中考数学选择题、填空题解题技巧
中考数学填空技巧总结归纳
中考数学填空技巧总结归纳数学是中考的重要科目之一,填空题在数学考试中占据了较大的比重。
正确解答填空题需要掌握一些技巧和方法,本文将总结归纳中考数学填空技巧,帮助考生在填空题中取得更好的成绩。
一、消除干扰项在填空题中,选项往往会有一些干扰项,考生需要辨析、筛选正确的选项。
为了消除干扰项,可采取以下技巧:1. 利用计算器:对于较为复杂的计算题,可使用计算器进行辅助计算,以减少计算错误带来的干扰。
2. 近似计算法:对于一些需要进行大致计算的题目,可采用近似计算法,简化计算步骤,快速筛选出正确选项。
3. 替换法:若选项中涉及未知数或变量,可尝试将选项代入原方程或不等式中进行验证,排除错误选项。
二、巧用特殊方法填空题中常常会涉及到一些特殊的方法和技巧,考生需熟练掌握并善于运用。
1. 增减法:对于涉及到增减关系的填空题,可通过递增或递减的方式,观察填入不同选项后的变化规律,找出正确答案。
2. 消元法:在一些题目中,可能会出现多个方程或不等式同时存在的情况,此时可利用消元法,将多个方程或不等式转化成一个方程或不等式,从而求解出正确答案。
3. 反证法:对于一些陈述类的填空题,若难以直接验证答案是否正确,可尝试使用反证法,反假设一个错误的答案,并通过推理推导出矛盾,从而得出正确的答案。
三、注意整体推理填空题往往需要考生具备整体、全面的推理能力,考生在解答过程中要注重整体把握。
1. 调整步骤:对于一些需要多步计算的题目,考生需要合理安排计算步骤,避免出现错误。
可以根据题目特点调整顺序,化繁为简。
2. 分析题意:在解答填空题时,要仔细分析题目给出的信息,理解题目意图,提取关键信息,从而确定正确的解题思路。
3. 解决问题:在解答过程中,考生需注重解决问题的方法和原理,通过灵活运用所学知识,找到解题的突破口。
四、反复练习只有通过大量的反复练习,考生才能真正掌握填空题的解题技巧和方法。
1. 针对性练习:根据自身的薄弱环节,有针对性地进行练习,多做一些相关的填空题,提高解题的效率和准确度。
数学中考答题技巧(集锦13篇)
数学中考答题技巧(集锦13篇)数学中考答题技巧第1篇1、迅速摸清“题情”。
刚拿到试卷的时候心情一定会比较紧张,在这种紧张的状态下不要匆匆作答。
首先要从头到尾、正面反面浏览全卷,尽可能从卷面上获取最多的信息。
摸清“题情”的原则是:轻松解答那些一眼就可以看出结论来的简单选择题或者填空题;对不能立即作答的题目可以从心里分为比较熟悉和比较陌生两大类。
对这些信息的掌握,可以确保不出现“前面难题做不出,后面易题没时间做”的尴尬局面。
2、答卷顺序“三先三后”。
在浏览了试卷并做了简单题的第一遍解答之后,我们的情绪就应该稳定了很多,现在对自己也会信心十足。
我们要明白一点,对于数学学科而言,能够拿到绝大部分分数就已经实属不易,所以要允许自己丢掉一些分数。
在做题的时候我们要遵循“三先三后”的原则。
首先是“先易后难”。
这点很容易理解,就是我们要先做简单题,然后再做复杂题。
当全部题目做完之后,如果还有时间,就再回来研究那些难题。
当然,在这里也不是说在做题的时候,稍微遇到一点难题就跳过去,这样自己给自己遗留下的问题就太多了。
也就违背了我们的原意。
其次是“先高后低”。
这里主要是指的倘若在时间不够用的情况下,我们应该遵守先做分数高的题目再做分数低的题目的顺序。
这样能够拿到更多的总得分。
并且,高分题目一般是分段得分,第一个或者第二个问题一般来说不会特别难,所以要尽可能地把这两问做出来,从总体上说,这样就会比拿出相应时间来做一道分数低的题目“合算”。
最后是“先同后异”。
这里说的“先同后异”其实指的是,在大顺序不变的情况下,可以把难题按照题目的大类进行区分,将同类型的题目放在一起考虑,因为这些题目所用到的知识点比较集中,在思考的时候就容易提高单位时间效益。
3、做题原则“一快一慢”。
这里所谓的“一快一慢”指的是审题要慢,做题要快。
题目本身实际上是这道题目的全部信息源,所以在审题的时候一定要逐字逐句地看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正地看清题意。
中考数学选择题和填空题解题技巧
中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
初中数学解题技巧整理(史上最全)
初中数学解题技巧(史上最全)目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法.图解法是解选择题常用方法之一.(6)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)整体代入法:把某一代数式进行化简,然后并不求出某个字母的取值,而是直接把化简的结果作为一个整体代入。
【典例剖析】1.(直接推演法)下列命题中,真命题的个数为( )①对角线互相垂直平分且相等的四边形是正方形,②如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③在一个圆中,如果弦相等,那么所对的圆周角相等,④已知两圆半径分别为5,3,圆心距为2,那么两圆内切( )A .1B .2C .3D .42.(整体代入法)已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( ) A .2006 B .2007 C .2008 D .20093.(图解法)已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.(特值法)如图所示是二次函数2122y x =-+的图象在x 轴上方的一部分,对于这段图象与x 轴所围成的阴影部分的面积,你认为与其最.接近的值是( )A .4B .163C .2πD .85.(排除、筛选法)已知:二次函数()220y ax bx a b a =+++≠的图像为下列图像之一,则a 的值为( )A .