度空间上构建高斯金字塔和相对梯度直方图来提取图像的局部不变特征。
SIFT特征具有旋转不变性和尺度不变性,能够在不同角度和尺度下描述同一物体的特征。
SIFT算法在目标识别、图像匹配和三维重建等领域有广泛的应用。
图像处理中的特征提取与匹配技术
![图像处理中的特征提取与匹配技术](https://img.taocdn.com/s3/m/a8104ded7e192279168884868762caaedd33ba11.png)
图像处理中的特征提取与匹配技术随着科技的不断发展和应用的不断深入,图像处理技术在各个领域中都得到了广泛的应用。
而图像处理中最重要的一环就是特征提取与匹配技术。
这两个技术的不断发展和完善,为图像处理带来了更高的效率和精度,也极大地推动了图像技术的发展。
一、特征提取特征提取是指从图像中提取出具有代表性的特征点,用于描述图像的某些特征。
这些特征点可以是角点、线段、边缘等等。
在图像处理的各个领域中,特征提取都占据着至关重要的地位。
比如在目标识别领域中,特征点可以帮助我们快速准确地找到目标物体的位置和方向。
在图像匹配领域中,特征点可以帮助我们将两幅图像进行比较和匹配,识别出相同或相似的特征。
在特征提取技术中,有很多不同的方法,比较常用的有SIFT、SURF、ORB等。
其中SIFT算法是比较经典的一种。
该算法通过构建高斯金字塔和DoG差分金字塔,找到极值点,并计算该点在各个方向上的梯度方向和大小,从而得到特征向量。
在实际应用中,SIFT算法的鲁棒性和稳定性得到了广泛的应用。
二、特征匹配特征匹配是指将两幅图像中提取出的特征点进行对应,找到相同或相似的特征点,从而实现两幅图像的比较和匹配。
在特征匹配中,最常用的方法就是描述符匹配。
在描述符中,通常使用的是SIFT和SURF算法中的特征向量。
描述符匹配通常分为暴力匹配和基于近似匹配。
暴力匹配是将两幅图像中的所有特征点两两进行比较,计算它们之间的距离,找到最相似的一对特征点。
这种方法虽然简单,但随着特征点数量的增加,计算时间也会呈指数级增长,对于大规模图像处理来说会很耗费时间和资源。
而基于近似匹配则可以提高匹配的速度和准确率。
这种方法一般利用哈希表或KD树等数据结构,将特征点按照特征向量的某些属性进行分类,减少比较的数量和计算的时间。
三、特征提取与匹配的应用特征提取和匹配技术已经广泛应用于各个领域,比如人脸识别、场景监控、医学图像分析等等。
在人脸识别领域中,特征点可以帮助我们快速准确地识别出人脸,并进行人脸比对和识别。
Opencv中特征点提取和特征匹配算法详解(ORBSIFTSURFFAST)
![Opencv中特征点提取和特征匹配算法详解(ORBSIFTSURFFAST)](https://img.taocdn.com/s3/m/adf02ae551e2524de518964bcf84b9d529ea2c7f.png)
Opencv中特征点提取和特征匹配算法详解(ORBSIFTSURFFAST)OpenCV是一个开源的计算机视觉库,提供了许多用于图像处理和计算机视觉任务的算法和函数。
特征点提取和特征匹配是计算机视觉中常用的任务之一,可以在图像中找到具有独特性质的特征点,并使用这些特征点进行图像匹配、物体识别和姿态估计等任务。
在OpenCV中,有多种特征点提取和特征匹配算法可供选择,其中包括ORB、SIFT、SURF和FAST 等。
ORB(Oriented FAST and Rotated BRIEF)是一种基于FAST角点检测和BRIEF描述符的特征点提取和特征匹配算法。
它的主要优势在于计算速度较快,适用于实时的计算机视觉应用。
ORB算法首先使用FAST角点检测算法在图像中检测角点,然后计算角点的Oriented FAST角度和尺度。
接下来,在每个角点周围的区域中计算二进制描述符,用于描述角点的特征。
最后,使用二进制描述符进行特征匹配,可以使用暴力匹配、近邻算法或FLANN算法等进行匹配。
SIFT(Scale-Invariant Feature Transform)是一种基于尺度不变特征变换的特征点提取和特征匹配算法。
SIFT算法通过构建尺度空间和特征点检测器来提取具有尺度不变性的特征点。
在尺度空间中,SIFT算法使用不同的尺度和方向的高斯滤波器来检测具有独特性质的特征点。
然后,通过计算特征点周围区域的梯度和方向来为每个特征点计算描述符。
最后,可以使用距离度量或RANSAC算法进行特征点的匹配。
SURF(Speeded-Up Robust Features)是一种基于加速鲁棒特征(speeded-up robust features)的特征点提取和特征匹配算法。
SURF算法主要通过构建尺度空间和计算积分图像来加速特征点提取和匹配的过程。
在尺度空间中,SURF算法使用高斯滤波器来检测不同尺度的特征。
然后,通过计算每个特征点周围区域的Haar小波响应来计算特征点的描述符。
医学图像配准中基于特征点的算法的使用方法与匹配精度分析
![医学图像配准中基于特征点的算法的使用方法与匹配精度分析](https://img.taocdn.com/s3/m/b35c0d5653d380eb6294dd88d0d233d4b14e3f2b.png)
