2014年高考数学选择、填空压轴题分析
天津市2014高考数学压轴卷 理(含解析)
![天津市2014高考数学压轴卷 理(含解析)](https://img.taocdn.com/s3/m/8788e6b51a37f111f1855bf4.png)
2014天津高考压轴卷数学理word一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2.设集合{}|24xA x =≤,集合B 为函数lg(1)y x =-的定义域,则AB =(A)()1,2 (B)[]1,2 (C)[1,2) (D) (1,2] 3.函数y=sin (2x+φ)的图象沿x 轴向左平移个单位后,得到一个偶函数的图象,则φ的BC5.设曲线sin y x =上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为.6.设z=2x+y ,其中变量x ,y 满足条件,若z 的最小值为3,则m 的值为( )7.已知点P (x ,y )在直线x+2y=3上移动,当2x +4y取最小值时,过P 点(x ,y )引圆C :=1的切线,则此切线长等于()C D9. 设常数a∈R,若的二项展开式中x4项的系数为20,则a= .10. 已知tanα=,tanβ=﹣,且0<α<,<β<π,则2α﹣β的值.11.记等差数列{a n}的前n项和为S n,已知a2+a4=6,S4=10.则a10= .12.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是()13.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______________.14.等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为写在答题卡上的指定区域内.15. 袋中装有黑球和白球共7个,从中任取2个球都是黑球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取球后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(Ⅰ)求随机变量ξ的分布列及数学期望;(Ⅱ)求乙取到白球的概率.16.在△ABC中,BC=a,AC=b,a、b是方程的两个根,且A+B=120°,求△ABC 的面积及AB的长.17.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E是棱AB上的动点.(Ⅰ)求证:DA1⊥ED1;(Ⅱ)若直线DA1与平面CED1成角为45°,求的值;(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).18.数列{a n}是递增的等差数列,且a1+a6=﹣6,a3•a4=8.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和S n的最小值;(3)求数列{|a n|}的前n项和T n.19. 已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.20. (13分)已知f(x)=lnx,g(x)=af(x)+f′(x),(1)求g(x)的单调区间;(2)当a=1时,①比较的大小;②是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.2014天津高考压轴卷数学理word 参考答案 1. 【答案】D.【解析】根据题意,若集合A={x|x >1},B={x|x <m},且A ∪B=R , 必有m >1,分析选项可得,D 符合; 故选D .2. 【答案】D. 【解析】{}|24{2}xA x x x =≤=≤,由10x ->得1x >,即{1}B x x =>,所以{12}A B x x =<≤,所以选D. 3. 【答案】【解析】令y=f (x )=sin (2x+φ), 则f (x+)=sin[2(x+)+φ]=sin (2x++φ),∵f (x+)为偶函数,∴+φ=k π+,∴φ=k π+,k ∈Z ,∴当k=0时,φ=.故φ的一个可能的值为.故选B . 4. 【答案】【解析】∵f (x )=log 2(1+x ),g (x )=log 2(1﹣x ), ∴f (x )﹣g (x )的定义域为(﹣1,1) 记F (x )=f (x )﹣g (x )=log 2, 则F (﹣x )=log 2=log 2()﹣1=﹣log 2=﹣F (x )故f (x )﹣g (x )是奇函数. 故选A.5. 【答案】C.【解析】'cos y x =,即()cos g x x =,所以22()cos y x g x x x ==,为偶函数,图象关于y 轴对称,所以排除A,B.当2cos 0y x x ==,得0x =或,2x k k Z ππ=+∈,即函数过原点,所以选C.6. 【答案】A.【解析】作出不等式组对应的平面区域, ∵若z 的最小值为3, ∴2x+y=3, 由,解得,同时(1,1)都在直线x=m 上, ∴m=1. 故选:A . 7. 【答案】D.【解析】∵x+2y=3,2x+4y=2x+22y≥2x+2y=23=8,当且仅当 x=2y=时,等号成立,∴当2x+4y取最小值8时,P 点的坐标为(,),点P 到圆心C 的距离为CP==,大于圆的半径1,故切线长为==2,故选:D . 8. 【答案】A.【解析】根据复合函数的单调性可知,f (x )=ln (e x﹣1)(x >0)为增函数, ∵函数的定义域为(0,+∞). ∴a >0,b >0,设g (x )=f (x )+2x , ∵f (x )是增函数,∴当x >0时,g (x )=f (x )+2x 为递增函数, ∵f (a )+2a=f (b )+3b ,∴f (a )+2a=f (b )+3b >f (b )+2b , 即g (a )>g (b ),∵g (x )=f (x )+2x 为递增函数, ∴a >b , 故选:A . 9. 【答案】【解析】∵的二项展开式的通项公式为 T r+1=•a r•x10﹣3r,令10﹣3r=4,求得 r=2,故二项展开式中x4项的系数为•a2=20,解得a=±,故答案为:±.10. 【答案】【解析】∵0<α<,tanα=<1=tan,y=tanx在(0,)上单调递增,∴0<α<,又<β<π,∴﹣π<2α﹣β<﹣,∵tan2α===,tanβ=﹣,∴tan(2α﹣β)===1,∴2α﹣β=﹣.11. 【答案】【解析】等差数列{a n}的前n项和为S n,∵a2+a4=6,S4=10,设公差为d,∴,解得a1=1,d=1,∴a10=1+9=10.故答案为:10.12. 【答案】【解析】由三视图知:余下的几何体如图示:∵E、F都是侧棱的中点,∴上、下两部分的体积相等,∴几何体的体积V=×23=4.13. 【答案】【解析】圆的方程为x2+y2﹣6x﹣8y=0化为(x﹣3)2+(y﹣4)2=25.圆心坐标(3,4),半径是5.最长弦AC是直径,最短弦BD的中点是E.S ABCD=故答案为:14. 【答案】【解析】根据题意,得∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,因此,三棱锥C﹣HAM的体积V=S△CMH×AM=S△CMH由此可得,当S△CMH达到最大值时,三棱锥C ﹣HAM的体积最大设∠BCD=θ,则Rt△BCD中,BC=AB=可得CD=,BD=Rt△ACD中,根据等积转换得CH==Rt△ABD∽Rt△AHM,得,所以HM==因此,S△CMH=CH•HM==∵4+2tan2θ≥4tanθ,∴S△CMH=≤=,当且仅当tanθ=时,S△CMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.∵tanθ=>0,可得sinθ=cosθ>0∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)由此可得CD==,即当三棱锥C﹣HAM的体积最大时,CD的长为故选:C15. 【解析】(Ⅰ)设袋中原有n个黑球,由题意知…(1分)=,解得n=4或n=﹣3(舍去)…(3分)∴黑球有4个,白球有3个.由题意,ξ的可能取值为1,2,3,4,5…(4分),,,…(7分)(错一个扣一分,最多扣3分)所以数学期望为:…(9分)(Ⅱ)∵乙后取,∴乙只有可能在第二次,第四次取球,记乙取到白球为事件A,则,…(11分)答:乙取到白球的概率为.…(12分)16. 【解析】∵A+B=120°,∴C=60°.∵a、b是方程的两个根,∴a+b=,ab=2,∴S△ABC==,AB=c====.17. 【解析】以D为坐标原点,建立如图所示的坐标系,则D(0,0,0),A(1,0,0),B (1,1,0),C(0,1,0),D1(0,1,2),A1(1,0,1),设E(1,m,0)(0≤m≤1)(Ⅰ)证明:=(1,0,1),=(﹣1,﹣m,1)∴•=0∴DA1⊥ED1;(4分)(Ⅱ)解:设平面CED1的一个法向量为=(x,y,z),则∵=(0,﹣1,1),=(1,m﹣1,0)∴.取z=1,得y=1,x=1﹣m,得=(1﹣m,1,1).∵直线DA1与平面CED1成角为45°,∴sin45°=|cos<,>|=,∴=,解得m=.﹣﹣﹣﹣﹣(11分)(Ⅲ)解:点E到直线D1C距离的最大值为,此时点E在A点处.﹣﹣﹣﹣﹣﹣(14分)18. 【解析】(1)由得:,∴a3、a4是方程x2+6x+8=0的二个根,∴x1=﹣2,x2=﹣4;∵等差数列{a n}是递增数列,∴a3=﹣4,a4=﹣2,∴公差d=2,a1=﹣8.∴a n=2n﹣10;(2)∵S n==n2﹣9n=﹣,∴(S n)min=S4=S5=﹣20;(3)由a n≥0得2n﹣10≥0,解得n≥5,此数列前四项为负的,第五项为0,从第六项开始为正的.当1≤n≤5且n∈N*时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣n2+9n;当n≥6且n∈N*时,T n=|a1|+|a2|+…+|a5|+|a6|+…+|a n|=﹣(a1+a2+…+a5)+(a6+…+a n)=S n﹣2S5=n2﹣9n﹣2(25﹣45)=n2﹣9n+40.∴T n=.19. 【解析】(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l的斜率不为0时,设直线l的方程为x=ty+1,A(x1,y1),B(x2,y2)直线方程代入椭圆方程,整理可得(t2+2)y2+2ty﹣1=0,∴y1+y2=﹣,y1y2=﹣∴=(x1﹣,y1)•(x2﹣,y2)=(ty1﹣)(ty2﹣)+y1y2=(t2+1)y1y2﹣t(y1+y2)+=+=﹣综上,x轴上存在点Q (,0),使得恒成立.20. 【解析】,g(x)的定义域为(0,+∞).①当a≤0时,g'(x)<0,(0,+∞)是g(x)的单调区间;②当a>0时,由g'(x)>0,得;由g'(x)<0,得,即增区间是,减区间是.(2),∴①当x=1时,μ(x)=0,此时②当0<x<1时,μ'(x)<0,∴μ(x)>μ(1)=0.∴③当x>1时,μ'(x)<0,∴μ(x)<μ(1)=0.∴.(3)⇔⇔∵lnx∈(0,+∞),∴g(x0)>lnx不能恒成立.故x0不存在.- 11 -。
2014年江苏省高考数学试卷解析
![2014年江苏省高考数学试卷解析](https://img.taocdn.com/s3/m/3f04fa00964bcf84b9d57b64.png)
2014年江苏省高考数学试卷解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 【答案】{}3,1-。
【主要错误】{}4,3,2,1,2--,(-1,3),{}1-。
2.已知复数2)i 25(+=z (i为虚数单位), 则z的实部为 ▲ .【答案】21。
【主要错误】29、25、-20、5等。
3.右图是一个算法流程图, 则输出 的n 的值是 ▲ .【答案】5。
【主要错误】4,32,16等。
4. 从1,2,3,6这4个数中一次随机地取2个 数, 则所取2个数的乘积为6的概率是 ▲ .【答案】1/3。
(第3题)【主要错误】1/2,1/6,1/4,等。
5.已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<), 它们的图象有一个横坐标为3π的交点, 则ϕ的值是 ▲ .【答案】6π。
【主要错误】2π-,2π,3π等。
6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm. 【答案】24。