-1B . 1C . -3D . -46.(图解法)如图,在直角梯形ABCD 中,DC ∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )7.(分析法)已知α为锐角,则m =sin α+cos α的值( )A .m >1B .m =1C .m <1D .m ≥18.(验证法:)下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.9.(直接推理法)如图,菱形ABCD (图1)与菱形EFGH (图2)的形状、大小完全相同.ww (1)请从下列序号中选择正确选项的序号填写;①点E F G H ,,,;②点G F E H ,,,;③点E H G F ,,,;④点G H E F ,,,.如果图1经过一次平移后得到图2,那么点A B C D ,,,对应点分别是 ;如果图1经过一次轴对称后得到图2,那么点A B C D ,,,对应点分别是 ; 如果图1经过一次旋转后得到图2,那么点A B C D ,,,对应点分别是 ;(2)①图1,图2关于点O 成中心对称,请画出对称中心(保留画图痕迹,不写画法); ②写出两个图形成中心对称的一条..性质: .(可以结合所画图形叙述) 10.(图象信息法)绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共26条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日8:00~11:00,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有 条.11. ( 直接计算法) 如图, 大圆O 的半径OC 是小圆1O 的直径, 且有OC 垂直于圆O 的直径AB . 圆1O 的切线AD 交OC 的延长线于点E , 切点为D . 已知圆1O 的半径为r ,则=1AO _______ ; =DE ________12.(分析法)如图所示,直线12l l ⊥,垂足为点O,A 、B 是直线1l 上的两点,且OB=2,AB=2.直线1l 绕点O 按逆时针方向旋转,旋转角度为α(0180α<<)。
沈阳中考数学24题题型总结(一)
沈阳中考数学24题题型总结(一)前言沈阳中考数学24题题型是中考数学考试中的一个重要部分,对于考生来说,掌握这些题型的解题方法和技巧是非常关键的。
本文将对沈阳中考数学24题题型进行总结,希望能帮助广大考生更好地备考和应对考试。
正文选择题单选题1.解答单选题的方法和步骤–仔细阅读题目,确保对题意的理解准确–分析选项,排除明显错误的答案–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,选出正确的答案多选题1.解答多选题的方法和技巧–仔细阅读题目,理解每个选项的意义–分析选项,排除明显错误的答案–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,选出与题意相符的答案填空题1.解答填空题的步骤和技巧–仔细阅读题目,理解题目的要求–分析已知条件,找出与填空有关的信息–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,填写正确的答案解答题1.解答解答题的方法和要点–仔细阅读题目,理解题目的要求–分析已知条件,找出解答问题所需的信息–运用相关知识和方法,进行计算或推理–结合计算或推理过程,给出清晰的解答步骤–书写规范,条理清晰,答案准确通过对沈阳中考数学24题题型进行总结,我们可以发现,掌握解题方法和技巧是解答这些题型的关键。
在备考和应对考试过程中,我们应该注重理解题意,分析选项或已知条件,运用相关的知识和方法进行计算或推理,最终选出正确的答案或给出清晰的解答步骤。
希望广大考生能够充分准备,取得优异的成绩。
前言沈阳中考数学24题题型是中考数学考试中的一个重要部分,对于考生来说,掌握这些题型的解题方法和技巧是非常关键的。
本文将对沈阳中考数学24题题型进行总结,希望能帮助广大考生更好地备考和应对考试。
正文选择题单选题1.解答单选题的方法和步骤–仔细阅读题目,确保对题意的理解准确–分析选项,排除明显错误的答案–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,选出正确的答案1.解答多选题的方法和技巧–仔细阅读题目,理解每个选项的意义–分析选项,排除明显错误的答案–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,选出与题意相符的答案填空题1.解答填空题的步骤和技巧–仔细阅读题目,理解题目的要求–分析已知条件,找出与填空有关的信息–运用相关知识和方法,进行计算或推理–根据计算结果或推理过程,填写正确的答案解答题1.解答解答题的方法和要点–仔细阅读题目,理解题目的要求–分析已知条件,找出解答问题所需的信息–运用相关知识和方法,进行计算或推理–结合计算或推理过程,给出清晰的解答步骤–书写规范,条理清晰,答案准确结尾通过对沈阳中考数学24题题型进行总结,我们可以发现,掌握解题方法和技巧是解答这些题型的关键。
中考数学复习讲义课件 专题2 填空题解题策略
(一)填空题的常见解法
直接法 [方法解读] 直接从题设条件出发,利用定义、性质、定理、公式等,经过 变形、推理、计算、判断得到结果,称为直接法.它是解填空题的最基本、 最常用的方法.使用直接法解填空题,要善于通过现象看本质,自觉地、 有意识地采取灵活、简捷的解法.
☞例 1 一元二次方程 x2-2x-3=0 的解为 x1=3,x2=-1 .
7.若m1 +n1=2,则分式5m+-5mn--n2mn的值为 -4 .
8.已知△ ABC 中,∠A=60°,∠ABC,∠ACB 的平分线交于点 O,则∠BOC 的度数为 120° .