医学图像配准中基于特征点的算法的使用方法与匹配精度分析医学图像配准是医学影像处理中的一项重要任务,它将多个不同时间或不同成像设备获取的医学图像进行对齐和融合,提供给医生更准确的诊断和治疗指导。
基于特征点的算法是医学图像配准中常用的一种方法,通过寻找匹配的特征点对实现图像的对准。
本文将介绍基于特征点的算法的使用方法,并对其匹配精度进行分析。
一、基于特征点的算法使用方法:1. 特征点提取:基于特征点的算法首先要从医学图像中提取出具有区分度和稳定性的特征点。
常用的特征点提取方法包括Harris角点检测、SIFT、SURF等。
选择适合的特征点提取算法根据应用场景和数据特点进行选择。
2. 特征描述:提取到的特征点需要进行描述,以便进行匹配。
常用的特征描述算法包括SIFT描述符、SURF描述符、Haar小波等。
这些描述算法能够将特征点的局部特征抽取出来,并表示为一个向量。
3. 特征点匹配:特征点的匹配是整个算法的核心步骤,通过在多个图像中匹配特征点对实现图像的对准。
常用的特征点匹配算法包括基于最近邻的匹配、RANSAC算法等。
在进行特征点匹配时,需要考虑到匹配的唯一性和稳定性,剔除错误匹配。
4. 配准变换:通过对匹配的特征点进行配准变换,实现不同图像的对齐。
常用的配准变换包括仿射变换、透视变换等。
根据实际情况选择合适的变换模型。
二、匹配精度分析:匹配精度是评价医学图像配准算法性能的指标之一,它反映了算法对医学图像进行对齐的准确程度。
匹配精度的计算方法主要基于特征点的配准误差。
1. 平均误差:平均误差是匹配精度的一个重要指标,它反映了匹配后的特征点对之间的平均距离。
平均误差越小,表明匹配的特征点对越准确。
2. 标准差:标准差是匹配精度的另一个指标,它衡量了匹配后的特征点对的分布情况。
标准差越小,表明匹配的特征点对越稳定。
3. 匹配正确率:匹配正确率是匹配精度的一种度量方式,它反映了匹配的特征点对中与实际情况相符的比例。
SIFT特征点提取与匹配
![SIFT特征点提取与匹配](https://img.taocdn.com/s3/m/951c66592379168884868762caaedd3382c4b557.png)
SIFT特征点提取与匹配SIFT(Scale-Invariant Feature Transform)特征点提取与匹配是一种在计算机视觉领域广泛使用的图像特征提取和匹配算法。
它由David G. Lowe于1999年提出,并在后续的研究中得到了改进和优化。
关键点检测的目标是找到一些具有局部极值的图像点。
这里的局部极值是指该点所在位置的像素值在周围邻域中达到最大或最小值。
为了实现尺度不变性,SIFT算法使用了高斯金字塔来检测不同尺度下的关键点。
高斯金字塔是通过对原始图像进行多次平滑操作得到的一系列图像,每一层图像的尺度比上一层的尺度大约减少一半。
在每一层中,使用DoG (Difference of Gaussians)来寻找关键点。
DoG是通过对两个邻近的高斯平滑图像进行差分操作得到的,它可以提供图像中的边缘和角点等信息。
通过在每一层的DoG图像中找到局部极值点,即可得到关键点的粗略位置。
为了进一步提高关键点的准确性,还需要对这些粗略位置进行精细的插值。
最终得到的关键点具有尺度和旋转不变性,并且能够抵抗光照变化的影响。
描述子的计算是对关键点周围区域的图像内容进行编码,生成一个具有较高区分度的特征向量。
首先,将关键点周围的邻域划分为若干个子区域,每个子区域内的像素值作为一个特征向量的元素。
然后,对每个子区域内的像素值进行高斯加权,以减小光照变化对特征描述子的影响。
最后,对加权后的像素值进行方向直方图统计,得到一个具有旋转不变性的特征描述子。
对于每个关键点,都会得到一个128维的特征向量。
这些特征向量可以通过比较欧式距离来进行匹配。
SIFT特征点匹配是通过在两个图像中的特征描述子之间进行比较,找到最佳匹配的特征点对。
常用的匹配方法是计算两个特征向量之间的欧式距离,并将距离最小的两个特征点视为匹配点。
为了提高匹配的准确性和鲁棒性,还可以采用诸如RANSAC(RANdom SAmple Consensus)的算法来剔除错误匹配。
物体形变测量中的图像区域匹配算法设计
![物体形变测量中的图像区域匹配算法设计](https://img.taocdn.com/s3/m/bc95f13917fc700abb68a98271fe910ef12daeba.png)
物体形变测量中的图像区域匹配算法设计在物体形变测量领域,图像区域匹配算法是一个非常关键的技术。
其主要作用是通过数字图像处理,将两幅图像中的相同区域映射到同一坐标系中,从而定量测量物体的形变信息。
本文将介绍图像区域匹配算法的设计原理和实现方法,以及在实际应用中的相关问题和挑战。
一、图像区域匹配算法的基本原理图像区域匹配算法是数字图像处理的一项基础技术,其基本原理可以用以下几个步骤来描述:1. 特征提取:通过预处理操作,从原始图像中提取出某些特定的视觉特征,如边缘、角点、纹理等。
这些特征通常具有高区分度和抗干扰性,可以用来区分不同区域。
