2017-2018学年七上期末数学试卷
2017-2018学年湖北省宜昌市西陵区七年级(上)期末数学试卷(解析版) (1)
2017-2018学年湖北省宜昌市西陵区七年级(上)期末数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4B.﹣9C.﹣4D.+92.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.2017年10月5日,三峡大坝开阐泄洪,水库每小时泄洪75600000立方米,这里的数据75600000用科学记数法表示为()A.756×105B.75.6×106C.7.56×107D.7.56×1084.在梯形的面积公式S=中,已知S=48,h=12,b=6,则a的值是()A.8B.6C.4D.25.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+56.将方程去分母,正确的结果是()A.6x﹣1=6﹣(4﹣x)B.2(3x﹣1)=1﹣(4﹣x)C.2(3x﹣1)=6﹣(4﹣x)D.2(3x﹣1)=6﹣4﹣x7.我国2017年GDP位于世界第二,教育经费投入是当年GDP的4%.若2017年GDP的总值为n 亿元,则当年教育经费投入为()亿元.A.4%n B.(1+4%)n C.(1﹣4%)n D.4%+n8.下列关于线段的中点的说法中,错误的是()A.线段的中点到线段两端的距离相等B.线段的中点将线段分成了两条相等的线段C.若数轴上点M、N表示的数分别是9和﹣9,则线段MN的中点是原点D.如果AC=BC,那么C是线段AB的中点9.如图,数轴上点()表示的数是﹣2的相反数.A.点A B.点B C.点C D.点D10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′11.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80D.(1+80%)(1+45%)x﹣x=8012.下列等式中,成立的是()A.a﹣b+c=a﹣(b﹣c)B.3a﹣a=2C.8a﹣4=4a D.﹣2(a﹣b)=﹣2a+b13.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短14.如果ab<0,a>b,|a|>|b|,那么下列结论正确的是()A.a+b>0B.a+b<0C.a+b≥0D.a+b≤015.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671B.672C.673D.674二、解答下列各题(本题共有9小题,共计75分,请将答案写在答题卡上指定的位置)16.(6分)计算:(﹣4)2﹣2×(﹣5)+6÷(﹣3)17.(6分)先化简,再求值:3x2y﹣2x3﹣2(x2y﹣x3),其中x=﹣3,y=218.(7分)解方程:.19.(7分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.20.(8分)如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P 从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子的值可以体现点M 和点N之间距离的远近,这个式子的值越小,两个点的距离越近.21.(8分)如图,直线SN⊥直线WE,垂足是点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)写出图中与∠BOE互余的角:.(2)若射线OA是∠BON的角平分线,探索∠BOS与∠AOC的数量关系.22.(10分)某初中学校七、八、九年级的班级数量分别是4、3、3,八年级平均每班人数比七年级多11人,比九年级多2人.(1)求八年级平均每班人数比全校平均每班人数多多少?(2)若八年级学生总数是全校学生总数的三分之一,求八年级学生总数.23.(11分)已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.24.(12分)某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少,而本周运出货物总件数比上周多,这两周内,该仓库货物共增加了3件,求a、b的值.2017-2018学年湖北省宜昌市西陵区七年级(上)期末数学试卷参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4B.﹣9C.﹣4D.+9【分析】答题时首先知道正负数的含义,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.【解答】解:由收入为正数,则支出为负数,故收入13元记作+13元,那么支出9元可记作﹣9元.故选:B.【点评】本题主要考查正数和负数的知识点,理解正数与负数的相反意义,比较简单.2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.【分析】根据三视图的确定方法,判断出钢管无论如何放置,三视图始终是下图中的其中一个,即可.【解答】解:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选:A.【点评】此题是简单几何体的三视图,考查的是三视图的确定方法,解本题的关键是物体的放置不同,主视图,俯视图,左视图,虽然不同,但它们始终就图中的其中一个.3.2017年10月5日,三峡大坝开阐泄洪,水库每小时泄洪75600000立方米,这里的数据75600000用科学记数法表示为()A.756×105B.75.6×106C.7.56×107D.7.56×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将75600000用科学记数法表示为:7.56×107.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.在梯形的面积公式S=中,已知S=48,h=12,b=6,则a的值是()A.8B.6C.4D.2【分析】把S,h,b的值代入公式计算即可求出a的值.【解答】解:把S=48,h=12,b=6代入公式得:48=×(a+6)×12,解得:a=2,故选:D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5B.﹣0.6C.+0.7D.+5【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【解答】解:|+5|=5,|﹣3.5|=3.5,|+0.7|=0.7,|﹣2.5|=2.5,|﹣0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是﹣0.6,故选:B.【点评】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.6.将方程去分母,正确的结果是()A.6x﹣1=6﹣(4﹣x)B.2(3x﹣1)=1﹣(4﹣x)C.2(3x﹣1)=6﹣(4﹣x)D.2(3x﹣1)=6﹣4﹣x【分析】根据等式的性质,可得答案.【解答】解:方程两边都乘以6,得:2(3x﹣1)=6﹣(4﹣x),故选:C.【点评】本题考查了解一元一次方程,不含分母的项也要乘分母的最小公倍数,注意分子要加括号.7.我国2017年GDP位于世界第二,教育经费投入是当年GDP的4%.若2017年GDP的总值为n 亿元,则当年教育经费投入为()亿元.A.4%n B.(1+4%)n C.(1﹣4%)n D.4%+n【分析】根据2017年GDP的总值为n亿元,教育经费投入是当年GDP的4%,即可得出2017年教育经费投入.【解答】解:因为2017年GDP的总值为n亿元,教育经费投入应占当年GDP的4%,所以2017年教育经费投入可表示为4%n亿元.故选:A.【点评】此题主要考查了列代数式,解此题的关键是根据已知条件找出数量关系,列出代数式.8.下列关于线段的中点的说法中,错误的是()A.线段的中点到线段两端的距离相等B.线段的中点将线段分成了两条相等的线段C.若数轴上点M、N表示的数分别是9和﹣9,则线段MN的中点是原点D.如果AC=BC,那么C是线段AB的中点【分析】根据线段中点的定义进行判断即可.【解答】解:A、线段的中点到线段两端的距离相等,正确;B、线段的中点将线段分成了两条相等的线段,正确;C、若数轴上点M、N表示的数分别是9和﹣9,则线段MN的中点是原点,正确;D、如果AC=BC,那么点C不一定是线段AB的中点,故错误,故选:D.【点评】本题考查了实数与数轴,直线、射线、线段,熟记概念是解题的关键.9.如图,数轴上点()表示的数是﹣2的相反数.A.点A B.点B C.点C D.点D【分析】由﹣2的相反数是2且点D表示数2可得.【解答】解:∵﹣2的相反数是2,而数轴上点D表示的数是2,∴数轴上点D表示的数是﹣2的相反数,故选:D.【点评】本题主要考查数轴,解题的关键是掌握数轴上的点所表示的数及相反数的定义.10.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=25°35′,∠BOA度数是()A.64°65′B.54°65′C.64°25′D.54°25′【分析】由射线OC平分∠DOB,∠DOC=25°35′,得∠BOC=∠DOC=25°35′,从而求得∠AOB.【解答】解:∵OC平分∠DOB,∴∠BOC=∠DOC=25°35′,∵∠AOC=90°,∴∠AOB=∠AOC﹣∠BCO=90°﹣25°35′=64°25′.故选:C.【点评】此题考查的知识点是角平分线的定义以及角的计算,关键是由已知先求出∠BOC.11.商家出售的一种自行车的标价比进价高45%,实际销售这种自行车时按标价八折优惠,每辆获利80元,设这种自行车的进价是每辆x元,下列方程正确的是()A.45%(1+80%)x﹣x=80B.x+45%﹣80%=80C.80%(1+45%)x﹣x=80D.(1+80%)(1+45%)x﹣x=80【分析】设这种自行车的进价是每辆x元,根据利润=卖价﹣进价,列方程即可.【解答】解:设这种自行车的进价是每辆x元,由题意得,80%(1+45%)x﹣x=80.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.下列等式中,成立的是()A.a﹣b+c=a﹣(b﹣c)B.3a﹣a=2C.8a﹣4=4a D.﹣2(a﹣b)=﹣2a+b【分析】根据整式的运算,合并同类项的法则进行计算即可.【解答】解:A、a﹣b+c=a﹣(b﹣c),故此选项正确;B、3a﹣a=2a,故此选项错误;C、8a﹣4,不是同类项不能合并,故此选项错误;D、﹣2(a﹣b)=﹣2a+2b,故此选项错误;故选:A.【点评】本题考查了合并同类项,去括号和添括号的法则,熟练掌握法则是解题的关键.13.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短【分析】两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短,根据线段的性质解答即可.【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间,线段最短.故选:D.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.14.如果ab<0,a>b,|a|>|b|,那么下列结论正确的是()A.a+b>0B.a+b<0C.a+b≥0D.a+b≤0【分析】根据题目中的条件,可以判断a、b的正负和它们之间的关系,从而可以判断各个选项是否正确,从而可以解答本题.【解答】解:∵ab<0,a>b,|a|>|b|,∴a>0>b,a>﹣b,∴a+b>0,故选项A正确,选项B错误,选项C错误,选项D错误,故选:A.【点评】本题考查有理数的乘法、有理数的加法、绝对值,解答本题的关键是明确题意,可以判断各个选项是否正确.15.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为()A.671B.672C.673D.674【分析】将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.【解答】解:∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672,故选:B.【点评】本题考查了图形的变化问题,观察出后一个图形比前一个图形的白色纸片的块数多3块,从而总结出第n个图形的白色纸片的块数是解题的关键.二、解答下列各题(本题共有9小题,共计75分,请将答案写在答题卡上指定的位置)16.(6分)计算:(﹣4)2﹣2×(﹣5)+6÷(﹣3)【分析】先算乘方,再算乘除,最后算加减即可.【解答】解:原式=16+10﹣2=24.【点评】本题考查了有理数的混合运算,能熟记有理数的运算法则的内容是解此题的关键,注意运算顺序.17.(6分)先化简,再求值:3x2y﹣2x3﹣2(x2y﹣x3),其中x=﹣3,y=2【分析】首先化简,进而合并同类项进而求出代数式的值.【解答】解:3x2y﹣2x3﹣2(x2y﹣x3)=3x2y﹣2x3﹣2x2y+2x3,=x2y,∵x=﹣3,y=2,∴原式=(﹣3)2×2=18.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.18.(7分)解方程:.【分析】先去括号、去分母,然后通过移项、合并同类项,化未知数系数为1求得x的值.【解答】解:原方程可化为:,即,,解得x=6.【点评】此题考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.19.(7分)如图,在一张边长为10的正方形的纸片上,剪去两个完全一样的小直角三角形和一个长方形,得到一个形如“囧”字的图案(阴影部分),其面积是S.设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示S,并将结果化简;(2)当x=3,y=2时,求S的值.【分析】(1)用正方形的面积减去两个三角形,一个小正方形面积,表示出S即可;(2)把x与y的值代入计算即可求出值.【解答】解:(1)根据题意得:S=100﹣xy﹣xy﹣xy=100﹣2xy;(2)当x=3,y=2时,原式=100﹣12=88.【点评】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.20.(8分)如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P 从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是﹣;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子|m﹣n|的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.【分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=n时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【解答】解:(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是,符号是“﹣”,故答案是:﹣.(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=0.3时,点P 的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=0.4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t﹣0.3.(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是﹣1.6.此时点P到点A距离是2.6个单位长度,所以r=2.6÷0.3=8.故答案是8(4)根据数轴上两点间的距离公式点M和N的距离等于|m﹣n|,故答案是|m﹣n|.【点评】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论21.(8分)如图,直线SN⊥直线WE,垂足是点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m°的角与n°的角互余.(1)写出图中与∠BOE互余的角:∠BOS,∠COE.(2)若射线OA是∠BON的角平分线,探索∠BOS与∠AOC的数量关系.【分析】(1)由∠BOS+∠CON=90°、∠BOS+∠CON+∠BOE+COE=180°可得答案.(2)根据OA是∠BON的角平线,可得∠NOA与∠NOB的关系,根据两角互补,可得∠BON与∠SOB的关系,再根据角平分线,可得∠NOA与∠NOB的关系,根据两角互余,可得∠NOC与∠SOB的关系,根据角的和差,可得答案.【解答】解:(1)图中与∠BOE互余的角有∠BOS,由m°的角与n°的角互余知∠BOS+∠CON=90°,∵∠BOS+∠CON+∠BOE+COE=180°,∴∠BOE+COE=90°,∵∠BOE=m°,∠COE=n°,且m°+n°=90°,∴∠BOE+∠COE=90°.故答案为:∠BOS,∠COE;(2)∠AOC=∠BOS.∵射线OA是∠BON的角平分线,∴∠NOA=∠NOB,∵∠BOS+∠BON=180°,∴∠BON=180°﹣∠BOS,∠NOA=∠BON=90°﹣∠BOS,∵∠NOC+∠BOS=90°,∠NOC=90°﹣∠BOS,∴∠AOC=∠NOA﹣∠NOC=90°﹣∠BOS﹣(90°﹣∠BOS)∴∠AOC=∠BOS.【点评】本题主要考查余角和补角,解题的关键是掌握余角和补角的定义及角平分线的性质、角的和差计算.22.(10分)某初中学校七、八、九年级的班级数量分别是4、3、3,八年级平均每班人数比七年级多11人,比九年级多2人.(1)求八年级平均每班人数比全校平均每班人数多多少?(2)若八年级学生总数是全校学生总数的三分之一,求八年级学生总数.【分析】(1)设八年级平均每班x人,先用含x的代数式表示出七、九年级平均每班人数,利用多项式的加减,计算八年级平均每班人数﹣全校平均每班人数得结论.(2)设八年级平均每班x人,根据:八年级学生总数=×全校学生总数,列出方程,求出八年级学生总数.【解答】解:(1)设八年级平均每班x人,则七年级平均每班(x﹣11)人,九年级平均每班(x﹣2)人.由题意,x﹣=x﹣(x﹣5)=5.答:八年级平均每班人数比全校平均每班人数多5人.(2)设八年级平均每班x人.根据题意,得3x=[(x﹣11)×4+3x+3(x﹣2)]整理,得9x=10x﹣50解得,x=5050×3=150(人)答:八年级学生总数为150人.【点评】本题考查了列代数式及一元一次方程的应用.用八年级平均每班人数表示出七年级、九年级平均每班的学生数是解决本题的关键.23.(11分)已知线段AB=a,MN=b(a,b为常数,且a>2b),线段MN在直线AB上运动(点B、M在点A的右侧.点N在点M的右侧).点P是线段AB的中点,点Q是线段MN的中点.(1)如图1,当点N与点B重合时,求线段PQ的长度(用含a,b的代数式表示);(2)如图2,当线段MN运动到点B、M重合时,求线段AN、PQ之间的数量关系式;(3)当线段MN运动至点Q在点B的右侧时,请你画图探究线段AN、BM、PQ三者之间的数量关系式.【分析】(1)根据题意可求PB=,QB=,则可得PQ的长度;(2)根据题意可得AN=a+b,PQ=,即可得AN=2PQ;(3)根据题意可得:AN=a+b﹣BM,PQ=+BQ,PQ=﹣MB,整理得:AN=2PQ+BM【解答】解:(1)∵点P是线段AB的中点,点Q是线段MN的中点∴PB=,QB=∵PQ=PB﹣QB∴PQ=(2)∵点P是线段AB的中点,点Q是线段MN的中点∴PB=,QB=∵PQ=PB﹣QB∴PQ=∵AN=AB+MN=a+b∴AN=2PQ(3)如上图所示:当点M在点B的右侧时,AN=a+b﹣BM,PQ=a/2+b/2﹣BM,所以AN=2PQ+BM,当点M在点B的左侧时,AN=2PQ﹣BM.【点评】此题主要考查了两点间的距离,在未画图类问题中,正确画图t时刻各点位置很重要,通过画图确定各个点的坐标,即可求出线段长度,确定线段间关系.24.(12分)某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少,而本周运出货物总件数比上周多,这两周内,该仓库货物共增加了3件,求a、b的值.【分析】(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,周五进出货物后变化的量为:5;(2)经过一周的时间,仓库货物总量相比上周末库存量减少了5件,则5+a+5+5+b+5+5﹣(12+2a+8+0+b﹣5+5+10)=﹣5,解得a的值;(3)根据表格中的数据分别求得本周运进货物总件数、运出货物件数,然后列出一元一次方程组,然后求解.【解答】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=(12+2a+8+0+b﹣5+5+10)+15,化简得:b=10,设上周运进货物总件数为m,上周运出货物的总件数为n,5+a+5+5+b+5+5=m﹣m,即a+b+25=m,12+2a+8+b﹣5+5+10=n+n,即2a+b+30=n,∵这两周内,该仓库货物共增加了3件,∴(m﹣n)+(m﹣n)=3,∴11Mm﹣16n=18,∴11×(a+b+25)﹣16×(2a+b+30)=18,解得:a=10,【点评】本题考查正数与负数的定义,解题的关键是正确理解题意,找出等量关系列出等式,本题属于中等题型.。
2017-2018学年广东省广州市黄埔区七年级上期末数学试卷含答案解析
2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2| 3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD 的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD 的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。
山东潍坊高密七年级(上)期末数学试卷(解析版)
2017-2018学年山东省潍坊市高密市七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x2.下列各式中,y不是x的函数关系的是()A.y=x B.y=x2+1C.y=‖x‖D.y=±x3.当a=5时,下列代数式中值最大的是()A.2a+3B.﹣1C.a2﹣2a+10D.4.如图,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.2B.3C.4D.55.如果|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是()A.﹣2B.10C.7D.66.下列说法中错误的是()A.x与y平方的差是x2﹣y2B.x加上y除以x的商是x+C.x减去y的2倍所得的差是x﹣2yD.x与y和的平方的2倍是2(x+y)27.下面各式中去括号正确的是()A.3(x+1)=3x+1B.﹣(x+1)=﹣x+1C.6+(x﹣a)=6+x﹣a D.1﹣(2﹣x)=2﹣x+1.8.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.59.如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是()A.y=12x B.y=18x C.y=x D.y=10.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣211.下列解方程的过程中正确的是()A.将2﹣去分母,得2﹣5(5x﹣7)=﹣4(x+17)B.由=100C.40﹣5(3x﹣7)=2(8x+2)去括号,得40﹣15x﹣7=16x+4D.﹣x=5,得x=﹣12.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)二、填空题(共8小题,每小题3分,满分24分)13.已知方程﹣2x2﹣5m+4m=5是关于x的一元一次方程,那么x=.14.单项式的系数与次数之积为.15.若2(x﹣3)的值与3(1+x)的值互为相反数,则x=.16.已知a﹣b=3,c+d=2,则(a+d)﹣(b﹣c)=17.某班有学生m人,若每4人一组,有一组少2人,则所分组数是.18.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为.19.一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人,这时车上共有(12a﹣5b)人.则中途上车的乘客是人.20.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b等于.三、解答题(本大题共计60分)21.(7分)某同学做一道数学题:已知两个多项式A,B,计算2A+B时,他误将“2A+B”看成“A+2B”,求得的结果是9x2﹣2x+7,已知B=x2+3x﹣2(1)求2A+B的正确答案;(2)当x=﹣2时,求(1)的值.22.(8分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?23.(27分)解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)(x﹣5)=3﹣(x﹣5)(3)﹣1=(4)x﹣(x﹣9)= [x+(x﹣9)](5)﹣=0.5x+224.(18分)列方程(组)解应用题(1)某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位;若租用同样数量的60座汽车,则比45座汽车多出一辆无人乘坐,但其余客车恰好坐满.问初一年级人数是多少?原计划租用45座汽车多少辆?(2)《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”2017-2018学年山东省潍坊市高密市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列各式符合代数式书写规范的是()A.a9B.m﹣5元C.D.1x【分析】按照代数式的书写要求判断即可.【解答】解:A、代数式为9a,不符合题意;B、代数式为(m﹣5)元,不符合题意;C、代数式为,符合题意;D、代数式为x,不符合题意,故选:C.【点评】此题考查了代数式,熟练掌握代数式的书写要求是解本题的关键.2.下列各式中,y不是x的函数关系的是()A.y=x B.y=x2+1C.y=‖x‖D.y=±x【分析】直接利用函数的概念进而分析得出答案.【解答】解:A、y=x,y是x的函数关系,故此选项错误;B、y=x2+1,y是x的函数关系,故此选项错误;C、y=‖x‖,y是x的函数关系,故此选项错误;D、y=±x,y不是x的函数关系,故此选项正确;故选:D.【点评】此题主要考查了函数的概念,正确把握定义是解题关键.3.当a=5时,下列代数式中值最大的是()A.2a+3B.﹣1C.a2﹣2a+10D.【分析】把a=5代入各项中计算,判断大小即可.【解答】解:A、把a=5代入得:原式=10+3=13;B、把a=5代入得:原式=﹣1=;C、把a=5代入得:原式=5﹣10+10=5;D、把a=5代入得:原式=15,故选:D.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.4.如图,两个天平都平衡,则与2个球体相等质量的正方体的个数为()A.2B.3C.4D.5【分析】利用第二个天平平衡得到1个正方体的质量与1个圆柱体的质量相等,再根据第一个天平平衡得到2个球体的质量与5个圆柱体的质量相等,利用等量代换可得到2个球体的质量与5个正方体的质量相等.【解答】解:根据第二个天平平衡得到1个正方体的质量与1个圆柱体的质量相等,根据第一个天平平衡得到2个球体的质量与5个圆柱体的质量相等,所以与2个球体相等质量的正方体的个数为5.故选:D.【点评】本题考查了等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.如果|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是()A.﹣2B.10C.7D.6【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2,故选:A.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.6.下列说法中错误的是()A.x与y平方的差是x2﹣y2B.x加上y除以x的商是x+C.x减去y的2倍所得的差是x﹣2yD.x与y和的平方的2倍是2(x+y)2【分析】由题意,根据代数式的意义,对各选项进行判定,即可求出答案.【解答】解:A:x与y平方的差为x2﹣y2,故本项正确.B:x加上y除以x的商为,故本项错误.C:x减去y的2倍的差为x﹣2y,故本项正确.D:x与y和的平方的2倍为2(x+y)2故本项正确.故选:B.【点评】本题考查代数式的意义表示,对各选项进行判定,即可求得答案.7.下面各式中去括号正确的是()A.3(x+1)=3x+1B.﹣(x+1)=﹣x+1C.6+(x﹣a)=6+x﹣a D.1﹣(2﹣x)=2﹣x+1.【分析】利用去括号法则一一检验,即可得到正确的选项.【解答】解:A、3(x+1)=3x+3,本选项错误;B、﹣(x+1)=﹣x﹣1,本选项错误;C、6+(x﹣a)=6+x﹣a,本选项正确;D、1﹣(2﹣x)=1﹣2+x=x﹣1,本选项错误.故选:C.【点评】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.8.