【主要错误】20,42,40等。
7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .【答案】4。
100 80 90 110 /cm(第6题)【主要错误】16,8,2等。
8.设甲、乙两个圆柱的底面分别为1S ,2S , 体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V 的值是 ▲ .【答案】23。
【主要错误】49,827,32,等。
9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .【答案】5552。
【主要错误】5522;555;5112;.511等。
2014全国统一高考数学真题及逐题详细解析(文科)—陕西卷
![2014全国统一高考数学真题及逐题详细解析(文科)—陕西卷](https://img.taocdn.com/s3/m/3b055f290722192e4536f624.png)
2014年陕西高考数学试题(文)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则MN =( ).[0,1]A .(0,1)B .(0,1]C .[0,1)D2.函数()cos(2)4f x x π=+的最小正周期是( ).2A π.B π .2C π .4D π 3.已知复数2z i =-,则z z ⋅的值为( ).5AB .3C4.根据右边框图,对大于2的整数N ,输出的数列的通项公式是( ).2n Aa n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=输出a 1,a 2,...,a N结束是否i >Ni =i +1S =a iS =1,i =1输入N开始a i =2*S5.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为( ).4A π .3B π .2C π .D π6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 7.下了函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) (A )()3f x x = (B )()3xf x = (C )()f x =x1/2(D )()12xf x ⎛⎫= ⎪⎝⎭8.原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆 否命题真假性的判断依次如下,正确的是( )(A )真,真,真 (B )假,假,真 (C )真,真,假 (D )假,假,假9.某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) (A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s10.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连续(相切),已知环湖弯曲 路段为某三次函数图像的一部分,则该函数的解析式为( ) (A )321122y x x x =-- (B )3211322y x x x =+- (C )314y x x =- (D )3211242y x x x =+-y二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.抛物线24y x =的准线方程为________. 12.已知42a=,lg x a =,则x =________. 13. 设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==b a ,若0=⋅b a ,则=θtan ______.14. 已知0,1)(≥+=x xxx f ,若++∈==N n x f f x f x f x f n n )),(()(),()(11,则)(2014x f 的 表达式为________.15.(不等式选做题)设R n m b a ∈,,,,且5,522=+=+nb ma b a ,则22n m +的最小值为______.16.(几何证明选做题)如图,ABC ∆中,6=BC ,以BC 为直径的半圆分别交AC AB ,于点F E ,,若AE AC 2=,则EF =_______.B17.(坐标系与参数方程选做题)在极坐标系中,点)6,2(π到直线1)6sin(=-πθρ的距离是_______.三、解答题.18. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (1)若c b a ,,成等差数列,证明:)sin(2sin sin C A C A +=+; (2)若c b a ,,成等比数列,且a c 2=,求B cos 的值.19.(本小题满分12分)四面体ABCD 及其三视图如图所示,平行于棱BC AD ,的平面分别交四面体的棱CA DC BD AB ,,,于点H G F E ,,,. (1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.C20.(本小题满分12分)在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈.左视图(1)若23m n ==,求||OP ; (2)用,x y 表示m n -,并求m n -的最大值. 21.(本小题满分12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.22.(本小题满分13分)已知椭圆22221(0)x y ab a b+=>>经过点,离心率为12,左右焦点分别为12(,0),(,0)F c F c -. (1)求椭圆的方程; (2)若直线1:2l y x m =-+与椭圆交于,A B 两点,与以12F F为直径的圆交于,C D 两点,且满足||||4AB CD =,求直线l 的方程.x23.(本小题满分13分)设函数()ln ,mf x x m R x=+∈. (1)当m e =(e 为自然对数的底数)时,求()f x 的最小值;(2)讨论函数()'()3xg x f x =-零点的个数;(3)若对任意()()0,1f b f a b a b a->><-恒成立,求m 的取值范围.参考答案一、选择题1.D [解析] 由M ={x |x ≥0},N ={x |x 2<1}={x |-1<x <1},得M ∩N =[0,1).2.B [解析] T =2π2=π.3.A [解析] ∵z =2-i ,∴z -=2+i ,∴z ·z -=(2+i)(2-i)=4+1=5.4.C [解析] 阅读题中所给的程序框图可知输出的数列为2,2×2=22,2×22=23,2×23=24,…,2×2N -1=2N ,故其通项公式为a n =2n .5.C [解析] 由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π.6.B [解析] 由古典概型的特点可知从5个点中选取2个点的全部情况共有10种,其中选取的2个点的距离小于该正方形边长的情况共有4种,故所求概率为P =410=25.7.B [解析] 由于f (x +y )=f (x )f (y ),故排除选项A ,C.又f (x )=⎝⎛⎭⎫12x为单调递减函数,所以排除选项D 8.A [解析] 由a n +a n +12<a n ,得a n +1<a n ,所以数列{a n }为递减数列,故原命题是真命题,其逆否命题为真命题.易知原命题的逆命题为真命题,所以其否命题也为真命题.9.D [解析] 由题目中所给的数据可知x x 1+x 2+x 3+…+x 1010,不妨设这10位员工下月工资的均值为y -,则y -=(x 1+x 2+x 3+…+x 10)+100010=x -+100,易知方差没发生变化.10.A [解析] 由题意可知,该三次函数的图像过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1.又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1,∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .11.1x =- [解析] 易知抛物线y 2=4x 的准线方程为x =-p2=-1[解析] 4a =2,即22a =2,可得a =12,所以lg x =12,所以x =1012=1013.12[解析] 由a ·b =0,得sin 2 θ=cos 2θ.又0<θ<π2,∴cos θ≠0,∴2sin θ=cos θ,则tanθ=12.14.12014x x+ [解析] 由题意,得f 1(x )=f (x )=x1+x ,f 2(x )=x 1+x 1+x 1+x=x 1+2x ,f 3(x )=x1+3x ,…,由此归纳推理可得f 2014(x )=x1+2014x.15. 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号成立,所以m 2+n 2 ≥ 5.16.由题目中所给图形的位置关系,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽△ACB ,所以AEAC =EFBC.又AC =2AE ,BC =6,所以EF =3 17.易知点⎝⎛⎭⎫2,π6的直角坐标为(3,1),直线ρsin ⎝⎛⎭⎫θ-π6=1的直角坐标方程为x -3y +2=0.由点到直线距离公式,得d =|3-3+2|12+(-3)2=118. (1)c b a ,,成等差数列2a c b ∴+=由正弦定理得sin sin 2sin A C B +=sin sin[()]sin()B A C A C π=-+=+()sin sin 2sin A CA C ∴+=+(2)由题设有b 2=ac ,c=2a ,∴,由余弦定理得2222222423cos 244a cb ac a B ac a +-+-=== 19. (1)由该四面体的三视图可知:,,BD DC BD AD AD DC ⊥⊥⊥,2,1BD DC AD === AD ∴⊥平面BDC∴四面体体积11121223323BCD V AD S ∆=⋅=⨯⨯⨯⨯= (2)因为BC ∥平面EFGH , 平面EFGH平面BDC FG =,平面EFGH平面ABC EH =BC ∴∥FG ,BC ∥EH , FG ∴∥EH .同理EF ∥AD ,HG ∥AD , EF ∴∥HG .∴四边形EFGH 是平行四边形又因为AD ⊥平面BDCAD BC ∴⊥BC ∥FG ,EF ∥AD EF FG ∴⊥∴四边形EFGH 是矩形20. (1)因为23m n ==,(1,2)AB =,(2,1)AC = 22(2,2)33OP ∴=+=(1,2)(2,1)2||=2OP ∴=(2)=(2,2)OP m n m n m n =+++(1,2)(2,1)即22x m ny m n=+⎧⎨=+⎩两式相减得:m n y x -=-令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.x21. (1)设A 表示事件“赔付金额为3000元”,B 表示事件“赔付金额为4000元”,以频率估计概率得: 150()0.151000P A ==,120()0.121000P B ==,由于投保金额为2800,赔付金额大于投保金额对应的情形时3000元和4000元,所以其概率为:()()0.150.120.27P A P B +=+=(2)设C 表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.11000⨯100=,而赔付金额为4000元的车辆中车主为新司机的有0.212024⨯=辆所以样本中车辆中新司机车主获赔金额为4000元的频率为240.24100= 由频率估计概率得()0.24P C =22. (1)由题意可得12222b c a b a c ⎧=⎪⎪=⎨⎪⎪=⎩—解得2,1a b c ===∴椭圆的方程为22143x y += (2)由题意可得以12F F 为直径的圆的方程为221x y += ∴圆心到直线l的距离为d =由1d <1<,可得||m <||CD ∴===设1122(,),(,)A x y B x y联立2212143y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩ 整理得2230x mx m -+-=由求根公式可得:12x x m +=,2123x x m =-||AB ∴=||||4AB CD =1=解方程得m=||m<∴直线l的方程为123y x=-+或123y x=--23.