2. 匹配搜索:将特征描述符从一幅图像中传输到另一幅图像中,通过搜索算法找到它在另一幅图像中的匹配位置。
匹配搜索算法通常有基于灰度值、结构相似度、光流场等不同特征的方法。
3. 匹配评估:根据一定的匹配评估标准,对候选匹配点进行筛选和排序。
常用的评估方法包括相似性度量、一致性检测、几何约束等。
4. 区域转换:根据匹配结果,将源图像区域映射到目标图像中,实现区域的对应和变换。
常用的变换方法包括仿射变换、透视变换、三维投影等。
二、图像区域匹配算法的实现方法在实际应用中,图像区域匹配算法的实现方法可以分为以下几个方面:1. 特征提取方法:特征点提取是图像区域匹配算法的关键步骤之一。
目前常用的方法包括Harris、SIFT、SURF等。
这些方法基于不同的特征描述符和相应的匹配策略,能够应对不同的应用场景和图像变换。
例如,SIFT算法适用于较大尺度变换,而SURF算法则更适合处理光照变化、小角度旋转等情况。
2. 匹配搜索算法:在特征点提取的基础上,匹配搜索算法负责找到源图像和目标图像中的匹配点对。
目前主要有暴力匹配、FLANN等算法可供选择。
其中,暴力匹配法计算量大,对噪声和干扰比较敏感,但实现起来比较简单,适用于小规模的图像匹配问题;而FLANN法则利用快速最近邻搜索算法实现匹配,对大规模图像匹配具有较好的效率。
测绘技术中的图像匹配与配准方法解析
![测绘技术中的图像匹配与配准方法解析](https://img.taocdn.com/s3/m/5993b928cbaedd3383c4bb4cf7ec4afe04a1b131.png)
测绘技术中的图像匹配与配准方法解析近年来,随着测绘技术的快速发展,图像匹配与配准成为了测绘领域中的热门研究课题。
图像匹配与配准是指通过计算机算法将两幅或多幅图像进行比对和对齐的过程,以实现地理信息的提取和获取。
本文将从理论与方法两方面对图像匹配与配准进行解析。
一、图像匹配的理论基础图像匹配的核心思想是通过计算机算法寻找两幅图像中特征点的对应关系,从而实现图像的对齐和匹配。
在图像匹配中,特征点是最重要的概念之一。
特征点是指在图像中具有独特性和可区分性的局部区域,如角点、边缘点等。
通过寻找特征点并计算其特征描述子,可以实现图像的匹配。
在图像匹配中,主要有两种方法,分别是基于区域的匹配和基于特征点的匹配。
基于区域的匹配是指通过计算两幅图像中各个区域的相似度来判断它们是否匹配。
这种方法适用于图像内容相对简单的情况。
而基于特征点的匹配是指通过计算两幅图像中特征点的对应关系来实现图像匹配。
这种方法适用于图像内容复杂的情况。
二、图像匹配的方法与算法1. SIFT算法SIFT(Scale-Invariant Feature Transform)算法是一种经典的图像特征提取与匹配算法。
该算法通过在图像中检测关键点,并计算关键点的局部特征描述子,来实现对图像的匹配。
SIFT算法具有尺度不变性和旋转不变性的特点,适用于多种场景下的图像匹配与配准。
2. SURF算法SURF(Speeded-Up Robust Features)算法是一种高效的图像特征提取与匹配算法。
该算法通过对图像中的局部区域进行加速特征检测和描述,来实现对图像的匹配。
SURF算法利用了积分图像和快速Hessian矩阵的计算方法,具有较高的计算效率和鲁棒性。
3. 区域匹配算法区域匹配算法是一种基于图像区域相似度的匹配方法。
该算法通过计算两幅图像中各个区域的相似度,来决定它们是否匹配。
常用的区域匹配算法包括相位相关算法、灰度共生矩阵算法和小波变换算法等。
计算机图像处理中的特征提取与图像分割算法
![计算机图像处理中的特征提取与图像分割算法](https://img.taocdn.com/s3/m/521a010586c24028915f804d2b160b4e767f818e.png)
计算机图像处理中的特征提取与图像分割算法计算机图像处理是人工智能领域的一个重要分支,涉及到对图像进行分析、处理和理解的技术和方法。
在图像处理中,特征提取和图像分割算法是两个关键的步骤。
本文将介绍计算机图像处理中的特征提取和图像分割算法,并讨论它们的应用和局限性。
一、特征提取特征提取是指从原始图像中选择并提取出能够描述图像内容的关键信息。
计算机视觉领域中常用的特征包括边缘、角点、纹理、颜色等。
下面将介绍几种常见的特征提取算法。
1. 边缘检测算法边缘是图像中灰度或颜色变化显著的区域,常用于图像分割和对象检测。
边缘检测算法可以通过检测图像中灰度或颜色的变化来提取出边缘信息。
常用的边缘检测算法包括Sobel算子、Canny算子等。
2. 角点检测算法角点是图像中具有显著角度变化的点,常用于图像匹配和物体追踪。
角点检测算法可以通过检测图像中灰度或颜色的变化来提取出角点信息。
常用的角点检测算法包括Harris角点检测算法、FAST角点检测算法等。
3. 纹理分析算法纹理是图像中的重要特征,用于描述图像中的细节信息。
纹理分析算法可以通过提取图像中的统计特征、频域特征或结构特征等来描述图像的纹理信息。
常用的纹理分析算法包括灰度共生矩阵、小波变换等。