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.9.如果每盒笔有18支,售价12元,用y(元)表示笔的售价,x表示笔的支数,那么y与x之间的关系式应该是()A.y=12x B.y=18x C.y=x D.y=【分析】先求得每支笔的价格,然后依据总售价=单价×支数列出关于即可.【解答】解:∵每支笔的价格=12÷18=元/支,∴y=x.故选:C.【点评】本题主要考查的是列函数关系式,掌握题目中的数量关系是解题的关键.10.某书上有一道解方程的题: +1=x,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字()A.7B.5C.2D.﹣2【分析】已知方程的解x=﹣2,把x=﹣2代入未知方程,就可以求出被油墨盖住的地方了.【解答】解:把x=﹣2代入+1=x得: +1=﹣2,解这个方程得:□=5.故选:B.【点评】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程.11.下列解方程的过程中正确的是()A.将2﹣去分母,得2﹣5(5x﹣7)=﹣4(x+17)B.由=100C.40﹣5(3x﹣7)=2(8x+2)去括号,得40﹣15x﹣7=16x+4D.﹣x=5,得x=﹣【分析】根据四个方程的不同特点,参照等式的性质,进行解答.【解答】A、漏乘不含分母的项;B、从左边看,方程应用的是分式的性质;从右边看,方程应用的是等式的性质2;故所得方程与原方程不是同解方程;C、去括号时漏乘不含分母的项,且未变号;D、正确.故选:D.【点评】同学们要熟悉去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.【点评】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.二、填空题(共8小题,每小题3分,满分24分)13.已知方程﹣2x2﹣5m+4m=5是关于x的一元一次方程,那么x=﹣2.1.【分析】根据一元一次方程的定义可得2﹣5m=1,然后得到m的值,再代入方程可得﹣2x+=5,然后再解方程即可.【解答】解:由题意得:2﹣5m=1,解得:m=,方程可变为﹣2x+=5,解得:x=﹣2.1,故答案为:﹣2.1.【点评】此题主要考查了一元一次方程的定义,关键是掌握一元一次方程的未知数的指数为1.14.单项式的系数与次数之积为﹣2.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可.【解答】解:根据单项式定义得:单项式的系数是﹣,次数是3;其系数与次数之积为﹣×3=﹣2.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.若2(x﹣3)的值与3(1+x)的值互为相反数,则x=0.6.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2(x﹣3)+3(1+x)=0,去括号得:2x﹣6+3+3x=0,移项合并得:5x=3,解得:x=0.6,故答案为:0.6【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.16.已知a﹣b=3,c+d=2,则(a+d)﹣(b﹣c)=5【分析】原式去括号结合后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=3,c+d=2,∴原式=a+d﹣b+c=(a﹣b)+(c+d)=3+2=5.故答案为:5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.某班有学生m人,若每4人一组,有一组少2人,则所分组数是.【分析】由题意可知:如果加上2人,正好可以分成4人一组,由此用(m+2)除以4得出答案即可.【解答】解:由题意,可得所分组数是.故答案为.【点评】此题考查列代数式,理解题意,找出题目蕴含的数量关系解决问题.18.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为﹣2.【分析】根据已知二次三项式得出m﹣2≠0,|m|=2,求出即可.【解答】解:因为多项式x|m|+(m﹣2)x﹣10是二次三项式,可得:m﹣2≠0,|m|=2,解得:m=﹣2,故答案为:﹣2【点评】本题考查了二次三项式的定义,关键是求出二次三项式.19.一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人,这时车上共有(12a﹣5b)人.则中途上车的乘客是(9a﹣4b)人.【分析】先求出中途下车后车上剩余的人数,然后用最后车上的人数减去中途下车后剩余的人数就是上车的人数.【解答】解:根据题意,中途下车后车上剩余的人数为:×(6a﹣2b)=3a﹣b,(12a﹣5b)﹣(3a﹣b)=12a﹣5b﹣3a+b=9a﹣4b.故答案为:(9a﹣4b).【点评】本题主要考查了整式的加减,求出中途下车后剩余的人数是解题的关键,计算时要注意符号的处理,这是本题容易出错的地方.20.如图,两个正方形的边长分别为4,3,两阴影部分的面积分别为a,b(a>b),则a﹣b等于7.【分析】设空白出的面积为x,根据题意列出关系式,相减即可求出a﹣b的值.【解答】解:设空白出图形的面积为x,根据题意得:a+x=16,b+x=9,则a﹣b=7.故答案为:7.【点评】此题考查了算术的定义,熟练掌握算术的定义是解本题的关键.三、解答题(本大题共计60分)21.(7分)某同学做一道数学题:已知两个多项式A,B,计算2A+B时,他误将“2A+B”看成“A+2B”,求得的结果是9x2﹣2x+7,已知B=x2+3x﹣2(1)求2A+B的正确答案;(2)当x=﹣2时,求(1)的值.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)∵A+2B=9x2﹣2x+7,B=x2+3x﹣2,∴A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11,则A+2B=15x2﹣13x+20;(2)当x=﹣2时,原式=60+26+20=106.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.22.(8分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高2cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的函数关系式;(3)当量桶中水面上升至距离量桶顶部3cm时,应在量桶中放入几个小球?【分析】(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm;(2)本题中关键是如何把图象信息转化为点的坐标,无球时水面高30cm,就是点(0,30);3个球时水面高为36,就是点(3,36),从而求出y与x的函数关系式.(3)列方程可求出量筒中小球的个数.【解答】解:(1)根据中间量筒可知,放入一个小球后,量筒中的水面升高2cm.故答案为:2;(2)设水面的高度y与小球个数x的表达式为y=kx+b.当量筒中没有小球时,水面高度为30cm;当量筒中有3个小球时,水面高度为36cm,因此,(0,30),(3,36)满足函数表达式,则,解,得.则所求表达式为y=2x+30;(3)由题意,得2x+30=46,解,得x=8.所以要放入8个小球.【点评】本题考查了一次函数的实际应用,朴实而有新意,以乌鸦喝水的小故事为背景,以一次函数为模型,综合考查同学们识图能力、处理信息能力、待定系数法以及函数所反映的对应与变化思想的应用.23.(27分)解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)(x﹣5)=3﹣(x﹣5)(3)﹣1=(4)x﹣(x﹣9)= [x+(x﹣9)](5)﹣=0.5x+2【分析】各方程整理后,去分母,去括号,移项合并,把未知数系数化为1,即可求出解.【解答】解:(1)去括号得:20﹣y=﹣1.5y﹣2,移项合并得:0.5y=﹣22,解得:y=﹣44;(2)去分母得:x﹣5=9﹣2x+10,移项合并得:3x=24,解得:x=8;(3)去分母得:3x+6﹣12=6﹣4x,移项合并得:7x=12,解得:x=;(4)去括号得:x﹣x+1=x+x﹣1,去分母得:9x﹣x+9=3x+x﹣9,移项合并得:4x=﹣18,解得:x=﹣;(5)方程整理得:4x﹣2﹣=0.5x+2,去分母得:12x﹣6﹣5x﹣15=1.5x+6,移项合并得:5.5x=27,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.(18分)列方程(组)解应用题(1)某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位;若租用同样数量的60座汽车,则比45座汽车多出一辆无人乘坐,但其余客车恰好坐满.问初一年级人数是多少?原计划租用45座汽车多少辆?(2)《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八,问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲,乙二人原来各有多少钱?”【分析】(1)设原计划租用45座客车x辆,则租用60座客车(x﹣1)辆,根据总人数不变列出关于x的方程,解之可得;(2)设甲原有x文钱,则乙原有2(48﹣x)文钱,根据“乙得甲太半,亦满四十八”列出关于x的方程,解之可得.【解答】解:(1)设原计划租用45座客车x辆,则租用60座客车(x﹣1)辆,则45x+15=60(x﹣1),解得:x=5,当x=5时,60(x﹣1)=60×4=240,答:初一年级人数是240人,原计划租用45座汽车5辆;(2)设甲原有x文钱,则乙原有2(48﹣x)文钱,根据题意,得:x+2(48﹣x)=48,解得x=36,则2(48﹣x)=24,答:甲原来有36文钱,乙原来有24文钱.【点评】本题主要考查一元一次方程的应用,解题的关键是理解题意,并从题目中找到蕴含的相等关系,据此列出方程.。
2017-2018学年上海市宝山区七年级第一学期数学期末试卷(解析版)
上海市2017学年宝山区七年级第一学期数学期末试卷一、填空题(每题2分,满分30分))1.用代数式表示“x与y的相反数的和”.2.单项式﹣x2y的系数是.3.计算:5x2•(﹣xy)=.4.若3x m y3与x2y n是同类项,则m+n=.5.若代数式有意义,则x的取值范围是.6.把2x﹣2y3写成只含有正整数指数幂的形式,其结果为.7.数据0.0000032用科学记数法表示为.8.若4a+3b=1,则8a+6b﹣3=.9.化简:=.10.计算:=.11.如果4m×8m=215,那么m=.12.正三角形ABC是轴对称图形,它的对称轴共有条.13.如图,△ABC的周长为12,把△ABC的边AC对折,使顶点C与点A重合,折痕交BC 边于点D,交AC边于点E,联结AD,若AE=2,则△ABD的周长是.14.甲乙两家商店9月份的销售额均为a万元,在10月份和11月份这两个月份中,甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,11月份甲商店的销售额比乙商店的销售额多万元.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为厘米.二、选择题(本大题共5题,每题2分,满分10分)16.下列计算正确的是()A.a2•a3=a6B.(a3)2=a5C.(ab)2=ab2D.a3÷a=a2 17.下列多项式能因式分解的是()A.m2+n2B.m2﹣3m+4C.m2+m+D.m2﹣2m+4 18.如果一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.既是轴对称图形,又是中心对称图形C.是中心对称图形,但不是轴对称图形D.既不是轴对称图形,也不是中心对称图形19.计算(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)的结果为()A.B.C.D.20.若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断三、简答题(每题5分;满分30分)21.计算:b•(﹣b)2﹣(﹣2b)322.(2x﹣y+1)(2x+y﹣1)(用公式计算)23.计算:÷(x+1﹣)24.因式分解:x4﹣5x2﹣36.25.分解因式:a2﹣b2﹣2a+2b26.解方程:.四、解答题(本大题共4题,第27、28题每题6分;第29题8分;第30题10分;满分30分)27.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A′,点B'、点C′分别是B、C的对应点(1)请画出平移后的B′点;(2)点A′绕点B′按逆时针方向旋转90°后,它经过的路线是怎样的图形?画出这个图形.28.(6分)先化简,再求值(﹣)÷,其中x=2,y=1.29.(8分)小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)如果有一份总字数为m的稿件需要输入电脑,小丽工作了a个小时后余下的输入工作由小明继续完成,则小明还需要工作多少小时?(所得结果用含有m、a的代数式表示;m、a均为大于零的正数)30.(10分)如图,将直角三角形ABC绕着直角顶点C逆时针旋转90°,得到△A1B1C;再将△A1B1C向右平移,使点B1与点A重合,得到△A2AC2,设BC=a,AC=b.(1)试画出△A1B1C和△A2AC2;(2)联结A2B,用a、b表示△AA2B的面积;(3)若上述平移的距离为6,△AA2B的面积为8,试求△ABC的面积.参考答案一、填空题1.用代数式表示“x与y的相反数的和”x﹣y.【分析】根据题意列出代数式即可.解:用代数式表示“x与y的相反数的和”为:x﹣y,故答案为:x﹣y.【点评】本题主要考查的是列代数式,理清运算的先后顺序是解题的关键.2.单项式﹣x2y的系数是﹣.【分析】直接利用单项式系数的定义得出答案.解:单项式﹣x2y的系数是﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式系数的确定方法是解题关键.3.计算:5x2•(﹣xy)=﹣5x3y.【分析】直接利用单项式乘以单项式运算法则计算得出答案.解:5x2•(﹣xy)=﹣5x3y.故答案为:﹣5x3y.【点评】此题主要考查了单项式乘以单项式运算,正确掌握相关运算法则是解题关键.4.若3x m y3与x2y n是同类项,则m+n=5.【分析】根据同类项的概念即可求出答案.解:由题意可知:m=2,n=3,∴m+n=5,故答案为:5.【点评】本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.5.若代数式有意义,则x的取值范围是x≠2.【分析】分式有意义的条件是:分母≠0,可得x﹣2≠0,解不等式可得答案.解:∵代数式有意义,∴x﹣2≠0,∴x≠2,故答案为:x≠2.【点评】此题主要考查了分式有意义的条件,关键是把握:分母≠0.6.把2x﹣2y3写成只含有正整数指数幂的形式,其结果为..【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.解:把2x﹣2y3写成只含有正整数指数幂的形式,其结果为.故答案为:.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.7.数据0.0000032用科学记数法表示为 3.2×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000032用科学记数法表示为3.2×10﹣6,故答案为:3.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8.若4a+3b=1,则8a+6b﹣3=﹣1.【分析】原式变形后,将已知等式代入计算即可求出值.解:∵4a+3b=1,∴原式=2(4a+3b)﹣3=2×1﹣3=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.9.化简:=.【分析】先把分子、分母进行因式分解,然后约分即可.解:==;故答案为:.【点评】此题考查了约分,用到的知识点是因式分解和平方差公式,关键是把分子、分母进行因式分解.10.计算:=x﹣1.【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.解:==x﹣1.故答案为:x﹣1.【点评】本题比较容易,考查同分母分式的加减运算,一定注意最后结果能约分的一定要约分.11.如果4m×8m=215,那么m=3.【分析】直接利用幂的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.解:∵4m×8m=215,∴22m×23m=215,∴25m=215,解得:m=3.故答案为:3.【点评】此题主要考查了幂的乘方运算以及结合同底数幂的乘法运算,正确掌握相关运算法则是解题关键.12.正三角形ABC是轴对称图形,它的对称轴共有3条.【分析】关于某条直线对称的图形叫轴对称图形,这条直线叫做对称轴.解:等边三角形3条角平分线所在的直线是等边三角形的对称轴,∴有3条对称轴,故答案为:3【点评】此题考查轴对称图形,如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做它的对称轴.13.如图,△ABC的周长为12,把△ABC的边AC对折,使顶点C与点A重合,折痕交BC 边于点D,交AC边于点E,联结AD,若AE=2,则△ABD的周长是8.【分析】直接利用翻折变换的性质得出AE=EC,进而得出△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC,进而得出答案.解:∵把△ABC的边AC对折,使顶点C与点A重合,∴AD=DC,AE=CE=2∴AB+BC=12﹣4=8,故△ABD的周长=AB+AD+BD=AB+CD+BC﹣CD=AB+BC=8,故答案为:8【点评】本题主要考查了翻折变换的性质,正确得出AB+BC的长是解题关键.14.甲乙两家商店9月份的销售额均为a万元,在10月份和11月份这两个月份中,甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,11月份甲商店的销售额比乙商店的销售额多4ax%万元.【分析】根据甲商店的销售额平均每月增长x%,乙商店的销售额平均每月减少x%,表示出甲乙两家商店的销售额,求出之差即可.解:根据题意得:a(1+x%)2﹣a(1﹣x%)2=4ax%(万元).则11月份甲商店的销售额比乙商店的销售额多4ax%万元.故答案为:4ax%.【点评】此题考查了列代数式,根据题意表示出甲乙两家商店的销售额是解本题的关键.15.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为1或5厘米.【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.解:当两个正方形重叠部分的面积为2平方厘米2时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点评】此题考查了平移的性质,要明确:平移前后图形的形状和面积不变.画出图形即可直观解答.二、选择题(本大题共5题,每题2分,满分10分)16.下列计算正确的是()A.a2•a3=a6B.(a3)2=a5C.(ab)2=ab2D.a3÷a=a2【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别判断得出答案.解:A、a2•a3=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、(ab)2=a2b2,故此选项错误;D、a3÷a=a2,正确.故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.17.下列多项式能因式分解的是()A.m2+n2B.m2﹣3m+4C.m2+m+D.m2﹣2m+4【分析】直接利用完全平方公式分解因式进而得出答案.解:A、m2+n2,无法分解因式,故此选项错误;B、m2﹣3m+4,无法分解因式,故此选项错误;C、m2+m+=(m+)2,故此选项正确;D、m2﹣2m+4,无法分解因式,故此选项错误;故选:C.【点评】此题主要考查了因式分解的意义,正确运用公式是解题关键.18.如果一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,那么这个正多边形()A.是轴对称图形,但不是中心对称图形B.既是轴对称图形,又是中心对称图形C.是中心对称图形,但不是轴对称图形D.既不是轴对称图形,也不是中心对称图形【分析】根据旋转对称图形、轴对称图形和中心对称图形的定义即可解答.解:∵一个正多边形绕着它的中心旋转60°后,能与原正多边形重合,360°÷60°=6,∴这个正多边形是正六边形,正12边形,正18边形,…正六边形,正12边形,正18边形,…既是轴对称图形,又是中心对称图形.故选:B.【点评】本题考查了旋转对称图形的概念,中心对称图形和轴对称图形的定义.根据定义,得一个正n边形只要旋转的倍数角即可.奇数边的正多边形只是轴对称图形,偶数边的正多边形既是轴对称图形,又是中心对称图形.19.计算(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)的结果为()A.B.C.D.【分析】直接利用负指数幂的性质以及分式的混合运算法则计算得出答案.解:(x﹣1﹣y﹣1)÷(x﹣2﹣y﹣2)=(﹣)÷(﹣)=÷=×=.故选:D.【点评】此题主要考查了负指数幂的性质以及分式的混合运算,正确将原式变形是解题关键.20.若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断【分析】根据完全平方公式得到b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,再与a=2017×2018﹣1比较大小即可求解.解:∵a=2017×2018﹣1,b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,∴2017×2018﹣1<1+2017×2018,∴a<b.故选:A.【点评】考查了完全平方公式,解决本题的关键是利用完全平方公式计算b得到b=1+2017×2018.三、简答题(本大题共6题,每题5分;满分30分)21.计算:b•(﹣b)2﹣(﹣2b)3【分析】直接利用积的乘方运算法则将原式变形进而合并得出答案.解:b•(﹣b)2﹣(﹣2b)3=b3﹣(﹣8b3)=9b3.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.22.(2x﹣y+1)(2x+y﹣1)(用公式计算)【分析】把y﹣1看成一个整体,对所求式子变形,可化为[2x﹣(y﹣1)][2x+(y﹣1)],再利用平方差公式计算即可,最后利用完全平方公式展开(y﹣1)2即可.解:原式=[2x﹣(y﹣1)][2x+(y﹣1)]=(2x)2﹣(y﹣1)2=4x2﹣y2+2y﹣1.【点评】本题考查了平方差公式、完全平方公式.对于括号里含有3项的式子,可把两个括号中完全相同的项看成一个整体,当做一项去使用.23.计算:÷(x+1﹣)【分析】先将被除式分母因式分解,同时计算括号内的减法,再将除法转化为乘法,继而约分即可得.解:原式=÷(+)=÷=•=.【点评】本题主要考查分式的混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.24.因式分解:x4﹣5x2﹣36.【分析】原式利用十字相乘法分解即可.解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握因式分解的方法是解本题的关键.25.分解因式:a2﹣b2﹣2a+2b【分析】原式两两结合后,利用平方差公式,提取公因式方法分解即可.解:原式=(a+b)(a﹣b)﹣2(a﹣b)=(a﹣b)(a+b﹣2).【点评】此题考查了因式分解﹣分组分解法,难点是采用两两分组还是三一分组.26.解方程:.【分析】去分母化为整式方程即可解决问题.解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程的增根,原方程无解.【点评】本题考查分式方程的解,解题的关键是掌握解分式方程的步骤,注意解分式方程必须检验.四、解答题(本大题共4题,第27、28题每题6分;第29题8分;第30题10分;满分30分)27.(6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A′,点B'、点C′分别是B、C的对应点(1)请画出平移后的B′点;(2)点A′绕点B′按逆时针方向旋转90°后,它经过的路线是怎样的图形?画出这个图形.【分析】(1)将点B先向左平移3个单位长度,再向下平移2个单位长度,据此可得;(2)根据旋转变换的定义作图即可得.解:(1)如图所示,点B′即为所求.(2)如图所示,即为所求.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义和性质.28.(6分)先化简,再求值(﹣)÷,其中x=2,y=1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x,y的值代入计算可得.解:原式=[﹣]•=(﹣)•=[﹣]•=•=﹣,当x=2,y=1时,原式=﹣=﹣1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.29.(8分)小丽、小明练习打字,已知小丽比小明每分钟多打80个字,小丽打3500个字的时间与小明打2500个字的时间相同.(1)小丽、小明每分钟分别可打多少字?(2)如果有一份总字数为m的稿件需要输入电脑,小丽工作了a个小时后余下的输入工作由小明继续完成,则小明还需要工作多少小时?(所得结果用含有m、a的代数式表示;m、a均为大于零的正数)【分析】(1)设每分钟打x个字,则小刚每分钟比小明多打50个字,根据速录员小明打2500个字和小刚打3000个字所用的时间相同,列方程即可;(2)根据题意列出代数式即可.解:(1)设小明每分钟打x个字,则小丽每分钟打(x+80)个字,根据题意得=,解得:x=200,经检验:x=200是原方程的解.∴x+80=280,答:小丽每分钟打280个字,小明每分钟打200个字;(2)小明还需要工作小时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.30.(10分)如图,将直角三角形ABC绕着直角顶点C逆时针旋转90°,得到△A1B1C;再将△A1B1C向右平移,使点B1与点A重合,得到△A2AC2,设BC=a,AC=b.(1)试画出△A1B1C和△A2AC2;(2)联结A2B,用a、b表示△AA2B的面积;(3)若上述平移的距离为6,△AA2B的面积为8,试求△ABC的面积.【分析】(1)根据旋转和平移变换的定义作图即可得;(2)根据△AA2B的面积=﹣S﹣求解可得;△ABC(3)由题意得出a+b=6,a2+b2=8,即a2+b2=16,再根据2ab=(a+b)2﹣(a2+b2)求解可得.解:(1)如图所示,△A1B1C和△A2AC2即为所求.﹣(2)△AA2B的面积=﹣S△ABC=×(a+b)(a+b)﹣ab﹣ab=a2+b2;(3)由题意知a+b=6,∵a2+b2=8,即a2+b2=16,∴2ab=(a+b)2﹣(a2+b2)=20,则ab=10,∴△ABC的面积=ab=5.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质及割补法求三角形的面积.。
2017-2018 历下区七年级(上)期末数学试卷(解析版)
