弧长和扇形的面积2教案

合集下载

人教初中数学《弧长和扇形面积 》教案 (公开课获奖)

人教初中数学《弧长和扇形面积   》教案 (公开课获奖)

弧长和扇形面积教学内容24.4弧长和扇形面积〔2〕.教学目标1.了解母线的概念.2.掌握圆锥的侧面积计算公式,并会应用公式解决问题.3.经历探索圆锥侧面积计算公式的过程,开展学生的实践探索能力.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点圆锥侧面积计算公式的推导过程.教学过程一、导入新课师:大家见过圆锥吗?你能举出实例吗?生:见过,如漏斗、蒙古包.师:你们知道圆锥的外表是由哪些面构成的吗?请大家互相交流.生:圆锥的外表是由一个圆面和一个曲面围成的.师:圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.二、新课教学1.圆锥的母线.圆锥是由一个底面和一个侧面围成的几何体,如图,我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.2.探索圆锥的侧面公式.思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?〔1〕如图,沿一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形.〔2〕设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πr(r+l).3.利用圆锥的侧面积公式进行计算.例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡〔n取3.142,结果取整数〕?解:右图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2.高h 2=1.8 m ;上部圆锥的高h 1=-=1.4(m). 圆柱的底面圆的半径r =π12≈1.945(m),侧面积为2π××≈22.10(m 2).圆锥的母线长l =224.1945.1+≈2.404(m),侧面展开扇形的弧长为2π×≈12.28(m),圆锥的侧面积为21××≈14.76(m 2). 因此,搭建20个这样的的蒙古包至少需要毛毡20×+14.76)≈738(m 2). 三、稳固练习教材第114页练习. 四、课堂小结 本节课应该掌握:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. 五、布置作业习题24.4 第4、5、7题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.AICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢? [生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为D CA B,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的D C A B性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算.E DC A B P3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

弧长与扇形的面积教案

弧长与扇形的面积教案

弧长与扇形的面积教案一、教学目标1. 理解弧长的概念和计算方法。

2. 掌握扇形面积的计算方法。

3. 能够应用弧长和扇形面积的知识解决实际问题。

二、教学内容1. 弧长的概念和计算方法。

2. 扇形面积的计算方法。

3. 弧长和扇形面积的应用。

三、教学过程1. 导入老师通过引入一道实际问题,如一个半径为10cm的圆的一条弧长为15cm,问这条弧长对应的圆心角是多少度,让学生思考并尝试解答。

2. 弧长的概念和计算方法(1)引导学生观察圆的弧形和其中一个弧长,进一步培养学生对弧的直观感受。

(2)让学生尝试用圆的半径和圆心角来计算弧长,通过实际测量验证计算结果的准确性。

(3)总结弧长的计算方法(弧长 = 半径×圆心角 / 360°),并让学生进行练习。

3. 扇形面积的计算方法(1)引导学生观察一个扇形和其对应的圆,进一步培养学生对扇形的直观感受。

(2)让学生尝试用圆的半径和圆心角来计算扇形的面积,通过实际测量验证计算结果的准确性。

(3)总结扇形面积的计算方法(扇形面积 = 1/2 ×半径×半径×圆心角 / 360°),并让学生进行练习。

4. 弧长和扇形面积的应用(1)导入一个实际问题:一个圆形花坛的周长为30米,花坛中心的喷泉水按每秒60毫升的速度喷出,问这个喷泉每分钟喷水多少升?(2)引导学生分析问题,并利用已学知识解答问题。

(3)通过解答问题,让学生认识到弧长和扇形面积在解决实际问题中的应用价值。

五、教学总结1. 弧长是圆的一部分长度,可以用圆的半径和圆心角来计算。

2. 扇形是圆的一部分面积,可以用圆的半径和圆心角来计算。

3. 弧长和扇形面积的计算方法是由圆的半径和圆心角决定的。

4. 弧长和扇形面积的知识在解决实际问题中有很大的应用价值。

六、教学延伸1. 可以引导学生查找更多弧长和扇形面积的实际应用例子,并进行讨论和分享。

2. 可以设计更多扩展题目和实践任务,让学生更加熟练运用弧长和扇形面积的知识。

弧长和扇形面积(教案)

弧长和扇形面积(教案)

教案:弧长和扇形面积教学目标:1. 理解弧长的概念及计算方法。

2. 掌握扇形面积的计算公式。

3. 能够运用弧长和扇形面积的知识解决实际问题。

教学重点:1. 弧长的计算。

2. 扇形面积的计算。

教学难点:1. 弧长的计算公式的应用。

2. 扇形面积的计算公式的应用。

教学准备:1. 课件或黑板。

2. 教学卡片。

3. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的周长公式:C = 2πr。

2. 提问:如果我们知道圆的半径,如何计算圆的周长呢?二、新课:弧长(10分钟)1. 引入弧长的概念:在圆上,弧长是指连接圆上两点之间的部分的长度。

2. 解释弧长的计算方法:弧长= 圆心角/ 360°×2πr。

3. 示例:给定一个半径为5cm的圆,圆心角为90°,计算弧长。

三、练习:弧长的计算(10分钟)1. 学生独立完成练习题,老师巡回指导。

2. 选取部分学生的作业进行讲解和点评。

四、导入扇形面积的概念(5分钟)1. 引入扇形面积的概念:扇形面积是指圆心角所对应的圆弧与半径所围成的区域的面积。

2. 提问:扇形面积与圆的面积有何关系?五、新课:扇形面积的计算(10分钟)1. 解释扇形面积的计算公式:扇形面积= (圆心角/ 360°) ×πr²。

2. 示例:给定一个半径为5cm的圆,圆心角为90°,计算扇形面积。

3. 强调扇形面积与圆心角的关系:圆心角越大,扇形面积越大。

教学反思:本节课通过引入弧长和扇形面积的概念,让学生掌握了弧长和扇形面积的计算方法。

在教学过程中,通过示例和练习题的讲解,帮助学生理解和应用知识点。

在今后的教学中,可以结合实际问题,让学生更好地运用弧长和扇形面积的知识。

六、练习:弧长和扇形面积的综合应用(10分钟)1. 学生独立完成综合练习题,老师巡回指导。

2. 选取部分学生的作业进行讲解和点评。

七、课堂小结(5分钟)1. 回顾本节课所学内容:弧长的计算方法和扇形面积的计算方法。

教案 弧长和扇形的面积

教案 弧长和扇形的面积

24.4弧长和扇形的面积教学目标(一)知识与技能1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)过程与方法1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生互相交流探索法教学过程Ⅰ.创设问题情境,引入新课[师] 如图,在运动会的4×100米比赛中,甲和乙分别在第1跑道和第2跑道,为什么他们的起跑线不在同一处?怎样来计算弯道的“展直长度”?学完今天的内容,你就会算了。

今天我们来学习弧长和扇形的面积。

出示学习目标(学生了解学习目标)。

下面请同学们预习课本。

Ⅱ.新课讲解一、探索弧长的计算公式1.半径为R的圆,周长为多少?C=2πR2.1°的圆心角所对弧长是多少?3.n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?4. n°的圆心角所对弧长l是多少?弧长公式注意:用弧长公式进行计算时,要注意公式中n 的意义.n 表示1°圆心角的倍数,它是不带单位的.下面我们看弧长公式的运用.算一算 已知弧所对的圆心角为90°,半径是4,则弧长为____.典例精析 投影片例例1;制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l.(单位:mm ,精确到1mm) 解:由弧长公式,可得弧AB 的长因此所要求的展直长度l =2×700+1570=2970(mm ).答:管道的展直长度为2970mm .对应练一练:1.已知扇形的圆心角为60°,半径为1,则扇形的弧长为 .2.一个扇形的半径为8cm ,弧长为 cm ,则扇形的圆心角为 .二.扇形及扇形的面积由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.1009005001570(mm),180l ⨯⨯π==π≈判一判: 下列图形是扇形吗?[师]扇形的面积公式的推导. 如果圆的半径为R ,则圆的面积为πR 2。

