等比数列的性质含例题总结归纳

合集下载

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题2、通项公式:4、等比数列的前n 项和S n 公式:(1)当 q 1 时,S n na in⑵当q 1时,5罟5、等比数列的判定方法:等比数列等比中项:a n 2a n 1a n 1 (a n 1a n 1 0){a n }为等比数列通项公式:a nA B n A B 0{a n }为等比数列1、等比数列的定义:a n 1a n 2,且n N * , q 称为公比n 1a naga iB n a i0,A B0,首项:a 1;公比:q推广:a na m qa nama n m — \ a m3、等比中项:(1)如果a, A, b 成等比数那么A 叫做a 与b 的等差中项,即: A 2 ab 或A ab注意:同号的两个数才有等比中并且它们的等比中项有两个((2)数列a n 是等比数列2 a n a n 1aq qA'B nA' ( A, B,A',B'为常数)(1) 用定义:对任意的都有a n 1qa n 或旦口 q (q 为常数,a n 0){a n }为a n6、等比数列的证明方法:依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 17、等比数列的性质:(2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。

(3) 若m n s t(m,n,s,t N*),则a. a m a s a t。

特别的,当m n 2k 时,得2a n a m a k注:3] a n a2 a n 1 a3a n 2等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{a n}中,a1 a9 64, a3 a7 20, 求a11.思路点拨:由等比数列的通项公式,通过已知条件可列出关于a1和q的二元方程组,解出a i和q,可得an ;或注意到下标1 9 3 7,可以利用性质可求出a3、a y,再求a ii.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1 ] {an}为等比数列,a仁3,a9=768,求a6。

等比数列定义知识点归纳总结

等比数列定义知识点归纳总结

等比数列定义知识点归纳总结等比数列是数学中常见的一种数列形式,它在各个领域都有广泛的应用。

本文将对等比数列的定义、性质和应用进行归纳总结,以帮助读者更好地理解和运用等比数列。

一、等比数列的定义等比数列是指一个数列中,从第二项起,每一项与前一项的比值都相等的数列。

比值常用字母q表示,称为公比。

换言之,一个数列满足an+1 = an * q的关系,其中an表示第n项,an+1表示第n+1项,q表示公比。

二、等比数列的性质1. 公比的影响:公比q的绝对值决定了等比数列的性质。

当|q|<1时,等比数列的值越来越小;当|q|>1时,等比数列的值越来越大;当q=1时,等比数列的值保持不变。

2. 通项公式:对于等比数列an,第n项的通项公式为an = a1 *q^(n-1),其中a1为首项。

3. 公式推导:可以通过递归或数学归纳法得到等比数列的通项公式,进而求解数列中任意一项的值。

4. 前n项和:等比数列的前n项和(部分和)可用以下公式表示:Sn = a1 * (1 - q^n)/(1 - q),其中a1为首项,q为公比。

三、等比数列的应用等比数列在诸多领域有广泛的应用,如金融、物理、工程等。

以下列举几个常见的应用场景:1. 财务投资:与利率相关的问题往往可以转化为等比数列问题,如计算定期存款每年的本息总额。

2. 自然科学:许多自然界的现象或物理规律可以用等比数列来描述,如累积衰减、分裂增殖等。

3. 几何问题:等比数列广泛应用于几何问题中,如计算等比数列构成的等边三角形的面积。

4. 数据分析:等比数列可用于分析一些数据序列或随机变量的增长规律,如人口增长、疾病传播等。

综上所述,等比数列是一种重要的数列形式,具有较广泛的应用价值。

通过对等比数列的定义、性质和应用的归纳总结,读者可更好地理解等比数列,并能在实际问题中灵活运用。

在解决问题时,读者可以根据题目给定的条件,利用等比数列的相关公式和性质进行推导和计算,以得到准确的结果。

等比数列的性质总结

等比数列的性质总结

等比数列的性质总结及经典例题1. 等比数列的前n 项和n S 公式:1 (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 2. 等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列 (2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 (3) 通项公式:()0nn a A BA B =⋅⋅≠⇔{}n a 为等比数列(4) 前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列6. 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列 7. 注意(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设项的技巧,一般可设为通项;11n n a a q -=如奇数个数成等比,可设为…,22,,,,a a a aq aq q q…(公比为q ,中间项用a 表示); 8. 等比数列的性质 (1) 当1q ≠时①等比数列通项公式()1110n nn n a a a qq A B A B q-===⋅⋅≠是关于n 的带有系数的类指数函数,底数为公比q ②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A qq q q--==-=-⋅=-----,系数和常数项是互为相反数的类指数函数,底数为公比q(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式.因此,此公式比等比数列的通项公式更具有一般性。