2017-2018学年山东省济南市历下区七年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题5分,共60分)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣2.下列图形不是正方体展开图的是()A.B.C.D.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣84.下列计算正确的是()A.(3x)2=6x2B.x2+x3=x5C.(x2)3=x5D.x3÷x=x25.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查6.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm7.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)48.钟表上2时15分时,时针与分针的夹角为()A.15°B.30°C.22.5°D.45°9.天虹商场在国庆节期间开展促销活动,打出“1元人民币换2.5倍购物券”的促销活动,请问这次促销活动相当于打几折?()A.2.5折B.4折C.6折D.7.5折10.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为()A.29,C B.﹣29,D C.30,B D.﹣31,E二、填空题(本大题共6个小题,每小题4分,共24分)13.小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是.14.已知单项式2x6y2m﹣1与3x3n y3的差仍为单项式,则m n的值为15.若(m﹣2)x|m|﹣1=6是一元一次方程,则m=16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.17.已知m﹣n=2,mn=﹣1,则(1﹣2m)(1+2n)的值为.18.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶,知甲车的速度是每小时25千米,乙车的速度是每小时20千米,则经过小时甲乙两车第二次迎面相遇三、简答题(本大题共8题,满分66分)19.(8分)计算:(1)(﹣)﹣(﹣)﹣+;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣320.(8分)解方程:(1)3(x+4)=5﹣2(x﹣1);(2)=1﹣21.(9分)化简求值(1)化简:(a+2)2﹣(a+1)(a﹣1)(2)先化简再求值:x2﹣2(xy﹣y2)+3(xy﹣y2),其中x=﹣1,y=222.如图,点A、O、B在同一条直线上,∠COD=2∠COB,若∠COD=40°,求∠AOD的度数;23.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.24.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.25.(10分)某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?26.(12分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.四、附加题(本大题共2个题,每小题5分,共10分,得分不计入总分)27.(5分)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是(M、N、P、R中选).28.(5分)将一幅三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOC(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOC角度所有可能的值是.2017-2018学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据互为倒数的两个数的积等于1解答.【解答】解:∵(﹣)×(﹣6)=1,∴﹣的倒数是﹣6.故选:B.【点评】本题考查了倒数的定义,熟记概念是解题的关键.2.下列图形不是正方体展开图的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.3.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数字0.00000071用科学记数法表示为7.1×10﹣7,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列计算正确的是()A.(3x)2=6x2B.x2+x3=x5C.(x2)3=x5D.x3÷x=x2【分析】直接利用积的乘方运算法则以及幂的乘方运算法则和同底数幂的除法运算法则分别判断得出答案.【解答】解:A、(3x)2=9x2,故此选项错误;B、x2+x3,无法计算,故此选项错误;C、(x2)3=x6,故此选项错误;D、x3÷x=x2,正确.故选:D.【点评】此题主要考查了积的乘方运算以及幂的乘方运算和同底数幂的除法运算等知识,正确掌握运算法则是解题关键.5.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB 的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm【分析】由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.【解答】解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选:A.【点评】首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.7.计算(x﹣y)3•(y﹣x)=()A.(x﹣y)4B.(y﹣x)4C.﹣(x﹣y)4D.(x+y)4【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加计算.【解答】解:(x﹣y)3•(y﹣x)=﹣(x﹣y)3•(x﹣y)=﹣(x﹣y)3+1=﹣(x﹣y)4.故选:C.【点评】本题主要考查同底数幂的乘法的性质.解题时,要先转化为同底数的幂后,再相乘.8.钟表上2时15分时,时针与分针的夹角为()A.15°B.30°C.22.5°D.45°【分析】根据钟表上2时15分时,时针在2与3之间,分针在3上,可以得出分针与时针相隔个大格,每一大格之间的夹角为30°,可得出结果.【解答】解:∵钟表上从1到12一共有12格,每个大格30°,∴钟表上2时15分时,时针在2与3之间,分针在3上,∴时针与分针的夹角为×30°=22.5°.故选:C.【点评】此题主要考查了钟面角的有关知识,得出钟表上从1到12一共有12格,每个大格30°,是解决问题的关键.9.天虹商场在国庆节期间开展促销活动,打出“1元人民币换2.5倍购物券”的促销活动,请问这次促销活动相当于打几折?()A.2.5折B.4折C.6折D.7.5折【分析】设这次促销活动相当于打x折,根据“1元人民币换2.5倍购物券”列出方程并解答.【解答】解:设这次促销活动相当于打x折,依题意得:2.5•x=1,x=0.4,即打4折.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是读懂题意,找到等量关系,列出方程并解答.10.如图,A,B,C三人的位置在同一直线上,AB=5米,BC=10米,下列说法正确的是()A.C在A的北偏东30°方向的15米处B.A在C的北偏东60°方向的15米处C.C在B的北偏东60°方向的10米处D.B在A的北偏东30°方向的5米处【分析】根据方向角的定义进行判断,即可解答.【解答】解:A.因为C在A的北偏东60°方向的15米处,故本选项错误;B.因为A在C的南偏西60°方向的15米处,故本选项错误;C.C在B的北偏东60°方向的10米处,正确;D.因为B在A的北偏东60°方向的5米处,故本选项错误;故选:C.【点评】本题考查了方向角的定义,解决本题的关键是熟记方向角的定义.11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2) B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【解答】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选:C.【点评】考查列一元一次方程;得到乙的羊数的关系式是解决本题的难点.12.将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列,根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中D的位置是有理数(),2008应排在A、B、C、D、E中的()位置.其中两个填空依次为()A.29,C B.﹣29,D C.30,B D.﹣31,E【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中D位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用(2008﹣1)除以5,根据商和余数的情况确定所在峰中的位置即可.【解答】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中D位置的数的是30,∵(2008﹣1)÷5=401…2,∴2008为“峰402”的第二个数,排在B的位置.故选:C.【点评】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.二、填空题(本大题共6个小题,每小题4分,共24分)13.小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线进行解答.【解答】解:将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为:两点确定一条直线.【点评】此题主要考查了直线的性质,是需要识记的内容.14.已知单项式2x6y2m﹣1与3x3n y3的差仍为单项式,则m n的值为4【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:∵单项式2x6y2m﹣1与3x3n y3的差仍为单项式,∴3n=6,2m﹣1=3,解得:n=2,m=2,则m n=4.故答案为:4.【点评】此题主要考查了同类项,正确得出m,n的值是解题关键.15.若(m﹣2)x|m|﹣1=6是一元一次方程,则m=﹣2【分析】直接利用一元一次方程的定义进而分析得出答案.【解答】解:∵(m﹣2)x|m|﹣1=6是一元一次方程,∴|m|﹣1=1,m﹣2≠0,解得:m=﹣2.故答案为:﹣2.【点评】此题主要考查了一元一次方程的定义,注意一次项系数不为零是解题关键.16.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于π.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积,根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.【点评】本题考查了扇形面积的计算,求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.已知m﹣n=2,mn=﹣1,则(1﹣2m)(1+2n)的值为1.【分析】直接利用多项式乘法去括号,进而把已知代入求出答案.【解答】解:∵m﹣n=2,mn=﹣1,∴(1﹣2m)(1+2n)=1﹣2(m﹣n)﹣4mn=1﹣2×2﹣4×(﹣1)=1.故答案为:1.【点评】此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.18.甲乙两车同时从A地出发,在相距900千米的AB两地间不断往返行驶,知甲车的速度是每小时25千米,乙车的速度是每小时20千米,则经过80小时甲乙两车第二次迎面相遇【分析】可设经过x小时甲乙两车第二次迎面相遇,根据等量关系:甲车的路程+乙车的路程=900×4千米,列出方程求解即可.【解答】解:设经过x小时甲乙两车第二次迎面相遇,依题意有(25+20)x=900×4,解得x=80.答:经过80小时甲乙两车第二次迎面相遇.故答案为:80.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.三、简答题(本大题共8题,满分66分)19.(8分)计算:(1)(﹣)﹣(﹣)﹣+;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣3【分析】(1)先算同分母分数,再相加即可求解;(2)本题涉及零指数幂、负整数指数幂、立方、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(1)(﹣)﹣(﹣)﹣+;=(﹣﹣)+(+)=﹣1+2=1;(2)|﹣3|+(﹣1)3×(π﹣3.14)0﹣(﹣)﹣3=3﹣1×1+8=3﹣1+8=10.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、立方、绝对值等考点的运算.20.(8分)解方程:(1)3(x+4)=5﹣2(x﹣1);(2)=1﹣【分析】(1)根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次方程的基本步骤依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;(2)去分母,得:2(y+3)=12﹣3(3﹣2y),去括号,得:2y+6=12﹣9+6y,移项,得:2y﹣6y=12﹣9﹣6,合并同类项,得:﹣4y=﹣3,系数化为1,得:y=.【点评】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.(9分)化简求值(1)化简:(a+2)2﹣(a+1)(a﹣1)(2)先化简再求值:x2﹣2(xy﹣y2)+3(xy﹣y2),其中x=﹣1,y=2【分析】(1)先依据完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)先去括号、合并同类项化简原式,再将x、y的值代入计算可得.【解答】解:(1)原式=a2+4a+4﹣(a2﹣1)=a2+4a+4﹣a2+1=4a+5;(2)原式=x2﹣2xy+2y2+2xy﹣3y2=x2﹣y2,当x=﹣1、y=2时,原式=(﹣1)2﹣22=1﹣4=﹣3.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.22.如图,点A、O、B在同一条直线上,∠COD=2∠COB,若∠COD=40°,求∠AOD的度数;【分析】根据已知∠COD=2∠COB,∠COD=40°求出∠BOC度数,代入∠AOD=180°﹣∠BOC﹣∠COD求出即可.【解答】解:∵∠COD=2∠COB,∠COD=40°,∴∠BOC=20°,∴∠AOD=180°﹣∠BOC﹣∠COD=180°﹣20°﹣40°=120°.【点评】本题考查了角的有关计算,关键是求出∠BOC度数和得出∠AOD=180°﹣∠BOC﹣∠COD.23.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【点评】此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.24.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E”组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;(2)用第三组频数除以数据总数,再乘以100,得到m的值;先求出“E”组所占百分比,再乘以360°即可求出对应的圆心角度数;(3)用3000乘以每周课外阅读时间不小于6小时的学生所占百分比即可.【解答】解:(1)数据总数为:21÷21%=100,第四组频数为:100﹣10﹣21﹣40﹣4=25,频数分布直方图补充如下:(2)m=40÷100×100=40;“E”组对应的圆心角度数为:360°×=14.4°;(3)3000×(25%+)=870(人).即估计该校3000名学生中每周的课外阅读时间不小于6小时的人数是870人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.25.(10分)某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为 50 元,每件乙种商品利润率为 50% .(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件? (3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?【分析】(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价; (2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.【解答】解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x 件,根据题意可得:50x +40(50﹣x )=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.【点评】考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.26.(12分)如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=20°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE 有怎样的数量关系?并说明理由.【分析】(1)根据图形得出∠COE=∠DOE﹣∠BOC,代入求出即可;(2)根据角平分线定义求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE﹣∠DOE,求出∠BOD,代入∠COD=∠BOC﹣∠BOD求出即可;(3)根据图形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.【解答】解:(1)如图①,∠COE=∠DOE﹣∠BOC=90°﹣70°=20°,故答案为:20;(2)如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC﹣∠BOD=20°;(3)∠COE﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)﹣(∠BOD+∠COD)=∠COE+∠COD﹣∠BOD﹣∠COD=∠COE﹣∠BOD=90°﹣70°=20°,即∠COE﹣∠BOD=20°.【点评】本题考查了度、分、秒之间的换算,角的计算的应用,能根据图形求出各个角的度数是解此题的关键.四、附加题(本大题共3个题,第1、2题3分,第3题4分,得分不计入总分)27.(3分)如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是M或R(M、N、P、R中选).【分析】根据数轴判断出a、b之间的距离小于3,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴a、b之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b之间,∴原点是M或R.故答案为:M或R.【点评】本题考查了数轴,准确识图,判断出a、b之间的距离小于3是解题的关键.28.(3分)将一幅三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOC (0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOC角度所有可能的值是120°、135°、165°、30°.【分析】分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【解答】解:当OD⊥AB时,∠AOC=30°+90°=120°,当CD⊥OB时,∠AOC=90°+45°=135°,当CD⊥AB时,∠AOC=90°+75°=165°,当OC⊥AB时,∠AOC=30°,即∠AOC角度所有可能的值为:120°、135°、165°、30°.故答案为120°、135°、165°、30°.【点评】本题考查了旋转的性质,互补、互余的定义等知识,解决本题的关键是理解重叠的部分实质是两个角的重叠以及分类讨论思想.29.已知:x+=3,求x4+的值.【分析】根据x+=3,通过变形可以求得所求式子的值.【解答】解:∵x+=3,∴=9,∴=7,∴=49,∴x4+=47.【点评】本题考查分式的混合运算、完全平方公式,解答本题的关键是明确题意,求出所求式子的值.。
人教版七年级数学上册期末测试题
2017-2018学年山东省济宁市兖州市七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣22.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃3.(3分)单项式的系数与次数分别是()A.和3 B.﹣5和3 C.和2 D.﹣5和24.(3分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.15.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×1076.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+187.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°8.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.(3分)在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是()A.1 B.3 C.7 D.9二、填空题(共5小题,每小题3分,共15分)11.(3分)3的倒数是.12.(3分)如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是.13.(3分)比较大小:30.15°30°15′(用>、=、<填空)14.(3分)将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数.15.(3分)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为.三、解答题(本大题共7小题,满分55分)16.(12分)计算:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017;(3)先化简,再求值:(a2b﹣ab2)﹣(1﹣ab2﹣a2b),其中a=﹣3,b=2.17.(7分)解下列方程:(1)3(x﹣2)=x﹣(7﹣8x);(2)=2﹣18.(6分)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使PA+PC的值最小.19.(6分)已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.20.(7分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?21.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.22.(9分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600按售价打九折元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?2017-2018学年山东省济宁市兖州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣2【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选:A.2.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【解答】解:5﹣(﹣10),=5+10,=15(℃).故选:D.3.(3分)单项式的系数与次数分别是()A.和3 B.﹣5和3 C.和2 D.﹣5和2【解答】解:单项式的系数与次数分别是,3,故选:A.4.(3分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.1【解答】解:将x=1代入2x﹣a=0中,∴2﹣a=0,∴a=2故选:B.5.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×107【解答】解:55000000=5.5×107,故选:D.6.(3分)下列变形正确的是()A.4x﹣5=3x+2变形得4x﹣3x=﹣2+5B.3x=2变形得C.3(x﹣1)=2(x+3)变形得3x﹣1=2x+6D.变形得4x﹣6=3x+18【解答】解:A、4x﹣5=3x+2变形得4x﹣3x=2+5,错误;B、3x=2变形得x=,错误;C、3(x﹣1)=2(x+3)变形得3x﹣3=2x+6,错误;D、x﹣1=x+3变形得4x﹣6=3x+18,正确.故选:D.7.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选:D.8.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.(3分)在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2018个数是()A.1 B.3 C.7 D.9【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2018÷6=336…2,所以a2018=a2=7.故选:C.二、填空题(共5小题,每小题3分,共15分)11.(3分)3的倒数是.【解答】解:3的倒数是.故答案为:.12.(3分)如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短.【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.13.(3分)比较大小:30.15°<30°15′(用>、=、<填空)【解答】解:∵30.15°=30°9′,∴30°9′<30°15′.故答案为:<.14.(3分)将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数73°.【解答】解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故答案为:73°.15.(3分)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h完成.现在该小组全体同学一起先做8h后,有2名同学因故离开,剩下的同学再做4h,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x名同学,根据题意可列方程为+=1.【解答】解:设该小组共有x名同学,由题意得, +=1.故答案为: +=1.三、解答题(本大题共7小题,满分55分)16.(12分)计算:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017;(3)先化简,再求值:(a2b﹣ab2)﹣(1﹣ab2﹣a2b),其中a=﹣3,b=2.【解答】解:(1)(﹣)+3+|﹣0.75|+(﹣5)+|﹣2|=﹣++3+2﹣5=;(2)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017=﹣1+|﹣8﹣10|﹣(﹣3)÷(﹣1)=﹣1+18﹣3=14;(3)(a2b﹣ab2)﹣(1﹣ab2﹣a2b)=a2b﹣ab2﹣1++a2b=()a2b+(﹣1+)ab2=﹣﹣1,当a=﹣3,b=2时,原式=27+9﹣1=35.17.(7分)解下列方程:(1)3(x﹣2)=x﹣(7﹣8x);(2)=2﹣【解答】解:(1)去括号得:3x﹣6=x﹣7+8x,移项合并得:6x=1,解得:x=;(2)去分母得:3(3y﹣2)=24﹣4(5y﹣7),去括号得:9y﹣6=24﹣20y+28,移项合并得:29y=58,解得:y=2.18.(6分)如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=A B+BC;(4)在线段BD上取点P,使PA+PC的值最小.【解答】解:如图所画:(1)(2)(3)(4).19.(6分)已知:A、O、B三点在同一直线上,OE、OD分别平分∠AOC、∠BOC.(1)求∠EOD的度数;(2)若∠AOE=50°,求∠BOC的度数.【解答】解:(1)∵OE、OD分别平分∠AOC、∠BOC,∴∠EOC=∠AOC,∠COD=∠BOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=∠AOB,又∵A、O、B三点在同一直线上,∴∠AOB=180°,∴∠EOD=∠AOB=90°;(2)∵OE平分∠AOC,∠AOE=50°,∴∠AOC=2∠AOE=100°,∴∠BOC=180°﹣∠AOC=80°.20.(7分)我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?【解答】解:(方法一)设这批书共有3x本,根据题意得:=,解得:x=500,∴3x=1500.答:这批书共有1500本.(方法二)设第一次领来x本书,第二次领来y本书,根据题意得:,解得:,∴x+y=1000+500=1500.答:这批书共有1500本.21.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.【解答】解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A表示﹣31,∴p=﹣31﹣29﹣28=﹣88.22.(9分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为40元,每件乙种商品利润率为60%.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠按售价打九折超过450元,但不超过600元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?【解答】解:(1)设甲的进价为x元/件,则(60﹣x)÷x=50%,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80﹣50)÷50=60%.(2)设购进甲种商品x件,则购进乙种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进甲商品40件,乙商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),②打折前购物金额超过600元,600×0.82+(y﹣600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。
湖北省武汉市硚口区2017-2018学年度上学期期末考试七年级数学试题(解析版)
