(完整版)概率初步测试题含答案

合集下载

概率统计初步试卷(附答案)

概率统计初步试卷(附答案)

《概率论与数理统计初步》试卷试卷共 6 页,请先查看试卷有无缺页,然后答题。

一.选择题(53⨯分)1.设离散型随机变量则(A). 0.2 (B). 0.3 (C). 0.1 (D). 0.52.设总体X 服从正态分布)6,1(N ,125,,,X X X 为X 的样本,记5115i i X X ==∑,则X ~______________(A). )41,1(N (B). )6,1(N (C). 6(1,)5N (D). (0,6)N3.已知总体X ~N(μ,σ2),其中μ未知, σ2已知,n X X X ,,,21 是X 的样本,下列哪个函数不是统计量_____________(A). min(X 1,X 2,…,X n ) (B). ∑=--ni i X X n 12)(11 (C).121n X i i n()-=∑μ (D). Xii n212=∑σ4.某人射击击中的概率为14。

如射击直到击中为止,则射击次数为3的概率为( ) (A ) 343⎪⎭⎫ ⎝⎛ (B )41432⨯⎪⎭⎫ ⎝⎛ (C ) 43412⨯⎪⎭⎫ ⎝⎛(D ) 341⎪⎭⎫⎝⎛5. 21,X X 是总体(,4)N μ的一个样本,,下面四个估计量中,未知参数μ的无偏估计是_________________________(A).121433X X + (B). 121344X X + (C). 214143X X - (D). 215352X X +二. 填空题(53⨯分)1. 若随机变量ξ与η相互独立,且方差D(ξ)=0.5,D(η)=1,则D(2ξ-3η)=______________________.2.设事件A ,B 相互独立,且4.0)(=A P ,0)(=AB P ,则=)(B P _________________________3. 设(X ,Y) ~ N(1, 2, 3, 4, 0),则=XY ρ____________4. 设随机变量X ~)21,4(B ,则=2)]([)(X E X D _________________________5. 设B A ,互不相容,且q B P p A P ==)(,)(,则)(B A P =___________ 二.计算题1. 已知某厂生产的灯泡寿命在1万小时以上的概率为0.8,寿命在2万小时以上的概率为0.2,求已使用1万小时的灯泡能用2万小时的概率。

九年级数学上册《概率初步》测试题及答案

九年级数学上册《概率初步》测试题及答案

第二十五章 概率初步全章测试附参考答案一、选择题1.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是( ).A .让比赛更富有情趣B .让比赛更具有神秘色彩C .体现比赛的公平性D .让比赛更有挑战性2.小张掷一枚硬币,结果是一连9次掷出正面向上,那么他第10次掷硬币时,出现正面向上的概率是( ). A .0 B .1 C .0.5 D .不能确定 3.关于频率与概率的关系,下列说法正确的是( ). A .频率等于概率B .当试验次数很多时,频率会稳定在概率附近C .当试验次数很多时,概率会稳定在频率附近D .试验得到的频率与概率不可能相等 4.下列说法正确的是( ). A .一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等 5.下列说法正确的是( ).A .抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B .“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C .一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D .抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面6.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).A .21 B .31 C .61 D .81 7.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31 B .32 C .61 D .918.元旦游园晚会上,有一个闯关活动:将20个大小、重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( ).A .32 B .41 C .51 D .101 9.下面4个说法中,正确的个数为( ). (1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%” (3)小李说,这次考试我得90分以上的概率是200% (4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小 A .3 B .2 C .1 D .0 10.下列说法正确的是( ).A .可能性很小的事件在一次试验中一定不会发生B .可能性很小的事件在一次试验中一定发生C .可能性很小的事件在一次试验中有可能发生D .不可能事件在一次试验中也可能发生 二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_______ __________.12.掷一枚均匀的骰子,2点向上的概率是______,7点向上的概率是______. 13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A 为“取出的是红球”,事件B 为“取出的是黄球”,事件C 为“取出的是蓝球”,则P (A )=______,P (B )=______,P (C )=______.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是______.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为______.16.从下面的6张牌中,一次任意抽取两张,则其点数和是奇数的概率为______.17.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是______.18.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则n =______. 三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(2)假如摸一次,你到白球的概率P(白球)=______;(3)试估算盒子里黑、白两种颜色的球各有多少只?答案与提示第二十五章 概率初步全章测试1.C . 2.C . 3.B . 4.D . 5.B . 6.C . 7.D . 8.D . 9.D . 10.C .11.略. 12..0,6113.P (A )=0.375,P (B )=0.5,P (C )=0.125.14.0.4. 15..31 16.⋅15817.0.4. 18.1.19(3)概率是通过大量重复试验中频率的稳定性得到的一个0~1的常数. 20.解:(1)⋅==2142)2(抽到P或画树状图: 第一次抽第二次抽从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种, ∵P (两位数不超过32)=851610=. ∴游戏不公平.21.(1)0.6; (2)0.6; (3)16只黑球,24只白球.。

《概率初步》测试题(含答案))

《概率初步》测试题(含答案))
2
果选得男生的概率为2,求男女生数各多少?
21. (5分)口袋里有红、绿、黄三种颜色的球,其中有红球
1
1个绿球的概率是-,求摸出一个黄球的概率?
3
22.(5分)从数学、语文、英语、计算机这四门课程中选出两门排在星期一上午第一、二
两节课,数学和计算机不能排在一起,语文不能排在第一节,两节可以排同一门课程,
11.天气台预报明天下雨的概率为70%,
A.明天30%的地区会下雨
C.明天出行不带雨伞一定会被淋湿
则下列理解正确的是()
B.明天30%的时间会下雨
D.明天出行不带雨伞被淋湿的可能性很大
12.下列成语所描述的事件是必然事件的是()
A.水中捞月B.拔苗助长C.守株待兔D.
13.如图,等腰梯形ABCD中,AB//CD,E、F、M、N分别 是AB、CD、DE、CE中点,AB=2CD.如果向这个梯形 区域内随意投掷绿豆, 区域内(不包含边界)
人1
x5,令x一、
2
5
(2)
(4)2008年奥运会在北京举行.其中不确定事件有(
C.3个D.4个 (骰子每一面的点数分别是从

B.掷出两个骰子的点数和为
D.掷出两个骰子的点数和为
3253749
2 2 2 2
随机掷一枚均匀的硬币,正面朝上;
(3)12名同学

1到6这六个数字
6是必然事件
14是随机事件
1、
18.(5分)一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出 红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?
19.(5分)将一枚硬币连掷3次,出现“两正,一反”的概率是多少?

概率测试题及答案

概率测试题及答案

概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。

答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。

答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。

答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。

四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。

2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。

求事件A和事件B同时发生的概率。

答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。

五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。

答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。

例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。

九年级数学上概率初步测试题(含答案)

九年级数学上概率初步测试题(含答案)

九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2.条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B.8种 C. 5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( ) A .154 B.31 C.51 D.152 4.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( ) A.1001 B. 10001 C. 100001 D. 100001116、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.32 7.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15 B .29 C .14 D .5188.如图3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )图1图2A.21 B. 83 C. 41 D. 319.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41D .1 10.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.361 二、填空题(每小题3分,共30分)11. (08福建福州)在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为15.任意翻一下2007年日历,翻出1月6日的概率为 ;翻出4月31日的概率为 。

《概率初步》测试题(及答案)

《概率初步》测试题(及答案)

《概率初步》测试题(及答案)九年级数学概率初步测试题(说明:全卷考试时间100分钟,满分120分)⼀、选择题(每⼩题3分,共30分) 1.下列事件中是必然事件的是()A .⼩菊上学⼀定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票⼀定会中奖C .⼀年中,⼤、⼩⽉份数刚好⼀样多D .将⾖油滴⼊⽔中,⾖油会浮在⽔⾯上2.从A 地到C 地,可供选择的⽅案是⾛⽔路、⾛陆路、⾛空中.从A 地到B 地有2条⽔路、2条陆路,从B 地到C 地有3条陆路可供选择,⾛空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的⽅案有() A .20种 B.8种 C. 5种 D.13种 3.⼀只⼩狗在如图1的⽅砖上⾛来⾛去,最终停在阴影⽅砖上的概率是() A .154 B.31 C.51 D.152 4.下列事件发⽣的概率为0的是()A .随意掷⼀枚均匀的硬币两次,⾄少有⼀次反⾯朝上;B .今年冬天⿊龙江会下雪;C .随意掷两个均匀的骰⼦,朝上⾯的点数之和为1;D .⼀个转盘被分成6个扇形,按红、⽩、⽩、红、红、⽩排列,转动转盘,指针停在红⾊区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券⼀张,在10000张奖券中,设特等奖1个,⼀等奖10个,⼆等奖100个。