初中数学知识归纳等比数列的计算和性质

初中数学知识归纳等比数列的计算和性质

初中数学知识归纳等比数列的计算和性质初中数学知识归纳:等比数列的计算和性质等比数列是数学中常见的数列形式,它具有一些独特的计算方法和性质。

在本文中,我们将对等比数列的计算和性质进行详细的归纳和总结。

一、等比数列的计算方法等比数列是指后一项与前一项的比等于同一个常数的数列。

常用的计算方法有如下几种:1. 求通项公式设等比数列的首项为a,公比为r,第n项为an。

我们可以通过求解通项公式来计算等比数列的任意一项。

通项公式可以表示为:an = a * r^(n-1),其中^表示乘方运算。

举例来说,如果我们知道首项a=2,公比r=3,要求第5项an的值,我们可以使用通项公式计算得到:a5 = 2 * 3^(5-1)= 2 * 3^4= 2 * 3 * 3 * 3 * 3= 162因此,第5项an的值为162。

2. 求和公式等比数列的前n项和可以通过求解求和公式来计算。

求和公式可以表示为:Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项的和。

例如,如果我们知道首项a=1,公比r=2,要求前4项的和S4,我们可以使用求和公式计算得到:S4 = 1 * (1 - 2^4) / (1 - 2)= 1 * (1 - 16) / -1= (1 - 16) / -1= -15因此,前4项的和S4为-15。

3. 分割法分割法是等比数列计算中一个常用且简便的方法。

该方法适用于公比r为整数的等比数列。

具体步骤如下:(1)将等比数列分割为若干个部分,每个部分包括连续的几项。

(2)将每个部分的首项相乘,得到对应的连续几项的积。

(3)将各个部分的积相加,即可得到等比数列的前n项的和。

举例来说,如果我们要计算公比为2的等比数列前8项的和,可以使用分割法进行计算。

等比数列为:1, 2, 4, 8, 16, 32, 64, 128将等比数列分割为3个部分:(1, 2), (4, 8, 16), (32, 64, 128)计算各个部分的积:2, 512, 262144将各个部分的积相加:2 + 512 + 262144 = 262658因此,前8项的和为262658。

等比数列的性质总结

等比数列的性质总结

等比数列性质1. 等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2. 通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠, 首项:1a ;公比:q 推广:n m n m a a q -=, 从而得n mnma q a -=或n q =3. 等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅4. 等比数列的前n 项和n S 公式: (1) 当1q =时, 1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5. 等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列 (2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 (3) 通项公式:()0nn a A BA B =⋅⋅≠⇔{}n a 为等比数列(4) 前n 项和公式:()'',,','nnn n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列6. 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列 7. 注意(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。