(1)由题设,当m e=时,()lnef x xx=+易得函数()f x的定义域为(0,)+∞221()e x ef xx x x-'∴=-=∴当(0,)x e∈时,()0f x'<,此时()f x在(0,)e上单调递减;当(,)x e∈+∞时,()0f x'>,此时()f x在(,)e+∞上单调递增;∴当x e=时,()f x取得极小值()ln2ef e ee=+=∴()f x的极小值为2(2)函数21()()(0)33x m xg x f x xx x'=-=-->令()0g x=,得31(0)3m x x x=-+>设31()(0)3x x x xϕ=-+≥2()1(1)(1)x x x xϕ'∴=-+=--+当(0,1)x∈时,()0xϕ'>,此时()xϕ在(0,1)上单调递增;当(1,)x∈+∞时,()0xϕ'<,此时()xϕ在(1,)+∞上单调递减;所以1x=是()xϕ的唯一极值点,且是极大值点,因此x=1也是()xϕ的最大值点,∴()xϕ的最大值为12(1)133ϕ=-+=又(0)0ϕ=,结合y=()xϕ的图像(如图)可知① 当23m >时,函数()g x 无零点; ②当23m =时,函数()g x 有且仅有一个零点; ③当203m <<时,函数()g x 有两个零点; ④0m ≤时,函数()g x 有且只有一个零点; 综上所述,当23m >时,函数()g x 无零点;当23m =或0m ≤时,函数()g x 有且仅有一个零点;当203m <<时,函数()g x 有两个零点. (3)对任意()()0,1f b f a b a b a ->><-恒成立 等价于()()f b b f a a -<-恒成立 设()()ln (0)m h x f x x x x x x=-=+-> ()h x ∴等价于在(0,)+∞上单调递减21()10m h x x x'∴=--≤在(0,)+∞恒成立 2211()(0)24m x x x x ∴≥-+=--+>恒成立 14m ∴≥(对14m =,x =h '()0仅在12x =时成立), m ∴的取值范围是1[,)4+∞。
2014年全国高考文科数学试题及答案-江西卷
![2014年全国高考文科数学试题及答案-江西卷](https://img.taocdn.com/s3/m/e07b0d7e336c1eb91a375d40.png)
2014年普通高等学校招生全国统一考试(江西卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(1)2z i i +=(i 为虚数单位),则||z =( ).1A .2B C D 【答案】C 【解析】:设Z=a+bi则(a+bi)( 1+i)=2i ¦ (a-b)( a+b)i=2i a-b=0 a+b=2 解得 a=1 b=1 Z=1+1i Z =i 11+=22.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D - 【答案】C【解析】 {|33},{|15}A x x B x x =-<<=-<≤,所以{}()31R A C B x x =-<<-3.掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D 【答案】B【解析】点数之和为5的基本事件有:(1,4)(4,1)(2,3)(3,2),所以概率为364=914. 已知函数2,0()()2,0x xa x f x a R x -⎧⋅≥=∈⎨<⎩,若[(1)]1f f -=,则=a ( ) 1.4A 1.2B .1C .2D【答案】A【解析】(1)2f -=,(2)4f a =,所以[(1)]41f f a -==解得14a =5.在在ABC ∆中,内角A,B,C 所对应的边分别为,,,c b a ,若32a b =,则2222sin sin sin B AA-的值为( ) 1.9A - 1.3B .1C 7.2D【答案】D【解析】222222222sin sin 2372121sin 22B A b a b A a a --⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭6.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤ .B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” .D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ【答案】D【解析】当0a ≠时,A 是正确的;当0b =时,B 是错误的;命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x <”,所以C 是错误的。
五法破解2014年辽宁理科数学卷填空压轴题
![五法破解2014年辽宁理科数学卷填空压轴题](https://img.taocdn.com/s3/m/d409c4e90242a8956bece430.png)
五法破解2014年辽宁理科数学卷填空压轴题作者:来源:《数学金刊·高考版》2014年第11期多元函数的最值问题一直以来是高考数学卷中检验考生思维能力和综合素质的重要素材,并在考查力度上有加强、加深、加活之态势. 纵观2014年高考卷中的多元函数最值问题,其中辽宁理数第16题最具有代表性,其横向入口较宽,纵向难度较大,技巧性、综合性都很强. 笔者拟从“一题多解,寻思百通”的解题角度,多方位探究此题,以飨读者.题目:对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使2a+b最大时,-+的最小值为______.1.1 从不等式角度分析不等式是处理关于多元函数最值问题的一把利器,而“拆、凑、变、造”则是不等式的解题灵魂,具有一定的技巧性和难度,往往从这四个切入点入手,可还原问题的庐山真面目.方法一(重要不等式ab≤2模型):c=4a2-2ab+4b2=(2a+b)2-3b(2a-b)=(2a+b)2-·2b·(2a-b)≥(2a+b)2-2=(2a+b)2,所以2a+b最大时,2a+b==,2b=2a-b?圯a=,b=.此时,-+=-+=+. 设t=>0,即求f(t)=5t2-2t(t>0)的最小值, f(t)=f=-2,即-+的最小值为-2.方法二(柯西不等式):4a2-2ab+4b2-c=0,可推得2c=3(a+b)2+5(a-b)2,(2a+b)2=×(a+b)+×(a-b)2≤2+2·[((a+b))2+((a-b))2]=+·2c=c,当2a+b取最大值时,有(2a+b)2=,2a=3b?圯a=,b=.以下同方法一.1.2 从方程思想角度分析方程是联系未知变量和已知变量的纽带,通过方程的某种特征量将未知与已知量间的相互关系显性化,从而寻找到解决问题的办法.考虑到题目是二次式,故我们设想:能否构造某个二次方程,借助二次方程的特征量Δ来解决问题?方法三(判别式法):令2a+b=t,则b=t-2a,代入4a2-2ab+4b2-c=0中,得到4a2-2a(t-2a)+4(t-2a)2-c=0,即24a2-18at+4t2-c=0(?鄢).方程(?鄢)是关于a的二次方程,且有实根,所以Δ=182t2-4×24(4t2-c)≥0,可得t2≤c,即(2a+b)2≤c,再将(2a+b)2=c代入4a2-2ab+4b2-c=0,得到2a=3b,代入(2a+b)2=c,解得a=,b=.以下同方法一.方法四(化齐次法):设2a+b=t,则=1,4a2-2ab+4b2=c·12=c·,整理后,有4(t2-c)a2-2(t2+2c)ab+(4t2-c)b2=0(?鄢?鄢),该方程为关于变量a,b的齐次方程,现将方程(?鄢?鄢)看成关于a 的方程,则:(1)当t2=c时,此时b=2a,代入4a2-2ab+4b2-c=0,解得c=16a2,此时-+=+,此时最小值为-.(2)当t2≠c时,Δ=[-2(t2+2c)]2-4·4(t2-c)(4t2-c)=-60t4+96ct2≥0,所以t2≤c,即(2a+b)2≤c,解得a=,b=.以下同方法一.点评 ;化齐次法实质上是将问题转化为准二次方程问题,虽形散,但神似判别式法.1.3 从换元引参角度分析有些数学问题,由于条件与结论中的变量关系在形式上较为隐蔽,实质性的逻辑联系不易从表面形式上发现,即使看出它们的联系,也由于表面形式的复杂而不易直接求解.这时我们进行适当的变量代换,把问题的条件和结论做形式上的转换,这样就容易揭示出它们之间的内在联系,把问题化难为易,化繁为简.方法五(三角换元法):4a2-2ab+4b2-c=0,可推得2c=3(a+b)2+5(a-b)2 ①,2a+b=(a+b)+(a-b)②.在①中,令a-b=cosθ,a+b=sinθ ③,代入②,2a+b=4,此时sinθ=,cosθ=,代入③,解得a=,b=.以下同方法一.点评 ;上述三角换元法思路自然,简洁流畅,正如克莱因所说:“一个精彩巧妙的证明,精神上近乎一首诗.”一般而言,在一个问题系统中,未知与已知必存在着某种内在的联系,有时这种联系比较自然和显性,从而求解问题相对比较顺畅自然一点;有时这种联系比较晦涩和隐性,从而求解问题也相对坎坷些. 我们回头再看题目:对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使2a+b最大时,求-+的最小值.我们可以把其分为两个问题,问题1:对于c>0,当非零实数a,b满足4a2-2ab+4b2-c=0且使2a+b最大时,这时a,b,c三个变量间有何关系?问题2:在问题1的结论下,求-+的最小值.俗语云“射人先射马,擒贼先擒王”,既然问题1中的关键点是使“2a+b最大”,那么我们一切的解题工作都要围绕“2a+b”展开,而与2a+b相关的形式自然想到三种(2a+b)2,2a+b,2a+b,分别为方法一、方法二,方法三,方法四、方法五的入手点. 为了防止读者“只在此山中,云深不知处”,我们再看下文科16题的题目:对于c>0,当非零实数a,b满足4a2-2ab+b2-c=0且使2a+b最大时,求++的最小值. 可见两题的本质是一样的,都可以拆分成问题1和问题2来处理.实际上,笔者是想通过文科试题拆分后的问题1(对于c>0,当非零实数a,b满足4a2-2ab+b2-c=0且使2a+b最大时,a,b,c三个变量间有何关系)来追溯它的前生,即“(2011年高考浙江卷理科16题)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是______”.可见,如果把浙江这道理数题等号右边的1看成c,即可改编为辽宁文数题,而理数题是在文数题的基础上再做点缀,辽宁文数16题与浙江理数16题间微妙的关系真可谓“三生情缘缘不尽,今生再续前世缘”.。
2014年江苏省高考数学试题)答案解析
![2014年江苏省高考数学试题)答案解析](https://img.taocdn.com/s3/m/268926ae01f69e314232946b.png)
3 5
5 ,弦长= 2
r
2
d
2
2
=2 4
9 5
25 5
【点评】本题主要考查直线和圆相交求弦长,直线和圆的位置关系向来都是热点和重点问 题,本题考查的也是一个相对简单的问题,主要侧重计算。
10、已知函数 f (x) x2 mx 1,若对于任意 x [m, m 1] ,都有 f (x) 0 成立,则实 数 m 的取值范围是 ▲ .
的频率为 0.025 10 0.25,样本容量为 60 株, (0.15 0.25) 60 24株是满足题意
的。
【点评】本题考查统计部分的内容,重点考查频
频率/组距
率分布直方图。频率分布直方图的纵轴表示
频率 ,图中读出的数据 0.015并非是频率,需要
组距 乘以组距 10 以后才为频率。频率分布直方图近
15.(1)∵α∈( ,π), =
∴=
∴
=
+
=
(2)
=1 2 = ,
=2
=
=
+
=
+( ) =
16.如图,在三棱锥 P ABC 中,D,E,F 分别为棱 PC,AC,AB 的中点。已
P
知 PA⊥AC,PA=6,BC=8,DF=5.
D
求证:(1)直线 PA∥平面 DEF;
(2)平面 BDE⊥平面 ABC.
13.已知 f (x) 是定义在 R 上且周期为 3 的函数,当 x[0,3) 时, f (x) | x2
2x
1| 2
y f (x) a 在 区 间 [ 3,4]上 有 10 个零点(互不相同),则实数 a 的 取 值 范 围 是
▲.
