从土壤里筛选产纤维素酶细菌的步骤
土壤中分离纤维素分解菌的实验操作流程
土壤中分离纤维素分解菌的实验操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!实验操作流程:从土壤中分离纤维素分解菌一、实验目的:本实验旨在通过一系列操作,从土壤中分离出具有纤维素分解能力的微生物,以研究其在生物降解纤维素过程中的作用。
产纤维素酶细菌的筛选及培养
产纤维素酶细菌的筛选及培养一、筛选步骤1、菌种的采集采集山上距湿润的表层10cm处的土壤样本40g左右,用研钵研成粉末称取1g样本加入灭菌的250mL锥形瓶中,加入99mL无菌水摇匀静置。
2、菌种初筛(1)按照配方配制200mL CMC培养基,取1 X 250mL空锥形瓶和6 X 15mL试管,塞上棉塞并用报纸、棉线包扎,用报纸、棉线将试管包扎成一捆;取12套培养皿码齐包扎。
将上述器材与培养基、无菌水121℃高压蒸汽灭菌20min。
(2)于无菌台上倒9个CMC培养基备用。
(3)另取6支15mL经灭菌的试管,用移液枪吸取土壤溶液(上清液)1.000mL加入1号试管,加无菌水9.000mL。
混匀后吸取1.000mL 加入2号试管,重复上述操作,进行6次梯度稀释。
(4)待CMC培养基冷却后,在超净工作台分别吸取104、105、106倍稀释液0.100mL于CMC培养基上稀释涂布,每种稀释液涂布三份。
(5)将上述培养基置于37℃培养箱中培养24小时,标记菌落并记录各菌落形态(菌落高度、质地、颜色、气味、着生状态、边缘及表面纹理等)。
(6)配制200mL刚果红家别培养基,与三套培养皿一起121℃灭菌20min。
(7)在无菌操作台上倒3个鉴别培养基备用。
(8)将各菌落用牙签接种到冷却了的刚果红鉴别培养基上,37℃培养24h,挑选5株透明圈直径与菌落直径比最大的菌株进行摇瓶复筛。
3、菌种复筛(1)配制500mL基础发酵培养基,分装到5只250mL的锥形瓶中,121℃高压蒸汽灭菌20min。
(2)将初筛得到的菌株用接种环接种于液体培养基上(2环),37℃、150r/min下培养2—3天,转入4℃冰箱保藏。
二、培养方法1清洗实验器具2灭菌3配培养基(纤维素作唯一能量源的培养基)4倒平板 +选择培养原菌(可能会用摇床)5稀释菌样6涂布平板或平板划线7放入恒温箱(调制均适宜的温度)12-24h ,之后就可以收获细菌了8观察记录(数量、分布等)三、培养基种类及其组成1、初筛CMC培养基:CMC 5g、蛋白胨1 g、FeSO4·7H2O 0.005 g、NaCl 0.25g、琼脂粉10g 于1000mL锥形瓶中加蒸馏水至500mL、调节pH 7.2~7.6,加棉塞121℃灭菌20min。
纤维素酶产生菌的分离和筛选专业大实验
纤维素酶产生菌的分离和筛选专业大实验纤维素酶产生菌的分离和筛选方案目标:从自然界采用选择性分离的方法,获得纤维素酶的高产菌株。
意义:把含纤维的自然资源及纤维废料加以充分利用,转化成糖类作为食品工业和发酵工业的原料或制成优质饲料,具有深远的现实意义。
1.材料与方法1.1材料与仪器1.1.1原辅料土壤品来自南阳理工学院以下各处离地表3-8cm深处泥土装入塑料瓶中,带回实验室处理。
(1)新校区竹林腐叶下的土壤(2)校门口东边的松树林腐叶子下的土壤(3)青年公寓外小树林(4)2号教学楼后面花园的土壤1.1.2试剂羧甲基纤维素CMC、NaCl、MgS04·7H20、KH2P04、酵母浸粉、蛋白胨、蒸馏水、琼脂、Na2HP04、酵母膏、刚果红试剂。
1.1.3仪器小铁铲和无菌纸或袋(可省)、小烧杯、100ml量筒、滤纸、漏斗、棕色试剂瓶、1000ml三角烧瓶1个、500ml三角烧瓶1个、试管24个、高压蒸汽灭菌锅、培养皿24个、36支1mm无菌吸管、无菌玻璃涂棒12支、显微镜、无菌水。
1.2培养基及试剂的配制1.2.1培养基配制初筛培养基A:羧甲基纤维素CMC 20g、NaCl5.0g、MgS04·7H20 0.2g、KH2P04 1.0g、酵母浸粉 5.0g、蛋白胨10g、蒸馏水1000mL、琼脂20g,pH自然,121℃湿热灭菌20min。
复筛培养基B:CMC 10g、Na2HP041.25g、KH2P04 0.75g、MgSO4·7H2O 0.1g、蛋白胨1.25g、酵母膏O.25g、蒸馏水500mL、琼脂10g,pH自然,121℃灭菌20min。
2.2.2试剂配制1%刚果红试剂:称取刚果红试剂1g于干净的小烧杯中,用量筒量取蒸馏水100ml使之溶解,过滤,贮于棕色试剂瓶中。
2.3方法2.3.1初筛的方法步骤(1)配初筛培养基A,灭菌,倒平板。
(2)用稀释涂平板的方法分离纤维素分解菌。
产纤维素酶真菌的分离和鉴定
产纤维素酶真菌的分离、筛选与鉴定一、采样地点:深圳大学杜鹃山深圳大学文科楼荔枝园深圳大学文山湖树丛用具:灭菌信封小铁铲小刀分离培养基手套采样的方法:取采样地点的表层土或地面15cm下的土样约10g,装入信封,立刻到实验室分离纯化二、培养基:(1)马丁氏培养基:KH2PO4 1g、MgSO4·7H2O 0.5g、蛋白胨5g、葡萄糖10g、琼脂20.0 g、水1000ml,pH 自然。
(2)PDA培养基:PDA培养基:用于里氏木霉的固体培养,含20 %土豆浸出液,1 %葡萄糖,2 % Agar。
20 %土豆浸出液作法如下:将土豆去皮切碎,每20 g土豆加水100 ml,置电炉上煮20分钟,用纱布过滤,定容。
(均需要加入抗生素100μg/ml)产酶筛选培养基(CMC培养基):羧甲基纤维素钠(CMC)20.0 g、蛋白胨5.0 g、酵母抽提物2.0 g、NaCl 5.0g、KH2PO4 1.0g、MgSO4·7H2O 0.2g、琼脂20g、蒸馏水1 000ml。
1%CMCNa底物溶液:1克CMCNa加热溶化于100ml pH值4.8,0.1mol/L的柠檬酸-柠檬酸钠缓冲液中。
0.lmol/L的柠檬酸一柠檬酸钠缓0.1mol/L柠檬酸: 含柠檬酸·H2O 21.01克/1000毫升。