弧长和扇形面积2教案

弧长和扇形面积2教案

课题24.4 弧长和扇形面积(第2课时)【教学目标】(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.【重点难点】重点:1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.难点:经历探索圆锥侧面积计算公式.【教学方法】观察猜想、合作交流、讲练结合【自主复习、预习】【教学过程】一、检查自主复习、预习1.什么是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.问题1:一种太空囊的示意图如图所示,•太空囊的外表面须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要接受防高热处理的面积应由几部分组成的.老师点评:(2)太空囊要接受热处理的面积应由三部分组成;圆锥上的侧面积,•圆柱的侧面积和底圆的面积.这三部分中,第二部分和第三部分我们已经学过,会求出其面积,•但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.二、新课导学我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.(学生分组讨论,提问二三位同学)问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,•底面圆的半径为r,•如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,•因此圆锥的侧面积为________,圆锥的全面积为________.老师点评:很显然,扇形的半径就是圆锥的母线,•扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=2360n lπ,其中n可由2πr=2180n lπ求得:n=360rl,•∴扇形面积S=2360360rllπ=πrL;全面积是由侧面积和底面圆的面积组成的,所以全面积=πrL+r2.例1.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为Lcm,则r=582π2258()202π+≈22.03S纸帽侧=πrL≈12×58×22.03=638.87(cm)638.87×20=12777.4(cm2)所以,至少需要12777.4cm2的纸.例2.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?分析:(1)由S扇形=2360n Rπ求出R,再代入L=180n Rπ求得.(2)若将此扇形卷成一个圆锥,•扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,•圆锥母线为腰的等腰三角形.解:(1)如图所示:∵300π=2 120 360Rπ∴R=30∴弧长L=12030180π⨯⨯=20π(cm)(2)如图所示:∵20π=20πr∴r=10,R=30900100-2∴S轴截面=12×BC×AD=12×2×10×22(cm2)三、巩固练习(一)基础训练——夯实基础一、课本课本P114 练习1、2、二、选择题.1.圆锥的母线长为13cm,底面半径为5cm,则此圆锥的高线为()A.6cm B.8cm C.10cm D.12cm2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,•用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为()A.228° B.144° C.72° D.36°3.如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,•从点A出发绕侧面一周,再回到点A的最短的路线长是()A.3.332C.3 D.3(二)提升训练——能力培养1.母线长为L,底面半径为r的圆锥的表面积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,•所得圆柱体的表面积是________(用含 的代数式表示)3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部分,那么这座粮仓实际需用________m2的油毡.4.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,•需要加工这样的一个烟囱帽,请你画一画:(1)至少需要多少厘米铁皮(不计接头)(2)如果用一张圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?5.如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,•求圆锥全面积.(三)综合运用——拓展思维如图所示,一个几何体是从高为4m,底面半径为3cm•的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,•求这个几何体的表面积.四、归纳小结本节课应掌握:1.什么叫圆锥的母线.2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.五、布置作业P108 8、9【课后反思】。

弧长与扇形面积 教案

弧长与扇形面积 教案

弧长与扇形面积教案教案标题:弧长与扇形面积教学目标:1. 理解并能够计算弧长的概念和计算方法。

2. 理解并能够计算扇形面积的概念和计算方法。

3. 能够应用弧长和扇形面积的计算方法解决实际问题。

教学准备:1. 教师准备:投影仪,计算工具(例如计算器),白板,白板笔。

2. 学生准备:铅笔,纸张,计算工具。

教学过程:步骤一:导入(5分钟)1. 教师通过引入圆的概念,复习半径、直径和圆周长的计算方法。

2. 引出新的概念:弧长和扇形面积,并与圆周长进行对比,说明它们之间的关系。

步骤二:弧长的计算(15分钟)1. 教师通过示意图和实例,解释如何计算弧长。

2. 教师指导学生进行练习,从简单到复杂逐步提高难度。

3. 教师提供反馈和讲解,纠正学生可能存在的错误。

步骤三:扇形面积的计算(15分钟)1. 教师通过示意图和实例,解释如何计算扇形面积。

2. 教师指导学生进行练习,从简单到复杂逐步提高难度。

3. 教师提供反馈和讲解,纠正学生可能存在的错误。

步骤四:综合应用(15分钟)1. 教师设计一些实际问题,要求学生运用所学知识解决。

2. 学生进行个人或小组讨论,寻找解决问题的方法。

3. 学生展示解决思路和结果,教师给予评价和指导。

步骤五:总结与拓展(5分钟)1. 教师对本节课的重点内容进行总结,并强调弧长和扇形面积的实际应用。

2. 教师提供一些拓展问题,鼓励学生进一步思考和探索。

教学延伸:1. 学生可以通过实际测量,验证圆周长、弧长和扇形面积的计算公式。

2. 学生可以应用所学知识解决一些与圆相关的实际问题,如轮胎的制作、扇形花坛的设计等。

评估方式:1. 教师观察学生在课堂上的参与和表现。

2. 教师设计练习题和应用题,检查学生对弧长和扇形面积的理解和应用能力。

教学反思:本节课通过引入圆的概念,将弧长和扇形面积与圆周长进行对比,帮助学生理解这两个概念的意义和计算方法。

通过练习和应用,学生能够逐步掌握弧长和扇形面积的计算技巧,并能够应用于实际问题中。

弧长及扇形的面积教案示范三篇

弧长及扇形的面积教案示范三篇

弧长及扇形的面积教案示范三篇弧长及扇形的面积教案1教材分析:本节课涉及的主要概念有弧长、圆心角、扇形面积等,需要学生掌握相关定义和公式。

同时,也需要对圆的基本属性和关系有一定的了解,如弦长公式、周长公式等。

教学目标:学生能够准确理解弧长、圆心角、扇形面积等的概念与关系,能够运用相应的公式计算,同时掌握圆的基本属性和关系。

教学重点:弧长、圆心角、扇形面积的概念、公式和计算方法。

教学难点:圆心角的度量方法和圆的相关属性的理解。

学情分析:学生在初中阶段已经学习过圆的相关知识,对圆的基本属性和关系有一定的了解,但掌握程度存在差异。

部分学生对于弧长、圆心角、扇形面积等概念理解不深,计算方法掌握不熟练。

教学策略:通过引导学生观察实际生活中的圆形物体,探求圆的相关特征和性质,并引出弧长、圆心角、扇形面积的概念及其运用。

同时,采用差异化教学和在课外加强练习的方式,提高学生对知识点的掌握度。

教学方法:由浅入深、由低到高的顺序逐步引导学生,通过实际生活情境,建立数学模型,形象直观地解释和应用相关知识点。

同时,采用小组合作、互帮互助的方式,激发学生学习兴趣和主动参与性。

弧长及扇形的面积教案2导入环节(约5分钟):教学内容:引出本节课的主题——弧长及扇形的面积。

教学活动:通过展示一些圆形的图片,采用提问的方式引导学生发现圆形的特点,比如圆周率、直径等等,然后展示一些弧线和扇形的图片,引导学生思考它们与圆形有什么关系,为本节课的学习做好铺垫。

课堂互动(约35分钟):教学内容:介绍弧长及扇形的面积的概念、计算公式以及应用。

教学活动:先通过展示一些实际生活中的问题,引出学习弧长及扇形的面积的重要性。

然后对弧长的概念及计算公式进行详细解释,并且设计一些小组讨论或者个人练习的活动,加强学生对于弧长计算的掌握。

接着,再对扇形的面积进行详细讲解,包括其计算公式和一些实例的练习,这里也可以采用小组讨论的方式,让学生们互相帮助和交流,加强学生们对于扇形面积的理解和掌握。

弧长和扇形的面积教案设计

弧长和扇形的面积教案设计

圆中的计算问题(1)--弧长和扇形的面积教学目标(一)知识与技能:1.了解弧长和扇形面积的计算方法;2.通过对弧长和扇形面积公式的推导,培养学生运用旧知探究问题,获得新知的能力;及培养学生建构知识的能力。