等比数列性质归纳总结

等比数列性质归纳总结

等比数列 (一) 主要知识:等比数列的充要条件:()1{}n a 是等比数列1n na q a +⇔=(q 为非零常数); ()2{}n a 是等比数列n n a cq ⇔=(0,0c q ≠≠)()3{}n a 是等比数列212n n n a a a ++⇔=⋅()4{}n a 是等比数列n n S kq k ⇔=-(11a k q =-,0k ≠,1q ≠) (二)主要方法:1.涉及等比数列的基本概念的问题,常用基本量1,a q 来处理;2.已知三个数成等比数列时,可设这三个数依次为2,,a aq aq 或,,a a aq q ;四个数时设为3a q、aq、aq 、3aq3.等比数列的相关性质:()1若{}n a 是等比数列,则m n m n a a q -=⋅;()2若{}n a 是等比数列,,,,*m n p t N ∈,当m n p t +=+时,m n p t a a a a ⋅=⋅特别地,当2m n p +=时,2m n p a a a ⋅=()3若{}n a 是等比数列,则下标成等差数列的子列构成等比数列;()4若{}n a 是等比数列,n S 是{}n a 的前n 项和,则m S ,2m m S S - , 32m m S S -…成等比数列.()5两个等比数列{}n a 与{}n b 的积、商、倒数的数列{}n na b ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. 【典型例题】例1、已知{}n a 为等比数列,32a =,24203a a +=,求{}n a 的通项公式;例2、在等比数列{}n a 中,318a a -=,64216a a -=,40n S =,求公比q 、1a 及n问题2.1.已知数列{}n a 是等比数列,且>0n a ,n N ∈*,354657281a a a a a a ++=,则46a a +=2.在等比数列{}n a 中,32a =,5a m =,78a =,则m =.A 4±.B 5 .C 4- .D 43.在等比数列{}n a 中,11a =,103a =,则23456789a a a a a a a a =.A 81 .B .C .D 2434.在83和272之间插入三个数,使五个数成等比数列,则插入的三个数的乘积是 5.在等比数列{}n a 中,已知1231a a a ++=,4562a a a ++=-,则该数列前15项的和15S =6.在等比数列{an}中,a1=2,前n 项和为Sn ,若数列{an +1}也是等比数列,则Sn 等于 ( ) A.2n +1-2 B.3n C.2n D.3n -17.在等比数列{an}中,a3=7,前3项之和S3=21,则公比q 的值为 ( )A.1B.-12C.1或-12D.-1或128.若等比数列{an}满足anan +1=16n ,则公比为 ( ) A.2 B.4 C.8 D.169.记等比数列{an}的前n 项和为Sn ,若S3=2,S6=18,则S10S5等于( )A .-3B .5C .-31D .3310.在各项都为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5等于( ) A .33 B .72 C .84 D .18911.已知正项等比数列{an}中,a1a5+2a2a6+a3a7=100,a2a4-2a3a5+a4a6=36,求数列{an}的通项an 和前n 项和Sn.例3数列{}n a 的前n 项和记为n S ,已知11a =,12n n n a S n++=(1,2,3,n =⋅⋅⋅) 证明: 数列n S n ⎧⎫⎨⎬⎩⎭是等比数列,例4.已知数列{}n a 中,n S 是它的前n 项和,且142n n S a +=+()1,2,n =⋅⋅⋅,11a =.()1设12n n n b a a +=-()1,2,n =⋅⋅⋅,求证:数列{}n b 是等比数列;()2设2nn n a c =()1,2,n =⋅⋅⋅, 求证:{}n c 是等差数列;()3求{}n a 的通项公式n a 及前n 项和公式n S变式训练(1)已知数列{an}的前n 项和为Sn ,数列{bn}中,b1=a1,bn =an -an -1 (n ≥2),且an +Sn =n. ①设cn =an -1,求证:{cn}是等比数列; ②求数列{bn}的通项公式.(2)已知数列{an}的首项a1=5,前n 项和为Sn ,且Sn +1=2Sn +n +5,n ∈N*. ①证明数列{an +1}是等比数列; ②求{an}的通项公式以及Sn.(3)设数列{an}的前n 项和为Sn ,已知a1+2a2+3a3+…+nan =(n -1)Sn +2n(n ∈N*). ①求a2,a3的值;②求证:数列{Sn +2}是等比数列.(四)巩固练习:1.在等比数列{}n a (*n N ∈)中,若11a =,418a =,则该数列的前10项和为 .A 4122- .B 9122-.C 10122-.D 11122-2.已知a 、b 、c 、d 成等比数列,且曲线223y x x =-+的顶点是(),b c , 则ad 等于 .A 3 .B 2 .C 1 .D 2-3.(07重庆)设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则20062007a a+=______.4.若数列{}n a 满足212n na p a +=(p 为正常数,*n N ∈),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则.A 甲是乙的充分条件但不是必要条件.B 甲是乙的必要条件但不是充分条件 .C 甲是乙的充要条件 .D 甲既不是乙的充分条件也不是乙的必要条件5.(07陕西)各项均为正数的等比数列{}n a 的前n 项和为n S 为,若2n S =,314n S =,则4n S 等于 .A 80 .B 30 .C 26 .D 166.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 .A 122n +- .B 3n .C 2n .D 31n -7.设等比数列}{n a 的公比为q ,前n 项和为n S ,若1n S +,n S ,2n S +成等差数列,则q 的值为8.(07全国文Ⅱ)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,, 求{}n a 的通项公式.9.(07北京)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n = ,,,),且123,,a a a 成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.10.(山东)设数列{}n a 满足211233333n n n a a a a -++++=…,a N ∈*. (Ⅰ)求数列{}n a 的通项;(Ⅱ)设n nnb a =,求数列{}n b 的前n 项和n S .11.(06福建文)已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(Ⅰ)证明:数列{}1n n a a +-是等比数列; (Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列。