0.1mol/L的柠檬酸三钠: 含柠檬酸三钠·2H2O 29.4克/1000毫升。
0.1mol/L的柠檬酸40ml与0.1mol/L的柠檬酸三钠60.6ml混合即可。
刚果红染液:2% 刚果红溶液。
NaCl脱色液:2%氯化钠溶液。
三、实验方法3.1 真菌菌株的分离取土样方法如前所述。
取1.0 g所采集的土样加入到装有9 ml无菌水的试管中,充分振荡混匀后,吸取上清液作一系列梯度稀释,10-1,10-2,10-3,将稀释液涂布在分离培养基(可选择查氏、马丁氏或PDA培养基的任两种,倒平板前加入100 μg/ml头孢菌素或链霉素等抗生素),于28℃下培养,待菌落成熟,形成孢子后(约需5-7 d)将单菌落上的少量孢子点种至纤维素酶产生菌筛选培养基(CMC平板)平板上( 用前加入适量抗生素来抑制细菌生长) , 28℃倒置恒温培养。
一株产纤维素酶细菌的筛选与发酵产酶试验
纤维素酶是一种多组分的复合酶系,由内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶三种组分组成。
由于纤维素在自然界广泛分布,很多细菌、放线菌、酵母和霉菌都具有降解纤维素的能力。
此前纤维素降解菌的研究多以霉菌为主,而对细菌的研究着力较少。
近年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,通过细菌发酵生产纤维素酶制剂已显示出良好的应用前景。
本文拟从土壤中筛选出产纤维素酶的细菌并进行初步鉴定,以期为纤维素酶制剂的生产提供可能的细菌菌种。
一、材料与方法1.材料(1)土壤样品。
从南京科技职业学院校园小树林堆放枯枝和落叶处采集腐殖土土样,五点取样,混匀,放入无菌的袋中备用。
(2)富集培养基。
牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15g,加水至1000mL,调pH7.0-7.2。
(3)初筛培养基。
羧甲基纤维素钠(CMC-Na)5g,(NH4)2SO44g,KH2PO4 2g,MgSO4·7H2O 0.5g,蛋白胨1g,琼脂15g,加蒸馏水至l000mL,pH自然。
(4)复筛培养基。
CMC-Na 2g,(NH4)2SO4 2g,KH2PO4 1g,MgSO4·7H2O 0.5g,NaCl 0.5g,刚果红0.4g 琼脂15g,加蒸馏水至l000mL,pH自然。
(5)液体发酵培养基。
CMC-Na 10g,蛋白胨10g,酵母粉10g,NaCl 5g,KH2PO4 1g,加蒸馏水至l000mL,灭菌后用无菌Na2CO3溶液调pH至10。
2.方法(1)土壤细菌的富集。
称取土样10g,放入装有玻璃珠和90mL无菌水的锥形瓶中,充分振摇。
取5mL悬液放入含45mL富集培养基的250mL锥形瓶中,37℃,150r/min振荡培养一昼夜。
(2)初筛培养基稀释涂布。
将富集后的土壤细菌培养物进行梯度稀释,取10-4,10-5,10-6三个稀释度各0.1mL于初筛培养基平板上进行稀释涂布,37℃倒置培养一昼夜,得到单菌落。
从土壤里筛选产纤维素酶细菌的步骤
从土壤中分离产几丁质酶的真菌作者:王春学号:11101680摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株.1 材料与方法1.1 培养基1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7.2.(2)纯几丁质培养基:胶体几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂1.2 菌株的分离1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h.1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养.1.3 菌种的鉴定1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r・min-1)10min,取上层清液分装后,置4℃下保存备用.1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’.1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水12.6μL,10倍扩增缓冲液2.0μL,25mmol・L-1Mg2+1.6μL,各2.5mmol・L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol・L-1引物各1.0μL,DNA模板1.0μL,5GU・L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min.1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果.1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到pMD182T上,送北京奥科生物公司进行测序.然后,将测序结果通过GeneBank进行BLAST序列比对,得出结果参考文献[1] BROGLIEKE.Chitinaseandplantprotection[J].RevPlantPathol,1993,2:4112421.[2] 李力,黄胜元,关雄.产几丁质酶的苏云金杆菌菌株筛选及酶合成条件研究[J].中国病毒学,2000,15(51):94297.[3] CHANGYu2cheng,YANGChiyea,LIChin,etal.IdentificationofBacillussp,Escherichiacoli,Salmonellasp,StaphylococcusspandVibriospwith16SribosomalDNA2basedoligonucleotidearrayhybridization[J].Internation2 alJournalofFoodMicrobiology,2006,107:1312137.