(二)过程与方法:根据圆既是轴对称图形又是旋转对称图形,对它进行等分,体验弧长和扇形面积公式的推导过程。

(三)情感态度与价值观:体会数学与实际生活的密切联系,充分认识学好数学的重要性,树立正确的价值观。

(四)最终目标培养学生会用数学的眼光去观察这个世界,会用数学的思维去思考这个世界,会用数学的语言去表达这个世界。

教学重点:弧长和扇形面积公式的推导和有关的计算。

教学难点:弧长和扇形面积公式的推导。

教学方法:探究法“从特殊到一般”;类比的学习方法;极限的数学思想。

教学过程:活动1 知识回顾:(1)圆的周长公式: 圆的面积公式:(2)思考:联系生活若要求圆周上的某一部分弧长;或者是圆中扇形的面积又如何求呢?比如以下问题求铁轨的长度。

师生行为:教师演示课件,回顾旧知,提出问题,激发学生学习新知的热情。

将学生的注意力牢牢吸引至课堂。

设计意图:通过旧知激发学生探究新知的兴趣,注重知识的建构。

活动2 设置问题情景引入课题如图23.3.1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)分析:我们容易看出这段铁轨是圆周长的, 所以铁轨的长度 l ≈=157.0(米).问题:上面求的是的圆心角所对的弧长,若圆心角是任意的角度,如何计算它所对的弧长呢?师生行为:提出问题,让学生解答出铁轨的长度,思考面对任意圆心角的弧长又如何解答?设计意图:从生活中的问题入手,使学生认识到我们继续研究圆中弧长公式的意义,那就是数学总是与现实问题密不可分,激发学生学习的热情,培养他们科学的探新精神!活动3 探究弧长公式41410032⨯⨯90︒图23.3.1(1)请同学们思考,圆心角分别为、、时,各圆心角是圆周角的几分之几?它们所对的弧长又是圆周长的几分之几?并请同学们给出回答的依据是什么?引导学生利用圆的对称性:它既是轴对称图形也是旋转对称图形对圆进行等分。

《弧长及扇形面积的计算》教案

《弧长及扇形面积的计算》教案

《弧长及扇形面积的计算》教案第一章:弧长的概念1.1 引入:通过观察圆的周长和弧的关系,引导学生理解弧长的概念。

1.2 讲解:弧长是指圆上一段弧的长度,用字母l 表示,弧长公式为l = (θ/360) ×2πr,其中θ为圆心角的度数,r 为圆的半径。

1.3 练习:让学生计算给定圆心角和半径的弧长,加深对弧长概念的理解。

第二章:弧长的计算2.1 引入:通过实例讲解弧长的计算方法。

2.2 讲解:利用圆的周长和圆心角的关系,推导出弧长计算公式。

2.3 练习:让学生运用公式计算不同圆心角和半径下的弧长,提高计算能力。

第三章:扇形的概念3.1 引入:通过观察扇形的特点,引导学生理解扇形的概念。

3.2 讲解:扇形是由圆心、圆弧和两条半径组成的图形,用字母S 表示。

扇形的面积公式为S = (θ/360) ×πr²,其中θ为圆心角的度数,r 为圆的半径。

3.3 练习:让学生计算给定圆心角和半径的扇形面积,加深对扇形面积概念的理解。

第四章:扇形面积的计算4.1 引入:通过实例讲解扇形面积的计算方法。

4.2 讲解:利用圆的面积和圆心角的关系,推导出扇形面积计算公式。

4.3 练习:让学生运用公式计算不同圆心角和半径下的扇形面积,提高计算能力。

第五章:弧长和扇形面积的实际应用5.1 引入:通过生活实例讲解弧长和扇形面积的实际应用。

5.2 讲解:举例说明弧长和扇形面积在实际问题中的应用,如计算圆周长、圆的面积等。

5.3 练习:让学生运用弧长和扇形面积的知识解决实际问题,提高运用能力。

第六章:弧长与圆周长的关系6.1 引入:通过观察圆的周长和弧的关系,引导学生理解弧长与圆周长的关系。

6.2 讲解:圆周长是指整个圆的周长,用字母C 表示,圆周长公式为C = 2πr,其中r 为圆的半径。

弧长与圆周长的关系为l = (θ/360) ×C。

6.3 练习:让学生计算给定圆心角和半径的弧长,并求出对应的圆周长,加深对弧长与圆周长关系的理解。

【精】 《弧长和扇形面积(第2课时)》精品教案

【精】 《弧长和扇形面积(第2课时)》精品教案

《弧长和扇形面积(第2课时)》精品教案课题24.4弧长和扇形面积(2)单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标培养学生的观察、想象、实践能力,获得数学学习经验,懂的数学与生活的密切联系。

能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题。

知识目标 1.了解圆锥母线的概念.2.理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用。

重点圆锥侧面积和全面积的计算公式的探索与运用。

难点探索圆锥侧面积计算公式。

学法自主探索、合作交流、启发引导教法情景教学法、活动探究法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习引入回忆n°的圆心角所对的弧长公式和扇形面积公式,并讲讲它们的区别与联系.这节课主要探究圆锥的侧面积计算方法. 通过回顾上节课的主要知识,引导学生巩固重点,引出课题。

通过知识回顾,巩固重点,提出问题,激发学生的学习兴趣。

讲授新课二、探究新知活动1:圆锥的有关概念1.圆锥的形成①一个底面和一个侧面围成的;②一个直角三角形绕一条直角边所在直线旋转一周得到的.引导学生思考圆锥的形成,学生按教师要求操作,观察,思考,通过探索圆锥的概念,将学生的思维从生活中走进2.把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.3圆锥的高:连接底面圆圆心和圆锥顶点的线段.4圆锥的侧面(曲面)和底面(圆)活动2:圆锥的侧面积问题:圆锥的侧面是一个曲面,无法直接求其面积.圆柱的侧面也是一个曲面,因为展开图是一个长方形,所以求圆柱的侧面积就是求其展开图的面积.类似的,利用圆锥的侧面展开图求其侧面的面积可以吗?圆锥的侧面展开图是什么图形?沿圆锥一条母线将圆锥侧面剪开并展平,圆锥的侧面展开图是一个以圆锥的顶点为圆心,母线为半径的扇形.如图所示,设圆锥的母线长为l,•底面圆的半径为r,•那么这个扇形的半径为_____,扇形的弧长为______,因此圆锥的侧面积为_______.扇形的弧长:2πr,圆锥的侧面积:注意:计算时需搞清圆锥与侧面展开扇形之间几个量的对应关系:交流,教师给出圆锥的母线、圆锥的高等定义。