若某⼈购物满100元,那么他中⼀等奖的概率是() A.1001 B. 10001 C. 100001 D. 100001116、有6张写有数字的卡⽚,它们的背⾯都相同,现将它们背⾯朝上(如图2),从中任意⼀张是数字3的概率是() A.61B.31C.21D.327.在李咏主持的“幸运52”栏⽬中,曾有⼀种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背⾯注明了⼀定的奖⾦,其余商标牌的背⾯是⼀张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有⼀位观众已翻牌两次,⼀次获奖,⼀次不获奖,那么这位观众第三次翻牌获奖的概率是()A .15 B .29 C .14 D .5188.如图3,⼀飞镖游戏板,其中每个⼩正⽅形的⼤⼩相等,则随意投掷⼀个飞镖,击中⿊⾊区域的概率是 ( ) A.21 B. 83 C. 41 D. 319.如图4,⼀⼩鸟受伤后,落在阴影部分的概率为() A .21 B .31 C .41D .1 图1图2图410.连掷两次骰⼦,它们的点数都是4的概率是() A.61 B.41 C.161 D.361 ⼆、填空题(每⼩题3分,共30分)11.在⼀个袋⼦中装有除颜⾊外其它均相同的2个红球和3个⽩球,从中任意摸出⼀个球,则摸到红球的概率是____________12.⼩明、⼩刚、⼩亮三⼈正在做游戏,现在要从他们三⼈中选出⼀⼈去帮王奶奶⼲活,则⼩明被选中的概率为______,⼩明未被选中的概率为______13.在⼀次抽奖活动中,中奖概率是0.12,则不中奖的概率是. 14.从⼀副扑克牌(除去⼤、⼩王)中任抽⼀张,则抽到红⼼的概率为;抽到⿊桃的概率为;抽到红⼼3的概率为15.任意翻⼀下2007年⽇历,翻出1⽉6⽇的概率为 ;翻出4⽉31⽇的概率为。

概率基础测试题含答案

概率基础测试题含答案

概率基础测试题含答案一、选择题1.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( ) A .13B .16C .12D .23【答案】A 【解析】 【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解. 【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A . 【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.2.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .19【答案】A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A.15B.25C.35D.45【答案】C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C4.一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同,红球、黄球、黑球的个数之比为5:3:1,则从布袋里任意摸出一个球是黄球的概率是()A.59B.13C.19D.38【答案】B【解析】分析:用黄球所占的份数除以所有份数的和即可求得是黄球的概率.详解:∵红球、黄球、黑球的个数之比为5:3:1,∴从布袋里任意摸出一个球是黄球的概率是31=5+3+13.故选:B.点睛:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.5.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.6.(2018•六安模拟)下列成语所描述的是必然事件的是()A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针【答案】B【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.7.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.8.在2015-2016CBA常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是()A.易建联罚球投篮2次,一定全部命中B.易建联罚球投篮2次,不一定全部命中C.易建联罚球投篮1次,命中的可能性较大D.易建联罚球投篮1次,不命中的可能性较小【答案】A【解析】【分析】根据概率的意义对各选项分析判断后利用排除法求解.【详解】解:A、易建联罚球投篮2次,不一定全部命中,故本选项错误;B、易建联罚球投篮2次,不一定全部命中,故本选项正确;C、∵易建联罚球投篮的命中率大约是82.3%,∴易建联罚球投篮1次,命中的可能性较大,故本选项正确;D、易建联罚球投篮1次,不命中的可能性较小,故本选项正确.故选:A.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )A.15B.110C.25D.225【答案】B 【解析】【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案. 【详解】用字母A 、B 、C 、D 、E 分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形, 所以,正好抽中养老保险和医疗保险的概率P=212010=. 故选B. 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.下列说法正确的是 ()A.要调查现在人们在数学化时代的生活方式,宜采用普查方式B.一组数据3,4,4,6,8,5的中位数是4C.必然事件的概率是100%,随机事件的概率大于0而小于1D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定【答案】C【解析】【分析】直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.【详解】A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;故选:C.【点睛】此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.14.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线6y=x上的概率为( ) A .118B .112C .19 D .16【答案】C 【解析】 画树状图如下:∵一共有36种等可能结果,点P 落在双曲线6y=x上的有(1,6),(2,3),(3,2),(6,1), ∴点P 落在双曲线6y=x 上的概率为:41=369.故选C .15.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20 B .16C .12D .15【答案】C 【解析】 【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案. 【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%,∴4144x =+, 解得:12x =,经检验,12x =是原方程的解 故白球的个数为12个. 故选C 【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.16.下列事件中,是必然事件的是( ) A .任意画一个三角形,其内角和是180° B .经过有交通信号灯的路口,遇到红灯 C .掷一次骰子,向上一面的点数是6 D .射击运动员射击一次,命中靶心 【答案】A 【解析】 【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可. 【详解】A .任意画一个三角形,其内角和是180°是必然事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C .掷一次骰子,向上一面的点数是6是随机事件;D .射击运动员射击一次,命中靶心是随机事件; 故选:A . 【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此圆的内接正方形中的概率是( ).A .2B .2π C .πD .2π【答案】D 【解析】 【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】∵半径为2的圆内接正方形边长为22,∴圆的面积为4π,正方形的面积为8,则石子落在此圆的内接正方形中的概率是82=4ππ,故选D.【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.18.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.19.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.20.下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【答案】B【解析】【分析】根据可能性大小、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念进行判断.【详解】检查某批次灯泡的使用寿命调查具有破坏性,应采用抽样调查,A错;一年有366天所以367个人中必然有2人同月同日生,B对;可能性是1%的事件在一次试验中有可能发生,故C错;3,5,4,1,-2按从小到大排序为-2,1,3,4,5,3在最中间故中位数是3,D错.故选B.【点睛】区分并掌握可能性、全面调查与抽样调查的定义及中位数的概念、必然事件、不可能事件、随机事件的概念.。

概率初步试题及答案

概率初步试题及答案

概率初步试题及答案一、选择题(每题4分,共20分)1. 某事件的概率为0.5,那么它的对立事件的概率是()。

A. 0.5B. 0C. 1D. 0.3答案:C2. 抛掷一枚硬币,正面朝上的概率是()。

A. 0.5B. 0.25C. 0.75D. 1答案:A3. 随机变量X服从二项分布B(n,p),其中n=10,p=0.3,那么P(X=3)是()。

A. 0.3B. 0.03C. 0.09D. 0.33答案:C4. 某次考试,甲、乙、丙三人的成绩独立,甲通过的概率为0.7,乙通过的概率为0.6,丙通过的概率为0.5,那么三人都通过的概率是()。

A. 0.21B. 0.35C. 0.105D. 0.05答案:C5. 已知随机变量X服从正态分布N(μ,σ^2),其中μ=0,σ^2=1,那么P(-1<X<1)是()。

A. 0.6826B. 0.95C. 0.8413D. 0.9772答案:C二、填空题(每题5分,共20分)1. 概率的取值范围是()。

答案:[0,1]2. 随机变量X服从泊松分布,其参数λ=4,则P(X=2)=()。

答案:0.33. 某次实验中,事件A和事件B是互斥的,且P(A)=0.4,P(B)=0.3,则P(A∪B)=()。

答案:0.44. 已知随机变量X服从均匀分布U(0,3),则E(X)=()。

答案:1.5三、计算题(每题10分,共20分)1. 已知随机变量X服从二项分布B(5,0.2),求P(X≥3)。

答案:P(X≥3)=P(X=3)+P(X=4)+P(X=5)=C_5^3*0.2^3*0.8^2+C_5^4*0.2^4*0.8+0.2^5=0.0512+0.0128+0.00032=0.064322. 已知随机变量X服从正态分布N(2,4),求P(1<X<3)。

答案:P(1<X<3)=Φ((3-2)/2)-Φ((1-2)/2)=Φ(0.5)-Φ(-0.5)=0.6915-0.3585=0.333四、解答题(共40分)1. 某班有50名学生,其中有20名女生,30名男生。