[4] 张龙翔,张庭芳,李令媛.生化实验技术[M].北京:高教出版社,1997:1112116.[5] MOOREER,KRUGERAS,HAUBENL,etal.16SrRNAgenesequenceanalysesandinter2andintragenericre2lationshipsofXanthomonasspeciesandStenotrophomonasmaltophilia[J].FEMSMicrobiolLett,1997,151(2):1452 153.[6] MIYAJIT,OTTAY,SHIBATAT,etal.PurificationandcharacterizationofextracellularalkalineserineproteasefromStenotrophomonasmaltophiliastrainS21[J].LettApplMicrobiol,2005,41(3):2532257.[7] MADHA VAPNK,BAIJUTV,SANDHYAC,etal.ProcessoptimizationforantifungalchitinaseproductionbyTrichodermaharzianum[J].ProcessBiochem,2004,39:158321590.[8] NAWANINN,KAPADNISBP.Optimizationofchitinaseproductionusingstatisticsbasedexperimentaldesigns[J].ProcessBiochem,2005,40:6512660。
产酶微生物的筛选与分离
产酶微生物的筛选与分离产纤维素酶微生物的分离与筛选设计方案一、取样产纤维素酶细菌的采集选择在纤维素含量较高的地方,如花园表层土壤,腐烂的木头、造纸厂废水及反刍动物的瘤胃及其排泄物等。
本次试验拟从森林土及朽木中获得产酶菌株。
取该地区土壤10g. 二、配置培养基本次试验选用纤维素刚果红培养基,其配方是:硝酸钠0.5g磷酸氢二钠0.6g磷酸二氢钾0.45g硫酸镁0.25g氯化钾0.25g酵母浸出粉0.25g酸水解酪蛋白0.25g刚果红0.1g纤维素粉 2.5g琼脂7.5gpH值7.0 ± 0.1 25℃加热溶解于500ml 蒸馏水中,分装,121℃高压灭菌15分钟,备用。
三、接种将选取的土样10全部溶至100ml无菌水中,摇匀,取悬浊液1ml,标注为原液,用移液枪从原液中取0.1ml加到0.9ml无菌水中,吹吸数次混匀,标注为10-1,依次梯度稀释至10-3,每个梯度分别取稀释液0.1ml涂布到配置好的刚果红培养基上,每个梯度涂3块平板。
涂布后的平板于28℃倒置培养5天。
四、纯化在刚果红培养基上选择透明圈较大的菌株,然后采用平板划线的方法分离纯化但菌落。
五、检测(1)形态观察:将分离的纯化的产纤维素酶菌株接种至含马铃薯葡萄糖固体培养基的平板上,30℃倒置培养,期间观察菌丝生长状态和菌落形态。
培养5天后,用接种针挑选少量菌丝制片,在光学显微镜下观察分生孢子梗和孢子的形态特征。
(2)酶活性的测定:实验仪器:721型分光光度计,恒温水浴锅,分析天平。
实验试剂:1%的3,5-二硝基水杨酸显色剂,0.2mol/L、pH4.6d 的HAc-NaAc缓冲液,0.5%的羧甲基纤维素钠溶液,0.1mg/mL葡萄糖标准溶液。
实验步骤:取一定量的酶样品,在PH4.6的缓冲溶液中(中性酶用PH7的缓冲液),与CMC在一定温度下反应30min,煮沸15min失活,加入显色剂沸水浴显色15min,在550nm处测其光密度,同时用葡萄糖标准溶液做标准曲线,如果活性较大,超出了测量范围,可将酶样进行适当稀释。
一种纤维素酶产生菌的筛选方法
一种纤维素酶产生菌的筛选方法工业、纺织以及能源工业,已成为酶工程研究的热点[3-6]。
纤维素酶产生菌的筛选是纤维素酶工业应用的基础。
研究表明,纤维素酶工业生产的菌株一般是从环境中筛选,经基因工程改造后的重组菌株[6-10]。
传统的纤维素酶产生菌筛选一般需经过富集、初筛、复筛、纯化等过程,筛选时间长,程序繁琐,且工作量大。
为此,笔者设计了一种滤纸条扩散试验,可在富集、初筛的基础上,初步得到单菌落,该方法简单易行,极大地缩减了筛选工作量。
1:材料與方法1.1:材料1.1.1:土壤。
供试土壤来源于广东省河源市笔架山周边山地腐殖土。
1.1.2:培养基。
①改良牛肉膏蛋白胨培养基:CMCNa 5.0 g/L,牛肉膏3.0 g/L,蛋白胨10.0 g/L,NaCl 5.0 g/L,蒸馏水1 000 mL,pH 7.0。
②改良高氏培养基:CMCNa 5.0 g/L,可溶性淀粉10.0 g/L,KNO3 1.0 g/L,K2HPO4 0.5 g/L,MgSO4· 7H2O 0.5 g/L,NaCl 05 g/L,FeSO4· 7H2O 0.01 g/L,蒸馏水1 000 mL,pH 7.6。
③滤纸条培养基:(NH4)2SO4 2.0 g/L,MgSO4·7H2O 0.5 g/L,KH2PO4 1.0 g/L,NaCl 0.5 g/L,MnSO4·H2O 25 mg/L,FeSO4·7H2O 7.5 mg/L,蒸馏水1 000 mL,pH自然。
④羧甲基纤维素培养基:CMCNa 5.0 g/L,(NH4)2SO4 4.0 g/L,KH2PO4 2.0 g/L,MgSO4·7H2O 0.5 g/L,蛋白胨1.0 g/L,琼脂15.0 g/L,蒸馏水 1 000 mL,pH自然。
⑤纤维素刚果红培养基:CMCNa 2.0 g/L,(NH4)2SO4 20 g/L,MgSO4·7H2O 0.5 g/L,K2HPO4 1.0 g/L,NaCl 0.5 g/L,刚果红0.4 g/L,琼脂15.0 g/L,蒸馏水 1 000 mL,pH自然。
(整理)产纤维素酶菌种的筛选与优化.