【答案】 (0, 1 ) 2
2014新课标高考压轴最后一卷 理科数学 Word版含解析 2014
![2014新课标高考压轴最后一卷 理科数学 Word版含解析 2014](https://img.taocdn.com/s3/m/12cd6fca9ec3d5bbfd0a74d0.png)
2014新课标1高考压轴卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则∁U(M∪N)=()2. 复数的共轭复数是a+bi(a,b∈R),i是虛数单位,则点(a,b)为()3. 的值为()4. 函数f(x)=log2(1+x),g(x)=log2(1﹣x),则f(x)﹣g(x)是()5.在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A. B. C. D.6.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π7. 已知函数的图象(部分)如图所示,则ω,φ分别为()B8. “”是“数列{a n}为等比数列”的()9. 在△ABC中,角A、B、C的对边分别为a、b、c,如果cos(2B+C)+2sinAsinB<0,那么三边长a、b、c之间满足的关系是()10. 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD 的长为()D11.定义域为R 的偶函数f (x )满足∀x ∈R ,有f (x+2)=f (x )﹣f (1),且当x ∈[2,3]时,f (x )=﹣2x 2+12x ﹣18.若函数y=f (x )﹣log a (x+1)至少有三个零点,则a 的取值范围是( ) ,,,12. 设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λμ=,则该双曲线的离心率为( )B13. 函数22631y x x =++的最小值是14.执行如图所示的程序框图,则输出的结果S 是________.15.已知平行四边形ABCD 中,点E 为CD 的中点,=m,=n(m•n≠0),若∥,则=___________________.16. 设不等式组表示的平面区域为M ,不等式组表示的平面区域为N .在M 内随机取一个点,这个点在N 内的概率的最大值是________________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知(3,cos())a x ω=-,(sin(b x ω=,其中0ω>,函数()f x a b =⋅的最小正周期为π.(1)求()f x 的单调递增区间;(2)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .且()2Af =,a =,求角A 、B 、C 的大小.18.某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm ,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm 以上(包括185cm )定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm 以上(包括190cm )的只有两个人,且均在甲队.(Ⅰ)求甲、乙两队运动员的总人数a 及乙队中成绩在[160,170)(单位:cm )内的运动员人数b ;(Ⅱ)在甲、乙两队所有成绩在180cm 以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X 的分布列及期望.19.等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足12AD CE DB EA == (如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --为直二面角,连结11A B AC 、 (如图2).(Ⅰ)求证:1A D ⊥平面BCED ;(Ⅱ)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.20.在平面直角坐标系xOy 中,从曲线C 上一点P 做x 轴和y 轴的垂线,垂足分别为N M ,,点)0,(),0,(a B a A -(a a ,0>为常数),且02=+⋅ON BM AM λ(0≠λ) (1)求曲线C 的轨迹方程,并说明曲线C 是什么图形;(2)当0>λ且1≠λ时,将曲线C 绕原点逆时针旋转︒90得到曲线1C ,曲线C 与曲线1C 四个交点按逆时针依次为G F E D ,,,,且点D 在一象限 ①证明:四边形DEFG 为正方形; ②若D F AD ⊥,求λ值. 21. 已知21(),()2f x lnxg x ax bx ==+ (0),()()().a h x f x g x ≠=- (Ⅰ)当42a b ==,时,求()h x 的极大值点;(Ⅱ)设函数()f x 的图象1C 与函数()g x 的图象2C 交于P 、Q 两点,过线段PQ 的中点做x 轴的垂线分别交1C 、2C 于点M 、N ,证明:1C 在点M 处的切线与2C 在点N 处的切线不平行.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.已知AB 是圆O 的直径,C 为圆O 上一点,CD ⊥AB 于点D , 弦BE 与CD 、AC 分别交于点M 、N ,且MN = MC(1)求证:MN = MB ; (2)求证:OC ⊥MN 。
山东省2014高考数学压轴卷 文(含解析)
![山东省2014高考数学压轴卷 文(含解析)](https://img.taocdn.com/s3/m/546eff21b9f3f90f77c61b67.png)
2014山东省高考压轴卷文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( ) A . 0 B . 0 B.1 C.2 D.32. 复数21i z ()i=-,则复数1z +在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既非充分也非必要条件4. 设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k+2﹣S k =36,则k 的值为( ) A . 8 B . 7 C . 6 D . 55.如图是某一几何体的三视图,则这个几何体的体积为( )A . 4B . 8C . 16D . 206.一个算法的程序框图如图所示,如果输入的x 的值为2014,则输出的i 的结果为( )A.3 B.5 C.6 D.87.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6K-1,6K+2](K∈Z)B. [6k-4,6k-1] (K∈Z)C.[3k-1,3k+2] (K∈Z)D.[3k-4,3k-1] (K∈Z)8.在约束条件121y xy xx y≤⎧⎪⎪≥⎨⎪+≤⎪⎩下,目标函数12z x y=+的最大值为( )(A) 14(B)34(C)56(D)539. 直线l经过抛物线y2=4x的焦点,且与抛物线交于A,B两点,若AB的中点横坐标为3,则线段AB的长为()A.5 B.6 C.7 D.810. 已知函数f(x)=ln(e x﹣1)(x>0)()A.若f(a)+2a=f(b)+3b,则a>b B.若f(a)+2a=f(b)+3b,则a<bC.若f(a)﹣2a=f(b)﹣3b,则a>b D.若f(a)﹣2a=f(b)﹣3b,则a<b二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11. 某校从参加高二年级学业水平测试的学生中抽出100名学生,其数学成绩的频率分布直方图如图所示.其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90) ,[90,100].则成绩在[80 ,100]上的人数为__________. 12.设函数f (x )=,若函数y=f (x )﹣k 存在两个零点,则实数k 的取值范围是 ________________..13. 设数列是公差为1的等差数列,且a 1=2,则数列{lga n }的前9项和为_______________.14. 设f (x )是定义在R 上的奇函数,且当x≥0时,f (x )=x 2,若对任意x ∈[a ,a+2],不等式f (x+a )≥f(3x+1)恒成立,则实数a 的取值范围是________________. 15.若正数x ,y 满足3x+y=5xy ,则4x+3y 的最小值是__________________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内. 16.在△ABC 中,已知A=4π,255cos B =. (I)求cosC 的值;(Ⅱ)若BC=25,D 为AB 的中点,求CD 的长.17.如图,在四棱台ABCD ﹣A 1B 1C 1D 1中,下底ABCD 是边长为2的正方形,上底A 1B 1C 1D 1是边长为1的正方形,侧棱DD 1⊥平面ABCD ,DD 1=2. (1)求证:B 1B∥平面D 1AC ;(2)求证:平面D 1AC⊥平面B 1BDD 1.18.某校举行环保知识竞赛,为了了解本次竞赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分),进行统计,请根据频率分布表中所提供的数据,解答下列问题: (Ⅰ)求a b 、的值;(Ⅱ)若从成绩较好的第3、4、5 组中按分层抽样的方法抽取6人参加社区志愿者活动,并从中选出2人做负责人,求2人中至少有1人是第四组的概率.19. 设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T .20. 给定椭圆C :,称圆心在坐标原点O ,半径为的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是.(1)若椭圆C 上一动点M 1满足||+||=4,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点P (0,t )(t <0)作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为2,求P 点的坐标.21. 已知函数f (x )=alnx+1(a >0)组号 分组 频数 频率第1组 [)50,60 5 0.05 第2组 [)60,70 a0.35 第3组 [)70,8030 b第4组 [)80,90 200.20第5组 [)100,9010 0.10 合计1001.00(Ⅰ)若a=2,求函数f (x )在(e ,f (e ))处的切线方程; (Ⅱ)当x >0时,求证:f (x )﹣1≥a.2014山东省高考压轴卷 文科数学参考答案 1. 【答案】C.【解析】由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A∩B={0,1,2}∩{0,2,4}={0,2}. 所以A∩B 中元素的个数为2. 故选C .2. 【答案】D.【解析】因为22211()1(1)22i i z i i i i -====----,所以1112z i +=-,所以复数1z +在复平面上对应的点位于第四象限.3. 【答案】A.【解析】当//αβ时,由l ⊥平面α得,l β⊥,又直线m ∥平面β,所以l m ⊥。
2014年安徽省高考数学分析及2015年备考建议
![2014年安徽省高考数学分析及2015年备考建议](https://img.taocdn.com/s3/m/3f277e888762caaedd33d4bb.png)
2014年安徽高考数学试卷分析及2015年备考建议2014年安徽高考理科数学试卷分析一、整体简评今年试卷是2013年的姊妹卷,前20题载体亲善,不同基础、能力的考生进入深度不同,区分度好,对考生的心态调节好,第21题压轴题以贝努利不等式为载体考查不等式的证明,数列单调性及有界性的证明,用数学归纳法证明,难度很大。
今年让我们痛哭流涕、刻骨铭心的好题少,是一份适合考生的好试卷。
估计大部分考生分数在80分—120分左右,最高分可以达到145分左右,我们将拭目以待。
二、逐题评析第1题复数题是2013年第1题的逆命题较易;第2题不等式充要条件题比2013年第4题容易;第3题程序框图题是2013年第2题相当较易;第4题参数方程极坐标题比2013年第7题容易;第5题线性规划目标函数逆向求值题是2013年没有的属于中等题;第6题函数性质求值题是2013年没有的属于中等题;第7题三视图求表面积题是2013年没有的属于中等题;第8题立体几何计数题是2013年没有的,属于中等题;第6题函数性质求值题是2013年是没有的属于中等题;第9题两绝对值函数求值题是2013年没有的,属于较难题;第10题集合向量三角解析几何综合题是2013年第9题的深化,比较难;第11题三角函数性质值题是2013年没有的,属于容易题;第12题等差等比数列求值题是2013年没有的,属于中等题;第13题二项式图形综合题是2013年第11题的深化中等题;第10题集合向量三角解析几何综合题是2013年第9题的深化比较难;第14题椭圆焦点弦问题是2012年安徽文科第14题的深化比较难;第15题以向量为载体的新信息综合题是2011年安徽理科第15题的深化比较难;第16题三角形综合题较易;第17题概率比较常见较易;第18题导数比较常见较易;第19题是2011年安徽理科第21题的深化以抛物线直线为载体考查多字母处理的逻辑推理能力教难;第20题是2012年安徽文科第20题的深化立体几何关注空间想象能力较难;第21题以高等数学中的贝努利不等式为载体考查不等式的证明,数列单调性及有界性的证明,用数学归纳法、作差比较法、放缩法证明,难度很大。
上海市2014高考数学压轴卷试题 理(含解析)
![上海市2014高考数学压轴卷试题 理(含解析)](https://img.taocdn.com/s3/m/5b14fdaebe23482fb5da4cc5.png)
2014年上海高考数学押题卷(理)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 函数)-3(log 1)(2.0x x x f +=的定义域为_____________已知F 是抛物线x y 42=的焦点,B A ,在抛物线上,M (3,2)为线段AB 的中点,则OAB ∆的面积为_____________已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x x f 1292)(23+-=,则不等式)1(|)(|f x f ≥ 的解集是_____________已知数列{}n a 其前n 项和为n S ,且222++=n n S n *()n ∈N ,则数列{}n a 的通项公式为_____________零向量b a ,满足]32,2(|2|2||2||∈-==b a b a ,且,则,a b 夹角的取值范围是_____________在7)xa x +(的展开式中含有27x - ,则2a =_____________ 已知复数4-,,2211121≥⋅+=-=z z z z ib z i a z 的共轭复数。
若是,则b 的取值范围是_____________ 已知=-=+>-=θθθαααcos sin ,1)2tan(,02sin 542cos 则且,_____________ 红、黄、蓝三色灯泡分别有3、2、2支,把它们挂成一排,要求红色灯泡不能全部相邻,则看到的不同效果有_____________个。
已知函数)sin(2)(ϕω+=x x f (其中R ∈x ,0>ω,πϕπ<<-)的部分图象如图所示。
2014年甘肃高考数学解析
![2014年甘肃高考数学解析](https://img.taocdn.com/s3/m/812cc65dad02de80d4d84076.png)
2014年甘肃高考数学(理)卷解析 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、 设集合M={0,1,2},N={x|x 2-3x+2≦0},则M ∩N=A 、{1}B {2}C 、{0,1}D 、{1、2}【解析】N={x|1≦x ≦2},故M ∩N={1、2}. 选D2、 设复数1Z ,2Z 在复平面内的对应点关于虚轴对称,1Z =2+i,则1Z 2Z = A 、-5 B 、5 C 、-4+i D 、-4-i 【解析】由题意知:22z i =-+,所以12z z =-5,故选A 。
