数字图像相关方法
数字图像处理的原理与方法
数字图像处理的原理与方法数字图像处理是一种将数字信号处理技术应用到数字图像上的科学技术,它的出现极大地推动了图像处理技术的发展。
数字图像处理不仅可以用于医学图像处理、卫星图像处理、工业检测等领域,还可以应用于数字影像娱乐等方面。
数字图像处理的核心内容就是图像增强、图像恢复、图像分割、图像识别等,本文将主要探讨数字图像处理的原理与方法。
一、图像增强处理图像增强处理是对原始图像进行改善的过程,也是数字图像处理中最普遍的操作类型。
通过增强处理,可以使图像局部特征更加明显,以便进行更高级的图像分析。
常见的图像增强方法包括灰度线性变换、灰度非线性变换、空域滤波增强、频域滤波增强等。
其中,空域滤波增强是最常见的一种方法。
通过对原始图像进行高斯滤波、中值滤波等操作,可以有效去除图像中的噪声。
二、图像恢复处理图像恢复处理是指从已知的图像信息中恢复出原始图像的过程,也是数字图像处理中一种重要的方法。
在数字图像处理中,图像的失真比如模糊、噪声等是不可避免的。
而图像恢复就是通过各种手段找到原始图像中所保留的信息,以恢复图像失真前的形态。
常见的图像恢复处理方法包括逆滤波、维纳滤波、约束最小二乘滤波等。
三、图像分割处理图像分割处理是将图像分割成若干具有独立意义的子区域的过程。
图像分割处理是数字图像处理中一种热门的研究领域,其主要应用于目标提取、图像分析和模式识别等方面。
常用的图像分割方法包括基于像素的算法、基于区域的算法、边缘检测算法等。
其中,基于区域的算法应用最广。
通过对相似区域进行聚类,可以将图像分割成若干子区域,从而实现目标提取等功能。
四、图像识别处理图像识别处理是指对图像进行自动识别的过程。
图像识别处理是数字图像处理中的一大领域,它的技术含量非常高。
常见的图像识别处理方法包括特征提取、模式匹配、神经网络等。
其中,特征提取是一种重要的处理方式。
通过对图像进行特征提取,可以将图像转化为数字特征,从而实现对图像的自动识别和分类。
数字图像处理领域的二十四个典型算法
数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。
图像处理是信号处理在图像域上的⼀个应⽤。
⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。
本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。
由于篇幅所限,只给出某⼀算法的主体代码。
ok,请细看。
⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。
灰度分为256阶。
所以,⽤灰度表⽰的图像称作灰度图。
程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。
这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。
数字图像处理的新方法与前沿技术
数字图像处理的新方法与前沿技术数字图像处理是一个涉及到数字信号处理和计算机科学的交叉学科,近年来得到了广泛的应用,向我们展示了各种令人惊叹的视觉效果。
数字图像处理的研究不仅促进了图像技术的发展,还深化了我们对于计算机视觉以及图像本质的认识。
在数字图像处理的研究中,新的方法和前沿技术已经被探索,这些技术为未来的数字图像处理发展带来了更多的可能性和机遇。
1.深度学习深度学习已经成为数字图像处理领域发展的重要趋势,它已经应用于图像分类、图像检测与分割、目标识别等多个领域。
深度学习能够自我学习和优化算法,网络可以处理庞大的数据集,训练出精确的模型来解决图像识别的问题。
随着深度学习的发展,卷积神经网络、循环神经网络等算法不断涌现,使得数字图像处理在图像分类、人脸识别等领域能够得到更好的效果。
2.基于虚拟现实的交互式图像处理方法近年来,数字图像处理领域新出现的前沿技术是基于虚拟现实的交互式图像处理方法。
这种方法可以让用户操作三维模型,实时观察这些模型的变化和效果展示,并可以再现用户想要的真实场景。
这些技术已经应用于数字图像处理领域的多个方面,如应用于医学图像学、卫星图像的处理等领域。
3.增加图像的细节数字图像处理中的另一个热点领域就是图像细节增加。