4. 颜色特征提取算法颜色是图像中的一种重要视觉特征,可以用于图像分割、物体识别等任务。
颜色特征提取算法可以通过提取图像中的色彩分布、颜色矩等来描述图像的颜色信息。
常用的颜色特征提取算法包括颜色直方图、颜色矩等。
二、图像分割图像分割是指将图像划分为若干个具有独立语意的区域的过程。
图像分割在计算机视觉和图像处理领域有着广泛的应用,如目标检测、图像增强和医学图像分析等。
1. 基于阈值的分割算法基于阈值的分割算法是一种简单而有效的图像分割方法。
该方法根据像素值的灰度或颜色与设定的阈值进行比较,将图像分割为前景和背景两部分。
常用的基于阈值的分割算法包括全局阈值法、自适应阈值法等。
特征匹配的原理
![特征匹配的原理](https://img.taocdn.com/s3/m/3e8b26bd82d049649b6648d7c1c708a1284a0a82.png)
特征匹配的原理特征匹配是计算机视觉领域中一种常用的图像处理技术,它通过对比图像中的特征点,找出图像之间的相似之处。
特征匹配在图像识别、目标跟踪、图像拼接等应用中有着广泛的应用。
特征匹配的原理是基于图像中的特征点,通过比较特征点之间的相似度来确定图像之间的匹配关系。
特征点是图像中具有独特性和稳定性的点,它可以通过图像的局部特征进行描述。
常见的特征点包括角点、边缘点、斑点等。
特征匹配的过程一般包括以下几个步骤:1. 特征提取:首先从图像中提取特征点。
常用的特征提取算法有Harris角点检测、SIFT(尺度不变特征变换)和SURF(加速稳健特征)等。
2. 特征描述:对于提取到的特征点,需要对其进行描述,以便进行后续的匹配。
描述子是一个具有固定长度的向量,它可以描述特征点周围的图像信息。
常用的描述子算法有SIFT描述子和SURF描述子等。
3. 特征匹配:将待匹配的图像与参考图像进行特征匹配。
常用的匹配算法有暴力匹配和FLANN(快速最近邻搜索)匹配等。
暴力匹配会对待匹配图像的每个特征点逐个与参考图像中的特征点进行比较,计算它们之间的相似度,然后选取最相似的特征点作为匹配结果。
FLANN匹配则利用了kd-tree等数据结构,通过快速搜索找到最相似的特征点。
4. 匹配验证:对于匹配的结果,需要进行验证以排除错误匹配。
常用的验证方法有基于几何关系的RANSAC算法和基于相似度的阈值判定等。
特征匹配的准确性和稳定性对于后续的图像处理任务非常重要。
为了提高匹配的准确性,可以选择更加稳定的特征点和描述子,并使用更加严格的匹配验证方法。
此外,还可以通过图像预处理、特征点筛选等方法来提高匹配的效果。
特征匹配是一种通过对比图像中的特征点来确定图像之间匹配关系的图像处理技术。
它在计算机视觉领域有着广泛的应用,可以用于图像识别、目标跟踪、图像拼接等任务中。
特征匹配的原理是基于特征点的提取、描述和匹配,通过计算特征点之间的相似度来确定匹配关系。
图像处理中的图像配准算法与匹配效果评估
![图像处理中的图像配准算法与匹配效果评估](https://img.taocdn.com/s3/m/d9358c4e78563c1ec5da50e2524de518964bd383.png)
图像处理中的图像配准算法与匹配效果评估图像配准是图像处理中一项重要的任务,它旨在将多幅图像间的特征点进行对齐,使得它们在空间上完全或近似重合。
图像配准广泛应用于医学影像诊断、航空摄影、遥感图像处理等领域。
本文将介绍几种常见的图像配准算法,并对它们的匹配效果进行评估。
首先介绍一种经典的图像配准算法——特征点匹配算法。
该算法通过检测图像中的显著特征点,如角点、边缘等,然后在两幅图像中找到一一对应的特征点,并通过计算它们之间的几何变换关系来实现图像配准。
特征点匹配算法的优点在于对图像变换具有较好的鲁棒性,但在特征点提取和匹配过程中存在一定的误差。
在特征点匹配算法的基础上,发展出了一种更加准确的图像配准算法——基于特征描述子的匹配算法。
这种算法不仅考虑了特征点的位置信息,还利用了特征点周围的像素信息,通过构建特征描述子来描述特征点的外观特征。
在进行特征点匹配时,不再仅仅依赖几何变换关系,而是将特征点的外观特征进行比较,从而提高匹配的准确性和鲁棒性。
除了基于特征点的配准算法,还有一种常见的图像配准方法是基于图像亮度的匹配算法。
该算法通过对亮度信息进行统计分析和变换,使得两幅图像的亮度分布尽可能相似,从而达到图像配准的目的。
这种方法适用于场景相对简单、光照条件相对稳定的情况下,但对于复杂背景和光照变化较大的图像配准任务效果较差。
针对以上介绍的图像配准算法,评估其匹配效果是非常重要的。
常用的评估指标包括均方差(MSE)、结构相似性指标(SSIM)和互信息(MI)等。
均方差是衡量两幅图像之间差异性的指标,值越小表示两幅图像越接近。
结构相似性指标是一种感知质量评估方法,它考虑了亮度、对比度和结构之间的关系,范围为-1到1之间,值越大表示两幅图像越相似。
互信息是一种描述两幅图像之间统计依赖性的指标,范围为0到1之间,值越大表示两幅图像的相关性越高。
在进行图像配准算法的匹配效果评估时,可以选择一组具有真实配准结果的图像作为标准,将不同算法得到的配准结果与标准进行比较。