整体代入法 [方法解读] 将一部分看整体代入所求式子求解问题的方法,一般适用于 代数式的求值题.
☞例 3 已知当 x=2 时,多项式 ax3-bx+1 的值为-17,则当 x=-1 时, 多项式 12ax-3bx3-5 的值为 22 . [解析] ∵当 x=2 时,ax3-bx+1=-17, ∴8a-2b+1=-17,即 4a-b=-9. 当 x=-1 时, 12ax-3bx3-5=-12a+3b-5=-3(4a-b)-5=-3×(-9)-5=22.
☞例 6 下列图案是用长度相同的小棒按一定规律拼搭而成,图案①需 8 根 小棒,图案②需 15 根小棒,…,按此规律,图案⑦需 50 根小棒.
[解析] 观察图形可得:第一个图形小棒的根数为 7+1=8(根),第二个图 形小棒的根数为 7×2+1=15(根),第三个图形小棒的根数为 7×3+1= 22(根),由此可得第七个图形小棒的根数为 7×7+1=50(根).
18.(2020·怀化)如图,△ OB1A1,△ A1B2A2,△ A2B3A3,…,△ An-1BnAn 都 是一边在 x 轴上的等边三角形,点 B1,B2,B3,…,Bn 都在反比例函数 y = x3(x>0)的图象上,点 A1,A2,A3,…,An 都在 x 轴上,则 An 的坐标 为 (2 n,0) .
中考数学填空题解答技巧
中考数学填空题解答技巧填空题和选择题一样都属小题,要求每题尽可能在短时间内作答,因而可加大中考试卷卷面的知识容量,同时也可以考查同学们对数学概念的理解、数量问题的计算解决能力和推理论证能力。
一般来讲,每道题都应力争在3分钟内完成.填空题只要求填写结果,每道题填对了得满分,填错了得零分.解答填空题的基本要求是:正确、迅速、合理、简捷.解题的基本策略是:巧做。
解题的要领:快――运算要快,力戒小题大做;稳――变形要稳,不可操之过急;全――答案要全,力避残缺不齐;活――解题要活,不要生搬硬套;细――审题要细,不能粗心大意.由此,在填空题上失分一般比选择题和解答题严重,结合这种现象,我们很有必要探讨填空题的解答策略和方法。
直接法是解填空题的基本方法,它是直接从题设条件出发,通过变形、推理、运算等过程,直接得到结果。
它是解填空题的最基本、最常用的方法。
使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法.例1 (2014年浙江省湖州卷)计算:50°—15°30′=______.分析根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案。
解50°—15°30′=49°60′-15°30′=34°30′,故答案为:34°30′。
说明此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可。
定义法是运用数学中的相关定义、概念、定理、公理等内容,作出正确解答的一种方法。
例2 (2014年湖南省长沙卷)抛物线y=3(x—2)2+5的顶点坐标是___________.分析由于已知抛物线的解析式是顶点式,所以可以直接写出结论.解依题意,得抛物线y=3(x-2)2+5的顶点坐标是(2,5).当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值,而已知条件中含有某些不确定的量时,可以将题中变化的不定量选取一些符合条件的恰当特殊值,或特殊角、图形特殊位置、特殊点等进行处理,从而得出探求的结论,这样可大大地简化推理、运算的过程。
天津市中考数学24题常考题型
天津市中考数学24题常考题型
天津市中考数学24题是中考数学试卷中的重要题型,一直以来都是考生备战数学考试的焦点。
近几年,天津市中考数学24题的考察范围和难度也有所增加。
然而,掌握这类题型并不难,只需坚持练习,逐渐掌握其规律和解题技巧。
一、填空题
填空题是数学24题中的一种常见题型,大多考察对基本概念和公式的理解、记忆能力和计算能力。
对于这类题目,考生需要充分利用课下时间,通过做相关练习,牢记每个公式和概念,并注意计算准确。
二、选择题
选择题是数学24题中的另一种常见题型,需要考生根据给出的情景和条件,选择正确的答案。
这类题型要求考生具备扎实的基本功和较高的思维能力,平时可以多进行模拟测试,熟悉考试规则和答题技巧,在考试中迅速定位和作答。
三、计算题
计算题是数学24题中比较考验考生计算能力和分析问题能力的题型。
这类题目需要考生结合所学的知识,认真分析题意,合理运用公式,进行准确计算。
在备战中考,考生可以通过做题和学习参考书籍来提高对解题思维的理解和掌握。
总之,天津市中考数学24题是考察考生数学综合能力的重要题型,切
实掌握相关的考试规则和解题技巧对于备考取得好成绩是至关重要的。