概率基础测试题及答案解析

概率基础测试题及答案解析

概率基础测试题及答案解析一、选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,那么P(X>0)等于多少?A. 0.5B. 0.6826C. 0.8413D. 0.5000答案:A解析:标准正态分布的均值为0,标准差为1,对称轴为X=0,因此P(X>0)等于0.5。

2. 已知随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 1.5B. 3C. 2.7D. 0.3答案:B解析:二项分布的期望值E(X)=np,所以E(X)=10*0.3=3。

3. 一组数据的平均数是5,方差是4,那么这组数据的中位数是多少?A. 4B. 5C. 6D. 无法确定答案:B解析:平均数是所有数据的总和除以数据的个数,而中位数是将数据按大小顺序排列后位于中间的数。

在没有具体数据的情况下,无法确定中位数,但根据平均数的定义,可以推断中位数为5。

4. 已知随机变量X和Y相互独立,且P(X=1)=0.5,P(Y=1)=0.3,那么P(X=1且Y=1)等于多少?A. 0.15B. 0.5C. 0.3D. 0.6答案:A解析:由于X和Y相互独立,所以P(X=1且Y=1)=P(X=1)*P(Y=1)=0.5*0.3=0.15。

5. 一组数据的样本容量为100,样本均值为50,样本方差为25,那么这组数据的标准差是多少?A. 5B. 10C. 20D. 25答案:A解析:标准差是方差的平方根,所以标准差=√25=5。

6. 已知随机变量X服从泊松分布,其参数λ=4,那么P(X=3)等于多少?A. 0.182B. 0.273C. 0.409D. 0.546答案:B解析:泊松分布的概率质量函数为P(X=k)=e^(-λ)λ^k/k!,代入λ=4和k=3,计算得到P(X=3)=e^(-4)4^3/3!=0.273。

7. 已知随机变量X服从均匀分布U(0,1),那么P(0.5<X<0.6)等于多少?A. 0.1B. 0.05C. 0.15D. 0.2答案:B解析:均匀分布的概率等于区间长度,所以P(0.5<X<0.6)=0.6-0.5=0.1,但因为题目中区间长度为0.1,所以答案为0.05。

九年级数学上概率初步测试题(附含答案解析)

九年级数学上概率初步测试题(附含答案解析)

九年级数学上 概率初步测试题(说明:全卷考试时间100分钟,满分120分)一、选择题(每小题3分,共30分) 1. 下列事件中是必然事件的是( ) A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖 C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.从A 地到C 地,可供选择的方案是走水路、走陆路、走空中.从A 地到B 地有2条水路、2.条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地.则从A 地到C 地可供选择的方案有( )A .20种 B.8种 C. 5种 D.13种 3.一只小狗在如图1的方砖上走来走去,最终停在阴 影方砖上的概率是( ) A .154 B.31 C.51 D.1524.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上;B .今年冬天黑龙江会下雪;C .随意掷两个均匀的骰子,朝上面的点数之和为1;D .一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

5.某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( ) A.1001 B. 10001C. 100001D. 10000111 6、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图2),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.327.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是( )A .15 B .29C .14D .5188.如图3,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )图1图2A.21 B. 83 C. 41D. 319.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41D .110.连掷两次骰子,它们的点数都是4的概率是( )A.61B.41C.161D.361 二、填空题(每小题3分,共30分)11. (08福建福州)在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是____________12.小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .14.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为15.任意翻一下2007年日历,翻出1月6日的概率为 ;翻出4月31日的概率为 。