特征点检测与匹配算法
![特征点检测与匹配算法](https://img.taocdn.com/s3/m/1ab4cc9f0129bd64783e0912a216147917117ef2.png)
特征点检测与匹配算法引言特征点检测与匹配算法是计算机视觉领域的重要研究方向之一。
它在图像处理、图像识别、目标跟踪等应用中发挥着重要的作用。
本文将从特征点检测的概念出发,逐步介绍特征点检测与匹配算法的原理、常用方法及其应用。
特征点检测概述特征点是图像中具有显著性、稳定性且可重复检测的图像区域。
特征点检测是指在图像中自动寻找这些具有特征性的点,并进行描述和匹配的过程。
特征点检测广泛应用于图像匹配、图像拼接、目标识别等领域。
特征点检测算法原理Harris角点检测算法Harris角点检测算法是一种经典的特征点检测算法。
它通过计算图像中每个像素点的Harris响应函数来判断其是否为角点。
Harris角点检测算法对图像的局部对比度和灰度变化进行了建模,能够检测出图像中的角点。
算法步骤: 1. 计算图像的灰度梯度。
2. 对每个像素计算一个自相关矩阵。
3. 计算自相关矩阵的Harris响应函数。
4. 设置一个阈值,根据Harris响应函数的值判断是否为角点。
SIFT算法尺度不变特征转换(SIFT)算法是一种常用的特征点检测算法。
SIFT算法通过使用高斯差分函数来检测图像中的关键点,并计算关键点的描述子,实现了对旋转、尺度缩放等变换的不变性。
算法步骤: 1. 构建高斯金字塔。
2. 在金字塔的每一层上使用高斯差分函数寻找关键点。
3. 基于关键点的位置和尺度,生成关键点的描述子。
4. 使用描述子进行关键点的匹配。
SURF算法加速稳健特征(SURF)算法是一种基于SIFT算法的改进方法。
SURF算法通过加速计算和改进特征描述子的方式,提高了特征点检测的效率和稳定性。
算法步骤: 1. 使用高斯滤波器构建图像金字塔。
2. 使用盒子滤波器计算图像的Hessian矩阵。
3. 使用Hessian矩阵检测图像中的极值点作为特征点。
4. 根据特征点的尺度和方向计算特征点的描述子。
特征点匹配算法特征点匹配是指在两幅图像之间寻找相同或相似的特征点的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角点提取与匹配算法实验报告1 说明本文实验的目标是对于两幅相似的图像,通过角点检测算法,进而找出这两幅图像的共同点,从而可以把这两幅图像合并成一幅图像。
下面描述该实验的基本步骤:1.本文所采用的角点检测算法是Harris 角点检测算法,该算法的基本原理是取以目标像素点为中心的一个小窗口,计算窗口沿任何方向移动后的灰度变化,并用解析形式表达。
设以像素点(x,y)为中心的小窗口在X 方向上移动u ,y 方向上移动v ,Harris 给出了灰度变化度量的解析表达式:2,,|,|,,()(x y x y x u y v x y x y I I E w I I w uv o X Y∂∂=-=++∂∂∑∑ (1) 其中,,x y E 为窗口内的灰度变化度量;,x y w 为窗口函数,一般定义为222()/,x y x y w e σ+=;I 为图像灰度函数,略去无穷小项有:222222,,[()()2]2x y x y x y x y E w u I v I uvI I Au Cuv Bv =++=++∑(2)将,x y E 化为二次型有:,[]x yu E u v M v ⎡⎤=⎢⎥⎣⎦(3)M 为实对称矩阵:2,2x y x x y x y y I I I M w I I I •⎤⎡=⎥⎢•⎢⎥⎣⎦∑ (4)通过对角化处理得到:11,200x y E R R λλ-⎛⎫= ⎪⎝⎭(5)其中,R 为旋转因子,对角化处理后并不改变以u,v 为坐标参数的空间曲面的形状,其特征值反应了两个主轴方向的图像表面曲率。
当两个特征值均较小时,表明目标点附近区域为“平坦区域”;特征值一大一小时,表明特征点位于“边缘”上;只有当两个特征值均比较大时,沿任何方向的移动均将导致灰度的剧烈变化。
Harris 的角点响应函数(CRF)表达式由此而得到:2(,)det()(())CRF x y M k trace M =-(6)其中:det(M)表示矩阵M的行列式,trace(M)表示矩阵的迹。
当目标像素点的CRF值大于给定的阈值时,该像素点即为角点。
下面是图像一用Harris角点检测算法得到的角点坐标位置x 212 301 309 353 58 201 178 58 202 186 329 161 202 58 57 201 306 y 2 65 68 77 94 94 142 143 144 150 150 170 177 178 228 228 228 在图像一上画出该角点的坐标位置如下图所示:其中蓝色小方块代表的是检测出来的角点坐标位置。
2.匹配。
将两幅图像进行Harris角点检测后,分别得到角点对应与该图像的坐标位置,以该坐标位置为中心,分别取其附近的8个像素值,然后进行与另一幅图像进行匹配,找出距离最小的点作为匹配点。