湖北省武汉市硚口区2017-2018学年度上学期期末考试七年级数学试题一、选择题(每小题3分,共30分)1.如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A.B.C.D.2.如图,射线OA的方向是北偏东30°,若∠AOB=90°,则射线OB的方向是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°3.下列各组数中,互为倒数的是()A.﹣2与2B.﹣2与C.﹣2与D.﹣2与|﹣2| 4.下列运算正确的是()A.5a﹣3a=2B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab 5.把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()A.两地之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线6.如图,将一副三角尺按如下四种不同的位置摆放,则∠α与∠β互为余角的是()A.图①B.图②C.图③D.图④7.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)8.在同一平面内,若∠BOA=50.3°,∠BOC=10°30′,则∠AOC的度数是()A.60.6°B.40°C.60.8°或39.8D.60.6°或40°9.如图所示由四种大小不同的八个正方形拼成一个长方形,其中最小的正方形的边长为5,则这个长方形的周长为()A.82B.86C.90D.9410.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O二、填空题(共6小题,每小题3分,共18分)11.关于x的方程2x﹣m=1的解为x=1,则m=.12.在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示.13.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是.14.在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜场得3分,平一场得1分,则该队共胜了场.15.“五一”节期间,某电器按进价提高40%后标价,然后打八折卖出,如果仍能获利12元,设这种电器的进价为x元,则可列出方程为.16.如图,已知线段AB上有两点C、D,点M、N分别为线段AD、BC的中点,若BD=5cm,MN=8cm,则AC的长度是cm.三、解答题(共8小题,72分)17.(8分)计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)18.(8分)先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣4y2+2x3),其中x=﹣3,y =﹣2.19.(8分)解方程:(1)3x﹣3=x+5(2)20.(8分)如图,已知两点A、B.(1)画出符合要求的图形①画线段AB;②延长线段AB到点C,使BC=AB;③反向延长线段AB到点D,使DA=2AB;④分别取BC、AD的中点M、N.(2)在(1)的基础上,已知线段AB的长度是4cm,求线段MN的长度.21.(8分)列方程解应用题:整理一批图书,由一个人做要30h完成.现计划由一部分人先做1h,然后增加6人与他们一起做2h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?22.(10分)(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD 的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)23.(10分)下表中有两种移动电话计费方式:月使用费(元)主叫限定时间(分钟)主叫超时费(元/分钟)被叫方式一651600.25免费方式二1003800.19免费说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需元,按方式二计费需元;若他按方式二计费需103.8元,则主叫通话时间为分钟;(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由;(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.24.(12分)如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.参考答案一、选择题1.如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:观察几何体,从左面看到的图形是故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.如图,射线OA的方向是北偏东30°,若∠AOB=90°,则射线OB的方向是()A.北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°【分析】利用已知得出∠1的度数,进而得出OB的方向角.【解答】解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故选:B.【点评】此题主要考查了方向角,正确利用互余的性质得出∠1度数是解题关键.3.下列各组数中,互为倒数的是()A.﹣2与2B.﹣2与C.﹣2与D.﹣2与|﹣2|【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:A、﹣2×2=﹣4,选项错误;B、﹣2×=﹣1,选项错误;C、﹣2×(﹣)=1,选项正确;D、﹣2×|﹣2|=﹣4,选项错误.故选:C.【点评】此题主要考查了倒数的定义.4.下列运算正确的是()A.5a﹣3a=2B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=2a,错误;B、原式不能合并,错误;C、原式=﹣a+b,错误;D、原式=ab,正确,故选:D.【点评】此题考查了整式的加减,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.5.把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是()A.两地之间线段最短B.直线比曲线短C.两点之间直线最短D.两点确定一条直线【分析】直接利用线段的性质进而分析得出答案.【解答】解:把原来弯曲的河道改直,两地间的河道长度会变短,这其中蕴含的数学道理是两地之间线段最短.故选:A.【点评】本题考查的是线段的性质,正确掌握两点之间线段最短是解题关键.6.如图,将一副三角尺按如下四种不同的位置摆放,则∠α与∠β互为余角的是()A.图①B.图②C.图③D.图④【分析】根据三角尺的摆放特点,计算出∠α与∠β的关系,根据互余的概念判断即可.【解答】解:A、∠α+∠β=90°,故正确;B、∠α=∠β,故错误;C、∠α+∠β=270°,故错误;D、∠α+∠β=180°,故错误.故选:A.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角.如果两个角的和等于180°,就说这两个角互为补角.7.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.【点评】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.8.在同一平面内,若∠BOA=50.3°,∠BOC=10°30′,则∠AOC的度数是()A.60.6°B.40°C.60.8°或39.8D.60.6°或40°【分析】分OC在∠AOB内部和∠AOB外部两种情况分别求解可得.【解答】解:∠AOC=∠BOA+∠BOC=50.3°+10°30′=50.3°+10.5°=60.8°或∠AOC=∠BOA﹣∠BOC=50.3°﹣10°30′=50.3°﹣10.5°=39.8°,故选:C.【点评】本题主要考查角的计算,解题的关键是掌握分类讨论思想的运用和角度的转换.9.如图所示由四种大小不同的八个正方形拼成一个长方形,其中最小的正方形的边长为5,则这个长方形的周长为()A.82B.86C.90D.94【分析】设右上方正方形的边长为x,由题意得出左上方正方形的边长为10,右下方正方形的边长为15﹣x,根据长方形上下边长度相等列出关于x的方程,解之求得x的值,再根据周长公式计算可得.【解答】解:设右上方正方形的边长为x,由题意知左上方正方形的边长为10,右下方正方形的边长为15﹣x,则10+2x=5+5+3×(15﹣x),解得x=9,所以长方形的周长为2×(15+10+9+9)=86,故选:B.【点评】本题主要考查一元一次方程的应用,解题的关键是设出一个正方形的边长,据此表示出其他正方形的边长,并结合图形列出方程求解.10.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O【分析】根据数轴和ab<0,a+b>0,ac>bc,可以判断a、b、c对应哪一个点,从而可以解答本题.【解答】解:∵ab<0,a+b>0,∴数a表示点M,数b表示点P或数b表示点M,数a表示点P,则数c表示点N,∴由数轴可得,c>0,又∵ac>bc,∴a>b,∴数b表示点M,数a表示点P,即表示数b的点为M.故选:A.【点评】本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.二、填空题(共6小题,每小题3分,共18分)11.关于x的方程2x﹣m=1的解为x=1,则m=1.【分析】把x=1代入方程计算即可求出m的值.【解答】解:把x=1代入方程得:2﹣m=1,解得:m=1.故答案为:1.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.在2017年的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 3.2×109.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:3200000000=3.2×109.故答案为:3.2×109.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.13.如图,是一个正方体的展开图,原正方体中有“新”字一面的相对面上的字是乐.【分析】根据正方体的表面展开图,相对的面之间一定不存在公共点进行回答即可.【解答】解:“新”字一面的相对面上的字是:乐,故答案为:乐.【点评】本题主要考查的是正方体相对两个面上的文字,明确相对的面之间一定不存在公共点是解题的关键.14.在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜场得3分,平一场得1分,则该队共胜了11场.【分析】可设该队共胜了x场,根据“15场比赛保持连续不败”,那么该队平场的场数为15﹣x,由题意可得出:3x+(15﹣x)=37,解方程求解.【解答】解:设该队共胜了x场,则平了(15﹣x)场,根据题意,得:3x+15﹣x=37,解得:x=11,即该队共胜了11场,故答案为:11.【点评】此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.15.“五一”节期间,某电器按进价提高40%后标价,然后打八折卖出,如果仍能获利12元,设这种电器的进价为x元,则可列出方程为x(1+40%)×80%﹣x=12.【分析】本题是一道销售问题的应用题.解答本题的关键是由打八折后仍然获利12元来建立等量关系,根据等量关系建立起方程就解决问题了.【解答】解:设这种电器的进价为x元,则标价为x(1+40%)元,由题意,得x(1+40%)×80%﹣x=12,故答案为x(1+40%)×80%﹣x=12.【点评】本题考查的是列一元一次方程解答的销售问题的应用题步骤和数量关系,解答本题的关键是用利润12元建立等量关系.16.如图,已知线段AB上有两点C、D,点M、N分别为线段AD、BC的中点,若BD=5cm,MN=8cm,则AC的长度是11cm.【分析】设MC=zcm,CD=acm,DN=ycm,BN=xcm,根据题意列出方程组,再求出2z+a 即可.【解答】解:设MC=zcm,CD=acm,DN=ycm,BN=xcm,∵点M、N分别为线段AD、BC的中点,∴AM=DM=(z+a)cm,AC=AM+MC=(z+a+z)cm=(2z+a)cm,BN=CN=xcm,∵BD=5cm,MN=8cm,∴②+③得:x+y+2z+a=16④,把①代入④得:5+2z+a=16,即2z+a=11,∴AC=11cm,故答案为:11.【点评】本题考查了求两点之间的距离和线段的中点的定义,能根据题意得出方程组是解此题的关键.三、解答题(共8小题,72分)17.(8分)计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=×﹣=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣4y2+2x3),其中x=﹣3,y =﹣2.【分析】先去括号、合并同类项化简原式,再将x、y的值代入计算可得.【解答】解:原式=2x3﹣4y2﹣x+2y﹣x+4y2﹣2x3=﹣2x+2y,当x=﹣3、y=﹣2时,原式=﹣2×(﹣3)+2×(﹣2)=6﹣4=2.【点评】本题主要考查整式的加减,解题的关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.19.(8分)解方程:(1)3x﹣3=x+5(2)【分析】(1)根据等式的基本性质依次移项、合并同类项、系数化为1可得;(2)根据等式的基本性质依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)移项,得:3x﹣x=5+3,合并同类项,得:2x=8,系数化为1,得:x=4;(2)去分母,得:2(x﹣3)﹣10=5(x+4),去括号,得:2x﹣6﹣10=5x+20,移项,得:2x﹣5x=20+6+10,合并同类项,得:﹣3x=36,系数化为1,得:x=﹣12.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.20.(8分)如图,已知两点A、B.(1)画出符合要求的图形①画线段AB;②延长线段AB到点C,使BC=AB;③反向延长线段AB到点D,使DA=2AB;④分别取BC、AD的中点M、N.(2)在(1)的基础上,已知线段AB的长度是4cm,求线段MN的长度.【分析】(1)根据题意,画出图形即可;(2)先求出BC=4cm,DA=8cm,再根据BC、AD的中点M、N,求出BM=2cm,AN=4cm,根据MN=AN+AB+BM即可解答.【解答】解:(1)如图,(2)∵AB=4cm,BC=AB,DA=2AB,∴BC=4cm,DA=8cm,∵BC、AD的中点M、N,∴BM=2cm,AN=4cm,∴MN=AN+AB+BM=4+4+2=10cm.【点评】本题考查了两点间的距离,解决本题的关键是根据图形进行解答.21.(8分)列方程解应用题:整理一批图书,由一个人做要30h完成.现计划由一部分人先做1h,然后增加6人与他们一起做2h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:设具体应先安排x人工作,,解得,x=6,答:具体应先安排6人工作.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.22.(10分)(1)将一张长方形纸片按如图1所示的方式折叠,BC、BD为折痕,求∠CBD 的度数;(2)将一张长方形纸片按如图2所示的方式折叠,BC、BD为折痕,若∠A′BE′=50°,求∠CBD的度数;(3)将一张长方形纸片按如图3所示的方式折叠,BC、BD为折痕,若∠A′BE′=α,请直接写出∠CBD的度数(用含α的式子表示)【分析】(1)根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD=180°×=90°,则∠CBD=90°;(2)根据折叠的性质得到∠A′BC=∠ABA′,∠DBE′=∠EBE′,再根据平角的定义∠CBD=∠CBA′+∠DBE′+∠A′BE′=65°+50°=115°;(3)根据折叠的性质得到∠A′BC=∠ABA′,∠DBE′=∠EBE′,再根据平角的定义∠CBD=(∠ABA′+∠EBE′)﹣∠A′BE′.【解答】解:(1)由题意知∠ABC=∠A′BC,∠DEB=∠MBE′,∴∠A′BC=∠ABA′,∠E′BD=∠E′BE,∴∠CBD=∠ABE=90°;(2)∵∠A′BE′=50°,∴∠ABA′+∠EBE′=180°﹣∠A′BE′=130°,∵∠A′BC=∠ABA′,∠DBE′=∠EBE′,∴∠CBA′+∠DBE′=(∠ABA′+∠EBE′)=65°,∴∠CBD=∠CBA′+∠DBE′+∠A′BE′=65°+50°=115°;(3)∵∠A′BC =∠ABA′,∠DBE ′=∠EBE′,∴∠CBA′+∠DBE ′=(∠ABA′+∠EBE′),∴∠CBD=∠CBA′+∠DBE′﹣∠A′BE ′=(∠ABA′+∠EBE′)﹣∠A′BE ′=(180°+α)﹣α=90°﹣.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应相等相等.也考查了平角的定义.23.(10分)下表中有两种移动电话计费方式:月使用费(元)主叫限定时间(分钟)主叫超时费(元/分钟)被叫方式一651600.25免费方式二1003800.19免费说明:月使用费固定收取,主叫不超限定时间不再收费,主叫超时部分加收超时费;被叫免费.(1)若李杰某月主叫通话时间为200分钟则他按方式一计费需75元,按方式二计费需100元;若他按方式二计费需103.8元,则主叫通话时间为400分钟;(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等,若存在,请求出t的值;若不存在,请说明理由;(3)请你通过计算分析后,直接给出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.【分析】(1)根据两种计费方式收费标准列式计算,即可求出结论;(2)分t≤160、160<t≤380、t>380三种情况考虑:①当t≤160时,由65≠100可得出不存在计费相等;②当160<t≤380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出结论;③当t>380时,由计费相等,即可得出关于t的一元一次方程,解之即可得出t值,由该t值不大于380可得出不存在计费相等.综上即可得出结论;(3)分t≤160、160<t<300、t=300、300<t≤380、t>380五种情况比较两种计费方式收费的多少,此题得解.【解答】解:(1)按方式一计费需:65+(200﹣160)×0.25=75(元),按方式二计费需100元.主叫通话时间(103.8﹣100)÷0.19+380=400(分钟).故答案为:75;100;400.(2)①当t≤160时,方式一计费需65元,方式二计费需100元,∴不存在计费相等;②当160<t≤380时,有65+0.25(t﹣160)=100,解得:t=300;③当t>380时,有65+0.25(t﹣160)=100+0.19(x﹣380),解得:t=,∵<380,∴舍去,即不存在计费相等.综上所述:当t=300时,方式一和方式二的计费相等.(3)当0≤t≤160时,75<100,∴选计费方式一省钱;当160<t≤300时,65+0.25(t﹣160)≤100,∴选计费方式一省钱;当t=300时,65+0.25(t﹣160)=100,∴两种计费方式费用相等;当300<t≤380时,65+0.25(t﹣160)>100,∴选计费方式二省钱;当t>380时,65+0.25(t﹣160)>100+0.19(x﹣380),∴选计费方式二省钱.综上所述:当月主叫通话时间小于300分钟时,选择计费方式一省钱;当月主叫通话时间等于300分钟时,选择两种计费方式费用相等;当月主叫通话时间大于300分钟时,选择计费方式二省钱.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据收费标准,列式计算;(2)分t≤160、160<t≤380、t>380三种情况考虑;(3)分t≤160、160<t<300、t =300、300<t≤380、t>380五种情况考虑.24.(12分)如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.【分析】(1)依据∠COE=60°,OA平分∠COE,可得∠AOC=30°,再根据∠AOB=90°,即可得到∠BOD=180°﹣30°﹣90°=60°;(2)①分两种情况进行讨论:当OE平分∠AOB时,∠AOE=45°;当OF平分∠AOB时,AOF=45°;分别依据角的和差关系进行计算即可得到t的值;②分两种情况进行讨论:当OE平分∠BOD时,∠BOE=∠BOD;当OF平分∠BOD时,∠DOF=∠BOD;分别依据角的和差关系进行计算即可得出t的值.【解答】解:(1)∵∠COE=60°,OA平分∠COE,∴∠AOC=30°,又∵∠AOB=90°,∴∠BOD=180°﹣30°﹣90°=60°;(2)①分两种情况:当OE平分∠AOB时,∠AOE=45°,即9t+30°﹣3t=45°,解得t=2.5;当OF平分∠AOB时,AOF=45°,即9t﹣150°﹣3t=45°,解得t=32.5;综上所述,当t=2.5s或32.5s时,直线EF平分∠AOB;②t的值为12s或36s.分两种情况:当OE平分∠BOD时,∠BOE=∠BOD,即9t﹣60°﹣3t=(60°﹣3t),解得t=12;当OF平分∠BOD时,∠DOF=∠BOD,即3t﹣(9t﹣240°)=(3t﹣60°),解得t=36;综上所述,若直线EF平分∠BOD,t的值为12s或36s.【点评】本题主要考查了角平分线的定义,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键,还需要通过计算进行初步估计位置,掌握分类思想,注意不能漏解.。
人教版2017~2018学年七年级上期末考试数学试题及答案
人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。
3B。
-3C。
0D.无法确定2.下列各组数中,相等的是()A。
(-3)与-3B。
|-3|与-3C。
(-3)与-3D。
|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。
A。
0个B。
1个C。
2个D。
3个4.下列图形不是正方体的展开图的是()A。
B。
C。
D。
5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。
据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。
5×1010千克B。
50×109千克C。
5×109千克D。
0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。
B。
C。
D。
9.下列结论正确的是()A。
直线比射线长B。
一条直线就是一个平角C。
过三点中的任两点一定能作三条直线D。
经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。
不赚不赔B。
亏12元C。
盈利8元D。
亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。
2017~2018学年上海普陀区初一上学期期末数学试卷(五四学制)(解析)
−2
−1
23. 计算: . 2 ()
−1
0
1
× 3 + (π − 2018) ÷ ( )
3
3
答案
. 13
12
解析
原式 9
1
= × +1÷3
4
3
3
1
=+
4
3
. 13
=
12
24. 解方程: x + 2 − 1 = 2 .
x−2
x2 − 4
答 案 . x = −1.5
解析
去分母得: , 2 x
+
4x
+
4
−
2
2
即 , 3 × 4
h=
= 2.4
5
∴四边形 的面积 . AC F B
1 = × (2.5 + 5) × 2.4 = 9
2
解答题
19. 计算: . (x + 3)(x + 1)(x − 3)
答案
. 3
2
x + x − 9x − 9
解析
原式= (x + 3)(x − 3)(x + 1)
2 = (x − 9)(x + 1)
2 x
+
4
=
2
解得:x = , −1.5
经检验x = −1.5 是原方程的解,
则原方程的解是x = −1.5 .
25. 如图是一个由边长为1的小正方形组成的10 × 10的正方形网格,
2018/12/11 (1) 在网格中画出将△ABC向右平移4个单位后的△A . 1B1C1
(2)
答案 解析
江汉区2017-2018学年度第一学期期末考试七年级数学试卷附答案
第1页 / 共9页江汉区2017-2018学年度第一学期期末考试七年级数学试题一、选择题(本大题共10小题,每题3分,共30分) 1.-3的倒数是A .3B .1-3C .13D .-32.单项式34xy z -的系数及次数分别是A .系数是0,次数是7B .系数是1,次数是8C .系数是-1,次数是7D .系数是-1,次数是83.武汉长江新城规划面积约600000000平方米,数600000000用科学记数法表示为 A .76010⨯ B .8610⨯ C .90.610⨯ D .660010⨯4.近似数0.960精确到A .千位B .千分位C .百分位D .万分位5.如图是由若干个小正方体所组成的几何体以及从上面看这个几何体所看到的图形,那么从左边看这个几何体时,所看到的几何图形是从上面看↓从正面看→从下面看↑A B C D6长方形的长为3a ,宽为2a -b ,则这个长方形的周长为A .10a -2bB .10a +2bC .6a -2bD .10a -b7.若a +b <0,且ab <0,则下列说法正确的是A .a ,b 异号,且负数的绝对值大B .a ,b 异号,且a >bC .a ,b 异号,且a b > D .a ,b 异号,且正数的绝对值大8.下列计算正确的是A .()33a b c d a b c d +-+-=++-B .()22a b c d a b c d --+-=+-+C .()223426a b c d a b c d --+-=++-D .()22747a b c d a b c d --+-=+-+第2页 / 共9页9. 有一些相同的房间需要粉刷墙面,一天四名一级技工去粉刷10个房间,结果其中有32㎡墙面未来得及粉刷;同样时间内7名二级技工粉刷了15个房间之外,还多粉刷了另外的4㎡墙面.每名一级技工比二级技工一天多粉刷10㎡墙面,设每个房间需要粉刷的墙面面积为x 平方米,下列方程正确的是A .10321541047x x +--=B .15410321074x x +--=C .10321541047x x -+-=D .15410321074x x -+-=10.下列说法:①画一条长为6cm 的直线;②若AC =BC ,则C 为线段AB 的中点;③线段AB 是点A 到点B 的距离;④OC ,OD 为∠AOB 的三等分线,则∠AOC =∠DO C . 其中正确的个数是A .0个B .1个C .2个D .3个二、填空题11.如果x =2是关于x 的方程112x a +=-的解,那么a 的值是______________12.计算:100°-46°17′= ______________13.若a -b =-7,c +d =3,则(b +c )-(a -d )的值是______________14.观察下图寻找规律,在e 处应填上的数字是______________ 1124713244481→→→→→→→→→e15.如果一个数的立方等于这个数的平方,那么这个数是_____________16.已知x ,y ,z 满足x +y =9,y +z =13,x +z =14,则x +2y -z =______________三、解答题 17.计算()()()139335--+⨯-+ ()()()228255485⎛⎫-+⨯---÷- ⎪⎝⎭18.解方程(组)()2531164x x---= ()4152323x y x y +=⎧⎨-=⎩19.先化简,再求值()()2222533a b ab ab a b--+,其中11,23 a b==.20. 列方程(组)解应用题有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,3辆大货车与5辆小货车一次可以运货多少吨?21.点A,B,C在同一直线上,AB=12,BC=4.(1)如图1,若点C在点A,B之间,求线段AC的长;(2)如图2,点C在线段AB的延长线上,点D在线段AC上,若AD+BD+CD=17.求CDA C BA B C第3页 / 共9页第4页 / 共9页四、填空题22. 将如图所示的长方形沿着AB 折叠得到图1,再把它沿着BD 折叠到图2,折叠后BE 正好落在直线BC 上,则以点B 为顶点的角中,互余的角有_______对,互补的角有_______对.图1 图223.现有1角、5角、1元的硬币各若干枚,从中取出9枚,共值3元,则1角的取_________枚,5角的取______________枚.24.数轴上有MN 两点,MN 之间的距离为2,点M 与原点之间的距离为4,则所有符合条件的点N 与原点的距离之和为_________________. 25.下列说法:①若m =n ,则am =an ;②若m =n ,则2222m na a =++;③若mx +5=nx +5,则m =n ; ④若m +n =1,则关于x 的方程mx +n =1的解为x =1;⑤若m +n +s =1,则x =1是关于x 的方程mx +n +s =1的解;⑥若mn =6,则关于x 的方程mx +m =6的解为x =n -1.