量子力学第二章总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
1.波函数/平面波:
(1)频率和波长都不随时间变化的波叫平面波。 (2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数
2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.
3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。 由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。 (2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|2
5.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2
d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2
d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。 7.归一化: C ∫∞|Φ(x,y,z,t)|2
d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2
d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2
故把(1)式改写成 ∫∞|Ψ(r , t)|2
d τ=1 把Φ换成Ψ的步骤称为归一化。 8.δ—函数 δ(x-x 0)= 0 x ≠x 0 ∞ x=x0 ∫+∞
-∞δ(x-x 0)dx=1 9.波函数的标准化条件: (1)单值、有限、连续 (2)正交 归一 完备 10.态叠加原理: 态叠加原理一般表述:若Ψ1 ,Ψ2 ……Ψn …… 是体系的一系列可能的状态,则这些态的线性叠加 Ψ= C 1Ψ1+ C 2Ψ2+……+C n Ψn 也是体系的一个可能状态。 11.能量算符/哈密顿算符 定态波函数满足下面两个方程:
两个方程的特点:都是以一
个算符作用于Ψ(r, t)等于E Ψ(r, t)。 →哈密顿算符 这两个算符都是能量算符 12.薛定谔方程:
13.几率流密度
单位时间内通过τ的封闭
表面S 流入(面积分前面的负号)τ内的几率,因而可以自然的把J 解释为概率密度矢量。 14.质量守恒定律:
15.电荷守恒定律:
16.状态波函数或态函数 所谓态函数,就是指它们的数值由系统的状态唯一地确定,而与系统如何达到这个状态的过程无关。 17.量子力学的基本假定 (1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性、单值性三个条件。
(2)力学量用厄米算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量得算符.表示力学量的算符有组成完备系的本征函数。
(3)将体系的状态波函数Ψ用算符F 的本征函数Φ展开(F Φn =λn Φn F Φλ=λΦλ): Ψ=ΣCn Φn+∫C λΦλd λ, 则在Ψ态中测量力学量F 得到结果为λn 的概率为
|Cn|2,
得到结果在λ→λ+d λ范围内的概率是|C λ|2d λ (4)体系的状态波函数满足薛定谔方程
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系状态(全同性原理)
18.定态/定态波函数/定态S 方程:
求解薛定谔方程 的特解
(1) 由此可见,体系处于(1)式所描写的状态是,能量具有确定值,所以这种状态成为 定态..(1)式称为定态波函数(在定态中概率密度和概率流密度都与时间无关) (2)
函数Ψ由方程(2)和具体问题中的波函数应满足地条件得出,方程(2)为定态薛定谔方程