24.4 弧长和扇形面积(第2课时)教学设计-人教九上优质课精品

24.4 弧长和扇形面积(第2课时)教学设计-人教九上优质课精品

24.4弧长和扇形面积(第2课时)一、内容及其解析1.内容圆锥的侧面积.2.内容解析圆锥的侧面展开图是平面图形与空间几何体相互转换的教学内容,是培养学生空间想象能力和动手操作能力的重要内容.由于圆锥的侧面展开图是一个扇形,因此,利用弧长和扇形面积公式,可通过计算它的展开图的面积求得圆锥的侧面积,进而得出其全面积.结合圆锥侧面积和全面积的学习,有助于培养学生的空间想象能力.基于以上分析,可以确定本课的教学重点是:计算圆锥的侧面积和全面积.二、目标及其解析1.目标(1)了解圆锥的相关概念,会计算圆锥的侧面积和表面积.(2)通过对圆锥侧面展开图的探究,获得亲自参与研究探索的情感体验,培养空间想象能力.2.目标解析达成目标(1)的标志是:了解圆锥及其母线、侧面积、全面积等概念,会计算圆锥的侧面积和全面积.达成目标(2)的标志是:通过本节课的学习,学会观察、归纳的学习方法,培养了空间想象能力.三、教学问题诊断分析学习本课时之前,学生一直学习平面几何的知识,思维水平还停留在对平面几何的认识上.本节课学习圆锥的侧面积和全面积,是弧长和扇形面积的应用,在研究其侧面展开图时,需要学生具备一定的空间观念,能认识立体图形与平面图形之间的联系,并利用这种关系进行分析,这对于学生来说是一个难点.本课的教学难点是:圆锥公式的推导.四、教学过程设计1.情景导入出示生活中圆锥的图片问题1你能利用手中的工具制作一个圆锥形的纸帽吗?师生活动:学生利用手中的工具小组合作进行制作,教师引导如何做圆锥.设计意图:在制作圆锥的过程中体会圆锥的展开图,层层深入,使学生时刻感受到自己所学知识还不能解决此问题,从而调动学生观察事物的积极性.2.引入新知问题2 如图1,圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积呢?师生活动:学生利用所学知识,小组合作探究思考并回答问题.追问1:圆锥的高与底面有何关系?师生活动:学生利用所学知识小组合作探究思考后得到,圆锥的高所在直线就是圆锥的轴,它垂直于底面,经过底面的圆心.追问2:圆锥的母线有多少条,它们都相等吗?师生活动:学生利用所学知识小组合作探究思考后得到,圆锥的母线都相等. 师生活动:教师引导学生观察后小组交流自由讨论得出性质.设计意图:加深学生对圆锥的认识的同时培养学生的归纳概括能力.问题3 圆锥在展开的过程中,有没有相等关系的量?圆锥的底面圆展开后到哪去了?母线呢?师生活动:教师引导学生小组交流后,自由讨论,感受圆锥的侧面积和全面积与扇形面积和圆面积的关系,得到这个扇形的半径是圆锥的母线长,弧长是底面圆的周长.归纳出圆锥的侧面积公式:如果底面圆的半径为r ,则圆锥侧面展开的扇形的弧长为l =2 r .已知扇形的半径和弧长,就可以求得扇形的圆心角和扇形的面积.并利用所学知识填空:如图2,根据下列条件求值(其中r ,h ,a 分别是圆锥的底面半径、高线、母线长).(1)a =2,r =1则h =_______.(2)a =10,h =8则r =_______.设计意图:培养学生分析问题解决问题的能力,体会转化的数学思想.3.解决问题例 蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35平方米,高为3.5米,外围高1.5米的蒙古包,至少需要多少平方米的毛毡?图 1 图2图3师生活动:学生在教师的引导下先把生活实际问题转化为数学问题,再利用数学知识解决.设计意图:培养学生利用所学内容解决问题的习惯,和转化的数学思想.4.小结教师与学生一起回顾本节课所学的主要内容,并请学生思考以下问题:(1)圆锥的侧面展开图是什么形状?(2)如何利用圆锥的侧面展开图求得其侧面积?进而得到其全面积?5.布置作业教科书第114页练习第1、2题.教科书习题24.4第9题.五、目标检测设计1.如图所示的扇形中,半径R=10,圆心角 =144°用这个扇形围成一个圆锥的侧面.(1)求这个圆锥的底面半径r;(2)求这个圆锥的高(精确到0.1).设计意图:考查学生利用所学定理解决问题的能力.2.某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58 cm,高为20 cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?设计意图:考查学生利用所学定理解决问题的能力.3.把一个用来盛爆米花的圆锥形纸杯沿母线剪开,可得一个半径为24 cm,圆心角为120°的扇形.求该纸杯的底面半径和高度(结果精确到0.1 cm)设计意图:考查学生利用所学定理解决问题的能力.4.如图,一个直角三角形两直角边分别为4 cm和3 cm,以它的一直角边为轴旋转一周得到一个几何体,求这个几何体的表面积.设计意图:考查学生利用所学定理解决问题的能力.。

《弧长及扇形面积的计算》教案

《弧长及扇形面积的计算》教案

《弧长及扇形面积的计算》教案一、教学目标:1. 知识与技能:(1)理解弧长的概念,掌握弧长的计算方法;(2)理解扇形面积的概念,掌握扇形面积的计算方法。

2. 过程与方法:(1)通过实例引导学生认识弧长和扇形面积的概念;(2)运用数学公式和图形相结合的方法,培养学生计算弧长和扇形面积的能力。

3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点:1. 教学重点:(1)弧长的计算方法;(2)扇形面积的计算方法。

2. 教学难点:(1)弧长公式的灵活运用;(2)扇形面积公式的理解和应用。

三、教学准备:1. 教师准备:(1)弧长和扇形面积的相关理论知识;(2)教学课件或黑板、粉笔等教学工具。

2. 学生准备:(1)预习弧长和扇形面积的相关知识;(2)准备好笔记本,记录重点内容。

四、教学过程:1. 导入新课:(1)利用实例引入弧长和扇形面积的概念;(2)引导学生思考如何计算弧长和扇形面积。

2. 知识讲解:(1)讲解弧长的定义和计算方法;(2)讲解扇形面积的定义和计算方法。

3. 公式推导:(1)引导学生通过观察图形,推导出弧长公式;(2)引导学生通过分析扇形的组成,推导出扇形面积公式。

4. 实例演练:(1)出示一些弧长和扇形面积的计算题目,让学生独立完成;(2)选几位学生上台板演,并讲解解题思路。

5. 课堂小结:(1)总结弧长和扇形面积的计算方法;(2)强调公式的重要性和灵活运用。

五、课后作业:1. 请学生完成课后练习题,巩固所学知识;2. 鼓励学生查阅相关资料,深入了解弧长和扇形面积的运用;3. 提醒学生及时总结错题,查漏补缺。

六、教学反思:在课后,教师应反思本节课的教学效果,包括学生的课堂参与度、知识掌握程度以及教学方法的适用性。

教师需要根据学生的反馈和自身的教学体验,调整教学策略,以提高教学效果。

七、课堂评价:1. 学生对本节课弧长和扇形面积概念的理解程度;2. 学生对弧长和扇形面积计算公式的掌握情况;3. 学生在实例演练中的表现,以及解题思路的清晰程度;4. 学生课后作业的完成质量,以及对错题的总结反思。

人教版弧长和扇形面积公式优质教案(共两篇)

人教版弧长和扇形面积公式优质教案(共两篇)

人教版弧长和扇形面积公式优质教案(共两篇)第1课时教学内容24.4弧长和扇形面积(1).教学目标1.理解弧长和扇形面积公式,并会计算弧长和扇形的面积.2.经历探索弧长及扇形面积计算公式的过程,感受转化、类比的数学思想,培养学生的探索能力.3.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系.教学重点1.推导弧长及扇形面积计算公式的过程.2.掌握弧长及扇形面积计算公式,会用公式解决问题.教学难点推导弧长及扇形面积计算公式的过程.教学过程一、导入新课复习圆的周长和面积公式,导入新课的教学.二、新课教学1.弧长的计算公式.思考:我们知道,弧是圆的一部分,弧长就是圆周长的一部分.想一想,如何计算圆周长?圆的周长可以看作是多少度的圆心角所对的弧长?由此出发,1°的圆心角所对的弧长是多少?n°的圆心角呢?在半径为R的圆中,因为360°的圆心角所对的弧长就是圆周长C=2πR,所以1°的圆心角所对的弧长是,即.于是n°的圆心角所对的弧长为.2.扇形面积的计算公式.如图,由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.可以发现,扇形的面积除了与圆的半径有关外还与组成扇形的圆心角的大小有关,圆心角越大,扇形面积也就越大.怎样计算圆半径为R,圆心角为n°的扇形面积呢?思考:由扇形的定义可知,扇形面积就是圆面积的一部分.想一想,如何计算圆的面积?圆面积可以看作是多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n°的圆心角呢?在半径为R的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR2,所以1°的扇形面积是,于是圆心角为n°的扇形面积是S扇形=.3.实例探究.例 1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算下图所示的管道的展直长度L(结果取整数).解:由弧长公式,得的长=500π≈1 570(mm).因此所要求的展直长度L=2×700+1 570=2 970(mm).例2 如下左图,水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3 m.求截面上有水部分的面积(结果保留小数点后两位).解:如上右图,连接OA,OB,作弦AB的垂直平分线,垂足为D,交于点C,连接AC.∵ OC=0.6 m,DC=0.3 m,∴ OD=OC-DC=0.3(m).∴ OD=DC.又 AD⊥DC,∴ AD是线段OC的垂直平分线.∴ AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形OAB-S△OAB=×0.62-AB·OD=0.12π-×0.6×0.3≈0.22(m2).三、巩固练习教材第113页练习.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题24.4 第1、2题.一、基础知识1.使学生理解弧长和扇形的定义,明白弧长和扇形面积的推导过程,并熟记弧长和扇形面积公式。