目录实验一产纤维素酶菌种的分离与初筛实验二产纤维素酶菌种的复筛与保藏实验三酶活测定与传代保藏实验四产纤维素酶菌种的紫外诱变育种实验五产纤维素酶菌种的产酶条件优化实验六产纤维素酶菌种的产酶条件优化的结果分析实验一产纤维素酶菌种的分离与初步鉴定一、实验目的1.了解产纤维素酶微生物分离的基本原理;2.掌握产纤维素酶微生物分离的操作方法。
二、实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。
这些生物与绿色植物一起构成了这个世界的碳循环。
在发酵堆肥中,存在着大量的,耐高温的纤维素分解菌株,但多半都为混合分解,菌种需要:1.内切型葡萄糖苷酶(endo-1,4-β-D-glucanase,EC3.3.1.4,简称EBG),也称Cx酶、CMC酶、EG。
这类酶作用于纤维素分子内部的非结晶区,随机识别并水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素;2.外切型葡萄糖苷酶(exo-1,4-β-D-glucanase,EC3.2.1.91),也称C1酶、微晶纤维素酶、纤维二糖水解酶(Cellobiohydrolase,简称CBH),这类酶从纤维素长链的非还原性末端水解β-1,4-糖苷键,每次切下纤维二糖分子;3.Β-葡萄糖苷酶(β-glucosidase,EC3.2.21,简称BG)又称纤维二糖酶,它能水解纤维二糖以及短链的纤维寡糖生产葡萄糖,对纤维二糖和纤维三糖的水解很快。
随着葡萄糖聚合酶的增加水解速度下降,这种酶的专一性比较差。
只有三种酶的协同作用,才能较好的分解纤维素。
就单菌落而言,霉菌如木霉、曲霉和青霉的总体酶活性较高,产量大,故在畜牧业和饲料工业中的应用的纤维素酶主要是真菌纤维素酶。
本实验以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基,只有能够水解纤维素成单糖并加以利用的微生物才能在筛选培养基上生长,利用筛选培养基分离产纤维素酶的微生物。
土壤中纤维素分解菌的分离试验的具体操作步骤
土壤中纤维素分解菌的别离实验的具体操作步骤:
1.土样采集
土样采集的方法与本专题课题2类似.土样的采集要选择富含纤维素的环境,这是由于
在纤维素含量丰富的环境, 通常会聚集较多的分解纤维素的微生物.如果找不到适宜的环境,
可以将滤纸埋在土壤中,过一个月左右也会有能分解纤维素的微生物生长.
2.选择培养
选择培养需要的仪器有:250mL锥形瓶、无菌称量瓶、药匙、1mL和10mL的移液管、天平、摇床、温度计等.
培养基的制备参照课本旁栏中的比例配制. 在250mL锥形瓶中装入30mL培养基,用8 层纱布做成瓶塞,将瓶口塞紧,再在瓶塞外包裹两层包装纸〔或报纸〕,用线绳扎紧,在121c 下高压蒸汽灭菌20min.
选择培养的操作:称取土样20g,在无菌条件下参加装有30mL培养基的摇瓶中.将摇瓶置于摇床上,在30c下振荡培养1〜2d,至培养基变混浊.此时可以吸取0.1mL培养液
进行梯度稀释和涂布平板,也可以按课本中所述,重复选择培养的步骤一次,然后再进行梯度稀释和涂布平板.
3.刚果红染色法别离
纤维素分解菌这一步所需要的仪器有:无菌培养皿、涂布器、1mL移液管,装有9mL
无菌水的20mL大试管,温箱等.
培养基的制备参照课本旁栏中的比例配制.在500mL三角瓶中装入200mL培养基,在
121 C下高压蒸汽灭菌20min.
倒平板操作:将灭菌后的固体培养基熔化,按无菌操作的要求,在无菌的培养皿中倒入
15〜20mL培养基,凝固后待用.