概率初步测试卷-含答案

概率初步测试卷-含答案

概率初步测试卷-含答案第26章检测卷(120分钟150分)⼀、选择题(本⼤题共1.下列事件中不是随机事件的是A.打开电视机正好在播《新闻联播》B.从书包中任意拿⼀本书正好是英语书C.掷两次骰⼦,骰⼦向上的⼀⾯的点数之积为14D.射击运动员射击⼀次,命中靶⼼2.已知抛⼀枚均匀硬币正⾯朝上的概率为,下列说法错误的是A.连续抛⼀枚均匀硬币2次必有1次正⾯朝上B.连续抛⼀枚均匀硬币10次都可能正⾯朝上C.⼤量反复抛⼀枚均匀硬币,平均每100次有50次正⾯朝上D.通过抛⼀枚均匀硬币确定谁先发球的⽐赛规则是公平的3.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三⾓形的概率是A. B. C. D.4.定义⼀种“⼗位上的数字⽐个位、百位上的数字都要⼩的三位数”叫做“V数”,如“947”就是⼀个“V数”.若⼗位上的数字为2,则从1,3,4,5中任选两个数,能与2组成“V数”的概率是A. B. C. D.5.如图,⼀个游戏转盘中,红、黄、蓝三个扇形的圆⼼⾓度数分别为60°,90°,210°.让转盘⾃由转动,指针停⽌后落在黄⾊区域的概率是A. B. C. D.6.在⼀个不透明的⼝袋⾥,装了只有颜⾊不同的黄球、⽩球若⼲只.某⼩组做摸球实验:将球搅匀后从中随机摸出⼀个,记下颜⾊,再放回袋中,不断重复.下表是活动中的⼀组数据,则摸到黄球的概率约是A.0.4B.0.5C.0.6D.0.77.从n张互不相同的普通扑克牌中任意抽取⼀张,抽到⿊桃K的概率为,则n=A.54B.52C.10D.58.实验中学本学期组织开展课外兴趣活动,各活动⼩班根据实际情况确定了计划组班⼈数,并发动学⽣⾃愿报名,若⽤同⼀⼩班的报名⼈数与计划⼈数的⽐值⼤⼩来衡量进⼊该班的难易程度,则由表中数据,可预测A.奥数⽐书法容易B.合唱⽐篮球容易C.写作⽐舞蹈容易D.航模⽐书法容易9.⼀个不透明的⼝袋中有四个完全相同的⼩球,把它们分别标号为1,2,3,4,随机摸出⼀个⼩球,不放回,再随机摸出⼀个⼩球,两次摸出的⼩球标号的积⼩于4的概率是A. B. C. D.10.现有A,B两枚均匀的⼩⽴⽅体(⽴⽅体的每个⾯上分别标有数字1,2,3,4,5,6),⼩莉掷A⽴⽅体,朝上的数字记为x,⼩明掷B⽴⽅体,朝上的数字记为y,由此确定点P(x,y),那么他们各掷⼀次所确定的点P落在已知抛物线y=-x2+4x上的概率为A. B. C. D.⼆、填空题(本⼤题共4⼩题,每⼩题5分,满分20分)11.在⼀个不透明的⼝袋中装有8个红球和若⼲个⽩球,它们除颜⾊外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则⼝袋中⽩球可能有12个.12.⼩明在做掷⼀枚普通的正⽅体骰⼦的实验,请写出这个实验中⼀个可能发⽣的事件:正⾯朝上的数字为3(答案不唯⼀).13.若从-1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第⼆象限的概率是.14.如图,从A地到B地有两条路线可⾛,从B地到F地可经C⼤桥、D⼤桥或E⼤桥到达,现让你随机选择⼀条从A地出发经过B地到达F地的⾏⾛路线,那么恰好选到经过D⼤桥的路线的概率是.三、(本⼤题共2⼩题,每⼩题8分,满分16分)15.掷⼀个骰⼦,观察向上⼀⾯的点数,求下列事件的概率:(1)点数为偶数;(2)点数⼤于2且⼩于5.解:掷⼀个骰⼦,向上⼀⾯的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6,∴P(点数为偶数)=.(2)点数⼤于2且⼩于5的有2种可能,即点数为3,4,∴P(点数⼤于2且⼩于5)=.16.在⼀个不透明的袋⼦⾥装有3个⽩⾊乒乓球和若⼲个黄⾊乒乓球,若从这个袋⼦⾥随机摸岀⼀个乒乓球,恰好是黄球的概率为,求袋⼦内乒乓球的总个数.解:设袋⼦内有黄⾊乒乓球x个.根据题意,得,解得x=7.经检验x=7是原分式⽅程的解.则x+3=7+3=10(个).故袋⼦内乒乓球的总个数为10.四、(本⼤题共2⼩题,每⼩题8分,满分16分)17.把⼀个⽊制正⽅体的表⾯涂上红⾊,然后将其分割成64个⼤⼩相同的⼩正⽅体,如图所⽰.若将这些⼩正⽅体均匀地混在⼀起,则任意取出⼀个正⽅体,其两⾯涂有红⾊的概率是多少?各⾯都没有红⾊的概率是多少?解:两⾯涂有红⾊的正⽅体共有24个,概率为.⼀⾯涂有红⾊的正⽅体有24个,各⾯都没有红⾊的正⽅体有64-24-24-8=8个,概率为.18.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的⽅式享受折扣优惠,本次活动共有两种⽅式,⽅式⼀:转动转盘甲,指针指向A区域时,所购物品享受9折优惠,指针指向其他区域⽆优惠;⽅式⼆:同时转动转盘甲和转盘⼄,若两个转盘的指针指向区域的字母相同,所购物品享受8折优惠,其他情况⽆优惠,在每个转盘中,指针指向每个区域的可能性相同(若指针指向分界线,则重新转动转盘).(1)若顾客选择⽅式⼀,则享受9折优惠的概率为;(2)若顾客选择⽅式⼆,请⽤树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.解:(2)转动两个转盘,转动两个转盘,所有可能的结果有12种,每种结果出现的可能性相同,其中转到的两个字母相同,可享受8折优惠,这种结果有2种,所以P(享受8折优惠)=.五、(本⼤题共2⼩题,每⼩题10分,满分20分)19.⼩明、⼩林是三河中学九年级的同班同学,在四⽉份举⾏的⾃主招⽣考试中,他俩都被同⼀所⾼中提前录取,并将被编⼊A,B,C 三个班,他俩希望能再次成为同班同学.(1)请你⽤画树状图法或列表法,列出所有可能的结果;(2)求两⼈再次成为同班同学的概率.解:(1)画树状图如下:由树状图可知所有可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC.(2)由(1)可知两⼈再次成为同班同学的概率为.20.汤姆斯杯世界男⼦⽻⽑球团体赛⼩组赛⽐赛规则为:两队之间进⾏五局⽐赛,其中三局单打,两局双打,五局⽐赛必须全部打完,赢得三局及以上的队获胜.假如甲、⼄两队每局获胜的机会相同.(1)若前四局双⽅战成2∶2,那么甲队最终获胜的概率是;(2)若甲队在前两局⽐赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?解:(2)树状图如图所⽰:由图可知,剩下的三局⽐赛共有8种等可能的结果,其中甲⾄少胜⼀局的有7种,所以P(甲队最终获胜)=.六、(本题满分12分)21.如图,在正⽅形⽅格中,阴影部分是涂⿊3个⼩正⽅形所形成的图案.(1)如果将1粒⽶随机地抛在这个正⽅形⽅格中,那么⽶粒落在阴影部分的概率是多少?(2)现将⽅格内空⽩的⼩正⽅形(A,B,C,D,E,F)任取两个涂⿊,得到新图案,请⽤列表或画树状图的⽅法求新图案是轴对称图案的概率.解:(1)∵阴影部分有3个⼩正⽅形,⽽正⽅形⽅格中共有9个⼩正⽅形,∴P(⽶粒落在阴影部分的概率)=.(2)共有30种情况,⽽能够构成轴对称图案的有10种,所以P(任取2个涂⿊能构成轴对称图案)=.七、(本题满分12分)22.“五⼀”假期期间,梅河公司组织部分员⼯到A,B,C三地旅游,公司购买前往各地的车票数量绘制成条形统计图如图.根据统计图回答下列问题:(1)前往A地的车票有30张,前往C地的车票占全部车票的20%.(2)若公司决定采⽤随机抽取的⽅式把车票分配给100名员⼯,在看不到车票的条件下,每⼈抽取⼀张(所有车票的形状、⼤⼩、质地完全相同且充分洗匀),那么员⼯⼩王抽到去B地车票的概率为.(3)若最后剩下⼀张车票时,员⼯⼩张、⼩李都想要,决定采⽤抛掷⼀枚各⾯分别标有数字1,2,3,4的正四⾯体骰⼦(抛掷时,出现每个数字的可能性相同)的⽅法来确定,具体规则是:“每⼈各抛掷⼀次,若⼩张掷得着地⼀⾯的数字⽐⼩李掷得着地⼀⾯的数字⼤,车票给⼩张,否则给⼩李.”试⽤列表法或画树状图的⽅法分析,这个规则对双⽅是否公平?解:(3)共有16种可能的结果,且每种的可能性相同,其中⼩张获得车票的结果有6种,∴⼩张获得车票的概率为,⼩李获得车票的概率为1-.∴这个规则对双⽅不公平.⼋、(本题满分14分)23.为提升学⽣的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学⽣对四门课程的喜爱情况,在全校范围内随机抽取若⼲名学⽣进⾏问卷调查(每个被调查的学⽣必须选择⽽且只能选择其中⼀门),将数据进⾏整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学⽣共有多少⼈?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园⽂化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中的两项组成⼀个新的节⽬形式,请⽤列表法或画树状图的⽅法求出选中书法与乐器组合在⼀起的概率.解:(1)4÷10%=40(⼈),即本次调查的学⽣共有40⼈.选乐器学⽣占总⼈数的百分⽐为1-(10%+20%+40%)=30%,所以∠α=360°×30%=108°.(2)图略.(3)根据题意,画树状图如下:由树状图可知,共出现12种等可能的结果,其中A与C组合的情况共有2种,因此P(书法与乐器组合)=.。

(完整版)概率初步测试题含答案

(完整版)概率初步测试题含答案

第二十五章 概率初步一、填空题(每题4分,共24分)1.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是________.2.从1~9这9个自然数中任取一个,是4的倍数的概率是________.3.在一个不透明的口袋中,有若干个红球和白球,它们除颜色外无其他差别,从中任意摸出一个球,摸到红球的概率是0.75,若白球有3个,则红球有________个.4.田大伯为了与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘里先捞出200条鱼,做上标记后再放入鱼塘,经过一段时间后他又捞出300条,发现有标记的鱼有20条,则估计田大伯的鱼塘里有________条鱼.5.如图25-Z -1所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在阴影区域的概率是________.二、选择题(每题4分,共32分)7.下列事件中,是必然事件的为( )A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩8.气象台预测“本市明天降雨的概率是80%”,对预测理解正确的是( )A .本市明天有80%的地区降雨B .本市明天将有80%的时间降雨C .明天出行不带雨具可能会淋雨D .明天出行不带雨具肯定会淋雨9.下列图形: 任取一个是中心对称图形的概率是( )A.14B.12C.34D .1 10.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外没有其他区别.若从这个盒子中随机摸出1个球,是黄球的概率是35,则盒子中黄球的个数是( )A .2B .4C .6D .811.在一个不透明的袋子里有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出1个球记下颜色后放回,再随机摸出1个球,则两次都摸到白球的概率为( )A.116B.18C.14D.1212.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,则由1,2,3这三个数字构成的数字不重复的三位数是“凸数”的概率是( )A.13B.12C.23D.5613.某火车站的显示屏每隔4分钟显示一次火车班次的信息,显示时间持续1分钟.某人到达该车站时,显示屏上正好显示火车班次信息的概率是( )A.16B.15C.14D.1314.小杰和爸爸妈妈一起去奥体中心看球赛,他们买了3张连号的票,小杰挨着爸爸坐的概率是( )A.12B.13C.23D.34三、解答题(共44分)15.(10分)有四张背面完全相同的纸牌A ,B ,C ,D ,其中正面分别画有四个不同的几何图形(如图25-Z -3),小华将这4张纸牌背面朝上洗匀后摸出1张,放回洗匀后再摸出1张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.图25-Z -316.(10分)九年级学生在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出的小球上标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.17.(12分)将正面分别标有数字2,3,4的三张形状、大小一样的卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张卡片,求抽到奇数的概率;(2)随机地抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机地抽取一张卡片,将卡片上标有的数字作为个位上的数字,组成的两位数恰好是“23”的概率是多少?18.(12分)中央电视台的《中国诗词大会》节目文化品位高,内容丰富,某校八年级模拟开展“中国诗词大会”比赛,对全年级同学成绩进行统计后分为“优秀”“良好”“一般”“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:图25-Z-5(1)扇形统计图中“优秀”所对应的扇形的圆心角为________度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大会”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.9、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条10、有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( ) A . 23 B .12C .15D .1312、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )A .15个B .20个C .30个D .35个23、甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,(1)请用树状图法或列表法,求恰好选中甲、乙两同学的概率;(2) 若已确定甲打第一场,再从其余三位同学中随机选出一位,求恰好选中乙同学的概率.教师详解详析1.162.29 3.9 4.3000 5.126.0.5 10 7.C 8.C 9.C 10.C 11.C 12.A 13.B 14.C15.解:(1)画树状图得:则共有16种等可能的结果,即(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的有4种结果,∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率为416=14. 16.解:(1)列表如下:(2)∴P(中奖)=39=13. 17.解:(1)P(抽到奇数)=13. (2)∴P(组成的两位数恰好是“23”)=16. 18.解:(1)360°×(1-40%-25%-15%)=72°.全年级总人数为45÷15%=300(人),“良好”的人数为300×40%=120(人).将条形统计图补充完整,如图所示:(2)画树状图,共有12种等可能的结果,选中的两名同学恰好是甲、丁的结果有2种,∴P(选中的两名同学恰好是甲、丁)=212=16.。