同时,坚持日常练习和努力提高自己的数学功底,对于获得高分也有
着重要的帮助。
*结尾点名主旨:掌握天津市中考数学24题常考题型的解题技巧及备
考方法对于备考取得好成绩非常重要。
初中数学选择题填空题解题技巧
初中数学选择题填空题解题技巧1.仔细审题:在开始解题之前,要仔细阅读题目,理解题目的要求和条件。
注意关键词和关键信息,这有助于确定解题思路。
2.分析选项:对于选择题,可以通过分析选项的特征来确定答案。
有时候选项中可能有一些特殊的性质或规律,这可以帮助你确定正确答案。
3.排除法:如果一些选项明显错误,可以先排除它们,缩小选择范围。
有时候即使不确定正确答案是什么,通过排除一些错误选项,也能增加猜对的概率。
4.利用已知条件:有时候,题目可能会给出一些已知条件,这些条件可以帮助你找到答案。
在解题过程中,要善于利用这些已知条件,避免不必要的计算。
5.运用数学原理:初中数学填空题的解题思路往往涉及到一些基本的数学原理,如等式的性质、图形的性质等。
对这些数学原理要有一定的了解和掌握,并善于将其应用到解题过程中。
6.尝试法:如果无法通过以上方法确定答案,可以根据直觉或试错的方法来选择答案。
有时候,一些题目确实需要一定的直觉,所以不妨尝试一下自己的想法,可能会得到意外的收获。
7.反向思考:有时候,一个问题可能过于复杂,无法直接得到答案。
这时可以考虑反向思考,从答案入手,逆推回题目中给出的条件。
这种方法有时能够提供一些新的思路。
8.多做练习:解题需要一定的经验积累,多做练习是提高解题能力的重要途径。
通过做大量的选择题填空题,可以熟悉各种题型和解题思路,提高解题的准确性和效率。
最后,解题技巧仅为辅助工具,还是要靠对数学原理的理解和掌握。
因此,建议在学习数学的过程中,要注重理论的学习和巩固,建立扎实的数学基础。
初三数学复习攻略答题技巧与解题思路
初三数学复习攻略答题技巧与解题思路初三数学复习攻略——答题技巧与解题思路一、写在前面初三数学复习是为了备战中考,为了顺利完成数学试卷中的各种题型,我们需要掌握一些答题技巧并培养解题思路。
本文将为大家介绍几种常见题型的解题技巧,并提供一些建议来帮助大家在初三数学考试中取得更好的成绩。
二、选择题选择题是初三数学试卷中的常见题型,正确率往往是决定最终得分的重要因素。
下面是几种常见的选择题解题技巧:1. 仔细审题:通读题目,理解问题的意思。
注意关键词和条件限制,避免因为粗心而出错。
2. 排除法:先排除明显错误的选项,缩小范围后再仔细比较。
常见的排除方法有比较法、代入法等。
3. 过滤法:根据各选项的特点和条件,筛选出符合题意的选项。
常见的过滤方法有奇偶性判断、单位换算等。
三、填空题填空题要求我们根据条件填写适当的数值或运算符号,下面是几种常见的填空题解题技巧:1. 利用已知条件:仔细阅读题目,寻找已知条件,并根据条件进行推导和计算,找到合适的答案。
2. 变量代换:将未知数用字母表示,建立方程,通过解方程求解出未知数的数值。
3. 利用特殊性质:填空题中经常涉及到数的性质和规律,我们可以利用这些性质和规律来求解。
比如利用等差数列或等比数列的性质。
四、解答题解答题是初三数学试卷中的较为复杂的题型,需要综合运用所学的知识和解题技巧。
下面是几种常见的解答题解题思路:1. 分析问题:仔细阅读题目,理解问题的要求。
结合已知条件,分析问题的性质和特点,并采取相应的解题思路。
2. 建立模型:将问题抽象为数学模型,利用已知条件和题目要求建立等式或方程,进行求解。
常见的模型有几何模型、代数模型等。
3. 逻辑推理:通过观察和逻辑推理寻找问题的规律和解题思路。
例如利用归纳法、演绎法等进行推理,帮助我们找到解题的方法和步骤。
五、巩固练习在提高数学解题能力的过程中,巩固练习是非常重要的。
通过大量的练习,我们可以更好地掌握解题技巧和思路,提高解题能力。
天津中考数学考纲,天津中考数学考纲解析重点、难点、应试技巧详解
天津中考数学考纲,天津中考数学考纲解析重点、难点、应试技巧详解1、选择题的解题技巧选择题在天津中考数学占有很大的比重。
其中,必须做对的填空题和判断题更是比较多。
我们需要掌握一些解题技巧,提高自己的答题正确率。
第一,先判断题目中的基本信息,看清题目的要求。
如果能够先看出一些基本信息,例如正负号、大小等,那么就更容易得到答案。
第二,要注意选项的特殊性质。
例如,在选项中存在两个相反的数,那么这两个数有可能都不是答案。
第三,要善于利用错位相减或加法原理等方法,来降低解题难度。
例如,选择题的最后一步常常是求答案,而不是直接计算答案。
第四,要注重过程的推理,降低解题错误率。
以上是选择题的解题技巧。
掌握这些技巧后,我们在考试中就能更加熟练地解答选择题。