制备菌悬液:根据本专题课题1的稀释操作方法,将选择培养后的培养基进行等比稀释, 稀释最大倍数至106.。
菜地土壤中纤维素降解菌的筛选及其产酶条件优化
菜地土壤中纤维素降解菌的筛选及其产酶条件优化1. 引言1.1 研究背景菜地土壤中的纤维素降解菌是一类具有潜在应用价值的微生物资源。
纤维素是植物细胞壁的主要结构组分,由纤维素酶降解可以释放出储存在其中的碳源,为微生物的生长提供能量。
纤维素降解菌在资源化利用方面具有重要意义。
随着环境污染和能源危机的日益严重,利用微生物对植物纤维素进行高效降解已成为当前研究的热点之一。
菜地土壤中自然存在着大量微生物群落,其中可能潜藏着具有高效纤维素降解能力的菌株。
通过对菜地土壤中的微生物群落进行筛选和鉴定,可以发现一些潜在的纤维素降解菌。
这些菌株可能具有特殊的降解能力和适应性,在优化的产酶条件下可以获得更高的酶产量,为纤维素降解技术的进一步应用提供支持。
对菜地土壤中纤维素降解菌的筛选及产酶条件优化的研究具有重要的理论和应用意义。
通过深入探究纤维素降解菌的机理和特性,可以为资源化利用提供新的思路和方式。
1.2 研究目的研究目的是针对菜地土壤中潜在的纤维素降解菌进行筛选,通过优化产酶条件来提高纤维素酶的产量和活性。
通过研究纤维素降解菌的产酶机理,探讨其在纤维素降解过程中的作用机制,并展望其在生物质能源、环境保护和农业生产中的应用前景。
本研究还将对菜地土壤中纤维素降解菌的分子生物学特性进行深入研究,为揭示其种属特征、代谢途径和遗传变异提供依据。
综合考虑以上目的,本研究旨在为纤维素降解菌的筛选及产酶条件优化提供科学依据,推动其在资源化利用和环境保护领域的应用与推广。
1.3 研究意义纤维素是一种广泛存在于植物细胞壁中的多糖物质,是地球上最丰富的可再生生物质资源之一。
而纤维素的高效降解一直是生物资源化利用的重要研究方向。
菜地土壤中纤维素降解菌的筛选及其产酶条件优化研究,对于挖掘和利用纤维素降解菌具有重要的意义。
寻找能够高效降解纤维素的细菌菌株,有助于提高纤维素的利用效率,减少资源浪费,同时也有利于环境保护和生态平衡的维持。
通过优化产酶条件,提高纤维素降解菌产酶量和酶活力,不仅可以降低生产成本,还可以提高纤维素降解效率,加速生物资源转化与再利用的进程。
土壤纤维素酶的测定
土壤纤维素酶活性的测定方法
土壤纤维素酶活性的测定方法包含以下步骤:
1. 准备醋酸缓冲液、CMC溶液、水合葡萄糖溶液等试剂,恒温培养箱,水浴锅,分光光度计,搅拌器,三角瓶等设备。
3. 取10.00 g(耕地)或5.00 g(林地)的新鲜土壤,加入15 ml醋酸缓冲液和15 ml CMC溶液,在50℃下培养24小时。
4. 过滤,同时做空白对照。
5. 取2.00 ml样品于50 ml容量瓶中定容,吸取2.00 ml稀溶液于20 ml去离子水中,加入10.00 ml无水葡萄糖溶液,在100℃下水浴加热15分钟。
6. 冷却后加入10.00 ml无水葡萄糖溶液,在690nm波长下进行比色定。
注意:此方法适用于林地土壤,耕地土壤的测试效果可能较差。
一株土壤源高产纤维素酶芽孢杆菌的分离与鉴定
一株土壤源高产纤维素酶芽孢杆菌的分离与鉴定2董鹤娟1’2,丁轲蚍~,恒子钤2,彭春平2,罗伟光hf1.河南省动物疫病与公共安全院士工作站,河南,洛阳471003;2.河南科技大学宏翔发酵饲料实验室,河南,洛阳471003)摘要:为了获得产纤维素酶的芽孢杆菌,从河南省不同地方采集玉米地、秸杆垛的土壤样品58份,利用刚果红平板法分离产纤维素酶的芽孢杆菌,采用3,5.二硝基水杨酸法测定纤维素酶活,结合菌落特征、显微形态、生理生化试验和16S rDNA序列进行鉴定。
结果表明:从分离出的42株产纤维素酶菌株中筛选出一株产纤维素酶较高的菌株B.LY02,纤维素酶活力可达0.5351 U/mL。
该菌株呈短杆状,革兰氏染色阳性,能形成芽孢。
基于16S rDNA序列同源性比较分析表明该菌株与Bacillus lic henifo rmis s tr ain CICCl0095的亲缘关系最近,基因序列的同源性为96.5%,因此鉴定该菌株为地衣芽孢杆菌。
关键词:纤维素酶;芽孢杆菌;分离;鉴定我国是粮食大国,纤维素资源极为丰富,每年仅农作物秸秆产量就高达7.0亿吨,约占世界的20 %[1—2】。
但是秸杆的成分主要是较难降解的纤维素,所以目前秸杆仅有极少部分用于反刍动物饲料,绝大多数都被燃烧,不仅造成了资源的浪费,而且还会带来环境污染[3—4】。
另一方面,由于我国大规模发展畜牧业,人畜争粮的现象已很严重。
所以研究将秸杆中的纤维素降解成畜禽可利用的多糖、蛋白质或其他营养成分已成为当务之急。
目前最可能利用的手段就是筛选高效纤维素酶分解菌,我们认为秸杆纤维素的降解不是单一菌种能够解决的,因为秸杆的降解需要p.葡聚糖酶、内切p一葡聚糖酶和 p一葡萄糖苷酶等多种纤维素酶共同参与才能完成【4]。
已有的研究主要集中在真菌方面,如里氏木霉、绿色木霉、白腐菌、米曲霉等is一71,对细菌方面研究的较少。
而且真菌存在活性不稳定和生物安全隐患等问题,但是芽孢杆菌具有产酶能力强,耐高温、强酸,环境适应能力强等特点,所以很适宜作为秸杆发酵用菌种。
筛选纤维素分解菌方法
筛选纤维素分解菌方法纤维素分解菌是一类具有良好纤维素降解能力的微生物,能够有效分解植物细胞壁中的纤维素,并将其转化为可利用的产物,如糖类和有机酸。
筛选纤维素分解菌的方法主要包括传统培养方法和分子生物学方法。
传统培养方法是最常用的筛选纤维素分解菌的方法之一。
首先,可以选择一些富含纤维素的底泥、土壤或植物残渣等样品作为菌种源,并在适当的培养基中培养。
然后,通过进行连续传代培养,筛选出具有较高纤维素酶活性的菌株。
常用的培养基成分包括纤维素、氮源、无机盐等。
培养过程中,可以通过测定菌株的纤维素酶活性来评估其降解能力。
常用的纤维素酶活性检测方法包括纤维素降解圈法和滴定法等。
分子生物学方法是近年来发展起来的一种筛选纤维素分解菌的方法。
这种方法利用纤维素酶基因的特异性序列,设计引物,并通过PCR扩增的方法进行筛选。
一般选择纤维素酶结构基因(如celA和celB等)作为目标基因,进行PCR扩增。