第六章 概率初步单元测试卷(附答案)

第六章 概率初步单元测试卷(附答案)

第六章概率初步一、选择题1.下列说法正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()A. 甲组B. 乙组C. 丙组D. 丁组3.下列事件中,是必然事件的是()A. 两条线段可以组成一个三角形B. 400人中有两个人的生日在同一天C. 早上的太阳从西方升起D. 打开电视机,它正在播放动画片4.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A. B. C. D.5.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A. 0.8B. 0.75C. 0.6D. 0.486.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A. 20B. 24C. 28D. 307.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签确定一个小组进行展示活动,则第3个小组被抽到的概率是()A. B. C. D.8.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是()A. B. C. D. 19.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.10.从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是()A. 事件M是不可能事件B. 事件M是必然事件C. 事件M发生的概率为D. 事件M发生的概率为二、填空题11.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠______ 颗.12.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为______ .13.不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是______.14.从数-2,-,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是______ .15.一个均匀的正方体各面上分别标有数字:1、2、3、4、5、6,这个正方体的表面展开图如图所示.抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是______.三、计算题16.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.17.四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.18.一只口袋中放着3只红球和2只黑球,这两种球除了颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从口袋中取一只球,(1)取出黑球与红球的概率分别是多少?(2)若第一次取出的是一只红球不放回去,第二次取出的是红球的概率是多少?19.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.答案和解析【答案】1. A2. D3. B4. C5. B6. D7. A8. A9. B10. B11. 412. 1513.14.15.16.17. 解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1-=,因为>,所以这个游戏规则不公平.18. 解:(1)根据题意得:P(黑球)=;P(红球)=;(2)根据题意得:P(第二次为红球)==.19. 解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【解析】1. 解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.本题考查了不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2. 解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选:D.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.考查了模拟实验,选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.3. 解:A、两条线段可以组成一个三角形是不可能事件,故A错误;B、400人中有两个人的生日在同一天是必然事件,故B正确;C、早上的太阳从西方升起是不可能事件,故C错误;D、打开电视机,它正在播放动画片是随机事件,故D错误;故选:B.根据必然事件指在一定条件下,一定发生的事件,可得答案.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5. 解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75.故选B.先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.考查了概率的意义,用到的知识点为:概率=所求情况数与总情况数之比.注意在本题中把20岁时的动物只数看成单位1.6. 解:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.7. 解:第3个小组被抽到的概率是,故选:A.根据概率是所求情况数与总情况数之比,可得答案.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.8. 解:在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是.故选:A.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P(A)=,其中0≤P(A)≤1.9. 解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.也考查了轴对称图形的定义.10. 连接BE,根据正五边形ABCDE的性质得到BC=DE=CD=AB=AE,根据多边形的内角和定理求出∠A=∠ABC=∠C=∠D=∠AED=108°,根据等腰三角形的性质求出∠ABE=∠AEB=36°,求出∠CBE=72°,推出BE∥CD,得到四边形BCDE是等腰梯形,即可得出答案.11. 解:∵取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是∴可得方程=,组成方程组解得:x=4,y=8故答案为4.根据从盒中随机取出一颗棋子,取得白色棋子的概率是,可得方程=又由再往盒中放进12颗白色棋子,取得白色棋子的概率是可得方程=联立即可求得x的值.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12. 解:因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,所以估计抽到绘有孙悟空这个人物卡片的概率为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.利用频率估计概率得到抽到绘有孙悟空这个人物卡片的概率为0.3,则根据概率公式可计算出这些卡片中绘有孙悟空这个人物的卡片张数,于是可估计出这些卡片中绘有孙悟空这个人物的卡片张数.本题考查了频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13. 解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:=.故答案为:.由在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率.此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.14. 解:从数-2,-,0,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k=mn>0.由树状图可知符合mn>0的情况共有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=.故答案为:.根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.15. 解:由图可知1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是.根据随机事件概率大小的求法,找准两点:①朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;②所有标法的总数.二者的比值就是其发生的概率的大小.本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 解:(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.17. 先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.18. (1)根据5只小球中红球与黑球的个数求出所求概率即可;(2)取出一个红球,口袋中红球与黑球个数都为2,即可求出所求概率即可.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19. (1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

九年级数学测试题(五)--概率初步(含答案)

九年级数学测试题(五)--概率初步(含答案)

