概率论与数理统计期末试卷及答案(最新11)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北汽车工业学院

概率论与数理统计考试试卷

一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为

则)35(+X E 等于

)(A 8. )(B 2. )(C 5-. )(D 1-.

【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而

}5{},4{21+≥=-≤=μμY P p X P p ,则

)(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >.

【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是

)(A 3213211X X X ++=

μ. )(B 2223212X X X ++=μ. )(C 3333213X X X ++=μ. )(D 4

443214X

X X ++=μ.

【D 】5. 设)(~n t X ,则~2

X

)(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F .

【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于

)(A 2αu . )(B )1(α-u . )(C α-1u . )(D 21α-u .

二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上):

1. 设样本空间{},2,3,4,5,6

1=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是

5

1

. 3. 设离散型随机变量X 的分布列为{}k

a k X P ⎪⎭

⎝⎛==31, ,3,2,1=k ,则=a 2.

4. 已知2)(-=X E ,5)(2

=X E ,那么=-)32015(X D 9.

5. 设随机变量X 与Y 独立且都服从[]3,0上的均匀分布,则()[]=

≥2,min Y X P 9

1. 6. 设某种电子管的使用寿命服从正态分布)300,(2μN ,μ未知,从中随机抽取16个进行检

验,测得平均使用寿命为1950小时,则未知参数μ的置信水平为95.0的置信区间为

[]2097,1803.

【特别提醒】(1)以下各题的求解过程必须按题号写在答题卡上指定的方框内,题号对应错误以及超出方框部分的解答均无效.(2)答题卡上的任何位置不得用胶带粘贴,不得用涂改液涂改,否则将不被阅卷系统识别.

三、(本题满分10分)一个工厂有甲、乙、丙三个车间生产同一种螺钉,每个车间的产量分

别占总产量的25%、35%、40%,如果每个车间成品中的次品率分别为5%、4%、2%,从全厂产品中任意抽出一个螺钉,试问它是次品的概率是多少? 解:设事件321,,A A A 分别表示抽出的螺钉来自甲、乙、丙三个车间,D 表示抽出的螺

钉为次品,

25.0)(1=A P , ()35.02=A P , 4.0)(3=A P ;

05.0)|(1=A D P 04.0)|(2=A D P 02.0)|(3=A D P 由全概率公式,得 )|()()(3

1

i

i i

A D P A P D P ∑==

0345.002.04.004.035.005.025.0=⨯+⨯+⨯=

故从全厂产品中任意抽出一个螺钉,它是次品的概率是0345.0.

四、(本题满分10分)设连续型随机变量X 的概率密度为:

⎪⎪⎩⎪⎪⎨⎧>≤≤<=.3,

0,30,6

1

,

0,)(x x x ke x f x

求(1)常数k 的值;(2) ()25.0<<-X P .

解:(1)

30

11

()162

x

f x dx ke dx dx k ∞-∞

-∞

=+=+=⎰

⎰⎰

解得2

1

=

k (2) ()20

20.50.5

0.501151

0.52()2662

x P X f x dx e dx dx e ----<<=

=+=-⎰

⎰⎰

五、(本题满分12分)设二维随机变量),(Y X 的联合概率密度为

⎩⎨

⎧≤≤≤≤-=其它

0,10)1(24)(x y x y

x y x f

(1) 求随机变量X 与Y 的边缘概率密度;

(2) 若Y X ,分别为一矩形木板的长与宽,求木板面积的数学期望.

解:(1)当0x 时,0)(=x f X ;

当10≤≤x 时,=)(x f X 20

()(,)24(1)12(1)x

X

p x p x y dy x ydy x x ∞-∞

==-=-⎰

⎰;

故⎩

⎨⎧≤≤-=其它010)1(12)(2x x x x f X

当0y 时,0)(=y f Y ;

当10≤≤y 时,)(y f Y 0

2()(,)24(1)12(2)Y

y

p y p x y dx x ydx y y ∞-∞

==-=-⎰

⎰ ;

故⎩⎨

⎧≤≤-=其它

10)2(12)(2y y y y f Y

(2) ⎰⎰=D dxdy y x xyp XY E ),()( }0,10|),{(x y x y x D ≤≤≤≤=

1

24(1)x dx xy x ydy =-⎰⎰

15

4

=

六、(本题满分10分)设总体X 的概率密度为

⎪⎩⎪⎨⎧≤>=-0,

00,1);(2x x e

x x f x θ

θθ

其中参数θ)0(>θ未知,如果取得样本观测值n x x x ,,,21 , 求θ的最大似然估计值.

解:似然函数为 ∏∏∏=-

=-

=∑=

==

=n

i i x n

n

i x i n i i

x e

e

x x f L n

i i

i

1

1

21

2

1

1

1

1

),)(θ

θ

θ

θ

θθ(

取对数,得∑==+∑-

-=n

i i n

i i x x n L 1

1

ln 1

ln 2)(ln θ

θθ

令=θ

θd L d )(ln 01212=∑+-=n

i i x n θθ,

得参数θ的最大似然估计值为: 2

2ˆ1

x

n

x

n

i i

=

=∑=θ

七、(本题满分10分)设某厂生产的灯泡寿命(单位:h )X 服从正态分布),1000(2

σN ,现随

机抽取其中16只,测得样本均值x =946,样本标准差s =120,则在显著性水平05

.0=α下可否认为这批灯泡的平均寿命为1000小时? 解:待验假设H 0:μ =1000,H 1:μ ≠1000

由于题设方差2σ未知,故检验用统计量为)1(~0

--=n t n

S X t μ

由α =0.0513.2)15(025.02/==⇒t t α

又由946=x 、s =120,可算得统计量观测值t 为 8.116

/1201000

946/0-=-=-=

n s x t μ

相关文档
最新文档