2、填空题的应试技巧填空题也占有很大的比重,因此在考前,我们需要掌握一些填空题的应试技巧。
第一,要注重数据的转化。
例如,将小数转换成分数或百分数,可以更加方便地计算和比较。
第二,要掌握计算器的使用,善于用计算器来辅助解题。
例如,使用计算器来将小数精确到更高的位数,从而得到更加准确的答案。
第三,要注重填充法的应用。
填充法是指将答案填入题目中进行验证,从而检查答案是否正确。
这是填空题中非常重要的一项技巧。
以上是填空题的应试技巧。
在考试中,我们可以灵活运用这些技巧,更好地完成填空题。
3、解析几何的重点和难点在天津中考数学中,解析几何的考察内容非常广泛,考试难度也比较高。
掌握解析几何的重点和难点,是我们成功应对这一块内容的关键。
第一,要重点掌握解析几何的基本概念和基本公式。
例如,直线的方程,圆的方程等。
第二,要注重解题的方法。
例如,多利用两条垂线相交和相邻角补角等性质,来进行解析几何的题目。
第三,归纳总结解题思路和方法。
例如,在进行法线和切线的题目时,先求导再计算斜率,就是一种比较经典的解题思路。
以上是解析几何的重点和难点。
通过深入理解这些内容,我们能够更加准确地解答解析几何的相关试题。
中考数学填空题解题技巧关键步骤分析
中考数学填空题解题技巧关键步骤分析填空题作为中考数学试题中的一类常见题型,要求考生根据提供的问题或条件,填入合适的数字或符号,完成数学运算或推理。
在解答填空题时,掌握一些解题技巧和关键步骤可以提高解题效率和准确性。
本文将分析解题的关键步骤,并介绍一些常用的解题技巧。
一、审题和理解题意解答任何数学问题的首要步骤是认真审题和理解题意。
填空题往往会给出一些条件或要求,考生需要明确题目要求的填空位置和所需填写的内容。
有时,题目可能会给出一些额外的提示信息,对于问题的解答也会有一定的帮助。
因此,在解答填空题时,务必细心阅读题目,确保理解题意和条件。
二、确定待填空的位置及相关信息在审题和理解题意后,考生需要确定待填空的位置,通常会在题目中用横线或下划线表示。
确定待填空位置后,进一步考虑题目给出的条件和要求,以便于在选择合适的填空内容时有依据。
有时,在题目中可能会给出一些相关的公式、定理或性质,对于填空位置的填入可以起到指导作用。
三、考虑解题思路和方法针对不同的填空题,可以采用不同的解题思路和方法。
以下是一些常见的填空题解题思路和方法:1. 利用等式关系:有时,在填空题中给出的条件可能是一个等式关系,考生可以利用这个关系来推导出待填空的数值。
通过合理运用等式的性质和变换,可以得到满足题目要求的填空内容。
2. 利用逻辑推理:在某些填空题中,填入的内容可能需要通过逻辑推理来确定。
考生可以从题目的条件出发,分析不同的情况,并根据题目的设定来得出合理的填空值。
3. 利用已知条件:考虑题目中给出的已知条件,比如长度、角度、比例等,通过对已知条件的计算和分析,找出与待填空位置相关的信息,从而得到正确的填空内容。
4. 利用近似和估算:对于一些复杂的填空题,考生可以利用近似和估算的方法,得到一个接近的解答。
通过合理地利用近似值,可以减少计算的复杂性,提高解题的效率。
四、验证结果和检查答案在填写完所有的空格后,考生应验证所填写的答案是否符合题目要求。
专题02客观题解题技巧-选择题、填空题解题策略6-10-2022年中考数学第二轮总复习课件(全国通用
典例精讲
整体代入法
知识点六
【例6-2】已知x+y=-4,x-y=8,则代数式x2-y2的值是_-_3_2__.
【分析】若直接由x+y=-4,x-y=8解得x,y的值,再代入求值,过程稍显复杂 且易出错,若采用整体代入法,则过程简洁.x2-y2=(x+y)(x-y)代值即可.
填空题具有知识点覆盖广、短小精悍、形式灵活多样、方法众多、区 分度最明显等特点,最能反映出学生的知识水平和解决问题的综合能力.
常用解法:直接法、排除法、图解法、特值法、操作法、代入法、归 纳法、转化法、验证法、分析法等.
01
02
知识点
03
04
05
代入法 归纳法 转化法 验证法 分析法
典例精讲
整体代入法
A
∠CDE为36º,则图中阴影部分的面积为( )
A.10π B.9π C.8π D.6π
方法归纳
转化法:借助某些性质、公式或已知条件将问题转化.转化的目的是要
将复杂化为简单,将未知转化为已知,将抽象转化为具体,转化的关键在于观
察,通过观察题目中数、式的变化规律,条件与结论之间的关系,题目的结构
特点及图形的特征,从而发现题目中数量关系或变化特征.
针对训练
归纳法
1.将连续的正整数按以下规律排列,则n=__8_5_.
知识点七
第1列 第2列
第1行 1
3
第2行 2
5
第3行 4
8
第4行 7
12
第5行 11
17
第6行 16
23
第7行 22
…
2.22022的个位数字是_4__.