九年级数学测试题(五)概率初步学校 班别 姓名 学校 分数一、选择题(每题3分,共30分) 1.下列事件为必然事件的是( )A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数 2.一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A.61 B.31 C.21 D.32 3.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( ) A.21 B.31 C.32 D.41 4.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为( ) A.21 B.31 C.41 D.51 5.公路上行驶的一辆汽车车牌最后一位数字为偶数的频率约是( ) A.25% B.100% C.50% D.无法确定 6.下列不是随机事件的是( ) A.打开电视机正好在播放广告B.从有黑球和白球的盒子任意拿出一个球正好是白球C.从中学课本中任意拿出一本书正好拿到数学书D.明天太阳会从西方升起7.掷一枚六个面分别标有1,2,3,4,5,6的正方体骰子,则向上一面的数不大于4的概率是( ) A.21 B.31 C.32 D.41 8.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ) A.41 B.21 C.43D.1 9.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( ) A.频率就是概率 B.频率与试验次数无关C.概率是随机的,与频率无关D.随机试验次数的增加,频率一般会越来越接近概率 10.同时抛掷A ,B 两个均匀的小立方体(六个面上分别标有数字1,2,3,4,5,6),设这两个立方体朝上一面的数字分别为,,y x 并以此确定P (y x ,),那么点P 落在抛物线x x y 32+-=上的概率为( )A.181 B.121 C.91 D.61 二、填空(每题4分,共24分)11.九年级(8)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 .(填“大”或“小”)12.现有四张背面完全相同的卡片,正面分别标有数-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是 .13.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到的字母e 的概率为 .14.如图,数轴上两点A ,B ,在线段AB 上任取一点C ,则点C 到表示1的点的距离不大于2的概率是 .15.从三名男生和两名女生中选出两名同学担任文艺演出主持人,则选出的恰为一男一女的概率是 .16.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率 是 .三、解答题一(每题6分,共18分)17.有一个质地均匀的正方体骰子,骰子的六个面上分别有1到6个点,请你分别写出两个必然发生的事件、不可能发生的事件和随机事件.18.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币. (1)求取出的纸币的总额是30元的概率.(2)求取出的纸币的总额可购买一件51元的商品的概率.19.一个不透明口袋中装有红球6个,黄球9个,绿球3个,这些球除颜色不同外没有任何其他区别,现从中任意摸出一个球.计算摸到的是绿球的概率.四、解答题二(每题7分,共21分)投篮次数(n )50100 150 200 250 300 500 投中次数(m ) 286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1) (2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?21、将如图所示的牌面数字分别是1,2,3,4的4张扑克牌背面朝上,洗均后放在桌面. (1)从中随机抽出一张牌,试求出牌面数字是偶数的概率.(2)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘①,则他能得到优惠的概率为多少?(2)选择转动转盘②或①两种方式中,哪种方式对于小张更合算?请通过计算加以说明.五、解答题三(每题9分,共27分)23、有三张正面分别写有数-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x 的值,放回卡片重新洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y 的值,两次结果记为).,(y x (1)用列表法表示),(y x 所有可能出现的结果..,32222)出现的概率有意义的()求使分式(y x yx yy x xy x -+--.,,33222)出现的概率的(并求使分式的值为整数)化简分式(y x yx yy x xy x -+--24、小明、小芳玩一个“配色”的游戏,下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A 转出了红色、转盘B 转出了蓝色,或者转盘A 转出了蓝色、转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其他情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果; (2)此游戏规则对小明、小芳公平吗?试说明理由.抽取的乒乓球数n200 500 1000 1500 2000 优等品频数m188 471 946 1426 1898 优等品频率mn0.9400.9420.9460.9510.949(1)这批乒乓球“优等品”的概率的估计值是多少?(精确到0.01)(2)从这批乒乓球中选择5个黄球、13个白球、22个红球,它们除颜色外都相同.将它们放入一个不透明袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个白球,并放入相同数量的黄球,使搅拌均匀后从袋中摸出一个黄球的概率不小于31,问:至少取出了多少个白球?九年级数学测试题(五) 概率初步参考答案一、CBDCC DCBDA 二、 11.大 12.32 13.7214.32 15.53 16.31 三、17.答案不唯一 18.解:(1)列表如下:共有6种可能的结果数,其中总额是30元的有2种,所以取出纸币的总额是30元的概率为3162=.(2)共有6种等可能的结果数,其中总额超过51元的有4种,所以取出纸币的总额可购买一件51元的商品的概率为.3264=613963.19=(摸到绿球)=解:++P四、 20、解:(1)估计这名同学投篮一次,投中的概率约是0.5.(次)=)(3115.06222⨯所以估计这名同学投篮622次,投中的次数约是311次. 21、解:(1)从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,所以P (牌面是偶数)= .(2)根据题意,画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好是4的倍数的共有4种,所以2142=.411644=的倍数)=(P22、解:(1)因为整个圆被分成了12个扇形,其中有6个扇形能享受折扣,所以.21126=(得到优惠)=P(2)转盘①能获得的优惠为:(元),251233001.023002.03003.0=⨯⨯+⨯⨯+⨯转盘②能获得的优惠为4042⨯=20(元),故选择转动转盘①更合算. 五、23、解:(1)用列表法表示)(y x ,所有可能出现的结果如下:-2 -1 1 -2 (-2,-2) (-1,-2) (1,-2) -1 (-2,-1) (-1,-1) (1,-1) 1(-2,1)(-1,1)(1,1).94,312222)出现的概率是有意义的()知使分式)由((y x y x y y x xy x -+--,33222yx yx y x y y x xy x +-=-+-- )(使分式的值为整数的)(y x ,有(1,-2),(-2,1)2种情况. .92,)出现的概率是使分式的值为整数的(y x ∴24、解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.(2)不公平.上面等可能出现的12种结果中,有3种情况得到紫色,故配成紫色的概率是123,即小芳获胜的概率是41;只有2种情况得到绿色,故配成绿色的概率是122,即小明获胜的概率是61.而6141>,故小芳获胜的可能性大,这个“配色”游戏对双方是不公平的.25、解:(1)这批乒乓球“优等品”的概率的估计值是0.95. (2)①因为袋中一共有球5+13+22=40(个),其中有5个黄球,所以从袋中摸出一个球是黄球的概率为405=81.②设从袋中取出了x 个白球.由题意,得,318,31405≥≥+x x 解得 所以至少取出了9个白球.。

概率初步精选练习题(含答案)

概率初步精选练习题(含答案)

概率初步练习题一、选择题1、“任意买一张电影票,座位号是2的倍数”,此事件是( )A .不可能事件B .不确定事件C .必然事件D .以上都不是2、任意掷一枚质地均匀的骰子,掷出的点数大于4的概率是 ( ) A .21 B .31 C .32 D .61 3、一个袋中装有2个红球,3个蓝球和5个白球,它们除颜色外完全相同,现在从中任意摸出一个球,则P (摸到红球)等于 ( )A .21 B . 32 C .51 D .101 4、如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为1P ,在乙种地板上最终停留在黑色区域的概率为2P ,则 ( )A .21P P >B . 21P P <C . 21P P =D .以上都有可能5、100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的是5的倍数编号的球的概率是 ( )A .201B . 10019C .51 D .以上都不对二、填空题6、必然事件发生的概率是________,即P(必然事件)= _______;不可能事件发生的概率是_______,即P (不可能事件)=_______;若A 是不确定事件,则______)<(<A P ______.7、一副扑克牌去掉大王、小王后随意抽取一张,抽到方块的概率是______,抽到3的概率是______.8、任意掷一枚质地均匀的骰子,朝上的点数是奇数的概率是______.9、数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是_____.10、在数学兴趣小组中有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_______.11、布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白球的概率是_________.12、有一组卡片,制作的颜色,大小相同,分别标有0—10这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任取一组,则:(1)P (抽到两位数)= ;(2)P (抽到一位数)= ;(3)P (抽到的数大于8)= ;13、某路口南北方向红绿灯的设置时间为:红灯40s ,绿灯60s ,黄灯3s .小刚的爸爸随机地由南往北开车经过该路口时遇到红灯的概率是_________.14、如图是一个可自由转动的转盘,转动转盘,停止后,指针指向3的概率是_______.15、(2011山东烟台中考题)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .16、若从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是________。

九年级数学上册第五单元《概率初步》测试卷(含答案解析)

九年级数学上册第五单元《概率初步》测试卷(含答案解析)

一、选择题1.下列事件中,是随机事件的是( ) A .明天河南有新冠肺炎输入病例 B .十三个人中,有人出生在同一个月 C .地球绕着太阳转D .掷一次骰子,向上一面的点数是72.从1,2,3,4,5这5个数字任取两个数字,使其乘积为偶数的概率为( ) A .45B .710C .35D .123.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球; ③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上. 其中为随机事件的是( ) A .①②B .①④C .②③D .②④4.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.若3枚鸟卵全部成功孵化,则3只雏鸟中恰有2只雄鸟的概率是( ) A .23B .58C .38D .165.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (,x y ),那么他们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A .118B .112C .19D .166.袋中装有3个绿球和4个红球,它们除颜色外,其余均相同。