其中错误的是_________________.(填序号五、解答题26.已知∠AO B .(1) 如图1,OC 是∠AOB 的平分线,D 是∠BOC 内一点,若∠AOC =5∠BOD ,∠AOB =150°,求∠AOD的度数;(2)OE 是∠AOB 的三等分线,T 是∠AOB 内部的一点,且∠BOT +∠EOA =∠AOT ,求∠AOB :∠TOB 的值.27.某自行车厂计划一年生产安装24000辆自行车.若1名熟练工和2名新工人每月一共可安装800辆自行车,EBBB2名熟练工和3名新工人每月一共可安装1400辆自行车.(1)每名熟练工和每名新工人每月分别可以安装多少辆自行车?(2)如果工厂招聘a(0<a<8)名新工人,使得新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,每名熟练工每月工资为8000元,每名新工人每月工资为5000元,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额最少?最少是多少?(不需过程,直接写结果)第5页 / 共9页28.在数轴上有M、N、Q三个动点,M,N,Q的速度分别为:2个单位/s,4个单位/s,8个单位/s(1)如图,如果M、N同时出发,相向而行,经过10s相遇,求出发前M、N之间的距离;(2)如图,如果M、N同时从原点出发沿数轴正方向运动,同时点Q从定点A出发沿数轴负方向运动,若点Q与M、N的相遇时间间隔为5s,求点A对应的数是多少?(3)如果MN=18,NQ=24,M、N、Q同时出发,沿数轴负方向运动,在N还没有追上M的这段时间内,当其中一点与另外两点之间的距离相等时,它们行驶的时间是多少?第6页 / 共9页第7页 / 共9页江汉区2017-2018学年度第一学期期末七年级数学试题参考答案10.内这样的点很多;③错,正确答案应该是线段AB 的长度是点A 到点B 的距离;④对的.二、填空题11.-2 12.135°43′ 13.10 14.149 15.0和1 16.4 14.解析:前三项的和是是第四项.16. 2x y z x y y z +-=++-,其中y z -是第一个式子减去第三个式子得到的. 三、解答题17.(1)原式=12 (2)原式=-3118.(1)13x = (2)33x y =⎧⎨=⎩19.原式化简得22126a b ab -,代值计算得23. 20.解:设一辆大货车一次可以运x 吨,设一辆小货车一次可以运y 吨,则3辆大货车与5辆小货车一次可以运货()35x y +吨.2315.55635x y x y +=⎧⎨+=⎩,解得42.5x y =⎧⎨=⎩则 35x y +=24.5 21.解:(1)AC =12-4=8CD =3或5(D 在B 点左边和右边两种情况) 四、填空题 22.3;523.一角5枚;五角3枚;一元1枚解析:设一角、五角、一元各需x y z 、、枚,则951030x+y+z x y z =⎧⎨++=⎩,因为x y z 、、为正整数,可以凑得531x y z =⎧⎪=⎨⎪=⎩24.解析:M 有4和-4,N 有2、6、-2、-6,与原点的距离和是16. 25.③④⑤26.(1)设∠BOD 为x °,则∠AOC =5x °,∠COD =4x °,∠AOB =10x =150°,解得x =15°,则∠AOD =9x =135°(2)如图1,设∠BOT =x ,∠EOT =y ,则∠AOE =2x +2y ,由∠BOT +∠EOA =∠AOT 可得x +2x +2y =2x +3y ,解得x =y ,则∠AOB :∠TOB =6:1如图2,设∠AOE =x ,∠BOT =y ,由∠BOT +∠EOA =∠AOT 可得∠EOT =y ,则∠BOE =2y =2x ,则∠AOB :∠TOB =3:1第8页 / 共9页27.解析:(1)设每名熟练工和每名新工人每月分别可以安装x 辆y 辆自行车则2800231400x y x y +=⎧⎨+=⎩,解得400200x y =⎧⎨=⎩(2)设抽调的熟练工有b 人,则200a +400b =1200,即a +2b =6,a =6-2b ,因为0<a <8,且a ,b 均为自然数,则有621012a a a b b b ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩三种方案. (3)方案一支出:5000×6=30000方案二支出:5000×2+8000×1=18000 方案三支出:5000×1+8000×2=21000 28.解析:(1)令MN 间的距离为a ,假设M 点为0,则N 点为a ,动点表示为: M :2t N : a -4tMN =6a t -,当t =10时,6a t -=0,则a =60 (2)设A 点对应的数是x ,则M 、N 、Q 的动点表示为: M :2t N :4t Q :x -8t MQ =10x t - NQ =12x t -设MQ 、NQ 分别相遇时,时间分别是1t ,2t ,即10x t -=0,12x t -=012,1012x x t t ==,可得51012x x-=,解得60x = (3)令M 为0,则N 是18,Q 是42,动点表示为: M :2t - N :18-4t Q :42-8t , MN =182t - N 追上M 需要的时间当182t -=0,即t =9秒.其中一点与另外两点之间的距离相等,这句话的含义可以理解为其中一个点是另外两个点的中点,即M ,N ,Q 分别为中点时,根据中点公式:18442822N Q t tM +-+-==2t =-,解得7.5t = 242822M Q t tN +-+-==184t =-,解得3t = 218422M N t tQ +-+-==428t =-,解得 6.6t = 当Q 追上M ,与M 重合或者Q 追上N ,与N 重合的时候也满足条件,即 QM =428(2)4260t t t ---=-=,解得7t = QN =428(184)2440t t t ---=-=,解得6t =第9页 / 共9页。
2017-2018学年重庆市沙坪坝区七年级(上)期末数学试卷(含解析)
2017-2018学年重庆市沙坪坝区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.在,﹣1,﹣4,0这四个有理数中,最小的有理数是()A.B.﹣1 C.﹣4 D.02.已知∠α的补角是65°,则∠α等于()A.125°B.115°C.75°D.65°3.关于单项式﹣y,下列说法正确的是()A.系数为3 B.次数为﹣C.次数为3 D.系数为4.如图,点C到直线AB的距离是()A.线段CA的长度B.线段CB的长度C.线段AD的长度D.线段CD的长度5.用四舍五入法,把3.14159精确到千分位,取得的近似数是()A.3.14 B.3.142 C.3.141 D.3.14166.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.7.已知点A、B、C分别是数轴上的三个点,点A表示的数是﹣1,点B表示的数是2,且B、C两点间的距离是A、B两点间距离的3倍,则点C表示的数是()A.11 B.9 C.﹣7 D.﹣7或118.2017年9月中俄“海上联合﹣2017”联演第二阶段演习在俄罗斯符拉迪沃斯托克举行,位于点O处的军演指挥部观测到军舰A位于点O的北偏东70°方向,同时观测到军舰B位于点O处的南偏西15°方向,那么∠AOB的大小是()A.85°B.105°C.115°D.125°9.当x=﹣1时,代数式ax2+bx+1的值为﹣1,则(1+a﹣b)(1﹣a+b)的值为()A.﹣3 B.﹣1 C.1 D.310.如图,直线a∥b,一块直角三角板放置在如图所示的位置.若∠1=35°,则∠2的度数是()A.115°B.125°C.135°D.145°11.如图图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有9个,第(2)个图形中面积为1的正方形有14个,…,按此规律.则第(9)个图形中面积为1的正方形的个数为()A.49 B.45 C.54 D.5012.如图,已知直线AB∥CD,直线EF分别与AB、CD交于点M、N,点H在直线CD上,HG⊥EF于点G,过点作GP∥AB.则下列结论:①∠AMF与∠DNF是对顶角;②∠PGM=∠DNF;③∠BMN+∠GHN=90°;④∠AMG+∠CHG=270°.其中正确结论的个数是()A.1个B.2 个C.3个D.4个二、填空题(每小题4分,共24分)13.7的相反数是.14.十九大传递出许多值得我们关注的数据,如全国注册志愿团体近390000个.将数据390000用科学记数法表示为.15.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为.16.将多项式5x2y+y3﹣3xy2﹣x3按x的升幂排列为.17.如图,∠AOB:∠BOC:∠COD=2:3:4,射线OM、ON分别平分∠AOB与∠COD,又∠MON=90°,则∠AOB为度.18.将1,3,5,…,199,这100个自然数任意分成50组,每组两个数,将其中一个数记为x,另一个数记为y,代入代数式(|x+y|﹣|x﹣y|)中计算,求出其结果,50组都代入后可得50个值,则这50个值的和的最小值是.三、解答题(共78分)19.(8分)计算:(1)5+3×(﹣2)﹣(﹣4)(2)2(3x﹣1)﹣4x+320.(8分)如图,平面上两点C、D在线段AB两侧.(1)作线段CD;(2)作射线AD;(3)作直线CE∥AD交线段AB于E;(4)在括号中填上适当的理由:∵CE∥AD(已知),∴∠ECD=∠CDA21.(10分)计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|22.(10分)先化简,再求值:﹣3(ab﹣2a2)﹣[2b2﹣(5ab+a2)+2ab]﹣4a2,其中a=﹣2,b=123.(10分)2017年9月11日,以“绿色生活•从你我做起”为主题的重庆市第四届生态文明知识竞赛活动正式启动.某校组织全校学生参与后,王老师抽取了班上第一大组8名学生的成绩,若以80分为标准,超过的分数用正数表示,不足的分数用负数表示,成绩记录如下:﹣3,+7,﹣12,+18,+6,﹣5,﹣21,+14(1)最高分比最低分多多少分?第一大组平均每人得多少分?(2)若规定:成绩高于80分的学生操行分每人加3分,成绩在60~80分的学生操行分每人加2分,成绩在60分以下的学生操行分每人扣1分,那么第一大组的学生共加操行分多少分?24.(10分)如图,∠AEM+∠CDN=180°,EC平分∠AEF.(1)若∠EFC=62°,求∠C的度数;(2)若CE⊥MN,垂足为点E,求证:∠FDE=∠FED.25.(10分)把几个数或代数式用大括号括起来,中间用逗号分开,如:{﹣3,6,12},{x,x2y,2x﹣y},我们称之为集合,其中大括号内的数或代数式叫做集合的元素.如果一个集合满足:只要其中有一个元素x,使得﹣2x+1也是这个集合的元素,这样的集合我们称为关联集合,其中元素﹣2x+1叫做条件元素.例如:集合{6,﹣1,3},因为(﹣2)×(﹣1)+1=3,3恰好也是这个集合的元素,所以{6,﹣1,3}是关联集合,其中元素3叫做条件元素;例如:集合{,﹣5},因为(﹣2)×+1=,恰好也是这个集合的元素,所以{,﹣5}是关联集合,其中元素叫做条件元素.(1)试说明集合{﹣,}和集合{﹣ab2+1,}都是关联集合;(2)若集合{xy﹣y2,A}和集合{x2+,B}都是关联集合,其中A、B是条件元素,求A﹣B.26.(12分)已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD∥AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB之间的数量关系(不需证明).参考答案与试题解析1.【解答】解:如图所示,,由图可知,最小的有理数数﹣4.故选:C.2.【解答】解:∵∠α的补角是65°,∴∠α=180°﹣65°=115°.故选:B.3.【解答】解:单项式﹣y的系数为:﹣,次数为:3.故选:C.4.【解答】解:因为CD⊥AB,所以点C到直线AB的距离是线段CD的长度.故选:D.5.【解答】解:把3.14159精确到千分位约为3.142,故选:B.6.【解答】解:从左面看可得到从左到右分别是2,1个正方形.故选:A.7.【解答】解:如图所示:∵点A表示的数是﹣1,点B表示的数是2,∴A、B两点间距离为3,∵B、C两点间的距离是A、B两点间距离的3倍,∴BC=9,故点C表示的数是:﹣7或11.故选:D.8.【解答】解:∠AOB=90°﹣70°+90°+15°=125°,故选:D.9.【解答】解:由题意得:当x=﹣1时,a﹣b+1=﹣1,可得a﹣b=﹣2,将a﹣b=﹣2代入(1+a﹣b)(1﹣a+b)得原式=(1﹣2)×(1+2)=﹣3.故选:A.10.【解答】解:∵∠1=35°,∴∠3=35°,∴∠4=180°﹣35°﹣90°=55°,∴∠2=180°﹣55°=125°,故选:B.11.【解答】解:第1个图形面积为1的小正方形有9个,第2个图形面积为1的小正方形有9+5=14个,第3个图形面积为1的小正方形有9+5×2=19个,…第n个图形面积为1的小正方形有9+5×(n﹣1)=5n+4个,所以第(9)个图形中面积为1的小正方形的个数为5×9+4=49个.故选:A.12.【解答】解:①∠AMF与∠DNF不是对顶角,错误;②∵PG∥AB,AB∥CD,∴PG∥CD,∴∠PGM=∠GNH,∵∠GNH=∠DNF,∴∠PGM=∠DNF,正确;③∵AB∥PG∥CD,∴∠BMN=∠MGP,∠PGH=∠GHN,∵∠MGP+∠PGH=90°,∴∠BMN+∠GHN=90°,正确;④∵AB∥CD∥PG,∴∠AMG+∠MGP=180°,∠CHG+∠PGH=180°,∵∠MGP+∠PGH=90°,∴∠AMG+∠CHG =180°+180°﹣90°=270°,正确;故选:C.13.【解答】解:7的相反数是:﹣7.故答案为:﹣7.14.【解答】解:390000=3.9×105,故答案为:3.9×105.15.【解答】解:∵AB=4,BC=2AB=8,∴AC=AB+BC=4+8=12,∵D是AC的中点,∴AD=AC=×12=6,∴BD=AD﹣AB=6﹣4=2.故答案为:2.16.【解答】解:按x的升幂排列为y3﹣3xy2+5x2y﹣x3,故答案为:y3﹣3xy2+5x2y﹣x3.17.【解答】解:设∠AOB=2x°,则∠BOC=3x°,∠COD=4x°,∵射线OM、ON分别平分∠AOB与∠COD,∴∠BOM=∠AOB=x°,∠CON=∠COD=2x°,又∵∠MON=90°,∴x+3x+2x=90,x=15,∴∠AOB=15°×2=30°.故答案为:30°.18.【解答】解:最小值为1250.理由如下:假设x>y,则(|x+y|﹣|x﹣y|)=(x+y﹣x+y)=y,所以,当50组中的较小的数y恰好是1,3,5,…,99时,这50个值的和最小,最小值为×(1+3+5+…+99)=×=1250.故答案为:1250.19.【解答】解:(1)原式=5﹣6+4=3;(2)原式=6x﹣2﹣4x+3=2x+1.20.【解答】解:(1)如图,线段CD为所作;(2)如图,射线AD为所作;(3)如图,直线CE为所作;(4)∵CE∥AD(已知),∴∠ECD=∠CDA(两直线平行,内错角相等).故答案为两直线平行,内错角相等.21.【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.22.【解答】解:原式=﹣3ab+6a2﹣(2b2﹣5ab﹣a2+2ab)﹣4a2=﹣3ab+6a2﹣2b2+5ab+a2﹣2ab﹣4a2=3a2﹣2b2;把a=﹣2,b=1代入3a2﹣2b2=3×(﹣2)2﹣2×12=12﹣2=10.23.【解答】解:(1)最高分比最低分多(+18)﹣(﹣21)=39分;80+(﹣3+7﹣12+18+6﹣5﹣21+14)=80.5,即第一大组平均每人得80.5分;(2)∵成绩高于80分的学生有4人,成绩在60~80分的学生有3人,成绩在60分以下的学生有1人,∴4×3+3×2﹣1=17,即第一大组的学生共加操行分17分.24.【解答】解:(1)∵∠AEM+∠CDN=180°,∵∠FDE+∠CDN=180°,∴∠AEM=∠FDE,∴AB∥CD,∴∠ECF=∠AEC,∵EC平分∠AEF.∴∠AEC=∠CEF,∵∠EFC=62°,∴∠C=;(2)∵CE⊥MN,∴∠CEF+∠FED=90°,∠ECF+∠EDF=90°,∵∠CEF=∠ECF,∴∠FED=∠EDF.25.【解答】解:(1)(﹣)×(﹣2)+1=,恰好也是集合的元素,∴{﹣,}是关联集合;(ab2)×(﹣2)+1=﹣ab2+1,﹣ab2+1恰好也是集合的元素,∴{﹣ab2+1,}是关联集合;(2)∵集合{xy﹣y2,A}和集合{x2+,B}都是关联集合,A、B是条件元素,∴A=﹣2(xy﹣y2)+1=﹣2xy+2y2+1或A=﹣2A+1,∴A=﹣2xy+2y2+1或A=;B=﹣2(x2+)+1或B=﹣2B+1,∴B=﹣2x2﹣xy+2y2+1或B=;∴A﹣B=2x2﹣xy或A﹣B=﹣2xy+2y2+或A﹣B═2x2+xy﹣2y2﹣或A﹣B=0.26.【解答】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=∠CDB,∠CDE=∠CDO,∴∠EDF=(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.。
湖北省武汉市江岸区2017-2018学年七年级上学期数学期末考试试卷及参考答案
(1) 如图,当m=4,求线段BM的长度(写清线段关系) (2) 在直线l上一点D,CD=n<m,用m、n表示线段DM的长度. 22. 为了准备“迎新”汇演,七(1)班学生分成甲乙两队进行几天排练.其中甲队队长对乙队队长说:你们调5人来我们 队,则我们的人数和你们的人数相同;乙队队长跟甲队队长说:你们调5人来我们队,则我们的人数是你们的人数的3倍. (1) 请根据上述两位队长的交谈,求出七(1)班的学生人数; (2) 为了增强演出的舞台效果,全部学生需要租赁演出服装,班主任到某服装租赁店了解到:多于20套、少于50套
三、解答题
17. 计算题: (1)
(2)
.
18. 解方程: -1= .
19. 化简求值:
其中a= ,b=-2.
20. 盛盛同学到某高校游玩时,看到运动场的宣传栏中的部分信息(如下表):
院系篮球赛成绩公告
比赛场次
胜场
负场
积分
22
12
10
34
22
14
8
36
22
0
22
22
盛盛同学结合学习的知识设计了如下问题,请你帮忙完成下列问题:
A.0B. C.1D.2
4. 三棱锥有( )个面
A.3B.4C.5D.6
5. 下列变形中错误的是( )
A . 如果
,那么
B . 如果
,那么
) C . 如果
,那么
D . 如果
6. 已知∠1=α<90°,则∠1的补角比∠1的余角大( )度 A . α B . 90°-α C . 90 D . 180°-2α 7. 小华在小凡的南偏东30°方位,则小凡在小华的( )方位 A . 南偏东60° B . 北偏西30° C . 南偏东30° D . 北偏西60° 8. 在所给的图上补充一个黑色小正方形,使它折叠后能围成一个正方体,下列补充正确的是( )
2017-2018学年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)
2017-2018学年湖北省武汉市黄陂区七年级(上)数学期末试卷一、选择题(本大题共10小题,共30.0分)1.一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作()A. B. C. D.2.如图,数轴上有A,B,C,D四个点,其中所对应的数互为相反数的是()A. A与CB. A与DC. B与CD. B与D3.单项式-2x3y的系数为()A. B. 1 C. 2 D. 34.下列各式错误的是()A. B. C. D.5.如图所示,这个圆锥的侧面展开图可能是()A.B.C.D.6.已知a=b,下列变形不一定成立的是()A. B. C. D.7.买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x米,依题意列方程()A. B.C. D.8.如图,将三角形纸片ABC沿EF折叠,点C落在C′处.若∠BFE=65°,则∠BFC′的度数为()A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.(1)观察积分榜,请直接写出球队胜一场积______分,负一场积______分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N 从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t 的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷921.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.9.【答案】C【解析】解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确.故选:A.根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题.11.【答案】-2【解析】解:-的倒数是-2.故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°.故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数.13.【答案】三三 5【解析】解:因为多项式的最高次项是3a2b,由三个单项式的和组成,所以多项式3a2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.21.【答案】解:(1)2(x+3)=5x,去括号,得:2x+6=5x,移项合并同类项,得3x=6,化系数为1,得x=2;(2)1-,去分母,得10-x=4x+8,移项合并同类项,得5x=2,化系数为1,得.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】解:设安排甲制作x天,则安排乙制作(60-x)天,依题意列方程:50x=25(60-x)解得x=20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x天,则乙种零件应制作(60-x)天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】或【解析】解:(1)补图如图,∵BC=AB,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C近,所以需要分两种情况讨论:①点F靠点B近,BF=;②点F靠点B近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD平分∠BOC,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°;②∵OP平分∠AOC,OQ平分∠BOD,∴∠AOP=∠AOC,∠BOQ=∠BOD,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD=∠AOB+15°=64°+15°=79°;(2)如图1,∵OP,OQ分别是∠AOC和∠BOD平分线,∴∠COP=∠AOC,∠DOQ=∠BOD,∴∠COP+∠DOQ=(∠AOC+∠BOD)=(∠AOB-∠COD)=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°;如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC,∵OP,OQ分别是∠AOC和∠BOD平分线,∴∠COP=∠AOC,∠BOQ=∠BOD,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD)+∠BOC=100°,故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC的度数;②根据角平分线的定义得到∠AOP=∠AOC,∠BOQ=∠BOD,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD,从而得到∠POQ的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。
镇江市2017-2018学年七年级(上)期末数学试卷(解析版)
镇江市2017-2018学年七年级(上)期末数学试卷一、填空题(每小题2分,共24分)1.﹣3的相反数是.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为.3.方程2x+a=2的解是x=1,则a=.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是元.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=°.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:;(4)点C到直线AB的距离是线段的长度.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5超出80m3不超出130m3的部分a超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=°,∠DOE=°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=°,∠DOE=°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题2分,共24分)1.﹣3的相反数是3.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.移动互联网已经全面进入人们的日常生活.截止2017年12月,全国4G用户总数947000 000,这个数用科学记数法表示为9.47×108.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:947000 000=9.47×108.故答案为:9.47×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.方程2x+a=2的解是x=1,则a=0.【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:将x=1代入方程,得:2+a=2,解得:a=0,故答案为:0.【点评】本题考查了一元一次方程的解,本题关键是理解方程解的意义:使方程左右两边相等的未知数的值.4.某超市举办促销活动,全场商品一律打八折,小强买了一件商品比标价少付了20元,那么这件商品的标价是100元.【分析】设这件商品的标价是x元,根据标价﹣实际付款钱数=20,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这件商品的标价是x元,根据题意得:x﹣0.8x=20,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.5.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.长方体的主视图与俯视图如图所示,则这个长方体的体积是36.【分析】根据所给的三视图判断出长方体的长、宽、高,再根据体积公式进行计算即可.【解答】解:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和3,因此这个长方体的长、宽、高分别为4、3、3,则这个长方体的体积为4×3×3=36.故答案为:36.【点评】此题考查了三视图判断几何体,注意:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3=150°.【分析】根据∠1和∠2互为余角,∠1=60°,求得∠2的度数,然后根据∠2与∠3互补,得出∠3=180°﹣∠2.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故答案为:150°.【点评】本题考查了余角和补角的知识,属于基础题,解答本题的关键是掌握互余两角之和为90°,互补两角之和为180°.8.如图,OA⊥OC,∠BOC=50°,若OD平分∠AOC,则∠BOD=95°.【分析】首先根据角平分线的定义求出∠COD的度数,进而求出∠BOD的度数.【解答】解:∵∠AOC=90°,∵OD平分∠AOC,∴∠COD=∠AOC=×90°=45°.∵∠BOC=50°∴∠BOD=∠COD+∠BOC=45°+50°=95°.故答案为95【点评】本题考查了角度的计算,正确理解角平分线的定义,求得∠COD是关键.9.如图,C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,则线段EF的长度为3.【分析】根据数轴和题意可以求得EF的长,本题得以解决.【解答】解:∵C为线段AB上一点,AB=6,若点E、F分别是线段AC、CB的中点,∴AE=EC=AC,CF=BF=CB,∵AC+CB=AB,∴EC+CF=AB=3,即EF=3,故答案为:3.【点评】本题考查两点间的距离,解答本题的关键是明确题意,利用数轴的知识解答.10.已知关于x的方程(k﹣1)x|k|﹣1=0是一元一次方程,则k的值为﹣1.【分析】根据一元一次方程定义可得:|k|=1,且k﹣1≠0,再解即可.【解答】解:由题意得:|k|=1,且k﹣1≠0,解得:k=﹣1,故答案为:﹣1.