这种方法一般通过增加细节来改善图像的质量,从而能够更加准确地处理图像,使得图像具有更加自然的外观,更好地满足了人类视觉的需求。
这种技术已经应用于医学图像处理、卫星图像的处理和人类视觉方面的处理等领域。
4.以视觉感知为基础的数字图像处理方法以视觉感知为基础的数字图像处理方法是一种基于人类视觉功能的研发图像处理算法的思路。
这种方法将人的视觉过程中所遵循的物体处理规律、视角变化的处理规律等融入到算法中,能够在有限计算资源下获得更好的处理效果,并将处理出来的图像获得更好的视觉感受体验。
这种技术已经在电视广告、模拟游戏等领域得到了应用。
5.机器翻译机器翻译是经过训练的神经网络学习确定上下文环境、词汇选择等基础的语言风格规则,将一种语言中的字词翻译成另一种语言中的相应等价物的过程。
数字图像增强的几种常见方法
数字图像增强的几种常见方法数字图像增强是图像处理领域中的一项重要任务,它旨在改善图像的质量和可视化效果。
在数字图像增强中,有几种常见的方法被广泛应用,包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。
直方图均衡化是一种常见的图像增强方法。
它通过对图像的像素值进行重新分布,以扩展图像的动态范围,从而增强图像的对比度和细节。
直方图均衡化的基本思想是通过将图像像素的累积分布函数映射为均匀分布来调整像素的亮度值。
这种方法特别适用于对比度较低的图像,能够使图像的细节更清晰,并提升图像的质量。
滤波和增强算法也是数字图像增强的常见方法之一。
滤波可以去除图像中的噪声,平滑图像并提高图像的质量。
常见的滤波算法包括均值滤波、中值滤波和高斯滤波等。
这些算法通过对图像进行空间域或频域的滤波处理来改善图像的质量。
增强算法也可以用于提高图像的可视化效果。
例如,锐化算法可以增强图像的边缘和细节,使图像更加清晰。
对比度拉伸算法可以扩展图像的动态范围,增强图像的对比度。
这些算法可以根据不同的图像特征和需求进行选择和组合,以实现更好的图像增强效果。
多尺度变换是另一种常见的图像增强方法。
多尺度变换将图像转换为不同尺度的表示形式,利用图像在不同尺度上的信息来增强图像的质量和对比度。
常见的多尺度变换方法包括小波变换和金字塔变换。
这些方法在图像增强中广泛应用,并在图像去噪、边缘检测等领域取得了良好的效果。
除了传统的增强方法,基于机器学习的方法也在数字图像增强中得到了广泛的应用。
这些方法利用机器学习算法从大量的图像数据中学习图像的增强模型,然后使用该模型对新的图像进行增强。
通过学习大量数据得到的模型可以更准确地理解图像中的内容和结构,并提供更好的增强效果。
综上所述,数字图像增强的几种常见方法包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。
这些方法可以根据图像的特点和需求进行选择和组合,以实现图像的质量和可视化效果的改善。
数字图像处理基本知识
数字图像处理基本知识数字图像处理基木知识图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前己研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
数字图像处理的理论与方法
数字图像处理的理论与方法数字图像处理(Digital Image Processing)是指利用计算机对图像进行处理和分析的一种技术。
它涉及的理论与方法是指对图像进行数学建模和处理的一系列过程和方法。
下面将对数字图像处理的理论与方法进行详细介绍,并分点列出步骤。
一、数字图像处理的理论基础1. 数学基础:数字图像处理的理论与方法建立在一系列数学基础上,包括几何学、代数学、概率论、统计学等。
2. 图像重建理论:数字图像处理的核心目标是从原始图像中还原出最准确的信息,图像重建理论为实现这一目标提供了依据。
3. 信号处理理论:图像本质上是一个二维信号,所以信号处理理论对于数字图像处理至关重要,包括傅里叶分析、滤波器设计等。
二、数字图像处理的方法1. 图像获取:获得数字图像是数字图像处理的前提,方法包括数码相机、扫描仪、卫星遥感等。
2. 图像预处理:对原始图像进行预处理是为了去除噪声和改善图像质量。
常用的方法有平滑滤波、锐化、直方图均衡化等。
3. 图像增强:根据具体需求,对图像进行增强可以使图像更加鲜明和易于分析,常用方法有对比度增强、边缘增强等。