高中数学总结归纳 等比数列的性质及应用

高中数学总结归纳 等比数列的性质及应用

等比数列的性质及应用与等差数列一样,等比数列也有根据其概念或通项得出的一些重要性质,运用其性质可以使解题更为简便.一、若项数为3n 的等比数列(1)q ≠-前n 项和与前n 项积分别为nS '与n T ',次n 项和与次n 项积分别为2n S '与2n T ',最后n 项和与最后n 项积分别为3n S '与3n T ',则n S ',2n S ',3n S '成等比数列,n T ',2n T ',3n T '亦成等比数列.例1 已知一个等比数列的前n 项和为12,前2n 项和为48,求其前3n 项和.解:由题设,可知12n S '=,2481236n S '=-=, 22233610812n n n S S S ''∴==='. 故该数列前3n 项的和为10848156+=.例2 设等比数列{}n a 的前n 项和为n S ,若10301070S S ==,,求40S . 解:Q {}n a 成等比数列,10201030204030S S S S S S S ∴---,,,也成等比数列,即22010103020()()S S S S S -=-,解得2030S =或2020S =-(不合题意,舍去).2302040302010()150S S S S S S +∴=+=-. 二、一般地,如果t k p m n r ,,,…,,,,…皆为自然数,且t k p m n r +++=+++……(两边的自然数个数相等),那么当{}n a 为等比数列时,有t kp m n r a a a a a a =···…···…. 例3 在等比数列{}n a 中,若99123992a a a a =···…·,求50a . 解:19929849515050a a a a a a a a ====Q ··…··, 999912399502a a a a a ∴==···…·,502a ∴=.三、公比为q 的等比数列,从中取出等距离的项组成一个新数列,此数列仍是等比数列,其公比为mq (m 为等距离的项数之差). 例4 在等比数列{}n a 中,若12341a a a a =···,131415168a a a a =···,求41424344a a a a ···. 解:由性质可知,依次4项的积为等比数列,设公比为q .设112341T a a a a ==···,4131415168T a a a a ==···, 34182T T q q ∴==⇒=.10101141424344121024T a a a a T q ∴====····.。

等比数列常考题型归纳总结很全面

等比数列常考题型归纳总结很全面

等比数列及其前n 项和教学目标:1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。

2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。

知识回顾: 1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。

用递推公式表示为)2(1≥=-n q a a n n 或q a ann =+1。

注意:等比数列的公比和首项都不为零。

(证明数列是等比数列的关键) 2.通项公式:等比数列的通项为:11-=n n q a a 。

推广:m n m n q a a -= 3.中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。

4.等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n5.等比数列项的性质(1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2。

(2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。

n q q ='。

(其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。

4、证明等比数列的方法(1)证:q a a nn =+1(常数);(2)证:112·+-=n n na a a (2≥n ). 考点分析考点一:等比数列基本量计算 例1、已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为54,求5S 。

例2、成等差数列的三项正数的和等于15,且这三个数加上2、5、13后成等比数列{}n b 中的543,,b b b 。

等比数列的性质和计算

等比数列的性质和计算

等比数列的性质和计算等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以一个常数的结果。

这个常数被称为公比,通常用字母q表示。

等比数列的性质和计算方法在数学中有着重要的应用。

一、等比数列的性质1. 公比与首项的关系:在等比数列中,公比q不等于0时,若首项为a,则第n项为an-1乘以公比q的n-1次方。

即,第n项为a * q^(n-1)。

2. 公比的绝对值小于1时:当公比q的绝对值小于1时(|q| < 1),等比数列的通项公式可以简化为:第n项为a * q^(n-1),且随着项数的增加,数列逐渐趋近于0。

3. 公比的绝对值等于1时:当公比q的绝对值等于1时(|q| = 1),等比数列的通项公式可以简化为:若q = 1,则数列每一项都相等。

若q = -1,则数列的奇数项为相同的正数,偶数项为相同的负数。

4. 公比的绝对值大于1时:当公比q的绝对值大于1时(|q| > 1),等比数列的通项公式为:第n项为a * q^(n-1),且随着项数的增加,数列的绝对值逐渐增大或减小。

二、等比数列的计算方法1. 求和公式:若公比q不等于1,则等比数列的前n项和为:Sn = a * (q^n - 1) / (q - 1),其中a为首项,q为公比。