通过比较不同菌株的基因片段序列,可以筛选出具有较高纤维素降解能力的菌株。
此外,还可以利用转基因技术将纤维素酶基因导入到目标微生物中,提高其纤维素降解能力。
除了传统培养方法和分子生物学方法,还可以利用高通量筛选技术来筛选纤维素分解菌。
高通量筛选技术包括微流体技术、光学筛选技术和生物芯片技术等。
通过这些技术,可以快速并高效地筛选出具有较高纤维素降解能力的菌株,并进一步研究其降解机制。
总的来说,筛选纤维素分解菌的方法多种多样,其中传统培养方法和分子生物学方法是最常用的。
未来随着技术的进一步发展,相信会有更多更高效的筛选方法出现,有助于挖掘和利用更多具有纤维素降解能力的微生物,促进纤维素资源的利用和环境减排。
高产纤维素酶菌株的筛选及产酶条件研究
高产纤维素酶菌株的筛选及产酶条件研究研究目标本研究旨在筛选高产纤维素酶的菌株,并优化其产酶条件,以提高纤维素降解效率和产酶量。
方法1. 菌种收集与筛选1.收集土壤、水源等环境样品,分离出潜在的纤维素酶产生菌株。
2.通过平板培养和传代培养,筛选出具有纤维素酶活性的菌株。
2. 纤维素酶活性测定1.利用Congo Red染色法测定菌株的纤维素酶活性。
2.选择具有较高纤维素酶活性的菌株作为后续研究对象。
3. 优化产酶条件1.确定最适pH:在不同初始pH值下培养菌株,测定产酶量和纤维素酶活性。
2.确定最适温度:在不同培养温度下培养菌株,测定产酶量和纤维素酶活性。
3.确定最适碳源:使用不同碳源(如纤维素、木质素等)培养菌株,测定产酶量和纤维素酶活性。
4.确定最适氮源:使用不同氮源(如蛋白质、尿素等)培养菌株,测定产酶量和纤维素酶活性。
4. 鉴定菌株1.利用生化和分子生物学方法对优选出的菌株进行鉴定,确定其属于哪个科、属、种。
2.利用16S rRNA基因序列分析确定菌株的系统发育关系。
5. 产酶机制研究1.利用电镜观察菌株在不同培养条件下的形态结构变化。
2.利用基因组学方法分析纤维素酶基因在不同条件下的表达情况。
发现1.从环境样品中筛选出了多个具有纤维素酶活性的菌株,其中某一菌株表现出较高的纤维素酶活性。
2.最适pH为7.0,最适温度为50℃,最适碳源为纤维素,最适氮源为蛋白质。
3.经鉴定,该菌株属于纤维素酶产生菌属,并命名为XX菌株。
4.电镜观察发现,在最适产酶条件下,XX菌株的纤维素酶形态结构清晰可见。
5.通过基因组学方法分析,发现XX菌株在最适产酶条件下纤维素酶基因的表达水平较高。
结论1.通过本研究筛选出了一株高产纤维素酶的菌株XX。
2.最适产酶条件为pH 7.0、温度50℃、碳源为纤维素、氮源为蛋白质。
3.该菌株具有潜力应用于纤维素降解和生物质转化领域。
4.通过深入研究其产酶机制,可以进一步优化该菌株的产酶性能和应用前景。
产纤维素酶细菌菌株的分离鉴定及产酶条件优化
产纤维素酶细菌菌株的分离鉴定及产酶条件优化毛丽春;修立辉;胡刚【摘要】该实验分离鉴定了高产纤维素酶细菌菌株并探究其产酶条件.采用3种培养基进行分离筛选.经菌落形态观察、16S rRNA基因序列分析菌株在系统分类地位.通过单因素试验确定最适产酶条件.结果表明,从西岭山原始森林保护区土壤中筛选到1株高产纤维素酶细菌菌株,鉴定为伯克霍尔德氏菌(Burkholderia cepacia).其最适产酶条件:碳源为麦麸,最佳氮源为酵母粉,接种量为2%(V/V),初始pH值为7,产酶时间为48 h.在此条件下,酶活最高可达2.76 U/mL.酶学特性研究显示,在pH5.0、温度60 ℃条件下CMCase酶活力最高.%In order to isolate and identify the high-yield cellulase-producing bacteria and explore their enzyme-producing conditions, the strains were separated and screened by 3 kinds of culture media. The system classification status of strain was analyzed by the colony morphology observation and 16S rRNA gene sequence. The optimum enzyme-producing conditions were determined by single factor experiments. The results showed that the bacteria with high-yield cellulase was screened from the soil of the original forest reserve in Xiling mountain and identified as Burkholderia cepacia.The optimum enzyme-producing conditions of the strain were wheat bran as carbon source, yeast extract powder as nitrogen source, inoculum 2%(V/V), initial pH 7 and enzyme-producing time 48 h. Under the conditions, the maximum cellulase activity was 2.76 U/ml. The research of enzymatic characteristics showed CMCase activity was the highest under the conditions of pH 5.0 and temper ature 60 ℃.【期刊名称】《中国酿造》【年(卷),期】2018(037)004【总页数】5页(P83-87)【关键词】纤维素;纤维素酶;分离;菌株;鉴定【作者】毛丽春;修立辉;胡刚【作者单位】广西师范学院环境与生命科学学院,广西南宁 530001;广西师范学院环境与生命科学学院,广西南宁 530001;广西师范学院环境与生命科学学院,广西南宁 530001【正文语种】中文【中图分类】Q93-331人类对于能源的需求不断增加,化石能源作为人类最主要的消耗能源具有一次性、有限性等特点,其的燃烧对环境造成严重污染。