初中数学初三数学下册《弧长与扇形面积》教案、教学设计

初中数学初三数学下册《弧长与扇形面积》教案、教学设计
2.教师引导与指导
教师在学生讨论过程中,给予适当的引导,确保讨论的方向正确。同时,关注学生的参与情况,鼓励每位同学发表自己的观点。
(四)课堂练习
1.教学活动设计
设计具有层次性的练习题,让学生运用所学知识解决实际问题。练习题包括:
a.基础题:计算给定圆的弧长和扇形面积;
b.提高题:结合实际情境,解决有关弧长和扇形面积的问题;
初中数学初三数学下册《弧长与扇形面积》1.理解并掌握弧长、扇形的定义,能正确区分及运用。
2.掌握弧长公式,能够根据给定信息求解弧长。
3.掌握扇形面积公式,能够根据给定信息求解扇形面积。
4.能够运用弧长与扇形面积的相关知识解决实际问题,提高数学应用能力。
(二)过程与方法
三、教学重难点和教学设想
(一)教学重点
1.弧长与扇形面积的定义及其公式。
2.弧长与扇形面积在实际问题中的应用。
3.培养学生运用数学知识解决实际问题的能力。
(二)教学难点
1.弧长公式与扇形面积公式的推导过程。
2.学生对弧长与扇形面积概念的理解及在实际问题中的应用。
3.如何激发学生的学习兴趣,提高他们的学习积极性。
作业要求:
-学生需独立完成作业,确保作业质量。
-对于实践应用题和拓展思考题,鼓励学生进行深入研究,培养他们的探究精神和创新意识。
-小组讨论题要求每位同学积极参与,共同总结学习经验,提高团队合作能力。
教师将根据学生的作业完成情况,及时给予反馈,帮助学生发现和纠正错误,进一步巩固所学知识。同时,鼓励学生提出疑问,激发他们主动探索的学习兴趣。通过本次作业的布置,旨在培养学生的数学思维能力,提高解决实际问题的能力,为后续学习打下坚实基础。
-已知圆的半径和弧长,求对应的圆心角。

浙教版数学九上《弧长及扇形的面积》word教案2篇

浙教版数学九上《弧长及扇形的面积》word教案2篇

课题:3.5弧长及扇形的面积(1)教学目标:1、经历探索弧长计算公式的过程2、掌握弧长计算公式,并会应用公式解决问题。

教学重点:圆的弧长计算公式教学难点:例1图形较为复杂,牵涉的知识点较多,并需添加辅助线,思路不易形成。

教学设计一、复习(圆周长)已知⊙O半径为R,⊙O的周长C是多少?C=2πR这里π=3.14159…,这个无限不循环的小数叫做圆周率.由于生产、生活实际中常遇到有关弧的长度计算,那么怎样求一段弧的长度呢?提出新问题:已知⊙O半径为R,求n°圆心角所对弧长二、探究新问题、归纳结论教师组织学生探讨(因为问题并不难,学生完全可以自己研究得到公式).研究步骤:(1)圆周长C=2πR;(2)1°圆心角所对弧长=;(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;(4)n°圆心角所对弧长=.归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则(弧长公式)(三)理解公式、区分概念教师引导学生理解:(1)在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即按照上面推导过程记忆);(3)区分弧、弧的度数、弧长三概念.度数相等的弧,弧长不一定相等,弧长相等的弧也不一定是等孤,而只有在同圆或等圆中,才可能是等弧.(四)初步应用例1、填空:(1)半径为3cm,120°的圆心角所对的弧长是_______cm;(2)已知圆心角为150°,所对的弧长为20π,则圆的半径为_______;(3)已知半径为3,则弧长为π的弧所对的圆心角为_______.例2、例1 一段圆弧的公路弯道,圆弧的半径是2km,一辆汽车以每小时60km的速度通过弯道,需20秒.求弯道所对的圆心角的度数。

(精确到0.1度)分析:(1)对照弧长公式,那些量是直接已知的,哪个量是要求的(2)要求弯道所对圆心角的度数,应先求出什么?解(略)例3、 如图,BM 是⊙O 的直径,四边形ABMN 是矩形,D 是⊙O 上的点,DC ⊥AN ,与AN 交于点C ,已知AC =15,⊙O 的半径为R=30,求BD 的长分析:(1)要求BD 的长,关键是求出BD 所对的圆心角∠BOD 的大小。

弧长及扇形的面积 教案

弧长及扇形的面积 教案

弧长及扇形的面积教案教案标题:弧长及扇形的面积教学目标:1. 理解弧长的概念,能够计算给定圆的弧长。

2. 理解扇形的概念,能够计算给定扇形的面积。

教学准备:1. 教师准备:白板、黑板笔、投影仪、计算器。

2. 学生准备:课本、笔、纸。

教学步骤:引入(5分钟):1. 教师通过投影仪或白板,展示一个圆形,并引导学生回顾圆的相关概念。

2. 引导学生思考,当我们需要计算圆的一部分时,如何计算它的长度或面积。

探究(15分钟):1. 教师将圆形分成几个等分,引导学生观察每个等分的特点。

2. 引导学生思考,当我们需要计算圆的一部分弧长时,如何计算。

3. 教师通过示例计算,引导学生掌握弧长计算的方法。

概念讲解(10分钟):1. 教师通过投影仪或黑板,讲解扇形的概念,并引导学生理解扇形的特点。

2. 教师讲解如何计算扇形的面积,并通过示例计算,帮助学生掌握计算方法。

练习(15分钟):1. 学生在课本上完成一些练习题,巩固弧长和扇形面积的计算方法。

2. 教师巡视学生的学习情况,及时给予指导和帮助。

拓展(10分钟):1. 教师引导学生思考,如果给定一个扇形的半径和圆心角,如何计算扇形的面积。

2. 教师讲解如何根据半径和圆心角计算扇形的面积,并通过示例计算,帮助学生理解。

总结(5分钟):1. 教师对本节课所学内容进行总结,并强调弧长和扇形面积的计算方法。

2. 学生提问和解答。

作业布置:1. 学生完成课后练习题,巩固所学知识。

2. 鼓励学生提出问题,以便在下节课进行讨论和解答。

教学反思:1. 教师在教学过程中能够充分引导学生思考,培养学生的自主学习能力。

2. 教师在讲解过程中使用示例进行计算,帮助学生更好地理解概念和计算方法。

3. 教师及时巡视学生学习情况,给予指导和帮助,确保学生掌握所学知识。

《24.4 弧长和扇形的面积》第2课时教学设计【初中数学人教版九年级上册】

《24.4 弧长和扇形的面积》第2课时教学设计【初中数学人教版九年级上册】

第二十四章圆24.4 弧长和扇形面积教学设计第2课时一、教学目标1.了解母线的定义.2.掌握圆锥的侧面积和全面积的计算公式.二、教学重点及难点重点:1.经历探索圆锥的侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.难点:经历探索圆锥的侧面积计算公式.三、教学用具多媒体课件,三角板、直尺、圆规。