第3列 6 9 13 18 24 … …
初中数学选择填空答题技巧大全
初中数学选择填空答题技巧⼤全 答题是对于知识点掌握情况的⼀种体现,要让学⽣学得懂做得出,数学答题技巧就显得尤为重要。
下⾯是⼩编为⼤家整理的关于初中数学选择填空答题技巧,希望对您有所帮助。
欢迎⼤家阅读参考学习! 1初中数学选择填空答题技巧 数学试卷答得好坏,主要依靠平⽇的基本功。
只要“双基”扎实,临场不乱,重审题、重思考、轻定势,那么成绩不会差。
切忌慌乱,同时也不可盲⽬轻敌,觉得⾃⼰平时数学成绩不错,再看到头⼏道题简单,就欣喜若狂,导致“⼤意失荆州”。
不是审题有误就是数据计算错误,这也是考试发挥失常的⼀个重要原因,要认真对待考试,认真对待每⼀道题主要把好4个关:(1)把好计算的准确关。
(2)把好理解审题关“宁可多审三分,不抢答题⼀秒”。
(3)把好表达规范关。
(4)把好思维、书写同步关 ⾸先,我们来分析⼀下选择题的特点.与⼤题有所不同,选择题只求正确结论,不⽤遵循步骤,因此,在解答时应该突出⼀个“选”字,尽量减少书写过程,要充分利⽤题⼲和选项两⽅⾯提供的信息,依据题⽬的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.选择题解题的基本原则是:充分利⽤选择题的特点,⼩题⼩做,⼩题巧做,切忌⼩题⼤做! 2中考数学选择题答题技巧 正确的读题习惯提⾼理解准确度 初中阶段的数学题在呈现⽅式来看⽐⼩学数学显得更为复杂,这要求学⽣有较好的分析问题和解决问题的能⼒。
由此如何最快的准备理解题意就显得尤为重要。
⽐如在选择填空题中经常会出现选择正确或错误的选项,学⽣在对“正确”、“错误”这样的关键词进⾏画圈标注后,可以有效避免答题失误;在应⽤题解答过程中,对于体现等量关系的 “倍数”、“相等”、“多少”等关键词的标注,可以⼤⼤减少学⽣构建⽅程求解的时间;在含有图形的证明或解答题中,学会将题⽬中的数学语⾔在图像上⽤具体符号进⾏标注,抽象思维得以形象化,可以较好的辅助学⽣逻辑证明的达成。
恰当的答题顺序常常能够事半功倍 通俗来说要培养学⽣先易后难的答题习惯,然⽽很多孩⼦常常难以在考试中严格执⾏。
中考数学常见填空题解题方法
中考数学常见填空题解题方法数学作为中考的一门考试科目,其填空题所占的比重不容忽视,因此针对常见的填空题解题方法,做好准备对于提高中考成绩来说十分重要。
一、常见的填空题类型1. 解题思路填空:根据题目所给信息计算或推理出答案,填到横线上。
2. 填空计算:要求填写具体的数字或算式,增强计算题目的难度。
3. 表格填空:将所给数据记录到表格中相应的位置上,根据数据分析出答案。
二、填空题解题方法1. 认真审题首先,要认真阅读题目,弄清题意,然后根据题目所提供的信息进行思考分析。
2. 了解题目类型了解填空题的不同类型,对其进行分类,有利于我们掌握解题方法,从而更好地完成考试。
3. 按步骤解题按照题目要求操作,按照步骤求解,填写正确答案,特别是一些计算题需要按照题意进行运算,得到正确结果,避免粗心的错误。
4. 确认答案完成试题后,要认真检查所填写的答案,保证答案的正确性。
三、一些填空题的具体解题方法1. 解题思路填空例如,求一条直线的斜率,可以根据题目所给的两个点的坐标,使用斜率公式求出斜率,进而填写到横线上。
2. 填空计算例如,求两个数的平均数,需要按照题意计算两个数的和,再将和除以2,得到平均数,进而填写到横线上。
3. 表格填空例如,对于一道问题,可以将所提供的数据按照表格中所需要的位置填写正确的数字,然后根据表格的信息进行分析,得出答案。
四、练习方法在考前,可以通过做模拟题来加强对填空题的掌握和练习能力,在解题过程中,可以结合自己的经验,掌握一些具体的解题方法,提高解题效率。
总的来说,对于中考数学常见填空题解题方法的掌握,需要认真审题,了解题目类型,按步骤解题,并进行正确的确认答案过程,这样可以有效提高解题的准确性和速度,为取得好成绩奠定基础。
中考数学填空题解题技巧
中考数学填空题解题技巧填空题是中考数学中常见的一种题型,它要求考生在给定的空格中填入合适的数字或符号,使得等式或不等式成立。
解题过程中需要灵活运用数学知识和技巧,下面将介绍一些中考数学填空题解题技巧,帮助考生应对这类题目。
一、审题准确在解答填空题时,首先要认真阅读题目,理解题目的意思和要求。
弄清楚空格的位置和空格的要求,避免填入错误的答案。
二、分析规律填空题一般有一定的规律可循,通过观察和分析题目中的条件,找出其中的数学关系或规律。
可以列举一些特殊情况进行分析,寻找数列、比例、等差数列、等比数列等的规律,并根据规律进行填空。
三、逆向思维对于一些较难的填空题,可以采用逆向思维的方法,即从答案出发,通过逆向运算来推导出所需的答案。
比如,对于两个数的和是20,差是6的问题,可以先假设其中一个数为x,另一个数就是20-x,然后根据差是6的条件进行计算。
四、数学公式和定理对于一些涉及到数学公式和定理的填空题,要熟练掌握相关知识,善于运用公式和定理解题。
比如,面积公式、周长公式、角平分线定理等,在解题时可以根据空格所处的位置选择合适的公式或定理进行计算。
五、代入验证在解答填空题时,可以通过代入验证答案的方法。
将所填数字代入空格中,计算等式或不等式两侧的值,看是否满足等式或不等式的要求。
如果满足,就可以确定所填数字是正确的,如果不满足,就需要重新推导和计算。
六、逻辑推理有些填空题需要通过逻辑推理来解答。
通过分析题目中的条件和信息,进行合理的假设、推理和推断,找出符合题意的答案。
在解答这类题目时,要注意整理思路,条理清晰,尽量避免跑题或漏填。
七、多做练习掌握填空题的解题技巧需要不断的练习和积累,做足够数量的练习题,提高解题的速度和准确性。
多以往中考真题为主,针对性地进行训练和复习,熟悉各类型填空题的解法和答题方法。
总结:中考数学填空题解题技巧主要包括:审题准确、分析规律、逆向思维、数学公式和定理、代入验证、逻辑推理和多做练习。
中考数学策略:快速准确解答选择、填空题
中考数学策略:快速准确解答选择、填空题选择题解题八技巧扫除法依据题设和有关知识,扫除清楚不正确选项,那么剩下独一的选项,自然就是正确的选项,假设不能立刻失掉正确的选项,至少可以增加选择范围,提高解题的准确率。
扫除法是解选择题的直接方法,也是选择题的常用方法。