3、设向量a,b 满足|a+b|=10,|a-b|=6,则b a rr ∙=A 、1B 、2C 、3D 、5【解析】1022222=++=⎪⎭⎫ ⎝⎛+=+b a b a b a b a r r r r r r r r ,622222=-+=⎪⎭⎫ ⎝⎛-=-b a b a b a b a r r r r r r r r ,故1=b a rr 选A4、钝角三角形ABC 的面积是21,AB=1,BC=2,则AC= A 、5 B 、5 C 、2 D 、1【解析】面积公式可知:21sin 221=⨯B ,22sin =B ,由钝角三角形知,故B=43π 再由余弦定理AC=5 选B5、 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是A 、0.8B 、0.75C 、0.6D 、0.45【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P A B P B A P A ⋂===,选A.6、 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出 的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积比值为 A 、2717 B 、95 C 、2710 D 、31【解析】画出几何体求得,选C7、执行右面的程序框图,如果输入的x,t 均为2,则输出的S= A 、4 B 、5 C 、6 D 、7【解析】当k=1时,M=2,S=5;当k=2时,S=7, 选D8、 设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= A 、0 B 、1 C 、2 D 、3 【解析】由11+-='x a y ,切线斜率为a-1=2,故a=3, 选D9、设x,y 满足约束条件⎪⎩⎪⎨⎧≥--≤+-≤-+05301307y x y x y x ,则z=2x-y 的最大值为A 、10B 、8C 、3D 、2【解析】画出平面区域,平移直线y=2x,可得z 的最大值为8 选B10、设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为300的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为 A 、433 B 、839 C 、3263 D 、49【解析】直线AB 为⎪⎭⎫ ⎝⎛-=4333x y ,代入y 2=3x 中得0931242=--y y ,设A ()11,y x ,B ()22,y x 则三角形面积为()49443212121=-+⨯⨯y y y y , 选D 11、直三棱柱ABC-111C B A 中,∠BCA=900,M,N 分别是11B A ,11C A 的中点,BC=CA=C 1C ,则BM 与AN 所成角的余弦值为 A 、101 B 、52 C 、1030 D 、22 【解析】以C 为原点,CA 为x 轴,CB 为y 轴,C 1C 为z 轴,设CA=CB=1,则B(0,1,0),M ⎪⎭⎫ ⎝⎛1,0,21,A(1,0,0), ⎪⎭⎫ ⎝⎛-=1,21,21M B r ⎪⎭⎫⎝⎛-=1,0,21N A r ,1030252643,cos =∙=∙∙=NA MB N A M B N A M B r r rr r r ,选C12、设函数F(x)=mxπsin3,若存在f(x)的极值点0x 满足()[]22020m x f x <+,则m 的取值范围是A 、()()+∞⋃-∞-,66,B 、()()+∞⋃-∞-,44,C 、()()+∞⋃-∞-,22,D 、()()+∞⋃-∞-,11,【解析】由题意知:'0()0x f x m m ππ==,所以02m x =,所以22200[()]m x f x >+=24m + 343,34sin32202>+=m m m x π,得()()+∞⋃-∞-,22,,选C 第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2014全国统一高考数学真题及逐题详细解析(文科)—上海卷
![2014全国统一高考数学真题及逐题详细解析(文科)—上海卷](https://img.taocdn.com/s3/m/ec7414d7ad51f01dc281f124.png)
2014高考数学【上海卷(文)】解析版一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数()212cos 2y x =-的最小正周期是_________________.2. 若复数12i z =+,其中i 是虚数单位,则1___________z z z ⎛⎫+⋅= ⎪⎝⎭.3. 设常数a ∈R ,函数f (x )=|x -1|+|x 2-a |. 若f (2)=1,则f (1)= .4. 若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则抛物线的准线方程为_________.5. 某校高一、高二、高三分别有学生1600名、1200名、800名. 为了解该校高中学生的牙齿健康状况,按各年级的学生数进行分层抽样. 若高三抽取20名学生,则高一、高二共需抽取的学生数为 .6. 若实数,x y 满足1xy =,则222x y +的最小值为___________.7. 若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为_____________(结果用反三角函数值表示).8. 在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于 .9. 设,0,()1,0.x a x f x x x x -+≤⎧⎪=⎨+>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 . 10. 设无穷等比数列公比为q ,若()134lim n a a a →∞=++,则__________q =.11. 若()2132f x x x-=-,则满足()0f x <的x 的取值范围是___________.12. 方程sin xx = 1在区间[0, 2π]上的所有解的和等于 .13. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_____________(结果用最简分数表示).14. 已知曲线:C x =:6l x =. 若对于点(),0A m ,存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为________________.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 设,a b ∈R ,则“+4a b >”是“2a >且2b >”的( ).A. 充分条件B. 必要条件C. 充分必要条件D. 既非充分又非必要条件 16. 已知互异的复数a , b 满足ab ≠0,集合{a , b }={a 2, b 2},则a +b =( ). A. 2 B. 1 C. 0 D. -117. 如图,四个边长为1的小正方形排成一个大正方形,AB 是大正方形的一条边,P i (i =1,2,…,7)是小正方形的其余顶点,则i AB AP ⋅(i =1,2,…,7)的不同值的个数为( ). A. 7 B. 5 C. 3 D. 1 P765218. 已知()111,P a b 与()222,P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组11221,1a x b y a x b y +=⎧⎨+=⎩ 的解的情况是( ).A. 无论k 、1P 、2P 如何,总是无解B. 无论k 、1P 、2P 如何,总有唯一解C. 存在k 、1P 、2P ,使之恰有两解D. 存在k 、1P 、2P ,使之有无穷多解三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19. (本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123P P P ,如图. 求123PP P ∆的各边长及此三棱锥的体积V .1P 220. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数()22x x af x a+=-.(1) 若4a =,求函数()y f x =的反函数()1y f x -=;(2) 根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米. 设A 、B 点在同一水平面上,从A 和B 看的仰角分别为α和β.(1) 设计中CD 是铅垂方向,若要求2αβ≥,问CD 的长至多为多少(精确到0.01米)? (2) 施工完成后,CD 与铅垂方向有偏差,现在实测得38.12α=,18.45β=,求CD 的长(结果精确到0.01米).22. (本题满分16分) 本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点()()111222,,,P x y P x y ,记()()1122a x b y c a x b y c η=++++. 若0η<,则称点12P P 、被直线l 分隔,若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(1) 求证:点()()1,21,0A B -,被直线10x y +-=分隔;(2) 若直线y kx =是曲线2241x y -=的分割线,求实数k 的取值范围;(3) 动点M 到点()0,2Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分隔线.23. (本题满分18分) 本题共有3个小题,第1小题满分3分,第2小题满分6分, 第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,n *∈N ,11a =.(1) 若22a =,3a x=,49a =,求x 的取值范围;(2) 若{}n a 是等比数列,且11000m a =,求正整数m 的最小值,以及m 取最小值时相应{}n a 的公比;(3) 若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.参考答案一、选择题1.π2【解析】()212cos 2cos 4y x x =-=-,则π2T =. 【考点】二倍角余弦公式以及标准三角函数最小正周期的求解—公式法 2.6【解析】211516z z z z ⎛⎫+⋅=+=+= ⎪⎝⎭.【考点】复数的代数四则运算以及复数模的性质 3.3【解析】由()21f =得1414a a +-=⇒=,则()1143f =-=. 【考点】对函数概念的理解 4.2x =-【解析】易知焦点为()2,0,则准线方程为2x =-. 【考点】圆锥曲线基本量 5.70【解析】()201600120070800+=. 【考点】分层抽样的方法(关键是样本比例相等)6.【解析】222x y +≥=【考点】基本不等式求最值 7.1arcsin 3θ=【解析】设圆锥的底面半径为r ,母线长为l ,母线与轴所成角为θ。
2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷
![2014全国统一高考数学真题及逐题详细解析(文科)—江苏卷](https://img.taocdn.com/s3/m/1be62efcb52acfc788ebc91b.png)
2014年普通高等学校招生全国统一考试(江苏卷)解析版数学I一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上 1. 已知集合 A={-1,3,4} , B 二{—1,2,3},则 A B 二.22. 已知复数z =(5 2i ) (i 为虚数单位),则z 的实部为 ________ .(第 3 题)4. 从1, 2, 3, 6这4个数中一次随机地取 2个数,则所取2个数的乘积为6的概率是 _____________ .5. 已知函数y =cosx 与y =si 门(2乂亠门)(0 ,它们的图象有一个横坐标为 的交点,则「的值3是 _______ .6. 设抽测的树木的底部周长均在区间 [80, 130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 _____ 株树木的底部周长小于 100cm.7. 在各项均为正数的等比数列 {a .}中,a 2 =1, a^a 6 2a 4,则a 6的值是 _________________ .S9 8. 设甲、乙两个圆柱的底面分别为目,S 2 ,体积分别为V 1 , V 2 ,若它们的侧面积相等, 且旦:S 243.右图是一个算法流程图,则输出的n 的值是开始,•输出n -频率则冷的值是________ .V22 29. 在平面直角坐标系xOy中,直线x 2^^0被圆(x—2)(y 1) =4截得的弦长为___________ .10. 已知函数f(x) =x2 mx -1,若对于任意x・[m,m 1],都有f (x)::: 0成立,则实数m的取值范围是_________ .2 b11. 在平面直角坐标系xOy中,若曲线y=ax - (a,b为常数)过点P(2,_5),且该曲线在点P处的x切线与直线7x 2y ^0平行,则a -的值是_____________________ .T —I T ■■—t 12. 如图,在平行四边形ABCD中,已知AB=8,AD =5,CP =3PD,AP BP =2,贝U AB A D的值是_________ .2 113. 已知f(x)是定义在R上且周期为3的函数,当x可0,3)时,f(x)=x —2x+?.若函数y=f(x) -a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是 ____ .14. 若厶ABC的内角满足sin A • 2sin B =2sinC,贝U cosC的最小值是________ .二、解答题:本大题共6小题,共计90分•请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.R二515. (本小题满分14分)已知:£三(一,二),sin .2 5一" 5(1)求sin(—:■)的值;(2)求cos(- 2二)的值.4 616. (本小题满分14分)如图,在三棱锥P-ABC中,D , E, F分别为棱PC, AC,AB的中点.已知PA_ AC , PA=6 ,BC =8, DF =5.求证:(1)直线PA//平面DEF ;(2)平面BDE _平面ABC.C (第16题)17. (本小题满分14分)2 2如图,在平面直角坐标系xOy中,F「F2分别是椭圆笃•爲=1(a b 0)的左、右焦点,顶点B a b的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F i C.(1)若点C的坐标为(4丄),且BF2 ,求椭圆的方程;e的值.3 318. (本小题满分16分)如图,为了保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区•规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆•且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C4 位于点O正东方向170m处(OC为河岸),tan ./BCO二一.3(1)求新桥BC的长;(第18 题)19. (本小题满分16分)已知函数f(x)二e x e",其中e是自然对数的底数•(1) 证明:f (x)是R上的偶函数;(2) 若关于x的不等式mf(x) < e" • m -1在(0,=)上恒成立,求实数m的取值范围;(3) 已知正数a满足:存在[1,=),使得f(x°) :::a(-x;• 3x°)成立.试比较e"与a e4的大小,并证明你的结论.20. (本小题满分16分)设数列{a n }的前n 项和为S n .