四、相关资源多个《生活中的圆锥》图片,《圆锥的表面组成和母线定义》动画,《圆锥侧面展开》动画,《蒙古包》图片.五、教学过程【创设情境,引入新课】1.大家见过圆锥吗?你能举出实例吗?师生活动:教师提出问题,学生根据身边日常生活中出现的圆锥举出实例.2.你们知道圆锥的表面是由哪些面构成的吗?什么叫做母线?请大家互相交流.师生活动:小组讨论、交流,教师用多媒体出示圆锥的图形,提问一名学生回答,全班订正.小结:(1)圆锥的表面是由一个底面和一个侧面围成的.(2)母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.设计意图:从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.激发学生的好奇心和求知欲.【合作探究,形成新知】1.探索圆锥的侧面展开图的形状问题圆锥的侧面展开图是什么形状?师生活动:教师向学生展示圆锥模型,学生观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.然后学生将课前准备的圆锥模型沿一母线剪开,观察其展开图,验证自己的猜想.小结:圆锥的侧面展开图是扇形.设计意图:通过观看圆锥模型猜想其展开图,培养学生的空间思维能力,进一步实验验证猜想,使抽象的思维回到形象思维,学生容易理解,达到一目了然的效果.2.探索圆锥的侧面积和全面积公式(1)圆锥的侧面展开图是一个扇形,如图,设圆锥的母线长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径是什么?扇形的弧长是什么?师生活动:教师多媒体出示图形和问题,提问两位学生回答,全班订正,不足的地方教师补充.小结:圆锥的侧面展开图中扇形的半径即为母线长l ,扇形的弧长即为底面圆的周长2πr .(2)根据扇形面积公式你可以求出扇形的面积吗?那么圆锥的侧面积是多少?师生活动:小组讨论、交流,教师巡查,指导不会求扇形面积的学生.小结:扇形面积:1=2ππ2S r l rl ⨯=,因此圆锥的侧面积为=πS rl 侧. (3)圆锥的全面积与圆锥的侧面积和底面积有什么关系?师生活动:提问一名学生回答,教师对答得好的学生表示肯定,进行表扬.小结:圆锥的侧面积与底面积之和称为圆锥的全面积,全面积为2=π+πS r rl 全π()r r l =+.设计意图:通过提问形式引导学生推导圆锥的侧面积和全面积公式,使学生深入浅出,层层探究,从而突破重点和难点.【例题分析,深化提升】蒙古包可以近似地看成由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为12 m 2,高为3.2m ,外围高1.8 m 的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?师生活动:学生先独立思考,弄清解题思路,合理使用圆锥的侧面积公式,教师适时点拨,归纳解题方法,规范解题步骤.教师引导:要计算制作20个这样的蒙古包至少要用多少平方米的毛毡,只要计算出圆锥的侧面积,再加上圆柱的侧面积即可.如何计算圆锥的侧面积?如何计算圆柱的侧面积?解:如图是一个蒙古包示意图.根据题意,下部圆柱的底面积为12 m 2,高为1.8 m ;上部圆锥的高为3.2-1.8=1.4(m ). 圆柱的底面圆的半径为12 1.954(m)πr =≈, 侧面积为2π×1.954×1.8≈22.10(m 2).圆锥的母线长为221.954 1.4 2.404(m)l =+≈.侧面展开扇形的弧长为2π×1.954≈12.28(m ).圆锥的侧面积为12×2.404×12.28≈14.76(m 2). 因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m 2).设计意图:即时反馈有助于记忆,让学生在例题中加深对本节知识的理解.教师通过学生解答,及时发现问题,评价教学效果.【练习巩固,综合应用】1.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ).A .90°B .120°C .150°D .180°2.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其全面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其全面积为S 2.那么S 1︰S 2等于( ).A .2︰3B .3︰4C .4︰9D .5︰123.已知一个扇形的半径为60 cm ,圆心角为150°.用它围成一个圆锥的侧面,那么圆锥的底面半径为 cm .4.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比是 .5.圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸(结果保留小数点后一位)?分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积即可.6.如图,已知Rt △ABC 的斜边AB =13 cm ,一条直角边AC =5 cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.参考答案1.D 2.A 3.25 4.1︰45.解:设纸帽的底面半径为r cm ,母线长为L cm ,则r =582π, L =2258+202π⎛⎫ ⎪⎝⎭≈22.03(cm ). ∴=πS rL 纸帽侧≈12×58×22.03=638.87(cm 2), 638.87×20=12777.4(cm 2).所以至少需要12777.4 cm 2的纸.设计意图:将本课所学的知识与实际生活中的问题进行紧密联系,有利于培养学生的数学思想、数学方法、数学能力和对数学的积极情感.6.分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据2=360n S R π侧或=S rl π侧可知,用第二个公式比较好求,但是得求出底面圆的半径.因为AB 垂直于底面圆,在Rt △ABC 中,由OC ·AB =BC ·AC 可求出r ,问题就解决了.解:在Rt △ABC 中,AB =13 cm ,AC =5 cm ,∴BC =12 cm .∵OC AB =BC AC ,∴512601313BC AC r OC AB ⨯====. ∴()()2601020=125(cm )1313S r BC AC π+=π⨯⨯+=π表. 设计意图:进一步加深对圆锥的侧面积公式的掌握.六、课堂小结1.圆锥的表面是由一个圆面和一个曲面围成的.2.母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.3.圆锥的侧面积公式:=πS rl 侧.4.圆锥的全面积公式:=π()S r r l +全.设计意图:小结和反思,不同的学生会有不同的体会,要尊重学生的个体差异,激发学生主动参与的意识,为每个学生创造在数学活动中获得活动经验的机会.七、板书设计24.4 弧长和扇形面积(2)1.圆锥的表面是扇形2.母线3.圆锥的侧面积公式:=πS rl 侧.4.圆锥的全面积公式:=π()S r r l +全.。

2022年人教版九年级数学上册第二十四章 圆教案 弧长和扇形面积 (第2课时)

2022年人教版九年级数学上册第二十四章 圆教案  弧长和扇形面积 (第2课时)