数形结合法处置与图形或图像有关的选择题,经常要运用数学结合的思想方法,有时还要综合运用其他方法。
特例检验法取满足条件的特例(特殊值,特殊点,特殊图形,特殊位置等)停止验证即可得正确选项,由于命题对普通状况成立,那么对特殊状况也成立。
代入法将选择支代入题干或题代中选择支停止检验,然后作出判别。
观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
枚举法罗列一切能够的状况,然后作出正确的判别。
例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有()(A)5种(B)6种(C)8种(D)10种。
剖析:假设设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,应选B.待定系数法要求某个函数关系式,可先假定待定系数,然后依据题意列出方程(组),经过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
不完全归结法当某个数学效果触及到相关多乃至无量多的情形,眉目纷乱很难下手时,行之有效的方法是经过对假定干复杂情形停止考察,从中找出普通规律,求得效果的处置。
该法有一定的局限性,因此不能作为一种严厉的论证方法,但它可以协助我们发现和探求普通效果的规律,从而找到处置效果的途径。
填空题解题三战略直接解法直接由条件动身,依据公式、法那么、公理、定理停止计算证明得出正确答案。
当然在解答的进程中,可以跳过一些不用要的步骤,尽量采用心算的方法,快速求出效果的答案,这种解法适宜于解答一些基础题。
该方法要求先生关于基本概念、公式、法那么、性质、定理、公理等要熟记于心,并能深化地了解运用。
例如:为确保信息平安,信息需求加密传输,发送方由明文对应密文(加密),接纳方由密文对应明文(解密)加密规那么为明文x,y,z对应密文为2x+3y,3x+4y,3z.例如:明文1,2,3对应密文8,11,9当接纳方收到密文12,17,27时,那么解密失掉的明文为解析:此题细心剖析一下可以知道这是一道三元一次方程组的效果,由题意可设这三个明文数字为x,y,z得2x+3y=12x=33x+4y=17解得y=23z=27z=9特殊值法即依据标题中的条件,选取某个契合条件的特殊值或作出特殊图形停止计算,推理的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学选择题的答题技巧选择题目在中考数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。
因此,要特别掌握中考数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。
我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。
1.排除选项法:选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
2.赋予特殊值法:即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
3.通过猜想、测量的方法,直接观察或得出结果:这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
4、直接求解法:有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元 C 、120元D、88元5、数形结合法:解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
6、代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。
7、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
8、枚举法:列举所有可能的情况,然后作出正确的判断。
例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )(A)5种(B)6种(C)8种(D)10种。
分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B.9、待定系数法:要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
10、不完全归纳法:当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
以上是我们给同学们介绍的初中数学选择题的答题技巧,希望同学们认真掌握,选择题的分数一定要拿下。
初中数学答题技巧有以上十种,能全部掌握的最好;不能的话,建议同学们选择集中适合自己的初中数学选择题做题方法。
中考填空题解法大全一.数学填空题的特点:与选择题同属客观性试题的填空题,具有客观性试题的所有特点,即题目短小精干,考查目标集中明确,答案唯一正确,答卷方式简便,评分客观公正等。
但是它又有本身的特点,即没有备选答案可供选择,这就避免了选择项所起的暗示或干扰的作用,及考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生的真正水平。
考查内容多是“双基”方面,知识复盖面广。
但在考查同样内容时,难度一般比择题略大。
二.主要题型:初中填空题主要题型一是定量型填空题,二是定性型填空题,前者主要考查计算能力的计算题,同时也考查考生对题目中所涉及到数学公式的掌握的熟练程度,后者考查考生对重要的数学概念、定理和性质等数学基础知识的理解和熟练程度。
当然这两类填空题也是互相渗透的,对于具体知识的理解和熟练程度只不过是考查有所侧重而已。
填空题一般是一道题填一个空格,当然个别省市也有例外。
中考南京出了四道类似上题的填空题。
这类有递进层次的试题,实际上是考查解题的几个主要步骤。
中考江西省还出了一道“先阅读,后填空”的试题,它首先列举了30名学生的数学成绩,给出频率分布表,然后要求考生回答六小道填空题,这也可以说是一种新题型。
这种先阅读一段短文,在理解的基础上,要求解答有关的问题,是近年悄然兴起的阅读理解题。