8土壤中产纤维素酶菌株的筛选
解决方案:通过实验学生反复训练,对于最后的实验结果教师举例进行分析
参考
资料
[1]钱存柔,黄仪秀.微生物学实验教程.北京:北京大学出版社,1999.
[2]沈萍编.微生物学实验.北京:高等教育出版社,2002.
实施
情况
小结
教研室主任签名:2011年9月10日
成都医学院教案续页
教学过程、内容及时间分配
教学方法与手段
实验八土壤中产纤维素酶菌株的筛选
一、实验原理(20分钟)
微生物对大分子的纤维素﹑淀粉﹑蛋白质和脂肪不能直接利用,必须靠
产生的胞外酶将大分子物质分解才能被微生物吸收利用。胞外酶主要为水解酶,通过加水裂解大的物质为较小的化合物,使其能被运输至细胞内.如纤维素酶水解纤维素为小分子的糖,细菌菌落在固体培养基上会形成水解斑,从而据此判断细菌能否分解纤维素。
2011教学过程内容及时间分配教学方法与手段实验八土壤中产纤维素酶菌株的筛选一实验原理20分钟微生物对大分子的纤维素淀粉蛋白质和脂肪不能直接利用必须靠产生的胞外酶将大分子物质分解才能被微生物吸收利用
成都医学院教案首页
2009级生物技术专业任课教师:殷建华
课程
微生物学实验技术
题目
土壤中产纤维素酶菌株的筛选
4、挑取纤维素酶产生菌(20分钟)
测量平板中菌落的透明圈及菌落的直径,并计算Φ透明圈/Φ菌落,挑选比值大的菌落转接平板培养。
5、纤维素酶产生菌的生物学特性观察(25分钟)
菌落形态,革兰氏染色。
三、关键步骤及注意事项
注意无菌操作。
讲授法
讲授法
强调惟一碳源的原理
讲授法
学时
讲授
实验
纤维素分解菌的筛选流程
纤维素分解菌的筛选流程1.首先从自然环境中采集潮湿的土壤样本。
First, collect moist soil samples from the natural environment.2.将土壤样本分离并进行稀释处理。
Separate and dilute the soil samples.3.接种土壤样本到富含纤维素的培养基中。
Inoculate the soil samples into a cellulose-rich medium.4.培养一段时间以促进纤维素分解菌的生长和繁殖。
Culture for a period of time to promote the growth and proliferation of cellulose-degrading bacteria.5.筛选并分离出有纤维素降解能力的菌株。
Screen and isolate bacteria with cellulose degradation ability.6.通过观察和测定菌株的生长特性来初步鉴定。
Preliminary identification of bacterial strains by observing and measuring their growth characteristics.7.进行酶活性测定以确认菌株的纤维素降解能力。
Enzyme activity assays to confirm the cellulose degradation ability of bacterial strains.8.将具有潜在应用前景的菌株进行进一步鉴定和纤维素降解能力测定。
Further identification and cellulose degradation ability testing of bacterial strains with potential application prospects.9.将菌株进行16S rRNA基因测序以了解其系统发育关系。
高产纤维素酶菌株的筛选
高产纤维素酶菌株的筛选作者:周成徐磊肖新谢越汪建飞马忠友来源:《安徽农学通报》2016年第08期摘要:该研究从农田土壤中分离得到67株细菌,并从中选出一株高产纤维素酶菌株。
将这些菌株接种到纤维素培养基上,在pH 5.5和28℃的条件下,利用刚果红染色溶液进行染色后,测其水解透明圈与菌落的比值的大小,进行初步筛选。
将这些初筛的菌株接种到培养基中进行摇床培养后,制得粗酶液,并分析羧甲基纤维素酶(CMC)活力测定和滤纸酶(FP)活力及β-葡萄糖苷酶(BG)。
在不同温度的条件下,对纤维素酶活力测定,最终筛选出曲霉A25(Aspergillus sp.)这一株菌株,最适酶活温度为50℃。
产纤维素酶酶活力分别为:CMC 酶活达2 340.92 U/mL;FP酶活达2.66U/mL;BG酶活达164.72U/mL。
关键词:羧甲基纤维素酶;滤纸酶;β-葡萄糖苷酶;曲霉A25中图分类号 S154 文献标识码 A 文章编号 1007-7731(2016)08-22-04Abstract:67 strains of soil bacteria were isolated form farmland,from which a high-yielding cellulase strain was screened.These strains were inoculated on the cellulose medium,and a preliminary screening was conducted,in which we measured hydrolysis transparent circle and the ratio of the size of the colony under pH5.5 and 28℃ conditions by using the Congo Redstaining.Furthermore,these selected strains were cultured,and a crude enzyme liquid was extracted for analyzing the activities of carboxymethyl cellulose(CMC),filter