例如下面是图像一角点坐标位置x 212 301 309 353 58 201 178 58 202 186 329 161 202 58 57 201 306 y 2 65 68 77 94 94 142 143 144 150 150 170 177 178 228 228 228 与该位置对应的8个像素值分别为角点1 角点2 角点3 。
角点17(x-1,y-1)30 7 35 。
142(x-1,y)48 59 17 。
9(x-1,y+1)37 108 128 。
63(x,y+1)31 114 15 。
101(x+1,y+1)143 183 32 。
95(x+1,y)101 177 25 。
20(x+1,y-1) 2 92 24 。
49(x,y-1) 3 22 30 。
198接着,将图像一中的角点1与图像二中的所有角点进行相减,得到一个最小误差值,并记录下该位置,这样依次将图像一中的角点2,角点3一直到角点17都进行相减,即可得到两幅图像之间的最佳匹配点。
下面是两幅图像角点匹配的最佳坐标位置匹配点0 10 13 14 15 16 17 0 0 0 4 0 5 12 0 0 0误差值0 336 105 64 53 34 104 0 0 0 389 0 204 400 0 0 0 其中匹配点的值为0代表没有找到匹配点3.显示匹配点。
对已经找出的匹配点,在图像上进行显示,这样有利于人眼判断该算法是否匹配正确。
下面是第一次显示找到的匹配点(两幅图像中共有9个匹配点)下面是第二次显示找到的匹配点(比上一次少一个,判断依据是将误差值最大的点去除)从上面可以看出,14号点已经被删除,原因是该点的误差值最大下面是最后一次显示找到的匹配点只留下最后三个匹配点,如果少于三个匹配点,则很难进行两幅图像的合并,所以当只有留下三个匹配点的时候,程序退出。
2 实验结果实验一原始图像第一次匹配的结果实验二原始图像最后一次匹配的结果原始图像第一次匹配的结果最后一次匹配的结果原始图像第一次匹配的结果最后一次匹配的结果可以看出,利用该算法进行两幅图像匹配结果还算正确。
算法代码(用matlab语言写的)function test()% The test function gives an example of keypoint extraction using the % methods :% - Harris%% Example% =======% test();% Harris% import the first picture%img11 = imread('door1.jpg');%img11 = imread('gx21.jpg');%img11 = imread('woman1.jpg');%img1 = double(img11(:,:,1));img11 = imread('91.jpg');img1 = rgb2gray(img11);img1 = double(img1(:,:));pt1 = kp_harris(img1);%draw(img11,pt1,'Harris');% import the second picture%img21 = imread('door2.jpg');%img21 = imread('gx22.jpg');%img21 = imread('woman2.jpg');%img2 = double(img21(:,:,1));img21 = imread('92.jpg');img2 = rgb2gray(img21);img2 = double(img2(:,:));pt2 = kp_harris(img2);%draw(img21,pt2,'Harris');% match key points within two pictures.result = match(img1,pt1,img2,pt2);result(1,intersect(find(result(1,:) > 0),find(result(2,:) == 0))) = 0;%result%pause;while(length(find(result(1,:)>0)) > 3)resultdraw2(img11,img21,pt1,pt2,result);%find(result(1,:)>0)pause;[index index] = max(result(2,:));result(2,index(1)) = 0;%result(1,I(1)) = result(2,I(1)) = 0enddraw2(img11,img21,pt1,pt2,result);endfunction draw2(img1,img2,pt1,pt2,result)h = figure;%set(gcf,'outerposition',get(0,'screensize'));subplot(1,2,1);%hold on;imshow(img1);subplot(1,2,2);%hold on;imshow(img2);s = size(pt1,2);subplot(1,2,1);for