【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.11.已知∠AOB=50°,以O为顶点,OB为一边作∠BOC=20°,则∠AOC的度数为30°或70°.【分析】考虑两种情形:①当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,②当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°.【解答】解:如图.当OC在∠AOB内部时,∠AOC=∠AOB﹣∠AOC=50°﹣20°=30°,当OC在∠AOB外部时,∠AOC=∠AOB+∠BOC=50°+20°=70°,故答案为30°或70°.【点评】本题考查角的计算、解题的关键是学会正确画出图形,注意有两种情形,属于中考常考题型.12.点A1、A2、A3、…、A n(n为正整数)都在数轴上.点A2在点A1的左边,且A1A2=1;点A3在点A2的右边,且A2A3=2;点A4在点A3的左边,且A3A4=3;…,点A2018在点A2017的左边,且A2017A2018=2017,若点A2018所表示的数为2018,则点A1所表示的数为3027.【分析】根据题意得出规律:当n为奇数时,A n﹣A1=,当n为偶数时,A n=A1﹣,把n=2018代入求出即可.【解答】解:根据题意得:当n为奇数时,A n﹣A1=,当n为偶数时,A n﹣A1=﹣,2018为偶数,代入上述规律A2018﹣A1=﹣=﹣1009解得A1=3027.故答案为:3027.【点评】此题考查数字的变化规律,找出数字之间的联系,利用运算规律解决问题.二、选择题(每小题3分,共15分)13.如图,下列图案分别是一些汽车的车标,其中,可以看作由平移得到的是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过旋转得到,故本选项错误;B、通过轴对称得到,故本选项错误;C、通过平移得到,故本选项正确;D、通过旋转得到,故本选项错误.故选:C.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.14.下列各组单项式中,是同类项一组的是()A.3x2y与3xy2B.2abc与﹣3ac C.2xy与2ab D.﹣2xy与3yx【分析】根据同类项是字母项相同且相同字母的指数也同,可得答案.【解答】解:A、相同字母的指数不同,故A错误;B、字母不同不是同类项,故B错误;C、字母不同不是同类项,故C错误;D、字母项相同且相同字母的指数也同,故D正确;故选:D.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°【分析】根据题中的方位角,确定出所求角度数即可.【解答】解:根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点评】此题考查了方向角,解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.16.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.17.规定一种新运算“☆”,a☆b=a2﹣2b,则﹣3☆(﹣1)的值为()A.11B.8C.7D.﹣7【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=9+2=11,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共81分)18.(8分)计算:(1)(2)﹣22+3×(﹣1)2016﹣9÷(﹣3)【分析】(1)原式利用绝对值的代数意义,以及减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=+﹣3=2﹣3=﹣1;(2)原式=﹣4+3+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.(10分)解方程:(1)5x﹣2=﹣3(x﹣2)(2)【分析】(1)直接移项合并同类项进而解方程即可;(2)首先去分母,进而移项合并同类项得出答案.【解答】解:(1)5x﹣2=﹣3(x﹣2)去括号得:5x﹣2=3x﹣6,移项得:5x﹣3x=﹣6+2,合并同类项得:2x=﹣4,系数化为1得:x=﹣2;(2)1﹣=去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项得:﹣2x﹣4x=2﹣6﹣1,合并同类项得:﹣2x=﹣5,系数化为1得:x=2.5.【点评】此题主要考查了解一元一次方程,正确掌握基本解题步骤是解题关键.20.(6分)先化简,后求值:(3a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a+1|+(2﹣b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab,∵|a+1|+(2﹣b)2=0.∴a+1=0,2﹣b=0,即a=﹣1,b=2,当a=﹣1,b=2时,原式=(﹣1)2﹣8×(﹣1)×2=17.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)(1)由大小相同的小立方块搭成的几何体如图1,请在如图的方格中画出该几何体的俯视图和左视图.(2)在左视图和俯视图不变的情况下,你认为最多还可以添加2个小正方体.【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可.【解答】解:(1)如图所示:(2)由俯视图易得最底层有4个小立方块,第二层最多有3个小立方块,所以最多有2个小立方块.故答案为:2.【点评】考查了作图﹣三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.22.(7分)利用网格画图:(1)过点C画AB的平行线;(2)过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,CE线段最短,理由:垂线段最短;(4)点C到直线AB的距离是线段的长度.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(3)根据三角形的面积的两种求法,构建方程即可解决问题;【解答】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;=•AB•CE,(4)∵S△ABC∴18﹣×1×5﹣×1×3﹣×2×6=×2×CE,∴CE=.,【点评】本题考查作图﹣应用与设计,垂线段最短、勾股定理、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(7分)一快递员骑摩托车需要在规定的时间内把快递送到某地,若每小时行驶40km,就早到12分钟;若每小时行驶30km,就要迟到8分钟.求快递员所要骑行的路程.【分析】设送件的规定时间为x小时,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出x的值,再利用路程=速度×时间,即可求出快递员所要骑行的路程.【解答】解:设送件的规定时间为x小时,根据题意得:40(x ﹣)=30(x +),解得:x=,∴40×(﹣)=40(千米).答:快递员所要骑行的路程为40千米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)如图,M是线段AC的中点,点B在线段AC上,且AB=4cm,BC=2AB,求线段MC和线段BM的长.【分析】先根据AB=4cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC 中点求出MC及AM,再由BM=AM﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB,∴BC=8cm,∴AC=AB+BC=4+8=12cm,∵M是线段AC中点,∴MC=AM=AC=6cm,∴BM=AM﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(8分)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出80m3的部分 2.5a超出80m3不超出130m3的部分超出130m3的部分a+0.5(1)若甲用户3月份用气125m3,缴费335元,求a的值;(2)在(1)的条件下,若乙用户3月份缴费392元,则乙用户3月份的用气量是多少?【分析】(1)根据应缴费用=80×2.5+超出80m3部分×a,即可得出关于a的一元一次方程,解之即可得出结论;(2)设乙用户3月份的用气量是xm3,由80×2.5+(130﹣80)×3=350<392可得出x >130,根据应缴费用=80×2.5+(130﹣80)×3+超出130m3部分×(3+0.5),即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:80×2.5+(125﹣80)a=335,解得:a=3.答:a的值为3.(2)设乙用户3月份的用气量是xm3,根据题意得:80×2.5+(130﹣80)×3+(x﹣130)×(3+0.5)=392,解得:x=142.答:乙用户3月份的用气量是142m3.【点评】本题考查了一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.26.(9分)如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠AOC=20°,∠AOB=110°,则∠BOC=90°,∠DOE=45°;(2)若∠AOC=m°,∠AOB=n°(n>m),则∠BOC=(n﹣m)°,∠DOE=(n﹣m)°;(3)猜想:∠DOE与∠BOC有怎样的数量关系?并说明理由.【分析】(1)依据AOC=20°,∠AOB=110°,可得∠BOC=110°﹣20°=90°;再根据OD、OE 分别平分∠AOB、∠AOC,即可得到∠DOE的度数;(2)依据∠AOC=m°,∠AOB=n°,可得∠BOC=n°﹣m°=(n﹣m)°;再根据OD、OE分别平分∠AOB、∠AOC,可得∠AOD=n°,∠AOE=m°,进而得出∠DOE的度数;(3)依据OD、OE分别平分∠AOB、∠AOC,即可得出∠AOD=∠AOB,∠AOE=∠AOC,进而得到∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【解答】解:(1)∵∠AOC=20°,∠AOB=110°,∴∠BOC=110°﹣20°=90°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=55°,∠AOE=10°,∴∠DOE=55°﹣10°=45°;故答案为:90,45;(2)∵∠AOC=m°,∠AOB=n°,∴∠BOC=n°﹣m°=(n﹣m)°;∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=n°,∠AOE=m°,∴∠DOE=∠AOD﹣∠AOE=(n﹣m)°;故答案为:(n﹣m),(n﹣m);(3)∠DOE=∠BOC.证明:∵OD、OE分别平分∠AOB、∠AOC,∴∠AOD=∠AOB,∠AOE=∠AOC,∴∠DOE=∠AOD﹣∠AOE=(∠AOB﹣∠AOC)=∠BOC.【点评】本题考查了角的平分线定义和角的有关计算的应用,主要考查学生计算能力和推理能力,求解过程类似.27.(12分)如图,已知数轴上点A表示的数为10,点B在点A左边,且AB=18.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.①问点P运动多少秒时追上点Q?②问点P运动多少秒时与点Q相距4个单位长度?并求出此时点P表示的数;(3)若点P、Q以(2)中的速度同时分别从点A、B向右运动,同时点R从原点O以每秒7个单位的速度向右运动,是否存在常数m,使得2QR+3OP﹣mOR为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【分析】(1)根据两点间的距离公式,以及路程=速度×时间即可求解;(2)①根据时间=路程差÷速度差,列出算式计算即可求解;②分两种情况:相遇前相距4个单位长度;相遇后相距4个单位长度;进行讨论可求点P表示的数;(3)表示出2QR+3OP﹣mOR,求得m值以及2QR+3OP﹣mOR的定值.【解答】解:(1)数轴上点B表示的数为10﹣18=﹣8,点P表示的数为10﹣5t;(2)①18÷(5﹣3)=9(秒).故点P运动9秒时追上点Q;②相遇前相距4个单位长度,(18﹣4)÷(5﹣3)=7(秒),10﹣7×5=﹣25,则点P表示的数为﹣25;相遇后相距4个单位长度,(18+4)÷(5﹣3)=11(秒),10﹣11×5=﹣45,则点P表示的数为﹣45;(3)设t秒后2QR+3OP﹣mOR为定值,由题意得,2QR+3OP﹣mOR=2×[7t﹣(3t﹣8)]+3(10+5t)﹣7mt=(23﹣7m)t+46,∴当m=时,2QR+3OP﹣mOR为定值46.【点评】本题考查的是一元一次方程的应用、数轴的应用,根据题意正确列出一元一次方程、灵活运用分情况讨论思想是解题的关键.。
湖南省长沙市-七年级(上)期末数学试卷(含答案)
2017-2018学年湖南省长沙市南雅、中雅中学七年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共9小题,共27。
0分)1.据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为()A。
16.82×1010B。
0.1682×1012C。
1.682×1011 D. 1.682×1012 2.如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A。
60∘B. 80∘C. 50∘D。
130∘3.下列解方程步骤正确的是()A. 由2x+4=3x+1,得2x−3x=1+4B. 由7(x−1)=3(x+3),得7x−1=3x+3C. 由0.2x−0.3=2−1.3x,得2x−3=2−13xD. 由x−13−x+26=2,得2x−2−x−2=124.在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A. 3(52−x)=38+xB. 52+x=3(38−x)C. 52−3x=38+x D。
52−x=3(38−x)5.下列各式正确的是()A。
19a2b−9ab2=10a2b B. 3x+3y=6xyC. 16y2−7y2=9D. 2x−5x=−3x6.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方形叠成.A 。
86B 。
87C 。
85D 。
847. 如图,C 是AB 的中点,D 是BC 的中点,下列等式不正确的是( )A. CD =AD −BCB. CD =AC −DBC. CD =13ABD. CD =12AB −DB8. 如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A. 雅B 。
浙江省宁波市镇海区2017-2018学年七年级(上)期末数学试卷(含解析)
2017-2018学年七年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分,选错、多选、不选都给0分)1.﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣2.下列运算正确的是()A.=±2 B.﹣|﹣4|=4 C.(﹣2)3=﹣8 D.﹣32=93.实施西部大开发战略是党中央面向21世纪的重大决策,西部地区面积约为640万平方千米,用科学记数法表示我国西部地区的领土面积为多少平方千米()A.64×105B.640×104C.6.4×107D.6.4×1064.化简m+n﹣(n﹣m)的结果为()A.2m﹣2n B.﹣2m C.2m D.﹣2n5.下面四个等式的变形中正确的是()A.由4x+8=0得x+2=0 B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣6 6.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线7.如图,面积为5的正方形ABCD的顶点A在数轴上,且表示的数为1,若AD=AE,则数轴上点E所表示的数为()A.B.C.D.8.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利进价的20%.若设这种服装每件的进价是x元,请列出关于x的方程是()A.1000×85%﹣40=20%xB.(1000﹣40)×85%﹣x=20%xC.1000×85%﹣40﹣x=20%×1000D.1000×85%﹣40=(1+20%)x9.在代数式xy2中,x和y的值各减少25%,则该代数式的值减少了()A.50% B.75% C.D.10.如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图长方形的面积S2的比是多少?()A.2:3 B.1:2 C.3:4 D.1:1二、填空题(每小题2分,共16分)11.度数是60°30′角的余角是度.12.在,﹣(+5),,0,π,,0.303003000中,无理数有个.13.已知一个数的一个平方根是﹣3,求它另一个平方根是.14.如果方程3x+4=0与方程3x+4k=20是同解方程,则k=.15.若2xy2n与3x3m y2是同类项,则(m﹣n)2值是.16.如图,AB、CD交于O,OD平分∠EOB,如果∠BOC的度数是150°,则∠AOE的度数是度.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.某天,张老师给任教的一班40人,二班41人,共计81人出了这么一个题:如果一班在前,二班在后,按学号(从小到大)排成一个长列,从前往后“1,2,3”“1,2,3”“1,2,3”……报数,报到1和3的同学出列,报到2的同学到队尾继续参与报数,最后选定剩余的那位同学为两个班级的总数学课代表,那么请问张老师选择的总课代表是班号.(填哪个班级,多少学号)三、动脑想一想,你一定会获得成功的!(本大题共有7小题,共54分,)19.计算:(1)(﹣3)2﹣(﹣2)3×|1﹣|(2)﹣(+4)20.先化简,再求值3(a2b﹣ab2)﹣2(2a2b﹣1)+3ab2﹣1,其中a=﹣2,b=1.21.解下列方程:(1)5x=8+2(x﹣1)(2)3x﹣22.用量角器和三角板按下列要求完成作图,并回答问题:如图,P为射线OA上方的一点.(1)在OA的上方,画∠AOB=76°;(2)作射线OP;(3)分别作∠BOP和∠AOP的角平分线OC、OD;①请计算∠COD的度数(写出计算过程,度量出来不得分);②画出表示点P到OA的距离的线段,并测量点P到OA的距离(精确到1mm).23.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?24.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为10元/千克,批发价各不相同、A家规定;批发数量不超过1000千克,全部按零售价的90%优惠:批发数量过1000千克但不超过2000千克,全部按零售价的88%优惠;批发数量超过2000千克,全部按零售价的86%优惠,B家的规定如下表【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则B家总费用=10×95%×500+10×85%×1000+10×75%×(2100﹣1500)】(1)如果他批发1000千克苹果,则他在A家批发需要元,在B家批发需要元.(2)如果他批发x千克苹果(1000<x≤1500),则他在A家批发需要元,在B 家批发需要元(用含x的代数式表示);(3)如果知道他批发的苹果数量大于1000千克,但不超过2000千克,且他在B家购买比在A家购买要少花340元,你能知道他买了多少千克苹果吗?请你计算.25.已知数轴上有两点A、B,点A对应的数为﹣10,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A、点B的距离之和为18?若存在,请求出x的值:若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P、Q分别从A、B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示)②t为何值时,MN距离为4?参考答案与试题解析一.选择题(共10小题)1.﹣2018的相反数是()A.2018 B.﹣2018 C.D.﹣【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2018的相反数是2018.故选:A.2.下列运算正确的是()A.=±2 B.﹣|﹣4|=4 C.(﹣2)3=﹣8 D.﹣32=9【分析】根据算术平方根、绝对值、乘方的运算法则逐一计算可得.【解答】解:A、=2,此选项计算错误;B、﹣|﹣4|=﹣4,此选项错误;C、(﹣2)3=﹣8,此选项计算正确;D、﹣32=﹣9,此选项计算错误;故选:C.3.实施西部大开发战略是党中央面向21世纪的重大决策,西部地区面积约为640万平方千米,用科学记数法表示我国西部地区的领土面积为多少平方千米()A.64×105B.640×104C.6.4×107D.6.4×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:640万平方千米,用科学记数法表示我国西部地区的领土面积为6.4×106平方千米.故选:D.4.化简m+n﹣(n﹣m)的结果为()A.2m﹣2n B.﹣2m C.2m D.﹣2n【分析】原式去括号合并即可得到结果.【解答】解:原式=m+n﹣n+m=2m,故选:C.5.下面四个等式的变形中正确的是()A.由4x+8=0得x+2=0 B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣6 【分析】根据等式的性质逐个进行判断即可.【解答】解:A、由4x+8=0方程两边都除以4即可得出x+2=0,故本选项正确;B、由x+7=5﹣3x可得4x=﹣2,故本选项错误;C、由x=4可得x=,故本选项错误;D、由﹣4(x﹣1)=﹣2可得4x=6,故本选项错误;故选:A.6.如图,用剪刀沿直线将一片平整的树叶剪掉一部分,则剩下的树叶周长小于原树叶的周长,能解释这一现象的数学道理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.经过一点有无数条直线【分析】根据线段的性质解答即可.【解答】解:用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间,线段最短,故选:B.7.如图,面积为5的正方形ABCD的顶点A在数轴上,且表示的数为1,若AD=AE,则数轴上点E所表示的数为()A.B.C.D.【分析】根据正方形的边长是面积的算术平方根得AD=AE=,结合A点所表示的数及AE间距离可得点E所表示的数.【解答】解:∵正方形ABCD的面积为5,且AD=AE,∴AD=AE=,∵点A表示的数是1,且点E在点A左侧,∴点E表示的数为:1﹣.故选:B.8.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利进价的20%.若设这种服装每件的进价是x元,请列出关于x的方程是()A.1000×85%﹣40=20%xB.(1000﹣40)×85%﹣x=20%xC.1000×85%﹣40﹣x=20%×1000D.1000×85%﹣40=(1+20%)x【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,100×85%﹣40=x(1+20%),故选:D.9.在代数式xy2中,x和y的值各减少25%,则该代数式的值减少了()A.50% B.75% C.D.【分析】在代数式xy2中,x和y的值各减少25%,则可知x′=x,y′=y,所以有x′(y′)2=(x)×(y)2=xy2,则该代数式的值减少了.【解答】解:∵在代数式xy2中,x和y的值各减少25%,∴知x′=x,y′=y,∴x′(y′)2=(x)×(y)2=xy2,∴该代数式的值减少了.故选:C.10.如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图长方形的面积S2的比是多少?()A.2:3 B.1:2 C.3:4 D.1:1【分析】本题需先设图(1)中长方形的长为acm,宽为bcm,图(2)中长方形的宽为xcm,长为ycm,再结合图形分别得出图形(3)的阴影周长和图形(4)的阴影周长,相等后列等式可得:a=2y,x=3b,最后根据长方形面积公式可得结论.【解答】解:设图(1)中长方形的长为acm,宽为bcm,图(2)中长方形的宽为xcm,长为ycm,由两个长方形ABCD的AD=3b+2y=a+x,∴图(3)阴影部分周长为:2(3b+2y+DC﹣x)=6b+4y+2DC﹣2x=2a+2x+2DC﹣2x=2a+2DC,∴图(4)阴影部分周长为:2(a+x+DC﹣3b)=2a+2x+2DC﹣6b=2a+2x+2DC﹣2(a+x﹣2y)=2DC+4y,∵两种方式未覆盖的部分(阴影部分)的周长一样,∴2a+2DC=2DC+4y,a=2y,∵3b+2y=a+x,∴x=3b,∴===,故选:A.二.填空题(共8小题)11.度数是60°30′角的余角是29.5 度.【分析】直接利用互余的性质结合度分秒的转换得出答案.【解答】解:度数是60°30′角的余角是:90°﹣60°30′=29.5°.故答案为:29.5.12.在,﹣(+5),,0,π,,0.303003000中,无理数有 2 个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,共有2个.故答案是:2.13.已知一个数的一个平方根是﹣3,求它另一个平方根是 3 .【分析】直接利用平方根的定义分析得出答案.【解答】解:∵一个数的一个平方根是﹣3,∴这个数是9,∴它另一个平方根是:3.故答案为:3.14.如果方程3x+4=0与方程3x+4k=20是同解方程,则k= 6 .【分析】通过解方程3x+4=0可以求得x=﹣.又因为3x+4=0与3x+4k=20是同解方程,所以也是3x+4k=20的解,代入可求得k即可.【解答】解:解方程3x+4=0可得x=﹣.∵3x+4=0与3x+4k=20是同解方程,∴也是3x+4k=20的解,∴3×(﹣)+4k=20,解得k=6.故答案是:615.若2xy2n与3x3m y2是同类项,则(m﹣n)2值是.【分析】根据同类项的定义即可得出m,n的值,再代入计算即可.【解答】解:∵2xy2n与3x3m y2是同类项,∴3m=1,2n=2,∴m=,n=1,∴(m﹣n)2=(﹣1)2=,故答案为.16.如图,AB、CD交于O,OD平分∠EOB,如果∠BOC的度数是150°,则∠AOE的度数是120 度.【分析】根据对顶角的性质,易得∠AOC=∠BOD,而OD平分∠BOE,则∠BOE=2∠AOC,∠AOE与∠BOE又互补,即可得答案.【解答】解:根据对顶角的性质,易得∠AOC=∠BOD=30°,又由OD平分∠BOE,则∠BOE=2∠AOC=60°,则∠AOE=180°﹣60°=120°;故答案为:12017.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.某天,张老师给任教的一班40人,二班41人,共计81人出了这么一个题:如果一班在前,二班在后,按学号(从小到大)排成一个长列,从前往后“1,2,3”“1,2,3”“1,2,3”……报数,报到1和3的同学出列,报到2的同学到队尾继续参与报数,最后选定剩余的那位同学为两个班级的总数学课代表,那么请问张老师选择的总课代表是二班 1 号.(填哪个班级,多少学号)【分析】根据题意可以写出每报一遍数后剩余的号码,从而可以解答本题.【解答】解:一遍后剩下 2,5,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,59,62,65,68,71,74,77,80,第二遍后剩下 5,14,23,32,41,50,59,68,77,第三遍后剩下14,41,68,第四遍后剩41,故剩下的最后一名同学是二班1号同学,故答案为:二,1.三.解答题(共7小题)19.计算:(1)(﹣3)2﹣(﹣2)3×|1﹣|(2)﹣(+4)【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用二次根式以及立方根的性质化简得出答案.【解答】解:(1)原式=9×+8×=6+6=12;(2)原式=4+3﹣4=3.20.先化简,再求值3(a2b﹣ab2)﹣2(2a2b﹣1)+3ab2﹣1,其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2b﹣3ab2﹣4a2b+2+3ab2﹣1=﹣a2b+1,当a=﹣2,b=1时,原式=﹣3.21.解下列方程:(1)5x=8+2(x﹣1)(2)3x﹣【分析】(1)先去括号,再移项,合并同类项,系数化为1,即可得出结论;(2)先去分母,再去括号,移项,合并同类项,系数化为1,即可得出结论.【解答】解:(1)5x=8+2x﹣2,5x﹣2x=6,3x=6,x=2;解:(2)36x﹣3(3x﹣1)=2x,36x﹣9x+3=2x,36x﹣9x﹣2x=﹣325x=﹣3x=﹣22.用量角器和三角板按下列要求完成作图,并回答问题:如图,P为射线OA上方的一点.(1)在OA的上方,画∠AOB=76°;(2)作射线OP;(3)分别作∠BOP和∠AOP的角平分线OC、OD;①请计算∠COD的度数(写出计算过程,度量出来不得分);②画出表示点P到OA的距离的线段,并测量点P到OA的距离(精确到1mm).