4. 图像恢复:通过数学模型和算法,重建被损坏的图像或以更好的方式表示图像是图像恢复的关键过程,常用方法有降噪、插值等。
5. 图像分割:将图像划分为具有特定特征的区域,常用方法有阈值分割、边缘检测、聚类等。
6. 特征提取:从分割后的图像中提取出与感兴趣的目标有关的特征,常用方法有形状分析、纹理分析等。
7. 目标识别与分类:根据提取的特征,利用模式识别算法对目标进行识别与分类,常用方法有神经网络、支持向量机等。
8. 图像压缩与编码:为了减少图像数据的存储空间和传输带宽,常使用图像压缩与编码技术,例如JPEG、PNG等。
三、数字图像处理的应用领域1. 医学影像处理:数字图像处理在医学影像诊断中起着重要作用,例如X光、磁共振成像、超声等。
2. 人脸识别:数字图像处理为人脸识别提供了基础技术,常用于安全、人机交互等领域。
数字图像处理实例集锦
阈值分割
基于像素的聚类算法,适用于彩色图像分割
将像素点聚类成K个类别,使得同一类别内的像素点在颜色和空间上相近。通过迭代优化,将像素点归入最接近的类别,从而实现图像分割。
数字图像处理实例集锦
CATALOGUE
目录
图像增强 图像恢复 特征提取 图像分割 图像识别 图像压缩
01
图像增强
总结词
通过拉伸图像的灰度直方图,增强图像的对比度。
详细描述
直方图均衡化通过重新分配图像像素强度,使得图像的灰度级分布更均匀,从而提高图像的对比度。这种方法尤其适用于图像整体偏暗或对比度不足的情况。
03
优缺点: 优点是能够处理复杂背景和多目标分割;缺点是计算量大,需要确定初始区域数目和生长规则。
基于区域的分割
05
图像识别
总结词
人脸识别技术利用计算机算法对输入的人脸图像或视频流进行身份识别。
实现原理
人脸识别通常包括人脸检测和人脸特征提取两个步骤。人脸检测用于确定输入图像中的人脸位置,而人脸特征提取则通过算法提取出人脸的几何特征或纹理特征,用于比对。
应用场景
人脸识别技术广泛应用于智能手机解锁、银行ATM机、机场安检等领域,提高了安全性和便利性。
详细描述
人脸识别技术广泛应用于安全、门禁、移动支付等领域,通过比对人脸特征与数据库中存储的信息,实现快速的身份验证。
人脸识别
总结词:物体识别是计算机视觉领域的一个重要分支,旨在识别图像中的物体并对其进行分类。
优缺点: 优点是能够处理彩色图像,对噪声和光照变化有一定的鲁棒性;缺点是计算量大,需要预先确定聚类数目K。
数字图像处理技术
数字图像处理技术数字图像处理技术是一种利用计算机对图像进行处理和分析的技术。
随着计算机技术和图像采集设备的不断发展,数字图像处理技术已经广泛应用于影像处理、医学图像分析、机器视觉、模式识别等领域。
本文将重点介绍数字图像处理技术的基本原理、常见的图像处理方法和应用领域。
一、数字图像处理技术的基本原理数字图像处理是在计算机中对图像进行数值计算和变换的过程。
图像是由像素组成的二维数组,每个像素包含了图像中某一点的亮度或颜色信息。
数字图像处理技术主要包括如下几个基本步骤:1. 图像采集:利用摄像机、扫描仪等设备将实际场景或纸质图像转换成数字图像。
2. 图像预处理:对采集到的图像进行预处理,包括图像增强、去噪、几何校正等操作,以提高图像质量。
3. 图像变换:通过一系列的数值计算和变换,改变图像的亮度、对比度、颜色等特征,以满足特定的需求。
4. 图像分析:对图像进行特征提取、目标检测、模式识别等操作,以获取图像中的各种信息。
5. 图像展示:将处理后的图像显示在计算机屏幕上或输出到打印机、投影仪等设备上,以便人们观看和分析。
二、常见的图像处理方法1. 图像增强:通过调整图像的亮度、对比度、颜色等参数,使图像更清晰、更鲜艳。
2. 图像滤波:利用滤波器对图像进行低通滤波、高通滤波、中值滤波等操作,以去除噪声、平滑图像或增强边缘。
3. 图像分割:将图像分成若干个区域,以便更好地分析和识别图像中的目标。
4. 特征提取:从图像中提取出与目标相关的特征,如纹理特征、形状特征、颜色特征等。
5. 目标检测:利用机器学习、模式识别等方法,从图像中检测和识别出目标,如人脸、车辆等。
三、数字图像处理技术的应用领域数字图像处理技术在很多领域都有广泛的应用,以下列举几个主要的应用领域:1. 影像处理:数字图像处理技术可以应用于电影特效、动画制作、数字摄影等领域,提高影像的质量和逼真度。