从袋中摸出4个球,下列属于必然事件的是( ) A .摸出的4个球其中一个是绿球 B .摸出的4个球其中一个是红球 C .摸出的4个球有一个绿球和一个红球D .摸出的4个球中没有红球7.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,现给出以下四个结论:(1)AE =CF ;(2)△EPF 是等腰直角三角形;(3)S 四边形AEPF =12S △ABC ;(4)当∠EPF 在△ABC 内绕顶点P 旋转时始终有EF =AP .(点E 不与A 、B 重合),上述结论中是正确的结论的概率是( )A.1个B.3个C.14D.348.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃9.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A.37B.314C.326D.11210.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③第II卷(非选择题)请点击修改第II卷的文字说明参考答案11.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a ,b 为实数,那么a +b =b +a .其中是必然事件的有( ) A .1个B .2个C .3个D .4个12.在四边形ABCD 中,从以下四个条件中:①//AB CD ②//AD BC ③AD BC =④B D ∠=∠,其中任选两个能判定四边形ABCD 为平行四边形的概率为( )A .13B .12C .23D .56二、填空题13.有一个转盘如图所示,转动该转盘两次,则指针两次都落在黄色区域的概率是________.14.2020 年“中华魂”读书活动的主题为“科技托起强国梦”,现准备从万州二中校园电视台2名男主播和3名女主播中任选两人担任演讲比赛主持人,则选中一男一女的概率为__________.15.综合实践小组的同学做了某种黄豆在相同条件下的发芽试验,结果如表,那么这种黄豆发芽的概率约为__________.(结果精确到0.01) 每批粒数n 800 10001200 1400 1600 1800 2000发芽的频数m 76294811421331151817101902发芽的频率mn0.953 0.948 0.952 0.951 0.949 0.950 0.95116.从2,-18,5中任取两个不同的数分别作为点的横纵坐标,点在第二象限的概率为___.17.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.18.如图所示的转盘分成8等份,若自由转动转盘一次,停止后,指针落在阴影区域内的概率是_______.19.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.20.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.三、解答题21.设计两个转盘进行“配紫色”游戏,使配得紫色的概率是13. 22.一个不透明的口袋里装有分别标有汉字“我”、“爱”、“中”、“国”的四个小球,除汉字不同之外,小球没有任何区别.每次摸球前先搅拌均匀.先从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“中国”的概率. 23.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时意转).(1)小王转动一次转盘指针指向3的概率是______.(2)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(3)每次游戏结束得到的一组数恰好是方程2320x x -+=的解的概率是______.24.2020年国庆小长假,小华一家计划利用假期的时间出去旅游,他们收集了很多旅游景点的信息,最终决定从以下五个景点中选两个自驾游:这五个景点分别是晋中市的乔家大A B C D E五院和平遥古城,临汾市的壶口瀑布,运城市的七彩盐湖和鹳雀楼.分别用,,,,张卡片(除编号外其余完全相同)代表五个景点,并将五张卡片背面朝上洗匀放好,从中随机抽取两张,求抽到的两个景点恰好在同一个市的概率.25.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.26.图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意.B、是必然事件,故B不符合题意.C、是必然事件,故C不符合题意.D、是不可能事件,故D不符合题意.故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件指在一定条件下,可能发生也可能不发生的事件.2.B解析:B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积为偶数的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有20种等可能的结果,其乘积为偶数的有14种情况,∴其乘积为偶数的概率为:147,2010故选:B.【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B【分析】根据随机事件、不可能事件、必然事件的定义逐个判断即可得.【详解】①打开电视机,正在播广告,是随机事件;②从只装红球的口袋中,任意摸出一个球恰好是白球,是不可能事件;③同性电荷,相互排斥,是必然事件;④抛掷硬币1000次,第1000次正面向上,是随机事件;综上,为随机事件的是①④,故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件,掌握理解各定义是解题关键.4.C解析:C【分析】根据题意列举出所有情况,看三只雏鸟中恰有2只雄鸟的情况数占总情况数的多少即可.【详解】根据题意画图如下:共8种情况,三只雏鸟中恰有两只雄鸟有3种情况,所以概率为38.故选C.【点睛】此题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到三只雏鸟中恰有两只雄鸟的情况数是解决本题的关键.5.B解析:B【分析】因为掷骰子的概率一样,每次都有六种可能性,因此小莉和小明掷骰子各六次,P的取值有36种.可将x、y值一一代入找出满足抛物线的x、y,用满足条件的个数除以总的个数即可得出概率.【详解】解:列表法:∴点P的坐标共有36种可能,其中能落在抛物线24y x x=-+上的点共有:(1,3)、(2,4)、(3,3),这3种可能,∴其概率为:31 3612=.故选:B.【点睛】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.也考查了二次函数图象上点的坐标特征.6.B解析:B【分析】在一定条件下,可能发生也可能不发生的事件,称为随机事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定事件.【详解】A.若摸出的4个球全部是红球,则其中一个一定不是绿球,故本选项属于随机事件;B.摸出的4个球其中一个是红球,故本选项属于必然事件;C.若摸出的4个球全部是红球,则不可能摸出一个绿球,故本选项属于随机事件;D.摸出的4个球中不可能没有红球,至少一个红球,故本选项属于不可能事件;故选B.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.D解析:D【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到选项A,B,C都是正确的,当EF=AP 始终相等时,可推出222AP PF=,由AP的长为定值,而PF的长为变化值可知选项D不正确.从而求出正确的结论的概率.【详解】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴1245EAP BAC∠=∠=︒,12AP BC CP==.(1)在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP∴AE=CF.(1)正确;(2)由(1)知,△AEP≌△CFP,∴PE=PF,又∵∠EPF=90°,∴△EPF是等腰直角三角形.(2)正确;(3)∵△AEP≌△CFP,同理可证△APF≌△BPE.∴12AEP APF CPF BPE ABCAEPFS S S S S S=+=+=四边形.(3)正确;(4)当EF=AP始终相等时,由勾股定理可得:222EF PF=则有:222AP PF=,∵AP的长为定值,而PF的长为变化值,∴2AP与22PF不可能始终相等,即EF与AP不可能始终相等,(4)错误,综上所述,正确的个数有3个,故正确的结论的概率是34.故选:D.【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.8.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:36=12=0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是39=13≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是1352=0.25,故本选项错误;故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.9.B解析:B【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,根据概率公式即可求解.【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为3 14.故选B.【点睛】本题考查了概率的计算,掌握概率计算公式是解题关键.10.B解析:B【分析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812.故②正确;虽然该球员“罚球命中”的频率的平均值是0.809,但是“罚球命中”的概率不是0.809,故③错误.故选:B.【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.11.C解析:C【分析】必然事件指的是一定发生的事件,据此分别判断即可.【详解】①中,一年最多366天,则367人中,必有2人生日相同,是必然事件;②中,骰子朝上面最小为1,两次之和最小为2,即一定不小于2,是必然事件;③中,标准大气压下,低于0℃,冰不会融化,不是必然事件;④中,根据加法交换律,a+b=b+a一定成立,是必然事件故选:C【点睛】本题考查必然事件的判定,注意事件可分为3类:随机事件,必然事件,不可能事件.12.C解析:C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能使四边形ABCD成为平行四边形的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,能使四边形ABCD成为平行四边形的有8种情况,分别为:①②,①④,②③,②④,②①,④①,③②,④②,∴从中任选两个条件,能使四边形ABCD成为平行四边形的概率是:82123.故选:C.【点睛】此题考查了平行四边形的判定及列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,熟练掌握平行四边形的判定方法是解决本题的关键.二、填空题13.;【分析】将黄色的部分再平均分成2份使出现每一种情况的可能性均等再利用列表法表示所有可能出现的结果进而求出相应的概率【详解】如图将黄色的部分再平均分成2份分别记作黄1黄2这样就可以列举法表示所有可能解析:49;【分析】将黄色的部分再平均分成2份,使出现每一种情况的可能性均等,再利用列表法表示所有可能出现的结果,进而求出相应的概率.【详解】如图,将黄色的部分再平均分成2份,分别记作黄1,黄2,这样就可以列举法表示所有可能出现的开个情况如下:共有9种等可能出现的结果情况,其中两次都是黄色的有4种,∴P两次黄色=49,故答案为:49.【点睛】本题考查用列表法求简单事件发生的可能性,列举出所有空白出现的结果情况是解决问题的关键.14.【分析】先列表求出所有情况数然后再确定一男一女的情况数最后运用概率公式计算即可【详解】解:列表如下:男1 男2 女1 女2 女3 男1 (男1男2)(男1女1)(男1女2)(男1女3)解析:3 5【分析】先列表求出所有情况数,然后再确定一男一女的情况数,最后运用概率公式计算即可.【详解】解:列表如下:男1男2女1女2女3男1(男1,男2)(男1,女1)(男1,女2)(男1,女3)男2(男2,男1)(男2,女1)(男2,女2)(男2,女3)女1(女1,男1)(女1,男2)(女1,女2)(女1,女3)女2(女2,男1)(女2,男2)(女2,女1)(女2,女3)女3(女3,男1)(女3,男2)(女3,女1)(女3,女2)所以由概率公式可得选中一男一女的概率为123= 205.故答案为35.【点睛】本题主要考查了运用列表法求概率,正确的列表是解答本题的关键.15.【分析】观察表格得到这种黄豆发芽的频率稳定在095附近即可估计出这种黄豆发芽的概率【详解】当n足够大时发芽的频率逐渐稳定于095故用频率估计概率黄豆发芽的概率估计值是095故答案为:095【点睛】本解析:0.95【分析】观察表格得到这种黄豆发芽的频率稳定在0.95附近,即可估计出这种黄豆发芽的概率.