【分析】(1)在OA的上方运用量角器画∠AOB=76°即可;(2)运用三角板作射线OP即可;(3)利用量角器分别作∠BOP和∠AOP的角平分线OC、OD即可;①依据角平分线的定义,即可得到∠COD的度数;②作PM⊥OA垂足为M点,则PM即为所求;测量得PM的长度即可得到点P到OA的距离.【解答】解:(1)如图所示,∠AOB即为所求;(2)如图所示,射线OP即为所求;(3)如图所示,∵OC,OD平分∠BOP,∠AOP,∴∠COP=∠BOP,∠DOP=∠AOP,∴∠COD=∠COP+∠DOP=∠BOP+∠AOP=∠AOB=38°,如图,作PM⊥OA垂足为M点,则PM即为所求;测量得PM=2.0cm,即点P到OA的距离为2.0cm.23.在东西向的马路上有一个巡岗亭A,巡岗员甲从岗亭A出发以13km/h速度匀速来回巡逻,如果规定向东巡逻为正,向西巡逻为负,巡逻情况记录如下:(单位:千米)(1)求第六次结束时甲的位置(在岗亭A的东边还是西边?距离多远?)(2)在第几次结束时距岗亭A最远?距离A多远?(3)巡逻过程中配置无线对讲机,并一直与留守在岗亭A的乙进行通话,问在甲巡逻过程中,甲与乙的保持通话时长共多少小时?【分析】(1)把前面6次记录相加,根据和的情况判断第六次结束时甲的位置即可;(2)求出每次记录时距岗亭A的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再除以13计算即可得解.【解答】解:(1)4+(﹣5)+3+(﹣4)+(﹣3)+6=1(km).答:在岗亭A东边1km处;(2)第一次4km;第二次4+(﹣5)=﹣1(km);第三次﹣1+3=2(km);第四次2+(﹣4)=﹣2(km);第五次﹣2+(﹣3)=﹣5(km);第六次﹣5+6=1(km);第七次1+(﹣1)=0(km);故在第五次记录时距岗亭A最远,距离A5km.(3)|4|+|﹣5|+|3|+|﹣4|+|﹣3|+|6|+|﹣1|=26(km),26÷13=2(小时).答:在甲巡逻过程中,甲与乙的保持通话时长共2小时.24.某人去水果批发市场采购苹果,他看中了A、B两家苹果、这两家苹果品质一样,零售价都为10元/千克,批发价各不相同、A家规定;批发数量不超过1000千克,全部按零售价的90%优惠:批发数量过1000千克但不超过2000千克,全部按零售价的88%优惠;批发数量超过2000千克,全部按零售价的86%优惠,B家的规定如下表【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则B家总费用=10×95%×500+10×85%×1000+10×75%×(2100﹣1500)】(1)如果他批发1000千克苹果,则他在A家批发需要9000 元,在B家批发需要9000 元.(2)如果他批发x千克苹果(1000<x≤1500),则他在A家批发需要8.8x元,在B 家批发需要(8.5x+500)元(用含x的代数式表示);(3)如果知道他批发的苹果数量大于1000千克,但不超过2000千克,且他在B家购买比在A家购买要少花340元,你能知道他买了多少千克苹果吗?请你计算.【分析】(1)根据总价=单价×数量(在B家购买需分段求取),可分别求出在A家、在B家购买所需费用;(2)根据总价=单价×数量(在B家购买需分段求取),可用含x的代数式表示出在A 家、在B家购买所需费用;(3)分1000<x≤1500和1500<x≤2000两种情况,列出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)在A家所需费用为10×90%×1000=9000(元),在B家所需费用为10×95%×500+10×85%×(1000﹣500)=9000(元).故答案为:9000;9000.(2)当1000<x≤1500时,在A家所需费用为10×88%x=8.8x,在B家所需费用为10×95%×500+10×85%×(x﹣500)=8.5x+500.故答案为:8.8x;(8.5x+500).(3)当1000<x≤1500时,8.8x﹣(8.5x+500)=340,解得:x=2800(舍去);当1500<x≤2000时,10×95%×500+10×85%×(1500﹣500)+10×75%×(x﹣1500)﹣8.8x=﹣340,整理,得:1.3x﹣2340=0,解得:x=1800.答:他买了1800千克苹果.25.已知数轴上有两点A、B,点A对应的数为﹣10,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A、点B的距离之和为18?若存在,请求出x的值:若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P、Q分别从A、B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示)②t为何值时,MN距离为4?【分析】(1)由点A对应的数结合AB的长度及点B在点A的右边,即可找出点B对应的数,再根据点P到点A、点B的距离相等,即可得出关于x的一元一次方程,解之即可得出结论;(2)分点P在点A左边、点P在点A、B之间及点P在点A右边三种情况找出关于x的一元一次方程,解之即可得出结论;(3)①根据点P、Q的出发点、方向及速度可找出:当运动时间为t秒时,点P对应的数为6t﹣10,点Q对应的数为6﹣3t,再结合“M为AP的中点,点N在线段BQ上,且BN=BQ”,即可找出点M、N表示的数;②由MN=4,利用两点间的距离公式可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点A对应的数为﹣10,点B在点A的右边,且距离A点16个单位,∴点B对应的数为6,∵点P到点A、点B的距离相等,∴x﹣(﹣10)=6﹣x,∴x=﹣2.∴点P对应的数为﹣2.(2)当点P在点A左边时,﹣10﹣x+6﹣x=18,解得:x=﹣11;当点P在点A、B之间时,PA+PB=16<18,∴此情况不存在;当点P在点A右边时,x﹣(﹣10)+x﹣6=18,解得:x=7.综上所述:存在这样的点P,使点P到点A、点B的距离之和为18,且x的值为﹣11或7.(3)①当运动时间为t秒时,点P对应的数为6t﹣10,点Q对应的数为6﹣3t,∵M为AP的中点,点N在线段BQ上,且BN=BQ,∴点M对应的数为=3t﹣10,点N表示的数为6﹣=6﹣t.②∵MN=4,∴|3t﹣10﹣(6﹣t)|=4,解得:t1=3,t2=5.答:t为3或5时,MN距离为4.。
2017~2018学年度第一学期期末七年级数学试卷(含答案)
2017~2018学年度第一学期期末中小学学习质量评价·七 年 级 数 学 试 卷·本卷共8大题,计23小题,满分150分,考试时间120分钟.祝你考出好成绩!一、选择题(本题共10小题,每小题4 分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在本大题后的表格内.每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.有理数12-的倒数是 A .12B .-2C .2D . 12.计算-2+5的结果是 A .-7B .-3C .3D .73.2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功。
天宫二号的飞行高度距离地球350千米,350千米用科学记数法表示为( )米.. A .3.5×102 B .3.5×105 C .0.35×104 D .350×1034.下列计算中,正确的是A .235a b ab +=B .--=-+2()2a b a bC .32a a a -+=-D .32a a a -= 5.下列各式结果相等的是 A .2222)--与( B .332233⎛⎫⎪⎝⎭与C .()22----与D .201720171-与(-1)6. 已知x =3是关于x 的方程51312()()x a ---=-的解,则a 的值是 A .2 B .3 C .4D .57.用一副三角板的两块画角,不可能画出的角的度数是 A .15° B .55° C .75° D .135°8.练习本比中芯笔的单价少2元,小刚买了5本练习本和3支中芯笔正好用去14元 如果设中芯笔的单价为x 元,那么下列所列方程正确的是 A.52314()x x -+=B.52314()x x ++=C.53214()x x ++=D.53214()x x +-=相对于点O 的方位可表示为 A .南偏东68°40′方向 B .南偏东69°40′方向 C .南偏东68°20′方向D .南偏东69°10′方向10.如果∠1与∠2互为余角,∠1与∠3互为补角,那么下列结论:①∠3-∠2=90°,②∠3+∠2=270°-2∠1,③∠3-∠1=2∠2,④∠3>∠1+∠2.其中正确的是( ) A. ①②B. ①②③C. ①③④D. ①②③④二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,公园里美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是; 12.在8:30这一时刻,时钟上时针与分针的夹角为;13.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是 元;14.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻转到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.第11题图第9题图东三、(第15题每小题4分计8分,第16题8分,本大题满分16分)15.计算:(1)112()(7)0.754--+-+; (2)2018231(1)124(2)(1)44-+÷-⨯--⨯-;16.解方程:212136x x ---= .四、(每小题8分,本题满分16分)17.先化简,再求值:222222123()()a b ab a b ab +----,其中2120()a b ++-=.18.如图,已知点M 是线段AB 的中点,点E 将AB 分成AE ∶E B =3∶4的两段,若EM =2cm ,求线段AB 的长度.A B五、(本大题共2小题,每小题10分,满分20分)19.定义一种新运算“☒”,即m ☒n =(m +2)×3-n ,例如2☒3=(2+2)×3-3=9.根据规定解答下列问题:(1)求6☒(-3)的值;(2)通过计算说明6☒(-3)与(-3)☒6的值相等吗?20. 如下图是一组有规律的图案,第1个图案由4个基础图形“ ”组成,第2个图案由7个基础图形组成,……(1(2)试写出第(n 是正整数)个图案是由 个基础图形组成 (3)若第n 个图案共有基础图形2017个,则n 的值是多少? n(1) (2) (3) ……六、(本题满分12分)21.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.七、(本题满分12分)22.如图①,将笔记本活页一角折过去,使角的顶点A落在点A’处,BC为折痕.(1)在图①中,若∠1=30º,求∠A’BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA’ 重合,折痕为BE,如图②所示,若∠1=30º,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA’的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.C八、(本大题题满分14分)23.同学们,我们很熟悉这样的算式:1+2+3+…+n =21n (n +1),其实,数学不仅非常美妙,而且魅力无穷.请你观察、欣赏下列一组等式: ①1×2=13×1×2×3; ②1×2+2×3=13×2×3×4; ③1×2+2×3+3×4=13×3×4×5; ④1×2+2×3+3×4+4×5=13×4×5×6; ……(1)按照上述规律,试写出第⑤个等式的右边:1×2+2×3+3×4+4×5+5×6= ; (2)根据上述规律,写出第n 个等式的右边:1×2+2×3+3×4+…+n ×(n +1)= ; (3)观察类比,并大胆猜想:1×2×3+2×3×4+3×4×5+…+n ×(n +1)×(n +2)= ;(4)根据(2)中的规律计算10×11+11×12+…+98×99(写出计算过程).2017~2018学年度第一学期期末中小学学习质量评价七年级数学参考答案及评分标准一、二、11.两点之间线段最短;12. 75°;13. 320;14. 我.三、15、(1)原式=1312744+-+………………2分=13(127)()44-++………………3分=51+=6………………4分(2)原式=451124(4)()34+⨯⨯--⨯-………………2分=1+64-5…………………3分=60………………………4分说明:方法不唯一,正确即得分.16.解:22126()()x x---=………………3分4226x x--+=………………6分3 x =6x=2……………8分四、17.解:(a2b+2ab2)-2(a2b-1)-2ab2-3= a2b+2ab2-2a2b+2-2ab2-3………………………… 2分=-a2b-1 …………………………4分∵2120()a b++-=,∴21020,()a b+=-=,∴a= -1 ,b=2…………………………6分当a= -1 ,b=2 时,原式= -(-1)2×2-1=―2―1 ……………7分=-3……………………8分18、解:设AB=x cm,则1327,AM x AE x==,…………………………2分由题意得,13227x x-=…………………………4分解得,x=28.所以,A B的长度为28cm. …………………………8分说明:方法不唯一,正确即得分.五、19、解: (1)6☒(-3)=(6+2)×3-(-3)……………………2分=24+3=27……………………5分(2)(-3)☒6=(-3+2)×3-6……………………8分=-9…………………………………….9分所以6☒(-3)与(-3)☒6的值不相等……………………10分20、解:(1)填表格,从左到右依次是:10, 13………………2分(2) (3n+1)…………………………………………………….5分(3)当3n+1=2017时,解得,n=672所以,n的值是672.………………………10分六、21、解:(1)设钢笔的单价为x元,则毛笔的单价为元.由题意得:解得:,则.答:钢笔的单价为21元,毛笔的单价为25元.……………………………..6分设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支.根据题意,得.解得:(钢笔的支数应该是正整数,不符合题意).所以王老师肯定搞错了.……………………………..12分七、22、解:(1)∵∠1=30°,∴∠1=∠ABC=30°,∴∠A’BD=180°-2×30°=120°.……………………………..4分(2)∵∠A’BD=120°,∠2=∠DBE,∴∠2=12∠A’BD=60°,∴∠CBE=∠1+∠2=30°+60°=90°……………………………..8分(3)结论:∠CBE不变.∵∠1=12∠AB A’,∠2=12∠A’BD,∠AB A’+∠A’BD=180°,A B∴∠1+∠2=12∠AB A’+12∠A’BD =12(∠AB A’+∠A’BD )=12×180°=90° 即∠CBE =90°.……………………………..12分 八、 23、解:(1)31×5×6×7 ; ……………………3分 (2)31n (n +1)(n +2) ; ……………………6分 (3)41n (n +1)(n +2)(n +3) ; ……………………10分(4)10×11+11×12+…+98×99=31×98×99×100 - 31×9×10×11 =323070 ……………………14分。
2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)
2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版) 1 / 152017-2018学年湖北省武汉市黄陂区七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 一个物体向右移动1m 记作+1m ,那么这个物体向左移动3m 记作( )A. B. C. D.2. 如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数互为相反数的是( )A. A 与CB. A 与DC. B 与CD. B 与D 3. 单项式-2x 3y 的系数为( )A. B. 1 C. 2 D. 3 4. 下列各式错误的是( )A. B. C. D.5. 如图所示,这个圆锥的侧面展开图可能是( )A.B.C.D.6. 已知a =b ,下列变形不一定成立的是( )A. B. C.D.7. 买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x 米,依题意列方程( ) A. B. C. D. 8. 如图,将三角形纸片ABC 沿EF 折叠,点C 落在C ′处.若∠BFE =65°,则∠BFC ′的度数为( )A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.下表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局).2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)()观察积分榜,请直接写出球队胜一场积分,负一场积______分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷93 / 1521.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD 平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)5 / 15答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】7 / 15解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.9.【答案】C【解析】解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)9 / 15解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC ,则∠AOC 的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC 的长为1或5;点C 不一定在直线AB 上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确. 故选:A .根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题. 11.【答案】-2【解析】解:-的倒数是-2. 故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键. 12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°. 故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数. 13.【答案】三 三 5【解析】解:因为多项式的最高次项是3a 2b ,由三个单项式的和组成, 所以多项式3a 2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】11 / 15解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版)13 / 1521.【答案】解:(1)2(x +3)=5x ,去括号,得:2x +6=5x ,移项合并同类项,得3x =6,化系数为1,得x =2;(2)1- ,去分母,得10-x =4x +8,移项合并同类项,得5x =2,化系数为1,得 .【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.22.【答案】解:设安排甲制作x 天,则安排乙制作(60-x )天,依题意列方程:50x =25(60-x )解得x =20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x 天,则乙种零件应制作(60-x )天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】 或【解析】 解:(1)补图如图,∵BC=AB ,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C近,所以需要分两种情况讨论:①点F靠点B近,BF=;②点F靠点B近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD平分∠BOC,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°;②∵OP平分∠AOC,OQ平分∠BOD,∴∠AOP=∠AOC,∠BOQ=∠BOD,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD =∠AOB+15°=64°+15°=79°;(2)2017-2018年湖北省武汉市黄陂区七年级(上)期末数学试卷(解析版) 15 / 15 如图1,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠DOQ=∠BOD ,∴∠COP+∠DOQ=(∠AOC+∠BOD )=(∠AOB-∠COD )=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°; 如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC ,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD )+∠BOC=100°, 故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC 的度数; ②根据角平分线的定义得到∠AOP=∠AOC ,∠BOQ=∠BOD ,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD ,从而得到∠POQ 的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。
上海市杨浦区2017-2018学年七年级上学期期末数学试题(含答案及解析)
杨浦区2017学年度第一学期七年级期终质量调研数学学科一、填空题1. 已知长方形的长为a,宽为b,用含a、b的代数式表示长方形的周长:____________.【答案】2a+2b;【解析】【分析】根据长方形的周长计算公式列出代数式即可.【详解】根据题意得,长方形的周长=2(a+b)=2a+2b.故答案为2a+2b.【点睛】此题主要考查了列代数式,熟练掌握长方形周长计算公式是解此题的关键.2. 计算:(2x2-x)-(x2-2x)=________.【答案】x2+x【解析】【分析】原式去括号合并同类项即可.【详解】(2x2-x)-(x2-2x)= 2x2-x-x2+2x= x2+x,故答案为:x2+x【点睛】此题考查了整式的加减,去括号、合并同类项是化简的关键.3. 计算:-y2·(-y)3=__________.【答案】y5【解析】【分析】先化简(-y)3,再利用同底数幂乘法性质计算即可.【详解】-y2·(-y)3=-y2·(-y3)= y5,故答案为:y5【点睛】此题考查了同底数幂乘法性质,掌握这个运算性质是解答此题的关键.4. 计算:(a-1)(b+2)=___________【答案】ab+2a-b-2【解析】【分析】用多项式乘多项式法则进行计算即可.【详解】(a-1)(b+2)=ab+2a-b-2,故答案为:ab+2a-b-2【点睛】此题考查了多项式乘多项式法则:先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.5. 计算:(m 6n 3-6mn 5)÷(-3mn 3)=___________.【答案】-13m 5+2n 2 【解析】【分析】用多项式除以单项式法则进行计算即可. 【详解】(m 6n 3-6mn 5)÷(-3mn 3)= m 6n 3÷(-3mn 3)-6mn 5÷(-3mn 3)=-13m 5+2n 2 故答案为:-13m 5+2n 2 【点睛】此题考查了多项式除以单项式法则:先用一个多项式的每一项分别除以这个单项式,再把所得的商相加.6. 分解因式:a 2+5a ﹣6=_____.【答案】(a ﹣1)(a+6)【解析】试题分析:原式利用十字相乘法分解即可.解:原式=(a ﹣1)(a+6),故答案为(a ﹣1)(a+6)考点:因式分解-十字相乘法等.7. 若1厘米=10000微米,则2微米=____________厘米(结果用科学记数法表示)【答案】4210-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2微米=2÷10000厘米=0.0002厘米=2×10−4厘米.故答案为:2×10−4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.8. 若分式x 25x-1+有意义,则x 的取值范围是___________. 【答案】x≠15 【解析】【分析】根据分母不等于0列式进行计算即可求解.【详解】根据题意得,5x-1≠0,解得x≠15. 故答案为:x≠15. 【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9. 计算:22111x x x +--=___________. 【答案】11x -+ 【解析】【分析】先化为同分母分式,再按同分母分式相加减的法则计算即可. 【详解】22111x x x +--=22111x x x ---=211x x --=()()()11x 1x 11x x --=-+-+ 故答案为:11x -+ 【点睛】此题考查分式的加减,掌握分式加减的法则是解答此题的关键. 10. 分式方程32x 1x-4=+的解为___________. 【答案】x =14【解析】【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:(x+1)(x−4),去分母,化为整式方程求解.【详解】方程两边同乘(x+1)(x−4),得3(x−4)=2(x+1),解得:x =14,经检验x =14是方程的解.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.11. 如图,将ABC ∆沿BC 方向平移2cm 得到DEF ∆,如果ABC ∆的周长为16cm ,那么四边形ABFD 的周长为______cm .【答案】20【解析】【分析】根据平移的性质可得AD=CF=2,根据△ABC 的周长即可求得四边形ABFD 的周长.【详解】由平移的性质可得:AD=CF=2,AC=DF∵△ABC 的周长为16cm ,∴AB+AC+BC=16∴四边形ABFD 的周长=AB+BF+DF+AD=AB+BC +CF+AC +AD=16+4=20cm故答案为:20【点睛】本题考查的是平移的性质,掌握平移的性质“对应线段相等,对应点的连线相等”是关键. 12. 如图,将△ABC 绕着点A 顺时针旋转后得到△ADE ,且∠BAE=58º,则旋转角的大小是_____.【答案】29°【解析】分析】由△ABC 顺时针旋转能与△ADE 重合,且∠BAE=58°,即可求得旋转角的度数.【详解】∵△ABC 顺时针旋转能与△ADE 重合,且∠BAE=58°,∴∠BAC=∠DAE=12∠BAE=29°. ∴旋转角的大小是29°.故答案为:29°.【点睛】此题考查了旋转的性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想的应用.13. 如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________种.【答案】5 种【解析】【分析】根据轴对称图形的性质分别得出即可.【详解】如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1,3,7,6,5,选择的位置共有5处.14. 如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于_____.【答案】5π【解析】【分析】根据题意得出球在无滑动旋转中通过路程为12圆弧,根据弧长公式求出弧长即可.【详解】解:由图形可知,圆心先向前走OO1的长度,从O到O1的运动轨迹是一条直线,长度为14圆的周长,然后沿着弧O 1O 2旋转14圆的周长, 则圆心O 运动路径的长度为:112544π⨯⨯+×2π×5=5π, 故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度.二、选择题15. 在下面四个式子中,为代数式的是( )A. s =vtB. 0C. a +b =b +aD. 112x =- 【答案】B【解析】【分析】由代数式的定义可知,0是代数式.【详解】解:A 、C 、D 都是等式,只有0是代数式,故选:B .【点睛】本题考查代数式的定义;熟练掌握代数式的定义,并能利用定义准确判断代数式是解题的关键. 16. 下列算式中,正确的是( )A. x 3+x 3=x 6B. (x -1+y -1)-1=x+yC. 5a -2=215aD. (-2a)6•(-14b)3=-a 6b 3 【答案】D【解析】【分析】各项计算得到结果,即可作出判断.