若对任意正整数n ,总存在正整数 m ,使得S^a m ,则称{a .}是 “ H 数列”. (1) 若数列{a n }的前n 项和S n =2n ( n. N ),证明:{a .}是“ H 数列”;(2) 设{a n }是等差数列,其首项 a^1,公差d ::: 0 .若{a n }是“ H 数列”,求d 的值; (3) 证明:对任意的等差数列 {a n },总存在两个“ H 数列” {b n }和{C n },使得a^b n - C n (n • N )成立•数学u (附加题)[选修4 — 1:几何证明选讲 如图,AB 是圆O 的直径, 证明:/ OCB = Z D .在平面直角坐标系xOy 中,已知直线l 的参数方程%◎ (t 为参数),直线l 与抛物线[y“+爭t ;y 2 =:4x 相交于A 、B 两点,求线段 AB 的长.24. [选修4—4 :不等式证明选讲](本小题满分10分) 已知x >0, y >0,证明: 25. (本小题满分10分)盒中共有9个球,其中有 (1) 从盒中一次随机取出 (2) 从盒中一次随机取出 随机变量X 表示x 2、 26. (本小题满分10分)已知函数 f(x^Sinx (x 0),设 f n (x)是 f n 1 (x)的导数,n ,N .x, n . n n r . .. _ (1)求叫丁2(2的值;* n n⑵ 证明:对于任意 n ^ N ,等式nfn4(—)+-f4 4 参考答案](本小题满分10分) C 、D 是圆O 上位于AB 异侧的两点.22. 23. [选修4—2 :矩阵与变换|-1 2已知矩阵A 二, J X 」(本小题满分10分)B 二 1[选修4—4 :坐标系与参数方程 一2 -1,向量"x ,y 为实数.(1 x 2 y)(1 x y 2) > 9xy .4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. 2个球,求取出的2个球颜色相同的概率 P ;4个球,其中红球、黄球、绿球的个数分别记为 X 1、X 2、X 3, x 3中的最大数,求 X 的概率分布和数学期望E(X).2都成立. 2D(第21— A 题)一、选择题1 •【答案】{ -1,3}解析:由题意得Ap]B二{ -1,3}【考点】交集、并集、补集(B).【答案】{-1,3}【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A又属于集合B的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为{-1,3}【点评】本题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。
2014全国统一高考数学真题及逐题详细解析(文科)—天津卷
![2014全国统一高考数学真题及逐题详细解析(文科)—天津卷](https://img.taocdn.com/s3/m/be7ba38c71fe910ef12df824.png)
2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,复数734ii+=+( )A .1i -B .1i -+C .17312525i + D .172577i -+ 2.设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )A .2B .3C .4D .53.已知命题p :0x ">,总有()11x x e +>,则p Ø为( )A .00x $£,使得()0011xx e £+ B .00x $>,使得()0011xx e £+C .0x ">,总有()11x x e +£D .0x "£,总有()11x x e +£ 4.设2log a p =,12log b p =,2c p-=,则( )A .a b c >>B .b a c >>C .a c b >>D .c b a >>5.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )A .2B .-2C .12 D .12- 6.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 7.如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分C B F Ð;②2FB FD FA = ;③AE CE BE DE ? ;④AF BD AB BF ? .则所有正确结论的序号是( )A .①②B .③④C .①②③D .①②④FED CBA8.已知函数()cos f x x x w w =+()0w >,,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为,则()f x 的最小正周期为( )A .B .C .D .二、填空题(本大题共6个小题,每小题5分,共30分.把答案填在题中横线上.)9.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.10.已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_______3m.俯视图侧视图正视图11.阅读右边的框图,运行相应的程序,输出S 的值为________.12.函数()2lg f x x =的单调递减区间值是________.13.已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,3BC BE =,DC DF l =.若1AE AF ?,则l 的值为_______.14.已知函数()254,22,0,0.x x x f x x x ìï++ï=í->£ïïïî若函数()y f x a x =-恰有4个零点,则实数a 的取值范围为__________.三、解答题(本题共6道大题,满分80分.解答应写出文字说明,证明过程或演算步骤.)15.(本小题满分13分)某校夏令营有3名男同学和3名女同学,其年级情况如下表:现从这6(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.16.(本小题满分13分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c .已知a c b -=,sin B C =. (Ⅰ)求cos A 的值;(Ⅱ)求cos 26A π⎛⎫- ⎪⎝⎭的值.17.(本小题满分13分)如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点.(Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60,(ⅰ)证明 平面PBC ^平面ABCD ;(ⅱ)求直线EF 与平面PBC 所成角的正弦值.PFEDCBA18.(本小题满分13分)设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知12AB F =. (Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M,2MF =,求椭圆的方程. 19.(本小题满分14分)已知函数()2323f x x ax =-()0a >,x R Î. (Ⅰ)求()f x 的单调区间和极值; (Ⅱ)若对于任意的()12,x ?,都存在()21,x ? ,使得()()121f x f x ?.求a 的取值范围. 20.(本小题满分14分)已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,q M =-,集合{}112,,1,2,,n n i A x x x x q x q x M in -+?==++.(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中,i i a b M Î,1,2,,i n =. 证明:若n n a b <,则s t <.参考答案 一、选择题 1.A解:()()()()73472525134343425i i i i i i i i +-+-===-++-,选A . 2.B解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B .x3.B解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .4.C解:因为1a >,0b <,01c <<,所以a c b >>,选C . 5.D解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . 6.A解:依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . 7.D解:由弦切角定理得FBD EAC BAE ?? ,又BFD AFB ? ,所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ? ,排除A 、C . 又FBD EAC DBC ?? ,排除B ,选D .解:8.C 因为,所以,得= ,所以 = 或=,, 因为相邻交点距离的最小值为 ,所以 ,w=2, T=, 所以选C9.解:应从一年级抽取4604556300?+++名.10.解:该几何体的体积为212042233p p p ?鬃=3m . 11.解:3n =时,8S =-;2n =时,4S =-,所以输出的S 的值为-4. 12.解:由复合函数的单调性知,()f x 的单调递减区间是(),0-¥.13.解:因为120BAD?,菱形的边长为2,所以2AB AD ?-.因为()13AE AF AB AD AD AB l 骣÷ç?+?÷ç÷ç桫,1AE AF ?, 所以1214133l l 骣骣鼢珑-?+?=鼢珑鼢珑桫桫,解得12l =. 14.解:作出()f x 的图象,如图当直线y ax =-与函数254y x x =---相切时,由0D =可得1a =,所以1a >. 15.解:(I )从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y ,Z},共15种.(II )选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能接过为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种. 因此,事件M 发生的概率62().155P M == 16.解:(I )在三角形ABC 中,由sin sin b c B C =及C B sin 6sin =,可得b =又b c a 66=-,有2a c=,所以222222cos 2b c a A bc +-=== (II) 在三角形ABC中,由cos A =,可得sin A =,于是21cos 22cos 1,sin 22sin cos 4A A A A A =-=-==,所以cos(2)cos 2cossin 2sin666A A A πππ-=+=17.解:(I ))证明:如图取PB 中点M,连接MF,AM.因为F 为PC 中点,故MF//BC 且MF=12BC.由已知有BC//AD ,BC=AD.又由于E 为AD 中点,因而MF//AE 且MF=AE ,故四边形AMFE 为平行四边形,所以EF//AM,又AM ⊂平面PAB,而EF ⊄平面PAB,所以EF//平面PAB. (II )(i )证明:连接PE,BE.因为PA=PD,BA=BD,而E 为AD 中点,故PE ⊥AD,BE ⊥AD,所以∠PEB 为二面角P-AD-B 的平面角.在三角形PAD 中,由,可解得PE=2. 在三角形ABD 中,由,可解得BE=1. 在三角形PEB 中,PE=2, BE=1, 60PEB ∠=,由余弦定理,可解得90PBE ∠=,即BE ⊥PB,又BC//AD,BE ⊥AD,从而BE ⊥BC,因此BE ⊥平面PBC.又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD,(ii )连接BF ,由(i )知BE ⊥平面PBC.所以∠EFB 为直线EF 与平面PBC 所成的角,由∠ABP 为直角,而MB=12,可得,故,又BE=1,故在直角三角形EBF中,sin BE EFB EF ∠==所以,直线EF 与平面PBC18.,所以22223a c c -=,解得a =,2e =. (Ⅱ)解:由(Ⅰ)知椭圆方程可化为22222x y c +=. 因为()0,B c ,所以直线1BF 的斜率11BF k =. 因为11PF BF ^,所以直线1PF 的斜率11PF k =-, 直线1PF 的方程为y x c =--.设()00,P x x c --,则有()2220022x x c c +--=,解得043cx =-或00x =(舍),所以4,33c c P 骣÷ç-÷ç÷ç桫. 因为线段PB 的中点为22,33c c 骣÷ç-÷ç÷ç桫,所以圆的方程为222225339c c c x y 骣骣鼢珑++-=鼢珑鼢珑桫桫. 因为直线l与该圆相切,且2MF =,所以22529899c c +=,解得23c =. 所以椭圆方程为22163x y +=. 19.分析:(1)求函数单调区间及极值,先明确定义域:R ,再求导数2()22(0).f x x ax a '=->在定义域下求导函数的零点:0x =或1x a =,通过列表分析,根据导函数符号变化规律,确定单调区间及极值,即()f x 的单调增区间是1(0,)a ,单调减区间是(,0)-∞和1(,)a+∞,当0x = 时,()f x 取极小值0 ,当1x a = 时,()f x 取极大值213a, (2)本题首先要正确转化:“对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=”等价于两个函数值域的包含关系.设集合{()|(2,)},A f x x =∈+∞,集合1{|(1,),()0},()B x f x f x =∈+∞≠则A B ⊆,其次挖掘隐含条件,简化讨论情况,明确讨论方向.由于0B ∉,所以0A ∉,因此322a≤,又A B ⊆,所以(1)0f ≥,即33.42a ≤≤ 解(1)由已知有2()22(0).f x x ax a '=->令()0f x '=,解得0x =或1x a=,列表如下:所以()f x 的单调增区间是(0,)a ,单调减区间是(,0)-∞和1(,)a+∞,当0x = 时,()f x 取极小值0 ,当1x a = 时,()f x 取极大值213a ,(2)由3(0)()02f f a ==及(1)知,当3(0,)2x a∈时,()0f x >,当3(,)2x a∈+∞时,()0f x <设集合{()|(2,A f x x =∈+∞,集合1{|(1,),()0},()B x f x f x =∈+∞≠则“对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=”等价于A B ⊆.显然0B ∉. 下面分三种情况讨论:当322a >即304a <<时,由3()02f a=可知0A ∈而0B ∉,所以A 不是B 的子集 当3122a ≤≤即3342a ≤≤时,有(2)0f ≤且此时()f x 在(2,)+∞上单调递减,故(,(2))A f =-∞,因而(,0)A ⊆-∞由(1)0f ≥有()f x 在(1,)+∞上的取值范围包含(,0)-∞,所以A B ⊆当312a <即32a >时,有(1)0f <且此时()f x 在(1,)+∞上单调递减,故1(,0)(1)B f =,(,(2))A f =-∞,所以A 不是B 的子集综上,a 的取值范围为33[,].42考点:利用导数求单调区间及极值,利用导数求函数值域 20.(Ⅰ)解:当2q =,3n =时,{}0,1M =,{}12324,,1,2,3i A x x x x x M x i==+?+, {}0,1,2,3,4,5,6,7A =.(Ⅱ)证明:因为1q >,所以,i i a b M Î,所以1i a q ?,1,2,,1n i =-,1nn a b ?.所以()()()221111n n n qq q q b q s --?+++++-()()111111n n n q q b q q---=-?--111n n n n t b qb q --=-<£.。
2014年高考数学选择题精细解析