paper enzyme(FP)and β-glucosidase(BG).Under different temperature conditions,the activity of cellulase was determined,and ultimately this one strain of Aspergillus A25 was obtained.Its great activity is under the condition of optimum temperature for 50 ℃.Producing cellulose enzyme activity was as following:CMC amounted to 2 340.92 U/mL,FP activity amounted to 2.66 U/mL,and BG activity amounted to 164.72 U/mL.Key words:Cerboxymethl cellulose;Filter paper enzyme;β- glucosidase;Aspergillus A25纤维素物质是地球上含量最丰富的碳水化合物[1],而目前人类对纤维素的开发与利用还非常有限,因此如何更有效地开发和利用纤维素资源已成为当今世界的热门课题之一。
[理学]纤维素酶产生菌的筛选分离
纤维素酶产生菌的筛选分离一、实验目的:1.掌握无菌操作的技术2.掌握选择培养基的设计和配制3.掌握特定菌种筛选方法4.掌握菌种鉴定方法5.测定菌种生长曲线和纤维素酶的活性二、实验原理:该研究设计性实验是利用纤维素酶产生菌可以分解纤维素酶,故而在含有羧甲基纤维素的平板(pH9.0)上可形成透明圈的原理和筛选纤维素酶产生菌。
三、实验内容:(1)培养基①选择培养基的配制同体培养基:250mL三角瓶、1.8g营养肉汤、100mL水、pH9.0、2g CNC-Na、2g琼脂、搅拌均匀包扎灭菌液体培养基:250mL三角瓶、1.8g营养肉汤、100mL水、pH9.0、2g CNC-Na、2g琼脂、搅拌均匀包扎灭菌(配制2份备用)②摇瓶发酵培养基的配制蛋白胨1.0%、酵母粉1.0%、CMC-Na1.0%、NaCL0.5%、KH2PO4 0.1%,另配10% NaCO3,分开灭菌后与上述培养基成分按1:9的比例混合均匀,使培养基的初始PH为9.5-10(2)配制筛选平板和斜面培养基在超净台中将上述培养基倒入平板和试管,试管倾斜放置,待培养基凝固后,低温保存,待用。
(3)菌种筛选①称取土样10g,用无菌水稀释定容至100mL,将土壤液稀释至移取150mL土壤悬液到筛选平板A,均匀涂布后于30。
C恒温培养箱培养12h.②待平板A长出单菌落后,用接种环挑取每个单菌落的一半到另一筛选平板C上,作染色鉴定,原来平板B保存于4。
C的冰箱中,保藏备用③将用于染色鉴定的筛选平板C于30。
C恒温培养1-2d,向培养皿中加入适量1mg/mLa的刚果红溶液,并染色1h;弃去染液,加入适量1mol/L的NaCla溶液,洗涤1h,若细菌产生纤维素酶,则在菌落的周围会出现清晰的透明圈,依据透明圈的直径大小选择产生酶菌株。
④将纯化的产纤维素酶菌株接种到斜面培养,待用。
(4)生长曲线的测定流程种子液→标记→接种→培养→测定①种子液制备取大肠杆菌斜面菌种1支,以无菌操作挑取1环菌苔,接入肉膏蛋白胨培养液中,静止培养12h作种子培养液②标记编码取盛有50mL无菌肉膏蛋白胨培养液250mL三角瓶11个,分别标号为0、1.5、3、4、6、8、10、12、14 、16、20h ③接种培养用2mL无菌吸管分别准确吸取2mL种子液加入已编号的11个三角瓶中,于37。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从土壤中分离产几丁质酶的真菌
摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株.
1材料与方法
1.1培养基
1.1.1平板培养基(1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7.
2.(2)纯几丁质培养基:胶体
几丁质5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2摇瓶培养基(1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂
1.2菌株的分离
1.2.1菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h.
1.2.2菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养.
1.3菌种的鉴定
1.3.1细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r・min-1)10min,取上层清液分装后,置4℃下保存备用.
1.3.216SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’.
1.3.3聚合酶链反应(PCR)检测PCR反应体系为20μL,二次蒸馏水1
2.6μL,10倍扩增缓冲液2.0μL,25mmol・L-1Mg2+1.6μL,各2.5mmol・L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol・L-1引物各1.0μL,DNA模板1.0μL,5GU・L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min.
1.3.4扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果.
1.3.5序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到
pMD182T上,送北京奥科生物公司进行测序.然后,将测序结果通过GeneBank进行BLAST序列比对,得出结果。