i=1:size(pt1,1)rectangle('Position',[pt1(i,2)-s,pt1(i,1)-s,2*s,2*s],'Curvature',[00],'EdgeColor','b','LineWidth',2);%text(pt1(i,2)+3,pt1(i,1)+3,num2str(i),'BackgroundColor',[1 1 1]);%text(pt2(i,2),pt2(i,1),num2str(i));%plot(pt2(i,2),pt2(i,1));endsubplot(1,2,2);for i=1:size(pt2,1)rectangle('Position',[pt2(i,2)-s,pt2(i,1)-s,2*s,2*s],'Curvature',[00],'EdgeColor','b','LineWidth',2);end%result%size(pt1)%size(pt2)for i=1:size(result,2)if(result(1,i)~=0)subplot(1,2,1);text(pt1(result(1,i),2)+3,pt1(result(1,i),1)+3,num2str(i),'BackgroundColor',[1 1 1]);%result(1,i)%pt1(result(1,i),2)subplot(1,2,2);text(pt2(i,2)+3,pt2(i,1)+3,num2str(i),'BackgroundColor',[1 1 1]);endendendfunction result = match(img1,pt1,img2,pt2)%得到标定点周围的像素值regionValue1 = getRegionValue(img1,pt1);len1 = size(regionValue1,2);regionValue2 = getRegionValue(img2,pt2);len2 = size(regionValue2,2);%找出最佳匹配点result = zeros(2,len2);for i=1:len1B = regionValue1(:,i);%abs(regionValue2-B(:,ones(1,size(regionValue2,2))))%sum(abs(regionValue2-B(:,ones(1,size(regionValue2,2)))))[value,index] =sort(sum(abs(regionValue2-B(:,ones(1,size(regionValue2,2))))));%value(1)%index(1)%save index and valueif((result(1,index(1))==0)||(result(2,index(1))>value(1)))result(1,index(1))=i;result(2,index(1))=value(1);endendendfunction regionValue = getRegionValue(img,pt)len = size(pt,1);regionValue = zeros(8,len);maxX = size(img,1);maxY = size(img,2);for i=1:lenx = pt(i,1);y = pt(i,2);%1if(x-1<1||y-1<1)regionValue(1,i)=100;elseregionValue(1,i)=img(x,y)-img(x-1,y-1);end%2if(x-1<1)regionValue(2,i)=200;elseregionValue(2,i)=img(x,y)-img(x-1,y);end%3if(x-1<1||y+1>maxY)regionValue(3,i)=300;elseregionValue(3,i)=img(x,y)-img(x-1,y+1);end%4if(y+1>maxY)regionValue(4,i)=400;elseregionValue(4,i)=img(x,y)-img(x,y+1);end%5if(x+1>maxX||y+1>maxY)regionValue(5,i)=500;elseregionValue(5,i)=img(x,y)-img(x+1,y+1);end%6if(x+1>maxX)regionValue(6,i)=600;elseregionValue(6,i)=img(x,y)-img(x+1,y);end%7if(x+1>maxX||y-1<1)regionValue(7,i)=700;elseregionValue(7,i)=img(x,y)-img(x+1,y-1);end%8if(y-1<1)regionValue(8,i)=800;elseregionValue(8,i)=img(x,y)-img(x,y-1);endendendfunction points = kp_harris(im)% Extract keypoints using Harris algorithm (with an improvement% version)% INPUT% =====% im : the graylevel image%% OUTPUT% ======% points : the interest points extracted%% REFERENCES% ==========% C.G. Harris and M.J. Stephens. "A combined corner and edge detector", % Proceedings Fourth Alvey Vision Conference, Manchester.