2. 医学图像分析:数字图像处理技术可以应用于医学影像的分析、诊断和治疗,如CT扫描、核磁共振等。
数字图像处理的常用方法
数字图像处理的常用方法
数字图像处理是一门多学科交叉的学科,既涉及到计算机科学又涉及到数学和电子工程学,这是一个模仿人类眼睛和大脑来把图像信息转换为电子信号,从而使图像可以进行计算机
处理的过程。
随着信息技术的发展,数字图像处理已广泛应用于我们的日常生活中。
近年来,数字图像处理的方法日趋复杂。
除了传统的基本处理方法,如图像的采样与量化、点操作、尺度和滤波等外,还出现了新的处理方法,如图像锐化、识别、复制、对比度调
节等。
图像滤波是一种数字图像处理技术,用于消除噪声或消除暗淡,清晰度和对比度提高,从
而达到优化图像质量的目的。
数字滤波常用来抑制图像中的边缘变化,增强平滑细节,并
有效消除噪声。
常用的数字滤波器包括拉普拉斯滤波、均值滤波和高斯滤波等。
图像分割技术可将图像分割成不同的区域,比如人脸分割,可以识别出人脸的轮廓,其中
任何一个特定特征点都可以得到一个具体的标记。
最后,建立模型技术可以被用来建立一个模型,估计图像的像素灰度值,以帮助算法实现
图像的运算和应用程序的计算。
建立模型的技术包括机器学习、神经网络、深度学习、聚
类等多种方法。
总而言之,以上就是数字图像处理的常用方法,比如图像滤波、图像分割和建立模型,可
用来处理各种数字图像,提高图像质量,从而更好地达到数字图像处理的目的。
数字图像相关法的关键技术研究
数字图像相关法的关键技术研究数字图像相关法的关键技术研究摘要:数字图像相关法是一种常用的图像处理和分析方法,它利用图像的相关性来进行不同任务的研究和应用。
本文将介绍数字图像相关法的基本原理及其在图像处理中的关键技术,包括图像匹配、目标跟踪和图像恢复等方面的研究进展。
1. 引言随着数字图像处理技术的发展,数字图像相关法逐渐成为一种重要的图像处理方法,被广泛应用于计算机视觉、自然语言处理等领域。
数字图像相关法通过分析图像的相关特性,可以在图像处理的各个阶段中发挥重要作用。
因此,了解数字图像相关法的关键技术对于改进图像处理算法、提高图像处理的效率具有重要意义。
2. 数字图像相关法的基本原理数字图像相关法是一种基于图像的相关性的分析方法。
它利用图像像素值之间的相似性来进行图像处理和分析。
数字图像相关法的基本原理可以概括为以下几个步骤:(1)图像预处理:对原始图像进行处理,去除噪声、增强图像对比度等。
(2)特征提取:提取图像中的特征,例如图像的边缘、纹理等。
(3)相关计算:将图像转化为数学模型,并计算图像像素值之间的相关性。
常用的相关计算方法包括相关系数、互相关函数等。
(4)匹配或跟踪:根据图像的相关性,进行目标匹配或跟踪。
匹配方法包括基于相似度比较的匹配法、特征点匹配法等。
(5)结果分析:根据匹配或跟踪的结果,进行图像分析和处理。
3. 数字图像相关法在图像处理中的关键技术(1)图像匹配图像匹配是数字图像相关法中的重要研究方向之一。
图像匹配的目标是找到两幅图像中的相似区域或相同区域。
在图像匹配中,关键技术包括特征点提取、特征描述和特征匹配等。
特征点提取方法包括SIFT算法、SURF算法等,特征描述方法包括HOG特征描述等,特征匹配方法包括RANSAC算法等。
(2)目标跟踪目标跟踪是数字图像相关法的另一个重要应用领域。
目标跟踪的目标是在连续帧图像中实时跟踪目标的位置和运动。
目标跟踪的关键技术包括运动估计、目标检测和目标跟踪框架等。
数字图像相关方法及其应用研究
数字图像相关方法及其应用研究一、本文概述随着信息技术的快速发展,数字图像处理技术已经广泛应用于各个领域,如医学影像、安全监控、卫星遥感、自动驾驶等。
其中,数字图像相关方法作为一种重要的图像处理技术,其在图像匹配、目标跟踪、三维重建等方面发挥着关键作用。
本文旨在深入探讨数字图像相关方法的理论基础、算法实现以及其在各个领域的实际应用,以期能为相关领域的研究人员提供有益的参考和启示。
本文将概述数字图像相关方法的基本概念、发展历程以及主要特点。
本文将详细介绍数字图像相关方法的算法原理,包括基于灰度的方法、基于特征的方法和深度学习方法等,并分析各自的优缺点。
本文还将探讨数字图像相关方法在医学影像处理、安全监控、卫星遥感、自动驾驶等领域的应用案例,并分析其在实际应用中的效果和挑战。