【详解】当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,黄豆发芽的概率估计值是0.95.故答案为:0.95.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与该点在第二象限的情况再利用概率公式求解即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果该点在第二象限的有2种情况∴该点在第二解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该点在第二象限的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果,该点在第二象限的有2种情况,∴该点在第二象限的概率是:2163.故答案为:13.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况再利用概率公式即可求得答案【详解】解:画树状图得:∵共有6种等可能的结果抽签后每个运动员的出解析:1 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=13,故答案为:13.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】用阴影部分的份数除以总份数即可得【详解】解:由图可知自由转动转盘一次停止后指针落在阴影区域的概率是故答案为:【点睛】本题考查了概率公式解题的关键是掌握随机事件A的概率P(A)=事件A可能出现解析:5 8【分析】用阴影部分的份数除以总份数即可得.【详解】解:由图可知自由转动转盘一次,停止后,指针落在阴影区域的概率是58,故答案为:58.【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.19.【解析】分析:设勾为2k则股为3k弦为k由此求出大正方形面积和阴影区域面积由此能求出针尖落在阴影区域的概率详解:设勾为2k则股为3k弦为k∴大正方形面积S=k×k=13k2中间小正方形的面积S′=(解析:12 13【解析】分析:设勾为2k,则股为3k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,∴大正方形面积2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:221212 1313kk=.故答案为12 13.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.20.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,则摸到白球的概率是:62 93 =.故答案为23.【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键.三、解答题21.答案见详解.【分析】可把一个转盘分成面积相等的红、蓝两部分,另一个转盘被分成面积相等的红、蓝、白三部分,这样可进行“配紫色”游戏,且使配得紫色的概率是1 3 .【详解】解:两个转盘,其中一个转盘被分成面积相等的红、蓝两部分,另一个转盘被分成面积相等的红、蓝、白三部分,同时转动两个转盘,把转盘停止时指针所指的两种颜色进行配色,求配得紫色的概率.如图,画树状图:共有6种可能的结果数,其中配得紫色(红+蓝)的结果数为2,所以配得紫色的概率=2163.【点睛】考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.1 6【分析】根据题意列举出所有的可能,从而得出符合题意的概率.【详解】解:如表所示:——我爱中国我——(爱,我)(中,我)(国,我)爱(我,爱)——(中,爱)(国,爱)中(我,中)(爱,中)——(国,中)∴P(摸出的两个球上的汉字能组成“中国”)16=.【点睛】本题考查列表法或树状图法求概率,解题的关键是知道概率=所求情况数与总情况数之比.注意掌握放回试验与不放回实验的区别.23.(1)13;(2)见解析;(3)29【分析】(1)利用概率公式直接求解即可;(2)列表得出所有等可能的情况数即可;(3)找出恰好是方程x2-3x+2=0的解的情况数,求出所求的概率即可.【详解】(1)小王转动一次转盘指针指向3的概率是13;故答案为:13;(2)列表如下:()所有等可能的情况数为种,其中是的解的为(,),(2,1)共2种,则P是方程解29 =.故答案为:29.【点睛】本题考查了列表法与树状图法,以及一元二次方程的解,用到的知识点为:概率=所求情况数与总情况数之比.24.1 5【分析】根据题意,列出所有的情况即可得答案,【详解】 解:列表如下: 第一张 第二张A BCD EA(),B A(),C A (),D A (),E A B(),A B(),C B(),D B (),E B C(),A C(),B C(),D C(),E CD(),A D (),B D (),C D(),E DE(),A E(),B E(),C E(),D E景点在同一个市的结果有4种. ∴P (两个景点恰好在同一个市)41205== 【点睛】本题考查列表的运用,注意作图列表时按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.25.29【分析】先利用树状图展示所有9种等可能的结果数,即组成的两位数为33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,然后根据概率的概念计算即可. 【详解】 画树状图如下:共有9种等可能的结果数,即按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个, ∴P (十位与个位数字之和为9)=29. 26.314【解析】试题分析:根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率.试题红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子,则红马现在走一步能吃到黑方棋子的概率是3 14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章 概率初步
一、填空题(每题4分,共24分)
1.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是________.
2.从1~9这9个自然数中任取一个,是4的倍数的概率是________.
3.在一个不透明的口袋中,有若干个红球和白球,它们除颜色外无其他差别,从中任意摸出一个球,摸到红球的概率是0.75,若白球有3个,则红球有________个.
4.田大伯为了与客户签订销售合同,需了解自己鱼塘里鱼的数量,为此,他从鱼塘里先捞出200条鱼,做上标记后再放入鱼塘,经过一段时间后他又捞出300条,发现有标记的鱼有20条,则估计田大伯的鱼塘里有________条鱼.
5.如图25-Z -1所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在阴影区域的概率是________.
二、选择题(每题4分,共32分)
7.下列事件中,是必然事件的为( )
A .3天内会下雨
B .打开电视,正在播放广告
C .367人中至少有2人公历生日相同
D .某妇产医院里,下一个出生的婴儿是女孩
8.气象台预测“本市明天降雨的概率是80%”,对预测理解正确的是( )
A .本市明天有80%的地区降雨
B .本市明天将有80%的时间降雨
C .明天出行不带雨具可能会淋雨
D .明天出行不带雨具肯定会淋雨
9.下列图形: 任取一个是中心对称图形的概率是( )
A.14
B.12
C.34
D .1 10.一个不透明的盒子里装有2个白球,2个红球,若干个黄球,这些球除了颜色外没
有其他区别.若从这个盒子中随机摸出1个球,是黄球的概率是35
,则盒子中黄球的个数是( )
A .2
B .4
C .6
D .8
11.在一个不透明的袋子里有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出1个球记下颜色后放回,再随机摸出1个球,则两次都摸到白球的概率为( )
A.116
B.18
C.14
D.12
12.若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465,则由1,2,3这三个数字构成的数字不重复的三位数是“凸数”的概率是( )
A.13
B.12
C.23
D.56
13.某火车站的显示屏每隔4分钟显示一次火车班次的信息,显示时间持续1分钟.某人到达该车站时,显示屏上正好显示火车班次信息的概率是( )
A.16
B.15
C.14
D.13
14.小杰和爸爸妈妈一起去奥体中心看球赛,他们买了3张连号的票,小杰挨着爸爸坐的概率是( )
A.12
B.13
C.23
D.34
三、解答题(共44分)
15.(10分)有四张背面完全相同的纸牌A ,B ,C ,D ,其中正面分别画有四个不同的几何图形(如图25-Z -3),小华将这4张纸牌背面朝上洗匀后摸出1张,放回洗匀后再摸出1张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);
(2)求摸出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.
图25-Z -3
16.(10分)九年级学生在毕业晚会中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树状图的方法(只选其中一种),表示两次摸出的小球上标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
17.(12分)将正面分别标有数字2,3,4的三张形状、大小一样的卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张卡片,求抽到奇数的概率;
(2)随机地抽取一张卡片,将卡片上标有的数字作为十位上的数字(不放回),再随机地抽取一张卡片,将卡片上标有的数字作为个位上的数字,组成的两位数恰好是“23”的概率是多少?
18.(12分)中央电视台的《中国诗词大会》节目文化品位高,内容丰富,某校八年级模拟开展“中国诗词大会”比赛,对全年级同学成绩进行统计后分为“优秀”“良好”“一般”“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
图25-Z-5
(1)扇形统计图中“优秀”所对应的扇形的圆心角为________度,并将条形统计图补充完整.
(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大会”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
9、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,
把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )
A .3000条
B .2200条
C .1200条
D .600条
10、有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背
面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( ) A . 23 B .12
C .15
D .13
12、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )
A .15个
B .20个
C .30个
D .35个
23、甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,
(1)请用树状图法或列表法,求恰好选中甲、乙两同学的概率;
(2) 若已确定甲打第一场,再从其余三位同学中随机选出一位,求恰好选中乙同学的概率.
教师详解详析
1.16
2.29 3.9 4.3000 5.12
6.0.5 10 7.C 8.C 9.C 10.C 11.C 12.A 13.B 14.C
15.解:(1)画树状图得:
则共有16种等可能的结果,即(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,
C ),(B ,
D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ).
(2)∵既是轴对称图形又是中心对称图形的只有B ,C ,
∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的有4种结果,
∴摸出的2张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率为416
=14
. 16.解:(1)列表如下:(2)∴P(中奖)=39=13
. 17.解:(1)P(抽到奇数)=13
. (2)∴P(组成的两位数恰好是“23”)=16
. 18.解:(1)360°×(1-40%-25%-15%)=72°.全年级总人数为45÷15%=300(人),
“良好”的人数为300×40%=120(人).
将条形统计图补充完整,如图所示:
(2)画树状图,共有12种等可能的结果,选中的两名同学恰好是甲、丁的结果有2种,
∴P(选中的两名同学恰好是甲、丁)=212=16
.。

相关文档
最新文档