![2014年高考数学选择题精细解析](https://img.taocdn.com/s3/m/fdea378609a1284ac850ad02de80d4d8d15a012e.png)
2014年高考数学选择题精细解析2014年,面对高考数学选择题,许多考生感到棘手。
在这篇文章中,我们将对2014年高考数学选择题进行精细解析,以帮助考生更好地理解题目,并提供解题的思路和方法。
本次解析主要涉及数学的各个分支,包括代数、几何和概率等,希望对考生有所帮助。
1. 代数题代数是高考数学中的重要组成部分。
在2014年的高考数学试卷中,代数题占了相当大的比例。
下面我们将对其中一道代数选择题进行解析。
【题目】已知二次方程f(x)=ax^2+bx+c的两个根分别是1和2,且a+b+c=6,则a,b,c的值是()A. 1,2,3B. 1,-2,3C. -1,2,3D. 1,-1,4【解析】根据二次方程的性质,已知根分别是1和2,则方程可写为f(x)=a(x-1)(x-2)。
根据题目条件得知,a+b+c=6,代入方程中得到a(1-2)(1-1)+b(2-1)(2-2)+c=6。
化简后得到-a+c=6,即c=a+6。
将c代入方程中得到f(x)=a(x-1)(x-2)=a(x^2-3x+2)。
对比方程系数得到a=-1。
由此可知a=-1,b=2,c=3,因此答案选项为C。
2. 几何题几何题在高考数学中也有很大的比重。
2014年高考数学试卷中的几何题目较为复杂,需要考生掌握扎实的几何知识和解题技巧。
下面我们将对一道几何选择题进行解析。
【题目】如图所示,正方形ABCD的边长为2,点E为AD的中点,连接AC和BE交于点F,连接BE和CD延长线交于点G。
则三角形EFG 的面积为()。
(插入图片)A. 1/8B. 1/6C. 1/4D. 1/3【解析】首先,我们观察可以发现三角形EFG与正方形ABCD有关系。
根据题目中的提示,我们可以找到三角形EFG的高和底边。
连接AF并延长交BD于点H,则EH为三角形EFG的高,而GH为底边。
进一步观察,我们可以发现三角形EFG与三角形ADC和三角形HGC相似。
由此,我们可以得出以下比例关系:EF/AD = EG/GC = FG/HC。
2014年全国统一高考数学试卷及解析(理科)(大纲版)
![2014年全国统一高考数学试卷及解析(理科)(大纲版)](https://img.taocdn.com/s3/m/740c697dd1f34693dbef3ebc.png)
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=17、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、18、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、311、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为、(用数字作答)14、(5分)设x、y满足约束条件,则z=x+4y的最大值为、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1、(5分)设z=,则z的共轭复数为()A、﹣1+3iB、﹣1﹣3iC、1+3iD、1﹣3i题目分析:直接由复数代数形式的除法运算化简,则z的共轭可求、试题解答解:∵z==,∴、故选:D、点评:本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题、2、(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A、(0,4]B、[0,4)C、[﹣1,0)D、(﹣1,0]题目分析:求解一元二次不等式化简集合M,然后直接利用交集运算求解、试题解答解:由x2﹣3x﹣4<0,得﹣1<x<4、∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4)、故选:B、点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题、3、(5分)设a=sin33°,b=cos55°,c=tan35°,则()A、a>b>cB、b>c>aC、c>b>aD、c>a>b题目分析:可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得、试题解答解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C、点评:本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题、4、(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A、2B、C、1D、题目分析:由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||、试题解答解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B、点评:本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题、5、(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A、60种B、70种C、75种D、150种题目分析:根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案、试题解答解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C、点评:本题考查分步计数原理的应用,注意区分排列、组合的不同、6、(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A、+=1B、+y2=1C、+=1D、+=1题目分析:利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程、试题解答解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1、故选:A、点评:本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题、7、(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A、2eB、eC、2D、1题目分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率、试题解答解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C、点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础、8、(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A、B、16πC、9πD、题目分析:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积、试题解答解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=、故选:A、点评:本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题、9、(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A、B、C、D、题目分析:根据双曲线的定义,以及余弦定理建立方程关系即可得到结论、试题解答解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===、故选:A、点评:本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力、10、(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A、6B、5C、4D、3题目分析:利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10、再利用对数的运算性质即可得出、试题解答解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10、∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4、故选:C、点评:本题考查了等比数列的性质、对数的运算性质,属于基础题、11、(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A、B、C、D、题目分析:首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案、试题解答解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===、故选:B、点评:本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题、12、(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A、y=g(x)B、y=g(﹣x)C、y=﹣g(x)D、y=﹣g(﹣x)题目分析:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x 的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得、试题解答解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D、点评:本题考查反函数的性质和对称性,属中档题、二、填空题(本大题共4小题,每小题5分)13、(5分)的展开式中x2y2的系数为70、(用数字作答)题目分析:先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数、=•(﹣1)试题解答解:的展开式的通项公式为T r+1 r••=•(﹣1)r••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70、点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题、14、(5分)设x、y满足约束条件,则z=x+4y的最大值为5、题目分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案、试题解答解:由约束条件作出可行域如图,联立,解得C(1,1)、化目标函数z=x+4y为直线方程的斜截式,得、由图可知,当直线过C点时,直线在y轴上的截距最大,z最大、此时z max=1+4×1=5、故答案为:5、点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题、15、(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于、题目分析:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果、试题解答解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:、点评:本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题、16、(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2] 、题目分析:利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x 的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围、试题解答解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1、∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=、∴,解得:a≤2、∴a的取值范围是(﹣∞,2]、故答案为:(﹣∞,2]、点评:本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题、三、解答题17、(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B、题目分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出、试题解答解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=、∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题、18、(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4、(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n、题目分析:(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可、试题解答解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=、点评:本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题、19、(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2、(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小、题目分析:(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得、试题解答解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan点评:本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题、20、(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立、(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望、题目分析:记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求、(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可、试题解答解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31、(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38、故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2点评:本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题、21、(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|、(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程、题目分析:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程、(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|、把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|、由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程、试题解答解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=、又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去)、故C的方程为y2=4x、(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4、∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1)、又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3、过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3)、故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0、点评:本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题、22、(12分)函数f(x)=ln(x+1)﹣(a>1)、(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*)、题目分析:(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式、试题解答解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数、②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数、(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立、②假设当n=k时结论成立,即,=ln(a n+1)>ln(),则当n=k+1时,a n+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年高考数学选择、填空压轴题分析一、选择题[2014·安徽卷]10. 