2. 求数列中某一项:若已知等比数列的首项a和公比q,可以通过通项公式直接计算第n项。

3. 求等比数列的项数:若已知等比数列的首项a和公比q,以及数列中的某一项An,可以通过求对数的方法计算项数n。

4. 求等比数列的前n项和:若已知等比数列的首项a和公比q,以及数列的项数n,可以通过求和公式计算前n项和Sn。

例题一:已知等比数列的首项是3,公比是2,求该等比数列的第5项和前5项的和。

解:第5项:a * q^(n-1) = 3 * 2^(5-1) = 3 * 2^4 = 48。

前5项的和:Sn = a * (q^n - 1) / (q - 1) = 3 * (2^5 - 1) / (2 - 1) = 3 * (32 - 1) = 3 * 31 = 93。

等比数列的性质与计算

等比数列的性质与计算

等比数列的性质与计算等比数列是数学中常见的一种数列形式,它具有一些独特的性质和计算方法。

本文将深入探讨等比数列的性质,并介绍几种常见的计算方法。

一、等比数列的性质等比数列是由一个公比不为零的数不断地乘上前一项而得到的数列。

在等比数列中,有以下几个重要的性质。

1. 公比等比数列中相邻两项的比值称为公比,用字母q表示。

对于等比数列{a1,a2,a3,...},公比q等于任意一项除以它的前一项,即 q =aᵢ/a₍ᵢ₋₁₎。

公比决定了数列的增长速度和方向。

2. 通项公式等比数列的通项公式可以用来计算数列中任意一项的值。

对于等比数列{a1,a2,a3,...},通项公式为 an = a₁ * q^(n-1),其中an表示第n项,a₁表示首项,q表示公比,n表示项数。

3. 前n项和公式等比数列的前n项和公式可以用来计算数列前n项的和。

对于等比数列{a1,a2,a3,...},前n项和Sn表示前n项的和,Sn的计算公式为 Sn = a₁ * (q^n - 1) / (q - 1)。

二、等比数列的计算方法1. 求任意项的值已知等比数列的首项a₁和公比q,可以利用通项公式an = a₁ *q^(n-1)来计算数列中任意一项的值。

例如,已知首项a₁=2,公比q=3,求第5项的值可以通过代入公式得到:a₅ = 2 * 3^(5-1) = 162。

2. 求前n项的和已知等比数列的首项a₁和公比q,可以利用前n项和公式Sn = a₁* (q^n - 1) / (q - 1)来计算数列前n项的和。

例如,已知首项a₁=2,公比q=3,求前5项的和可以通过代入公式得到:S₅ = 2 * (3^5 - 1) / (3 - 1) = 242。

3. 求公比已知等比数列的任意两项可以求得公比。

例如,已知等比数列的第3项a₃=24,第4项a₄=72,求公比可以通过以下计算得到:q =a₄/a₃ = 72/24 = 3。

三、例题分析为了更好地理解等比数列的性质与计算,以下以几个例题进行分析。

等比数列的性质总结

等比数列的性质总结

等比数列的性质总结等比数列是指数列中的一种特殊形式,其每一项都是前一项乘以一个常数。

以下是对等比数列性质的总结:1. 公比的定义:等比数列的每一项与它的前一项的比值叫做公比。

公比用符号q表示,对于等比数列an,公比可以表示为q = an / an-1。

2. 通项公式:等比数列的第n项可以表示为an = a1 * q^(n-1),其中a1是首项,q是公比。

这个公式可以用来计算数列中的任意一项。

3. 首项和公比的关系:在等比数列中,如果知道前两项,可以通过计算它们的比值来得到公比。

即q = a2 / a1。

反过来,如果知道公比和首项,可以通过公式an = a1 * q^(n-1)来计算数列中任意一项。

4. 等比数列的性质:等比数列有一些独特的性质,使得它们在数学中具有重要的应用价值。

这些性质包括:- 等比数列中的任意两项的比值是常数,即an / an-1 = q,对于任意的n>1。

这意味着等比数列中的相邻两项之间的比值始终保持不变。

- 等比数列中的每一项都可以通过前一项乘以公比得到。

即an = an-1 * q,对于任意的n>1。

- 等比数列中,如果q大于1,那么数列会递增;如果q介于0和1之间,那么数列会递减。

如果q等于1,那么数列的每一项都相等。

- 等比数列可以分为两类:当公比q大于0时,数列中的每一项都大于0;当公比q小于0时,数列中的奇数项为负数,偶数项为正数。

5. 等比中项公式:对于等比数列的一项与它的后一项的比值等于q的k次方时,这两项的几何中项可以通过公式ak =sqrt(a(k-1) * a(k+1))来计算。

这个公式可以用来计算等比数列中的中间项。

6. 等比数列的和:等比数列的前n项和可以通过公式Sn = a1 * (1 - q^n) / (1 - q)来计算。

这个公式可以用来计算等比数列中所有项的和。

这些性质和公式在解决各种实际问题中非常有用。

等比数列的应用包括金融领域的复利计算、物理学中的指数增长和衰减问题、计算机科学中的分析算法复杂性等。

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。

(完整版)等比数列常考题型归纳总结很全面

(完整版)等比数列常考题型归纳总结很全面

等比数列及其前n 项和教学目标:1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。

2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。

知识回顾: 1.定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。

用递推公式表示为)2(1≥=-n q a a n n 或q a ann =+1。

注意:等比数列的公比和首项都不为零。

(证明数列是等比数列的关键) 2.通项公式:等比数列的通项为:11-=n n q a a 。

推广:m n m n q a a -= 3.中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。

4.等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S n n5.等比数列项的性质(1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2。