24.4 弧长和扇形的面积第2课时一、教学目标【知识与技能】通过实物演示让学生知道圆锥的侧面展开图是扇形;知道圆锥各部分的名称,能够计算圆锥的侧面积和全面积.【过程与方法】通过展开圆锥知道圆锥的全面积是扇形和底面圆形,通过制作圆锥,理解圆锥与扇形和圆之间的关系,进一步体会数学中的转化思想,培养学生动手操作能力和分析问题解决问题的能力.【情感态度与价值观】通过把圆锥展开和制作圆锥,理解事物之间的联系,激发学生动手的欲望和积极思考的兴趣.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】计算圆锥的侧面积和全面积.【教学难点】圆锥侧面展开的扇形和底面圆之间有关元素的计算.五、课前准备课件、图片、直尺、圆规等.六、教学过程(一)导入新课教师问:下面图片是什么形状的?你会求它们的面积吗?(出示课件2)学生观察思考.(板书课题)(二)探索新知探究一圆锥及相关概念出示课件4,5:教师展示圆锥的图片及圆锥形成过程,学生初步认定圆锥各部分的名称.出示课件6,7:教师归纳:圆锥的母线:我们把连接圆锥的顶点S和底面圆上任一点的连线SA,SB 等叫做圆锥的母线.圆锥有无数条母线,它们都相等.圆锥的高:从圆锥的顶点到圆锥底面圆心之间的距离是圆锥的高.如果用r表示圆锥底面的半径,h表示圆锥的高线长,l表示圆锥的母线长,那么r、h、l之间数量关系是:r2+h2=l2.填一填:(出示课件8)根据下列条件求值(其中r、h、l分别是圆锥的底面半径、高线、母线长)(1)l=2,r=1则h=_______.(2)h=3,r=4,则l=_______.(3)l=10,h=8,则r=_______.学生独立思考后,自主解答:(1;(2)5;(3)6.探究二圆锥的侧面展开图教师问:圆锥的侧面展开图是什么图形?(出示课件9)学生答:圆锥的侧面展开图是扇形.出示课件10:教师问:1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?出示课件11:通过概念对比,学生进一步明确:圆锥侧面展开图扇形的半径=母线的长;圆锥侧面展开图扇形的弧长=底面周长.出示课件12:师生共同展示圆锥的侧面积计算公式的推导: ∵12S lR =侧(l 为弧长,R 为扇形的半径),12.2S r l π=⋅⋅侧 ∴侧面S =πlr (r 表示圆锥底面的半径,l 表示圆锥的母线长).教师归纳:圆锥的全面积计算公式:全底侧2 S =S +S =πr +πrl出示课件13:例1 一个圆锥的侧面展开图是一个圆心角为120°、弧长为20π的扇形,试求该圆锥底面的半径及它的母线的长.学生独立思考后师生共同解答.解:设该圆锥的底面的半径为r,母线长为a.220r ππ=, 可得r=10. 又12020180a ππ⨯⨯=, 可得a=30.巩固练习:(出示课件14)如图所示的扇形中,半径R=10,圆心角θ=144°,用这个扇形围成一个圆锥的侧面.(1)则这个圆锥的底面半径r= .(2)这个圆锥的高h= .学生独立思考后自主解答:⑴4;⑵出示课件15,16:例2 如图,圆锥形的烟囱帽,它的底面直径为80cm,母线为50cm.在一块大铁皮上裁剪时,如何画出这个烟囱帽的侧面展开图?求出该侧面展开图的面积.学生独立思考后师生共同解答.解:该烟囱的侧面展开图是扇形,如图所示.设该扇形的面积为S.方法一:×2πl∵2πr= α360°=288°∴α=360°× rl∴S=α360°πl 2=2000π(cm 2)方法二:S= 12×2πr ·l=12×2π×40×50=2000π(cm 2).方法三:S=πr ·l=π×40×50=2000π(cm 2).巩固练习:(出示课件17)已知一个圆锥的底面半径为12cm,母线长为20cm,则这个圆锥的侧面积为 ,全面积为 .学生独立思考后自主解答:πcm 2240;πcm 2384.出示课件18,19:例3 蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为35m 2,高为3.5m,外围高为1.5m 的蒙古包,至少需要多少平方米的毛毡(精确到1m 2)?学生思考交流后,师生共同解答.解:如图是一个蒙古包示意图.根据题意,下部圆柱的底面积为35m 2,高为1.5m ;上部圆锥的高为3.5-1.5=2(m ).3.34m ≈, 圆柱的侧面积为2π×3.34×1.5≈31.46(平方米),()3.89m .≈侧面展开扇形的弧长为()2 3.3420.98m π⨯≈,圆锥的侧面积为()21 3.8920.9840.81m 2⨯⨯≈, 20×(31.46+40.81)≈1446(平方米).答:至少需要1446平方米的毛毡.巩固练习:(出示课件20)圆锥形烟囱帽(如图)的母线长为80cm,高为38.7cm,求这个烟囱帽的面积(π取3.14,结果保留2个有效数字).学生独立思考后自主解答.解:∵l=80,h=38.7,∴r=∴S 侧=πrl ≈3.14×70×80≈1.8×104(cm 2).答:烟囱帽的面积约为1.8×104cm 2.(三)课堂练习(出示课件21-25)1.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm 2,圆柱高为3m,圆锥高为2m 的蒙古包,则需要毛毡的面积是( )A .()πm 2 B .40πm 2C.(m 2 D .55πm 2.707.38802222≈-=-hl2.圆锥的底面半径为3cm,母线长为6cm,则这个圆锥侧面展开图扇形的圆心角是_______.3.一个扇形,半径为30cm,圆心角为120度,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为_____ .2.如图,在平行四边形ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π3.已知弧所对的圆心角为90°,半径是4,则弧长_____.4.已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积是_____,全面积是_____.5.如图,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.6.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.参考答案:1.A2.180°3.10cm4.15πcm2;24πcm25.解:∵AB=AC,∠BAC=60°, ∴△ABC是等边三角形.∴AB=BC=AC=8cm.∴S侧=πrl=π×4×8=32π(cm2), S底=πr2=π×4×4=16π(cm2),∴S全=S侧+S底=48π(cm2).6.解:(1)连接BC,则BC=20,∵∠BAC=90°,AB=AC,∴AB=AC=∴S 扇形=(29050360ππ⨯=;(2)圆锥侧面展开图的弧长为:90180π⨯⨯,r ∴= (3)延长AO 交⊙O 于点F,交扇形于点E,EF=最大半径为.r <所以不能.(四)课堂小结通过这堂课的学习,你知道弧长和扇形面积公式吗?你会用这些公式解决实际问题吗?(五)课前预习预习下节课(25.1.1)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.本节课从观察圆锥图片开始,通过猜想侧面展开图的形状,然后由老师具体操作验证结论的正确性,并能运用所学知识推导出圆锥的侧面积和全面积公式,培养了学生观察、猜想、探索等方面的能力.2.本小节教材是复习圆周长公式推出弧长公式,复习圆面积公式推出扇形面积公式,是在小学基础知识上的提升,圆柱和圆锥的侧面积的计算,是将立体图形化为平面图形,通过具体操作,学生可以获得直观的感受,对于学习高中立体几何,会大有帮助.。

人教版九年级数学上册《弧长和扇形面积(第2课时)》示范教学设计

人教版九年级数学上册《弧长和扇形面积(第2课时)》示范教学设计

弧长和扇形面积(第2课时)教学目标1.了解圆锥母线的概念.2.掌握圆锥的侧面积和全面积的计算公式,并能应用公式进行计算.教学重点圆锥的侧面积和全面积的计算公式及其应用.教学难点圆锥侧面积计算公式的推导.教学过程新课导入观察下列图案,你能发现什么?【师生活动】教师展示图片,并引导学生从中抽象出圆锥.【设计意图】由图片引出本课时的内容,激发学生的学习兴趣,感受数学与生活的联系.新知探究一、探究学习【思考】根据学过的知识,说说你对圆锥的一些认识.【师生活动】在七年级时就认识了立体图形——圆锥,知道圆锥是由一个底面和一个侧面围成的几何体.教师引导学生学习圆锥的几个新概念.圆锥的高:连接圆锥顶点与底面圆心的线段.圆锥的母线:连接圆锥顶点和底面圆周上任意一点的线段.此处教师强调圆锥有无数条母线.圆锥的母线、高、底面圆的半径之间的关系:222h r l +=.此处教师强调圆锥母线长都相等.【设计意图】通过梳理圆锥的相关概念,为推导圆锥的侧面积公式做铺垫.【问题】(1)圆锥的侧面展开图是什么图形?(2)如何计算圆锥的侧面积?(3)如何计算圆锥的全面积?【师生活动】教师展示圆锥展开的过程,学生先观察图形自主探究,再小组合作、分析、总结、交流,弄清圆锥的侧面积公式,进而得出圆锥的全面积公式.【总结】圆锥侧面展开图中扇形的半径是圆锥的母线.圆锥侧面展开图中扇形的弧长是圆锥的底面圆周长.S S =侧面积扇形122rl =⨯πrl =π. + S S S =侧面积全面积底面积2rl r =π+π.【设计意图】使学生明确公式的推导过程,知道公式的来龙去脉,搞清圆锥展开前后几个量之间的对应关系.【练习】1.根据下列条件求值(其中r ,h ,l 分别是圆锥的底面半径、高线、母线长).(1)l =2,r =1,则h =_______.(2)h =3,r =4,则l =_______.(3)l =10,h =8,则r =_______.2.已知一个圆锥的底面半径为12 cm ,母线长为20 cm ,则这个圆锥的侧面积为_________,全面积为_________.3.已知圆锥的底面直径为 4,母线长为 6,求它的侧面积.【答案】1.(1(2)5;(3)6.2.240π cm 2 384π cm 23.2612S rl =π=π⨯⨯=π侧面积.【设计意图】考查学生对圆锥的侧面积公式的掌握情况.二、典例精讲【例题】蒙古包可以近似地看作由圆锥与圆柱组成.如果想用毛毡搭建20个底面积为12 m 2,高为3.2 m ,外围高1.8 m 的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?【师生活动】学生独立思考,弄清解题思路,合理使用圆锥的面积公式,教师适时点拨,归纳解题方法,规范解题步骤.【答案】解:如图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m 2,高为 h 2=1.8 m ;上部圆锥的高为h 1=3.2-1.8=1.4(m ).圆柱的底面圆的半径r 1.954(m ), 侧面积为2π×1.954×1.8≈22.10(m 2).圆锥的母线长为l 2.404(m ),侧面展开扇形的弧长为2π×1.954≈12.28(m ). 圆锥的侧面积为12×2.404×12.28≈14.76(m 2). 因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m 2).【设计意图】通过例题,加深学生对圆锥侧面积计算公式的理解,并能灵活运用公式解决实际问题.课堂小结板书设计一、圆锥的母线二、圆锥的侧面积和全面积课后任务完成教材第114页练习第1~2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。