它不仅考查了学生阅读理解和整理知识的能力,同时提醒考生平时要克服读书囫囵吞枣、不求甚解的不良习惯。
这种新题型的出现,无疑给填空题较寂静的湖面投了一个小石子。
三.基本解法:一、直接法:例1 如图,点C 在线段AB 的延长线上,︒=∠15DAC ,︒=∠110DBC ,则D ∠的度数是_____________ 分析:由题设知︒=∠15DAC ︒=∠110DBC ,利用三角形的一个外角等于和它不相邻的两个内角的和知识,通过计算可得出D ∠=︒95.二、特例法:例2 已知ABC △中,60A ∠= ,ABC ∠,ACB ∠的平分线交于点O ,则BOC ∠的度数为( )分析:此题已知条件中就是ABC △中,60A ∠= 说明只要满足此条件的三角形都一定能够成立。
故不妨令ABC △为等边三角形,马上得出BOC ∠=120 。
例3、填空题:已知a<0,那么,点P(-a2-2,2-a)关于x 轴的对称点是在第_______象限.解:设a=-1,则P{-3,3}关于x 轴的对称点是 {-3,-3}在第三象限,所以点P(-a^2-2,2-a)关于x 轴的对称点是在第三象限.例4、无论m 为任何实数,二次函数y=x2+(2-m)x+m 的图像都经过的点是 _______.解:因为m 可以为任何实数,所以不妨设m=2,则y=x ^2+2,再设m=0,则y=x ^2+2x 解方程组 解得所以二次函数y=x ^2+(2-m)x+m 的图像都经过的点是(1,3).三、数形结合法: 数缺形时少直观,形缺数时难入微。
"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
例6、 在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,,则S1+S2+S3+S4=_______。
A B CD解:四个正方形的面积依次是S1、S2、S3、S4,可设它们的边长分别为a 、b 、c 、d ,由直角三角形全等可得解得a^2+b^2+c^2+d^2=4,则S1+S2+S3+S4=4.四、猜想法:例5 用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).分析:从第1个图中有4枚棋子4=3×1+1,从第2个图中有7枚棋子7=3×2+1, 从第3个图中有10枚棋子10=3×3+1,从而猜想:第n 个图中有棋子3n+1枚.五、整体法:例5 如果x+y=-4,x-y=8,那么代数式x2-y2的值是 c 分析:若直接由x+y=-4,x-y=8解得x ,y 的值,再代入求值,则过程稍显复杂,且易出错,而采用整体代换法,则过程简洁,妙不可言.分析:x2-y2=(x+y )(x-y )=-4×8=-32 已知53=-=-c b b a ,1222=++c b a ,则ca bc ab ++的值等于________. 分析:运用完全平方公式,得222)()()(a c c b b a -+-+-=2)(222c b a ++-2)(ca bc ab ++, 即)(ca bc ab ++=)(222c b a ++-21[222)()()(a c c b b a -+-+-]. ∵ 53=-=-c b b a ,56)()(-=-+-=-a b b c a c ,1222=++c b a ,∴ )(ca bc ab ++=1-21[2)53(+2)53(+2)56(-]=-252.六、构造法:例6 已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .第1个图第2个图第3个图 …分析:采用构造法求解.由题意,构造反比例函数的解析式为x k =y ,因为它过(-2,3)所以把x =-2,y =3代入x k =y 得k=-6. 解析式为x 6-=y 而另一点(m,2)也在反比例函数的图像上,所以把x =m ,y =2代入x 6-=y 得m=-3. 七、图解法:例7如图为二次函数y=ax2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax2+bx +c=0的根是x1= -1, x2= 3③a +b +c >0 ④当x >1时,y 随x 的增大而增大。
正确的说法有_____________。
(把正确的答案的序号都填在横线上)分析:本题借助图解法来求 ①利用图像中抛物线开口向上可知a >0,与y 轴负半轴相交可知c <0,所以ac <0.②图像中抛物线与x 轴交点的横坐标为-1,3可知方程ax2+bx +c=0的根是x1= -1, x2= 3 ③从图中可知抛物线上横坐标为1的点 (1,a +b +c )在第四象限内所以a+b +c <0 ④从与x 轴两交点的横坐标为-1,3可知抛物线的对称轴为x=1且开口向上,所以当x >1时y 随x 的增大而增大。
所以正确的说法是:①②④八、等价转化法:通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。
例8、如图10,在△ ABC 中,AB=7,AC=11,点M 是BC 的中点, AD 是∠BAC 的平分线,MF ∥AD ,则FC 的长为_________.解:如图,设点N 是AC 的中点,连接MN ,则MN ∥AB.又MF ∥AD ,所以,所以.因此例9、如图6,在 中,E 为斜边AB 上一点,AE=2,EB=1,四边形DEFC 为正方形,则阴影部分的面积为________.解:将直角三角形EFB 绕E 点,按逆时针方向旋转 ,因为CDEF 是正方形,所以EF 和ED 重合,B 点落在CD 上,阴影部分的面积转化为直角三角形ABE 的面积,因为AE=2,EB=1,所以阴影部分的面积为1/2*2*1=1.九、观察法:例11 一组按规律排列的式子:2b a -,53b a ,83b a -,114b a ,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).分析:通过观察已有的四个式子,发现这些式子前面的符号一负一正连续出现,也就是序号为奇数时负,序号为偶数时正。
同时式子中的分母a 的指数都是连续的正整数,分子中的b的指数为同个式子中a 的指数的3倍小1,通过观察得出第7个式子是207b a -,第n 个式子是31(1)n nn b a --。