(2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。

n q q ='。

(其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。

4、证明等比数列的方法(1)证:q a a nn =+1(常数);(2)证:112·+-=n n na a a (2≥n ). 考点分析考点一:等比数列基本量计算 例1、已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为54,求5S 。

例2、成等差数列的三项正数的和等于15,且这三个数加上2、5、13后成等比数列{}n b 中的543,,b b b 。

等比数列知识点及题型归纳

等比数列知识点及题型归纳

等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。

如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。

等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。

二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。

2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。

3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。

4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。

5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。

三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。

2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。

3. 求公比:已知等比数列的首项和第n项,求公比的值。

4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。

5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。

6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。

7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。

四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。

以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。

2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。

3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。

4. 工程计划:等比数列可以用来计算任务的进度和耗时。

高中数学等比数列知识点总结最新7篇

高中数学等比数列知识点总结最新7篇

高中数学等比数列知识点总结最新7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中数学等比数列知识点总结最新7篇什么是等比数列?对于很多人来说或许等比数列就是一个高考必考的知识点,那么我们到底应该怎么记住这些要点呢?下面是本店铺为您带来的高中数学等比数列知识点总结最新7篇,可以帮助到您,就是本店铺最大的快乐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等比数列基本概念: 1. 等比数列的定义:()()*1
2,n
n a q q n n N a -=≠≥∈0且,q 称为公比 2. 通项公式:
()11110,0n n
n n a a a q q A B a q A B q
-==
=⋅⋅≠⋅≠, 首项:1a ;公比:q 注:当1q ≠时等比数列通项公式()1110n n n
n a a a q q A B A B q
-===⋅⋅≠是关于n 的带有
系数的指数类函数,底数为公比q ,若11,n q a na ==则. 3. 等比中项
(1) 如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2
A ab =
或A =注: 同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数
(2) 数列{}n a 是等比数列⇔2
11n n n a a a -+=⋅ (11n n a a +-≠0)
二、等比数列的性质:
例 1. 在等比数列{}n a 中,320,2a q ==,
求6,n a a
例2. 等比数列{}n a ,121a a +=3,a +4a =9 则45a a += .
例3.等比数列{}n a 中,910111264a a a a ⋅⋅⋅=
则813a a ⋅= .
例4. 在等比数列{}n a 中, 0n a >, 24a a +
3546236a a a a +=, 则35a a +=
例5. 如果数列{}n a 是等比数列, 那么( )
A. 数列2
{}n a 是等比数列
B. 数列{2}n a
是等比数列 C. 数列{lg }n a 是等比数列 D. 数列{}n na 是等比数列
例. 已知四个实数中, 前三个数成等差数列, 后三个数成等比数列, 中间两数之积为16, 收尾两数之积为128-, 求这四个数.
例6.等比数列{}n a 中, 154510,90,a a == 则60a = .
例7.在等比数列{}n a 中, 12330a a a ++=
789+120a a a +=,131415a a a ++=
例8. 在等比数列{}n a 中, 3453a a a ⋅⋅=
67824a a a ⋅⋅=,则91011a a a ⋅⋅=
例. 已知{}n a 的前n 项和为n S , 且满足
120(2)n n n a S S n -+⋅=≥, 112
a =
(1) 求证1
{}n
S 是等差数列 (2) 求{}n a 的通项公式.。

相关文档
最新文档