【详解】A. x 3+x 3=2x 3,不符合题意;B. (x -1+y -1)-1=xy x y+,不符合题意;C. 5a 2=25a ,不符合题意; D. (-2a)6•(-14b)3=-a 6b 3,符合题意, 故选:D【点睛】此题考查了合并同类项、负整数指数幂、积的乘方等运算,掌握运算法则是解答此题的关键. 17. 下列算式中,正确的是( )A. (a+2)(a-2)=a 2-2B. (a-3b)2=a 2-9b 2C. (m+n)(p-q)=mp-mq+np-nqD. (x-2)(x+3)=x 2-x-6 【答案】C【解析】【分析】根据平方差公式,完全平方公式和多项式乘多项式法则对各选项分析判断后利用排除法求解.【详解】A 、 (a+2)(a-2)=a 2-4,故本选项错误;B 、(a-3b)2=a 2-6ab+9b 2,故本选项错误;C 、(m+n)(p-q)=mp-mq+np-nq ,正确;D 、(x-2)(x+3)=x 2+x-6,故本选项错误.故选:C .【点睛】本题主要考查了整式乘法的有关运算.要注意平方差公式和完全平方公式的运用. 18. 如果把分式2ab a b +中的a 、b 同时扩大为原来的2倍,那么得到的分式的值( ) A. 不变B. 扩大为原来的2倍C. 缩小到原来的12D. 扩大为原来的4倍. 【答案】B【解析】【分析】依题意分别用2a 和2b 去代换原分式中的a 和b ,利用分式的基本性质化简即可【详解】分别用2a 和2b 去代换原分式中的a 和b , 得22242222a b ab ab a b a b a b⨯⨯==⨯+++, 可见新分式是原分式的2倍.故选:B .【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.19. 下列图形中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义即可判断结论;【详解】A 是轴对称图形也是中心对称图形,故本项正确;B 不是轴对称图形,也不是中心对称图形,故本项错误;C 是轴对称图形不是中心对称图形,故本项错误;D 不是轴对称图形,是中心对称图形,故本项错误;故选:A .【点睛】本题考查轴对称图形,中心对称图形,熟记相关概念是解题的关键.20. 如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A. 1个B. 2个C. 3个D. 4个 【答案】C 【解析】【分析】 【详解】可以绕点D,点C,线段CD 的中点旋转,故选C.三、解答题21. 计算:2223335()(2)()53xy x y x y x -+÷- 【答案】339x y -【解析】【分析】原式利用幂的乘方与积的乘方运算法则,单项式乘除单项式法则计算,合并即可得到结果. 【详解】解:2223335()(2)()53xy x y x y x -+÷- =336338()x y x y x -+÷-33338x y x y =--339x y =-.【点睛】此题考查了单项式乘以单项式和单项式除以单项式,熟练掌握运算法则是解本题的关键.22. 计算:11x y x y---- 【答案】x y -【解析】【分析】根据负指数幂及分式的运算法则即可求解. 【详解】解:原式11x y y x ⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 11xy xy y x--=÷ 11xy x y xy -=⋅-x y =- 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23. 分解因式:(x 2-1)2-7(x 2-1)-8【答案】x 2(x+3)(x-3)【解析】【分析】利用十字相乘法分解因式得出即可.【详解】(x 2-1)2-7(x 2-1)-8=( x 2-1+1)( x 2-1-8)= x 2(x+3)(x-3),故答案为:x 2(x+3)(x-3)【点睛】此题主要考查了十字相乘法分解因式,正确将常数项分解得出是解题关键.24. 分解因式:a 2-4+4b 2-4ab【答案】(a-2b +2)(a-2b−2)【解析】【分析】直接利用乘法公式进而分解因式得出答案.【详解】原式=(a 2-4ab+4b 2)-4=(a-2b )2−22=(a-2b +2)(a-2b−2).故答案为:(a-2b +2)(a-2b−2).【点睛】此题主要考查了分组分解法分解因式,正确应用乘法公式是解题关键. 25. 下面是小明化简分式的过程,仔细阅读并解答所提出的问题 解:22624x x x --+- 2(2)6(2)(2)(2)(2)x x x x x x --=-+-+-第一步 =2(x -2)-(x -6)第二步=2x -4-x +6第三步2x =+第四步(1)小明的解法从第 步开始出现错误;(2)第一步进行 ,它的数学依据是 .(3)第三步进行 ,它的数学依据是 .(4)正确的化简结果是 .【答案】(1)第二步;(2)通分,分式的基本性质;(3)去括号,乘法分配律;(4)12x - 【解析】【分析】(1)第二步直接去分母了,故从第二步开始出错;(2)第一步进行通分,依据是分式的基本性质;(3)第三步进行去括号,依据乘法分配律;(4)根据分式的运算法则即可求出答案.【详解】(1)小明的解法从第二步开始出现错误;故答案为:第二步;(2)第一步进行通分,它的数学依据是分式的基本性质;故答案为:通分;分式的基本性质;(3)第三步进行去括号,它的数学依据是乘法分配律故答案为:去括号;乘法分配律;(4)22624x x x --+- 2(2)6(2)(2)(2)(2)x x x x x x --=-+-+- =()2(2)6(2)(2)x x x x ---+- =2(2)(2)x x x ++- =12x - 故答案为:12x -. 【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.26. 解方程:2213111x x x x -+=--- 【答案】方程无解.【解析】【分析】观察可得方程最简公分母为(x 2-1).去分母,转化为整式方程求解.结果要检验. 【详解】2213111x x x x -+=---, 方程的两边同乘(x+1)(x-1),得:-(x+1)+23x x -=-(x+1)(x-1),解得x=1,经检验x=1是原方程的增根,所以原方程无解.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.27. 如图,有三条格点线段AB 、CD 、DE (线段的端点是网格线的交点),它们组成的图形不是轴对称图形.现要通过平移或旋转,改变其中一条线段的位置,使运动后的这条线段与另两条线段组成一个轴对称图形.请分别填写三种平移方案和三种旋转方案平移方案:(移动方向限填“上”、“下”、“左”、“右”)(1)将线段 向 平移1格;(2)将线段向平移1格;(3)将线段向平移1格;旋转方案:(限填绕A、B、C、D、E中的一点旋转且任意两条线段不重合)(4)将线段绕点按时针方向旋转度;(5)将线段绕点按时针方向旋转度;(6)将线段绕点按时针方向旋转度;【答案】(1)AB,右;(2)DE,下;(3)DE,左;(4)将线段CD绕点C按顺时针方向旋转90度;(5)将线段DE绕点E按逆时针方向旋转90度;(6)将线段DE绕点C按逆时针方向旋转90度;【解析】【分析】(1)根据平移的性质及轴对称的定义将AB向右平移1格即可;(2)根据平移的性质及轴对称的定义将DE向下平移1格即可;(3)根据平移的性质及轴对称的定义将DE向左平移1格即可;(4)根据旋转的性质及轴对称的定义将线段CD绕点C按顺时针方向旋转90度即可;(5)根据旋转的性质及轴对称的定义将线段DE绕点E按逆时针方向旋转90度即可;(6)根据旋转的性质及轴对称的定义将线段DE绕点C按逆时针方向旋转90度即可;【详解】(1)将AB向右平移1格,运动后的这条AB线段与CD,DE线段组成一个轴对称图形;故答案为:AB;右;(2)将DE向下平移1格,运动后的这条DE线段与CD,AB线段组成一个轴对称图形;故答案为:DE;下;(3)将DE向左平移1格, 运动后的这条DE线段与CD,AB线段组成一个轴对称图形;故答案为:DE;左;(4)将线段CD绕点C按顺时针方向旋转90度, 运动后的这条CD线段与DE,AB线段组成一个轴对称图形;故答案为:将线段CD绕点C按顺时针方向旋转90度;(5)将线段DE绕点E按逆时针方向旋转90度, 运动后的这条DE线段与CD,AB线段组成一个轴对称图形;故答案为:将线段DE绕点E按逆时针方向旋转90度;(6)将线段DE绕点C按逆时针方向旋转90度, 运动后的这条DE线段与CD,AB线段组成一个轴对称图形;故答案为:将线段DE绕点C按逆时针方向旋转90度.【点睛】此题主要考查轴对称图形的设计,解题的关键是熟知轴对称图形的性质、平移与旋转的特点. 28. 如图,△ABC是格点三角形(各顶点是网格线的交点),每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移6个单位长度,画出平移后的△A1B1C1.(2)将平移后的△A1B1C1绕点B1顺时针旋转90°,画出旋转后的△A2B1C2.(3)将△ABC沿直线BC翻折,画出翻折后的△A3BC.(4)试问△ABC能否经过一次旋转后与△A2B1C2重合,若能,请在图中用字母O表示旋转中心并写出旋转角的大小;若不能,请说明理由.【答案】(1)见解析;(2)见解析;(3)见解析;(4)旋转角90度【解析】【分析】(1)利用网格特点和平移的性质画出点A,B,C的对应点分别是点A1,B1,C1即可;(2)利用网格特点和旋转的性质画出点A,C的对应点分别是点A2,C2即可;(3)利用网格特点和轴对称的性质点A的对应点A3即可;(4)作BB1、AA2的垂直平分线得到点O,则∠AOA2为旋转角.【详解】(1)如图,△A1B1C1为所作;(2)如图,△A2B1C2为所作;(3)如图,△A3BC为所作;(4)△ABC能经过一次旋转后与△A2B1C2重合.如图,点O为所作,旋转角为90°.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称和平移变换.29. (1)如图1,已知A、B两个边长不相等的正方形纸片并排放置,若m=7,n=3,试求A、B两个正方形纸片的面积之和.(2)如图1,用m、n表示A、B两个正方形纸片的面积之和为.(请直接写出答案)(3)如图2,若A 、B 两个正方形纸片的面积之和为5,且图2中阴影部分的面积为2,试求m 、n 的值.(4)现将正方形纸片A 、B 并排放置后构造新的正方形得图3,将正方形纸片B 放在正方形纸片A 的内部得图4,若图3和图4中阴影部分的面积分别为12和1,则A 、B 两个正方形纸片的面积之和为 .【答案】(1)29;(2)221122m n ;(3)3,1;(4)13 【解析】【分析】 (1) 设正方形A 纸片边长为a ,正方形B 纸片边长为b ,根据图形的特点列出二元一次方程组求出边长,即可求解;(2)设甲、乙两个正方形纸片的边长分别为x ,y ,根据图形的特点列出二元一次方程组求出边长,即可解决问题;(3)解:设正方形A 纸片边长为a ,正方形B 纸片边长为b ,根据图形的特点列出方程组,从而求出大正方形的面积与小正方形的面积,得到其边长;(4)设正方形C 、D 的边长为c 、d ,由图4得:(c−d )2=1,由图3得:(c +d )2−c 2−d 2=12,然后两个方程组合可得c 2+d 2的值.【详解】(1)解:设正方形A 纸片边长为a ,正方形B 纸片边长为b .则73a b a b +=⎧⎨-=⎩解之得:52a b =⎧⎨=⎩所以,A B S S +=225229+=答:A 、B 两个正方形纸片得面积之和为29.(2)设甲、乙两个正方形纸片的边长分别为x ,y ;由题意x y m x y n ⎧⎨-⎩+==, 解得22m n x m n y +⎧=⎪⎪⎨-⎪=⎪⎩∴A B S S +=22m n +⎛⎫ ⎪⎝⎭+22m n -⎛⎫ ⎪⎝⎭=221122m n + (3)解:设正方形A 纸片边长为a ,正方形B 纸片边长为b . 则2252a b ab ⎧+=⎨=⎩22()m a b =+222a ab b =++5229=+⨯=又0m >,3m ∴=22()n a b =-222a ab b =-+5221=-⨯=又0n >,1n ∴=(4)设正方形A 、B 的边长为c 、d ,则:由图4得:(c−d )2=1,即:c 2−2cd +d 2=1,由图3得:(c+d)2−c2−d2=12,即2dc=12,∴c2+d2−12=1,∴c2+d2=13,即正方形A、B的面积和为13.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,能从图中获取正确信息,找出题目中的等量关系,列出方程组.。
人教版七年级上册数学期末测试卷 (12)
长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为( )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是( )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于( )A .55°B .95°C .125°D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为( ) A .30º B .35º C .40º D .45º第7题 第8题 二、填空题(每小题3分,共18分)9.当k = _______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 ____________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款____________元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长___.第10题 第11题 第13题BA O 西DCBA ba0B A14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __________度.第14题三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-; (2))3(2--; (3)623⨯-; (4)()42-÷-. 16.(6分)计算:(1)()()20162112322--÷⨯+- ; (2)()()42a b a b ---.17.(6分)解方程:(1)()()11223=++-x x ; (2)1613=--x x .18.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =. 19.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量.20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长; (2)求线段AB 的长.21. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,BDCAb12∴∠DEF = .( ) ∵EF ∥AB ,∴ =∠ABC .( ) ∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°,∴∠DEF = °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由.BA F CE图 1BDA FE图 2CDBA24.(12分)在直角三角形ABC中,若AB=16cm,AC=12 cm,BC=20 cm.点P从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A →B的方向移动,如果点P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,请用含t的代数式表示,①当点Q在AC上时,CQ= ;②当点Q在AB上时,AQ= ;③当点P在AB上时,BP= ;④当点P在BC上时,BP= .(2)如图2,若点P在线段AB上运动,点Q在线段CA上运动,当QA=AP时,试求出t的值.(3)如图3,当P点到达C点时,P、Q两点都停止运动,当AQ=BP时,试求出t的值.图1 图2 图3长春外国语学校2017-2018学年第一学期期末考试初一年级数学试卷答案本试卷包括三道大题,24道小题,共6页.全卷满分120分.考试时间为90分钟.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共24分)1.5-的绝对值为( B )A . 1 5B .5C .- 15 D .-52.如图所示的几何体的主视图是( D )3.长春第四届“交通之声年末百姓购车节”于12月11日——13日在长春国际会展中心举行,据统计,这三天共销售各种车辆约3500台,数据3500用科学记数法表示为( B ) A .3.5×104 B .3.5×103 C .35×102 D .0.35×104 4.已知1-=x ,则代数式423+-x x 的值为(A )A .2B .2-C .4D .4- 5.若∠1=25°,则∠1的余角的大小是( B ) A .55° B .65° C .75° D .155° 6.方程3x =15﹣2x 的解是(A )A .x =3B .x =4C .x =5D .x =67.如图,若点A 在点O 北偏西60°的方向上,点B 在点O 的南偏东25°的方向上,则 ∠AOB (小于平角)的度数等于(D ) A .55° B .95° C .125° D .145°8.如图,AE 平分∠CAB ,CD ∥AB 交AE 于点D ,若∠C =120°,则∠EAB 的大小为(A ) A .30º B .35º C .40º D .45º第7题 第8题二、填空题(每小题3分,共18分)9.当k = 2_______时,kyx 323 与624y x 是同类项.10.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为 _2___________.11.已知,点A 、点B 在数轴上对应的实数为a ,b 如图所示,则线段AB 的长度可以用代数 式表示为 b-a .12.为了帮助地震灾区重建家园,某班全体师生积极捐款,捐款金额共3150元,其中5名教师人均捐款a 元,则该班学生共捐款_(3150-5a)____元(用含有a 的代数式表示).13.如图,C 、D 是线段AB 上两点,D 是AC 的中点,若CB =3,DB =7,则AC 的长8___.第10题 第11题 第13题14.如图,a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=35°,则∠2的度数为 __55__度.第14题BA O 西DCBA ba0B A ba12三、解答题(本大题共10小题,共78分)15.(8分)计算:(1)3235+-=-1; (2))3(2--=5; (3)623⨯-=-9; (4)()42-÷-=2. 16.(6分)计算:(1)()()20162112322--÷⨯+-=-7 ; (2)()()42a b a b ---=2a-3b .17.(6分)解方程:(1)()()11223=++-x x ;x=1 (2)1613=--x x .x=518.(7分)先化简,再求值:(5a 2+2a +1)﹣4(3﹣8a +2a 2)+(3a 2﹣a ),其中a =.33a-11=019.(7分)有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克) ﹣3﹣2 ﹣1.5 0 1 2.5 筐 数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)求这20筐苹果的总质量. 2.5-(-3)=5.5(千克)20*25+(-3)+(-8)+(-3)+0+2+20=508(千克)20.(8分)如图,点C 、D 是线段AB 上两点,AC :CD =1:3,点D 是线段CB 的中点,AD = 12. (1)求线段AC 的长;3 (2)求线段AB 的长.2121. (8分)探究:如图①,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若 ∠ABC =40°,求∠DEF 的度数.请将下面的解答过程补充完整,并填空(理由或数学式) 解:∵DE ∥BC ,∴∠DEF = ∠EFC .( 两直线平行内错角相等 ) ∵EF ∥AB ,∴ ∠EFC =∠ABC .( 两直线平行,同位角相等 )BDCA∴∠DEF =∠ABC .(等量代换) ∵∠ABC =40°, ∴∠DEF = 40 °.应用:如图②,直线AB 、BC 、AC 两两相交,交点分别为点A 、B 、C ,点D 在线段AB 的延长线上,过点D 作DE ∥BC 交AC 于点E ,过点E 作EF ∥AB 交BC 于点F .若∠ABC =60°,则∠DEF = 120 °.22. (8分)如图,OD 是∠AOC 的平分线,OE 是∠BOC 的平分线.若∠AOB =100°,求∠DOE 的度数.∠DOE=50°23.(8分)某班准备买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副68元,乒乓球每盒12元.经商谈后,甲商店每买一副乒乓球拍赠一盒乒乓球,乙商店全部按定价的9折优惠.这个班级需要球拍5副,乒乓球x 盒(5≥x ).(1)分别求甲、乙两家商店购买这些商品所需的费用(用含x 的代数式表示). (2)当40=x 时,购买所需商品去哪家商店合算?请通过计算说明理由. (1)甲:68*5+12(x-5)=12x+280 乙:68*5*0.9+0.9*12x=306+10.8x (2)当x=40时,12*40+280=760(元) 当x=40时,306+10.8*40=738(元)24.(12分)在直角三角形ABC 中,若AB =16cm ,AC =12 cm ,BC =20 cm . 点P 从点A 开始BA F CE图 1BDA FE图 2CDBA以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C 开始以1厘米/秒的速度沿C →A →B 的方向移动,如果点P 、Q 同时出发,用t (秒)表示移动时间,那么:(1)如图1,请用含t 的代数式表示,①当点Q 在AC 上时,CQ = t ;②当点Q 在AB 上时,AQ = 12-t ; ③当点P 在AB 上时,BP = 16-2t ; ④当点P 在BC 上时,BP = 2t-16 . (2)如图2,若点P 在线段AB 上运动,点Q 在线段CA 上运动,当QA =AP 时,试求出t 的值.t=4 (3)如图3,当P 点到达C 点时,P 、Q 两点都停止运动,当AQ =BP 时,试求出t 的值.图1 图2 图3t= 4, 28/3高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………………密………………………………….封……………………….线…………………………………………………………………………..细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.......
A.—3,2B.—3,3C.—3
2017-2018学年度(上)初一期末调研测试卷
数学
注意事项
考生在答题前请认真阅读本注意事项:
1.本试卷共6页,满分为150分,考试时间为120分钟。
考试结束后,请将答题卡交回。
2.答题前,请务必将自己的姓名、考试号用0.5毫米黑色字迹的签字笔填写在答题卡上指定的位置。
3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是
符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.-2
3的相反数是
3322
A.-B.C.-D.2233
2.下列运算正确的是
A.2a+6b=8ab
C.a2b-3ba2=-2a2b
3.数字25800000用科学记数法表示为B.4x2y-5xy2=-x2y D.-(-a-b)=a-b
A.258⨯105B.2.58⨯109C.2.58⨯107D.0.258⨯108 3x2y
4.单项式—的系数和次数分别是
5
3
,2D.—,3
55
5.如图,已知AB∥CD∥EF,FC平分∠AFE,∠A=50°,则∠C的度数是
A.50°B.45°C.35°D.25°
6.如图,△ABC沿着由点B到点E的方向平移到△DEF,已知BC=5,EC=3,那么平移的距离为A.2B.3C.5D.7
A C
B
D
A D
E F B E C F
(第5题)(第6题)
.......
15.已知关于x的方程
x
+=x-4与方程2x+5=3(x-1)的解相同,则m=
7.下列平面图形中不能围成正方体的是
A.B.C.D.
8.对于有理数a,b,如果ab<0,a+b>0.则下列各式成立的是
A.a<0,b<0;B.a>0,b<0且|b|<a;
C.a<0,b>0且|a|>b;D.a>0,b<0且|b|>a.
9.已知关于x的一次方程(3a+4b)x+1=0无解,则ab的值为
A.正数B.非正数C.负数D.非负数
10.某公司员工分别住在A,B,C三个住宅区,A区有25人,B区有15人,C有10人,三个区在一条直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为使所有员工步行
到停靠点的路程总和最少,那么停靠点的位置应设在
200m400m
A区B区C区A.A区B.B区C.A区或B区D.C区
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写
在答题卡相应位置上)
11.-2=▲.
12.计算:-22017⨯(-0.5)2018=▲.
13.下列有四个生活、生产现象:①有两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要定出两棵树的位置,就能确定同一行所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用基本事实“两点之间,线段最短”来解释的现象有▲(填序号).
14.一个角的补角比它的余角的2倍还多20°,这个角的度数为▲°.
m
23
16.计算:21°15′×5=▲°.
17.若a+1+a-2=5,b-2+b+3=7,则a+b=▲.
▲.
三、解答题(本大题共 10 小题,共 96 分.请在答题卡指定区域内作答,解答时应写出文字说明、
[
- 1 = 2 +
.
18.如下图,按下列程序进行计算,经过三次输入,最后输出的数是 12,则最初输入的数
是
▲
.
.......
证明过程或演算步骤)
19.(本小题满分 10 分)
计算(1)1 - 4 + 3 - 0.5 ;
(2)18 + 32 ÷ (- 2)3 - (- 4)2 ⨯ 5 .
20.(本小题满分 10 分)
化简(1) (2a - b )- (2b - 3a )- 2(a - 2b );
(2) 2 x 2
- 7 x - (4 x - 3) - x 2
] .
21.(本小题满分 10 分)
解下列方程(1) 2(x + 3)= 5x ;
(2)
y + 1 2 - y
2 4
(2)在主视图和俯视图不变的情况下,你认为最多还可以添加
▲
个小正方体.
y y (1)如图是由 10 个同样大小的小正方体搭成的几何体,请你分别画出它的主视图和俯视图.
主视图
俯视图
..
23.(本小题满分 8 分)
根据要求画图,并回答问题.
已知:直线 AB ,CD 相交于点 O ,且 OE ⊥AB .
(1)过点 O 画直线 MN ⊥CD ;
(2)若点 F 是(1)中所画直线 MN 上任意一点(O 点除外),若∠AOC =35°,求∠EOF 的度数.
E
D
A
B
O
C
(第 23 题)
24.(本小题满分 8 分)
1 1
已知当 x =2,=-4 时,ax 3 + by + 8 = 2018 ,求当 x =-4,= - 时,式子 3ax - 24by 3 + 6
2 2
的值.
点 O 是直线 AB 上一点,∠COD 是直角,OE 平分∠BOC .
(1)①如图 1,若∠DOE =25°,求∠AOC 的度数;
②如图 2,若∠DOE =α ,直接写出∠AOC 的度数(用含α 的式子表示);
(2)将图 1 中的∠COD 绕点 O 按顺时针方向旋转至图 2 所示的位置.探究∠DOE 与∠AOC 的
度数之间的关系,写出你的结论,并说明理由.
C
C
E
D
E
A
O
B A O
B
图 1
图 2
D
26.(本小题满分 10 分)
某超市对顾客实行优惠购物,规定如下:
①若一次性购物商品总价不超过 100 元,则不予优惠;
②若一次性购物商品总价超过 100 元,但不超过 300 元,给予九折优惠;
③若一次性购物商品总价超过 300 元,其中 300 元以下部分(包括 300 元)给予九折优惠;超
过 300 元部分给予八折优惠.
小李前后分两次去该超市购物,分别付款 234 元和 94.5 元.
(1)求小李第一次购物所购商品的总价是多少元?
(2)小张决定一次性购买小李分两次购买的商品,他可以比小李节约多少元?
如图,点D,点E分别在三角形ABC的边上,已知∠AED=∠ACB,DF,BE分别平分∠ADE,∠ABC,那么∠FDE与∠DEB相等吗?请说明理由.
A
F
D E
B C
(第27题)
28.(本小题满分14分)
已知数轴上两点A,B对应的数分别为-4,8.
(1)如图1,如果点P和点Q分别从点A,点B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.
①A,B两点之间的距离为▲.
②当P,Q两点相遇时,点P在数轴上对应的数是▲.
③求点P出发多少秒后,与点Q之间相距4个单位长度?
(2)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?
·A
·A
·
O
(图1)
·
O
(图2)
·
B
·
B。