在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满足OQ →=2(a +b ).曲线C ={P |OP →=a cos θ+b sin θ,0≤θ<2π},区域Ω={P |0<r ≤|PQ |≤R ,r <R }.若C ∩Ω为两段分离的曲线,则( )A .1<r <R <3B .1<r <3≤RC .r ≤1<R <3D .1<r <3<R10.A [解析]由已知可设OA →=a =(1,0),OB →=b =(0,1),P (x ,y ),则OQ →=(2,2),|OQ |=2.曲线C ={P |OP →=(cos θ,sin θ),0≤θ<2π}, 即C :x 2+y 2=1.区域Ω={P |0<r ≤|PQ →|≤R ,r <R }表示圆P 1:(x -2)2+(y -2)2=r 2与P 2:(x -2)2+(y -2)2=R 2所形成的圆环,如图所示.要使C ∩Ω为两段分离的曲线,则有1<r <R <3.[2014·广东卷]8. 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1308.D [解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 2523种方法;当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 3522种方法;当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 452种方法.故总共有C 2523+C 3522+C 452=130种方法, 即满足题意的元素个数为130.[2014·湖北卷] 10.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( )A.⎣⎡⎦⎤-16,16B.⎣⎡⎦⎤-66,66C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-33,33 10.B [解析] 因为当x ≥0时,f (x )=12()||x -a 2+||x -2a 2-3a 2,所以当0≤x ≤a 2时,f (x )=12()a 2-x +2a 2-x -3a 2=-x ;当a 2<x <2a 2时,f (x )=12()x -a 2+2a 2-x -3a 2=-a 2;当x ≥2a 2时,f (x )=12()x -a 2+x -2a 2-3a 2=x -3a 2.综上,f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66.故选B.[2014·湖南卷] 10.已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .(-∞,1e) B .(-∞,e)C.⎝⎛⎭⎫-1e ,eD.⎝⎛⎭⎫-e ,1e10.B [解析] 依题意,设存在P (-m ,n )在f (x )的图像上,则Q (m ,n )在g (x )的图像上,则有m 2+e -m -12=m 2+ln(m +a ),解得m +a =ee -m -12,即a =ee -m -12-m (m >0),可得a ∈(-∞,e).[2014·辽宁卷]12. 已知定义在[0,1]上的函数f (x )满足:①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.[2014·新课标全国卷Ⅱ]12. 设函数f (x )=3sin πxm ,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).2[2014·陕西卷]10. 如图1-2,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为 ( )图1-2A .y =1125x 3-35xB .y =2125x 3-45xC .y =3125x 3-xD .y =-3125x 3+15x10.A [解析] 设该三次函数的解析式为y =ax 3+bx 2+cx +d .因为函数的图像经过点(0,0),所以d =0,所以y =ax 3+bx 2+cx .又函数过点(-5,2),(5,-2),则该函数是奇函数,故b =0,所以y =ax 3+cx ,代入点(-5,2)得-125a -5c =2.又由该函数的图像在点(-5,2)处的切线平行于x 轴,y ′=3ax 2+c ,得当x =-5时,y ′=75a +c =0.联立⎩⎪⎨⎪⎧-125a -5c =2,75a +c =0,解得⎩⎨⎧a =1125,c =-35.故该三次函数的解析式为y =1125x 3-35x .[2014·四川卷] 10.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2,解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =122|y 1|+122|y 2|+1214|y 1|=18(9|y 1|+8|y 2|)≥1829|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =21222+12142=1728,而1728>3,故选B.二、填空题 [2014·北京卷]14. 设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 14.π [解析] 结合图像得T 4=π2+2π32-π2+π62,即T =π.[2014·福建卷]15. 若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.15.6 [解析] 若①正确,则②③④不正确,可得b ≠1不正确,即b =1,与a =1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d =4;由a ≠1,b ≠1,c ≠2,得满足条件的有序数组为a =3,b =2,c =1,d =4或a =2,b =3,c =1,d =4.若③正确,则①②④不正确,由④不正确,得d =4;由②不正确,得b =1,则满足条件的有序数组为a =3,b =1,c =2,d =4;若④正确,则①②③不正确,由②不正确,得b =1,由a ≠1,c ≠2,d ≠4,得满足条件的有序数组为a =2,b =1,c =4,d =3或a =3,b =1,c =4,d =2或a =4,b =1,c =3,d =2;综上所述,满足条件的有序数组的个数为6.[2014·湖南卷]16. 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.16.1+7 [解析] 由|CD →|=1,得动点D 在以C 为圆心,半径为1的圆上,故可设D (3+cos α,sin α),所以OA +OB +OD =(2+cos α,3+sin α),所以|OA +OB +OD |2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin (α+φ),所以(|OA →+OB →+OD →|2)max =8+27,即|OA →+OB →+OD →|max =7 +1.[2014·江苏卷]13. 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.13.⎝⎛⎭⎫0,12 [解析] 先画出y =x 2-2x +12在区间[0,3]上的图像,再将x 轴下方的图像对称到x 轴上方,利用周期为3,将图像平移至区间[-3,4]内,即得f (x )在区间[-3,4]上的图像如下图所示,其中f (-3)=f (0)=f (3)=0.5,f (-2)=f (1)=f (4)=0.5.函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同)等价于y =f (x )的图像与直线y =a 有10个不同的交点,由图像可得a ∈⎝⎛⎭⎫0,12.[2014·天津卷]14. 已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.14.(0,1)∪(9,+∞) [解析] 在同一坐标系内分别作出y =f (x )与y =a |x -1|的图像如图所示.当y =a |x -1|与y =f (x )的图像相切时,由⎩⎪⎨⎪⎧-ax +a =-x 2-3x ,a >0,整理得x 2+(3-a )x+a =0,则Δ=(3-a )2-4a =a 2-10a +9=0,解得a =1或a =9.故当y =a |x -1|与y =f (x )的图像有四个交点时,0<a <1或a >9.[2014·浙江卷]10. 设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i99,i =0,1,2,…,99.记I k =|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3,则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 110.B [解析] 对于I 1,由于⎪⎪⎪⎪⎝⎛⎭⎫i 992-⎝⎛⎭⎫i -1992=2i -1992(i =1,2,…,99),故I 1=1992(1+3+5+…+299-1)=992992=1;对于I 2,由于2⎪⎪⎪⎪i 99-i -199-⎝⎛⎭⎫i 992+⎝⎛⎭⎫i -1992=2992|100-2i |(i=1,2,…,99),故I 2=2992250(98+0)2=100×98992=992-1992<1.I 3=13sin ⎝⎛⎭⎫2π×199-sin ⎝⎛⎭⎫2π×099+sin ⎝⎛⎭⎫2π×299-sin ⎝⎛⎭⎫2π×199+…+ sin ⎝⎛⎭⎫2π×9999-sin ⎝⎛⎭⎫2π×9899= 13⎣⎡⎦⎤2sin ⎝⎛⎭⎫2π×2599-2sin ⎝⎛2π×7499≈43>1.故I 2<I 1<I 3,故选B.[2014·江西卷]15. 过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.15.22[解析] 设点A (x 1,y 1),点B (x 2,y 2),点M 是线段AB 的中点,所以x 1+x 2=2,y 1+y 2=2,且⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式作差可得x 21-x 22a 2=-(y 21-y 22)b 2,即(x 1+x 2)(x 1-x 2)a 2=-(y 1+y 2)(y 1-y 2)b 2,所以y 1-y 2x 1-x 2=-b 2a 2,即k AB =-b 2a 2.由题意可知,直线AB 的斜率为-12,所以-b 2a 2=-12,即a =2b .又a 2=b 2+c 2,所以c =b ,e =22.[2014·全国卷]16. 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].[2014·新课标全国卷Ⅰ]16. 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a=2,且(2+b )·(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.16.3 [解析] 根据正弦定理和a =2可得(a +b )(a -b )=(c -b )c ,故得b 2+c 2-a 2=bc ,根据余弦定理得cos A =b 2+c 2-a 22bc =12,所以A =π3.根据b 2+c 2-a 2=bc 及基本不等式得bc≥2bc-a2,即bc≤4,所以△ABC面积的最大值为12432= 3.[2014·新课标全国卷Ⅱ]16.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN =45°,则x0的取值范围是________.16.[-1,1][解析] 在△OMN中,OM=1+x20≥1=ON,所以设∠ONM=α,则45°≤α<135°.根据正弦定理得1+x20sin α=1sin 45°,所以1+x20=2sin α∈[1,2],所以0≤x20≤1,即-1≤x0≤1,故符合条件的x0的取值范围为[-1,1].[2014·山东卷]15.已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=4-x2关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是________.15.(210,+∞)[解析] g(x)的图像表示圆的一部分,即x2+y2=4(y≥0).当直线y =3x+b与半圆相切时,满足h(x)>g(x),根据圆心(0,0)到直线y=3x+b的距离是圆的半径求得|b|9+1=2,解得b=210或b=-210(舍去),要使h(x)>g(x)恒成立,则b>210,即实数b的取值范围是(210,+∞).[2014·四川卷] 15.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sin x时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)15.①③④[解析] 若f(x)∈A,则f(x)的值域为R,于是,对任意的b∈R,一定存在a∈D,使得f(a)=b,故①正确.取函数f(x)=x(-1<x<1),其值域为(-1,1),于是,存在M=1,使得f(x)的值域包含于[-M,M]=[-1,1],但此时f(x)没有最大值和最小值,故②错误.当f(x)∈A时,由①可知,对任意的b∈R,存在a∈D,使得f(a)=b,所以,当g(x)∈B 时,对于函数f(x)+g(x),如果存在一个正数M,使得f(x)+g(x)的值域包含于[-M,M],那么对于该区间外的某一个b0∈R,一定存在一个a0∈D,使得f(a0)=b-g(a0),即f(a0)+g(a0)=b0∉[-M,M],故③正确.对于f(x)=a ln(x+2)+xx2+1(x>-2),当a>0或a<0时,函数f(x)都没有最大值.要使得函数f(x)有最大值,只有a=0,此时f(x)=xx2+1(x>-2).易知f (x )∈⎣⎡⎦⎤-12,12,所以存在正数M =12,使得f (x )∈[-M ,M ],故④正确.。