弧长与扇形面积教案

弧长与扇形面积教案

弧长与扇形面积教案教学内容:弧长与扇形面积教学目标:通过本课的学习,学生能够理解并掌握弧长与扇形面积的计算方法。

教学重点:弧长的计算方法,扇形面积的计算方法。

教学难点:扇形面积与弧长的关系。

教学准备:白板、笔、教材、小黑板、计算器。

教学过程:Step 1:引入新知识1. 通过一个探究性问题引入本课的内容,例如:一个半径为3cm的圆上有一段长为8cm的弧线,那么这段弧线所对应的圆心角是多大呢?2. 引导学生思考,并让学生自由讨论,鼓励学生尝试用已经学过的知识进行计算。

Step 2:概念讲解1. 弧长的概念:弧长是指圆周上两个点之间的弧线长度,通常用字母l表示,计算方法是l = rθ,其中r表示半径,θ表示圆心角的弧度。

2. 扇形面积的概念:扇形面积是指由圆心与弧线所围成的扇形所覆盖的面积,计算方法是A = 1/2rθ,其中r表示半径,θ表示圆心角的弧度。

Step 3:计算实例演示1. 结合几个实际问题,进行弧长和扇形面积的计算演示,帮助学生理解并掌握计算方法。

2. 强调计算时需要将角度转换为弧度,提醒学生不要忽略单位的转换。

Step 4:让学生练习1. 让学生在小组内讨论并计算一些练习题,然后让个别学生上台展示解题思路和计算步骤,通过互相学习,加深对知识的理解。

2. 提供一些练习题,让学生在课后进行巩固。

Step 5:总结与拓展1. 总结弧长与扇形面积的计算方法,强调重点和难点,确保学生掌握了基本的计算技巧。

2. 拓展:引导学生思考,如果知道扇形面积和圆心角,如何求解半径?Step 6:作业布置1. 布置一些练习题作为课后作业,要求学生用所学方法计算出题目要求的值。

2. 提醒学生及时解决作业中的问题,可以请教同学或向老师寻求帮助。

教学反馈:根据学生的作业情况、课堂参与情况以及课后测试情况,进行教学反馈和调整教学进度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧长和扇形的面积2教案
图 1
弧长和扇形的面积
教学目标:
认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。

重点难点:
1、重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。

2、难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。

教学过程:
一、发现弧长和扇形的面积的公式 1、弧长公式的推导。

如图1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)我们容易看出这段铁轨是圆周长的4
1
,所以铁轨的长度l ≈ (米).
问题:上面求的是90 的圆心角所对的弧长,若圆心角为
O
B
O
B
A
A
B
O
A
B
O A
B
O
n ︒
,如何计算它所对的弧长呢?
请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、
n ︒
所对的弧长。

等待同学们计算完毕,与同学们一起总结出弧长公式(这里关键是1︒圆心角所对的弧长是多少,进而求出n ︒的圆心角所对的弧长。

) 因此弧长的计算公式为
l =
__________________________
练习:已知圆弧的半径为50厘米,圆心角为60°,求
此圆弧的长度。

2、扇形的面积。

如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形 问:右图中扇形有几个?
同求弧长的思维一样,要求扇形的面积,应思考圆心角
为1︒的扇形面积是圆
面积的几分之几?进而求出圆心角n的扇形面积。

如果设圆心角是n°的扇形面积为S,圆的半径为r,那么扇形的面积为
S= ___ .
因此扇形面积的计算公式为
S=————————或S=——————————
练习:1、如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的____________;
2、扇形的面积是它所在圆的面积的32,这个扇形的圆心角的度数是_________°.
3、扇形的面积是S,它的半径是r,这个扇形的弧长是_____________
二、例题讲解
例1、如图,圆心角为60°的扇形的半径为10厘米,求这个扇形的面积和周长.
(π≈3.14)
例2、如图,把直角三角形ABC 的斜边AB 放在直线l 上,l A 2B 2C 2的位置
,则顶点A 运动到A 2的位置时,
点A 经过的路线有多长?点A 经过的路线与直线l 所围成的图形的面积有多大?
例3、已知如图,在以O 为圆心的两个同心圆中,大圆C 为切点。

设弦AB 的长为d ,
S 与d 之间有怎样的数量关系?
例4、如图,正三角形ABC 的边长为a ,分别以A 、B 、C
O 1、O 2、O 3。

求¼¼¼12
23
31
o
o o o o o 、、
例5、如图,正三角形ABC的边长为2,分别以A、B、C 为半径画弧,与△ABC的内切圆O围成的图
S阴影。

练习:P147 1、2、3、4
1、、
3 、
4、 5、
三、小结
本节课我们共同探寻了弧长和扇形面积的计算公式,一方面,要理解公式的由来,另一方面,能够应用它们计算有关问题,在计算时力求准确无误。

作业参考
10、一段长为2
心角为_________,扇形的面积为。

11、如图,PA、PB切⊙O于A、B
积。

12、如图,⊙A、⊙B、⊙C、⊙D相互外
离,它们的半径是1,顺次连结四个圆心得到四边形ABCD,则图中四个扇形的面积和是多少?
13、一块等边三角形的木板,边长为1,现将木板沿水
平线翻滚,那么B点从开始
B
14、如图,扇形OAB 的圆心角是90°,分别以OA 、OB 为直径在扇形内作半圆,则1
2
S S 、 两部分图形面积的大小
关系是什么?
8、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。

(1)若,求CD 的长;
(2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。

9、如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC =6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG 斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P 从△EFG的顶点G出发,以1cm/s 的速度在直角边GF 上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的
取值范围.
(3)是否存在某一时刻,使四边形OAHP 面积与△ABC 面积的比为13∶24?若存在,求出x 的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)
如图1所示,一张三角形纸片ABC ,∠ACB=90°,AC=8,BC=6.沿斜边AB 的中线CD 把这张纸片剪成11AC D ∆和22BC D ∆两个三角形(如图2所示).将纸片1
1AC D ∆沿直线2D B (AB )方向平移(点12,,,A D D B 始终在同一直线上),
当点1D 于点B 重合时,停止平移.在平移过程中,11C D 与2
BC
交于点E,1AC 与222
C D BC 、分别交于点F 、P. (1)当11AC D ∆平移到如图3所示的位置时,猜想图中的1D E 与2D F 的数量关系,并证明你的猜想;
(2)设平移距离21D D 为x ,11AC D ∆与22BC D ∆重叠部分面积为y ,
请写出y 与x 的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x 的值,使重叠部分的面积等于原ABC ∆面积的14.若存在,求x 的值;若不存在,请说明理由.
C B
D A 图
1 122图3
C 2
D 2C 1B D 1A 图2。

相关文档
最新文档