% pp 147-151, 1988.%% Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department % of Engineering Science, Oxford University 1989, p45.%% C. Schmid, R. Mohrand and C. Bauckhage, "d",% Int. Journal of Computer Vision, 37(2), 151-172, 2000.%% EXAMPLE% =======% points = kp_harris(im)% only luminance value%size(im)im = double(im(:,:,1));sigma = 1.5;% derivative maskss_D = 0.7*sigma;x = -round(3*s_D):round(3*s_D);dx = x .* exp(-x.*x/(2*s_D*s_D)) ./ (s_D*s_D*s_D*sqrt(2*pi));dy = dx';% image derivativesIx = conv2(im, dx, 'same');Iy = conv2(im, dy, 'same');% sum of the Auto-correlation matrixs_I = sigma;g = fspecial('gaussian',max(1,fix(6*s_I+1)), s_I);Ix2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image derivativesIy2 = conv2(Iy.^2, g, 'same');Ixy = conv2(Ix.*Iy, g, 'same');% interest point responsecim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps);% find local maxima on 3x3 neighborgood[r,c,max_local] = findLocalMaximum(cim,3*s_I);% set threshold 1% of the maximum value%t = 0.01*max(max_local(:));t = 0.6*max(max_local(:)); %door.jpg%t = 0.48*max(max_local(:)); %sunflower.jpg% find local maxima greater than threshold[r,c] = find(max_local>=t);% build interest pointspoints = [r,c];endfunction [row,col,max_local] = findLocalMaximum(val,radius)% Determine the local maximum of a given value%%% INPUT% =====% val : the NxM matrix containing values% radius : the radius of the neighborhood%% OUTPUT% ======% row : the row position of the local maxima% col : the column position of the local maxima% max_local : the NxM matrix containing values of val on unique local maximum%% EXAMPLE% =======% [l,c,m] = findLocalMaximum(img,radius);% FIND UNIQUE LOCAL MAXIMA USING FILTERING (FAST)mask = fspecial('disk',radius)>0;nb = sum(mask(:));highest = ordfilt2(val, nb, mask);second_highest = ordfilt2(val, nb-1, mask);index = highest==val & highest~=second_highest; max_local = zeros(size(val));max_local(index) = val(index);[row,col] = find(index==1);end。