本文将总结数字图像相关方法的研究现状和发展趋势,并提出一些可能的研究方向和建议。
本文希望通过系统介绍数字图像相关方法及其应用研究,为相关领域的研究人员提供全面的理论支持和实践指导,推动数字图像处理技术的进一步发展和应用。
二、数字图像相关方法的基本理论数字图像相关方法(Digital Image Correlation, DIC)是一种通过分析和比较图像序列中像素灰度值的变化来测量物体表面位移和形变的非接触式光学测量技术。
其基本理论主要建立在灰度不变性假设和变形函数的基础上。
灰度不变性假设是数字图像相关方法的核心前提。
它假设物体表面在发生形变时,像素的灰度值保持不变。
这意味着,通过比较不同时刻或不同状态下的图像,我们可以确定像素之间的对应关系,从而计算出物体的位移和形变。
变形函数用于描述物体表面的形变。
在数字图像相关方法中,通常假设物体的形变是连续的,并且可以用一个光滑的变形函数来描述。
这个变形函数可以是线性的,也可以是非线性的,具体取决于物体形变的复杂程度。
通过求解变形函数,我们可以得到物体表面各点的位移和形变信息。
数字图像相关方法的基本流程包括图像预处理、图像匹配和位移场计算等步骤。
数字图像处理常用方法
数字图像处理常用方法
是基于图像的性质进行计算,利用数字图像处理方法来处理和分析数字图像信息。
数字图像处理包括图像采集、图像建模、图像增强、图像分割、图像特征提取、图像修复、图像变换等。
具体数字图像处理方法有:
1、图像采集:利用摄像机采集图像,可以采用光学成像、数字成像或其他技术技术来实现;
2、图像建模:利用数学模型将图像信息表达出来,有些模型可以用来确定图像的特征,而有些模型则能够捕捉图像的复杂细节;
3、图像增强:对采集的图像数据进行处理,包括图像的锐化、滤波、清晰度增强、局部像素增强等;
4、图像分割:根据指定的阈值将图像分成不同的区域,分割图像后可以获得更多的精确细节和信息;
5、图像特征提取:将图像信息中的有价值部分提取出来,提取的过程有多种算法,提取的结果均可以用来进行分类识别等;
6、图像修复:通过卷积神经网络,利用图像的实际内容和特征,自动修复受损图像;
7、图像变换:针对图像的数据结构,可以利用变换矩阵将图像像素坐标和分量进行变换,以获得新的图像。
数字图像相关技术介绍
双曝光的图象
3D-PIV 传统的二维PIV技术只能测量片光面内速度。实际上,许多工艺装置中的流动都是复杂的三维 湍流流动。用2D-PIV技术测量可能导致较大的误差,解决这一问题的方法是使用三维测量技术, 这也是PIV技术的发展趋势之一。 3D-PIV的关键问题是示踪粒子三维图像的获得及其三维坐标的确定。目前获取示踪粒子三维坐 标信息的方法有:体视成像法和全息图像法。
数字图像相关(DIC)技术简介
2015.12.30
1. 数字图像处理技术的发展和DIC技术的产生
2. DIC技术中相关图像分析方法 3. DIC技术在岩土力学研究中的应用实例 4. 基于MATLAB的图像处理方法简介
1. 数字图像技术的发展
数字图像处理技术:是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
相关性判别 在变形前后图像上搜索区域内,如果二个像素块的相关性最好时,相关函数的值达到峰值。 在此给出四中具有代表性的相关函数。 相关函数 绝对差相关函数 最小差值平方和相关函数
C1 1
x 1
表达式
2 k 1 2 k 1 y 1
v ( x , y ) u ( x, y )
a. 图像坐标系与像素坐标系的转换
O0
u
x u u0 dx
y v v0 dy
O1
u0 , v0
v y
x
其中,dx和dy 分别是每个像素在图像平面上 x 与 y 方向上的物理尺寸。
图像坐标系与像素坐标系的关系图
b. 图像坐标系与摄像机坐标系间的转换
fX c x ZC
fYc y ZC
《基于数字图像法的桩- 土接触面特性试验研究》 陈亚东 王旭东(南京工业大学) 工业建筑 2012.03 摘 要: 桩与土接触面的力学特性是桩- 土共同作用研究中的一个重要课题。利用基 于数字图像的非接触光学测量方法,通过室内模型试验,对密实砂土中桩- 土接触 面上荷载传递特性、剪切位移场及剪应变场分布规律进行研究。结果表明: 密砂中单 桩桩侧摩阻力与沉降关系呈软化型,桩侧摩阻力达到极限值所需桩身沉降约为桩横截 面边长的3% 。桩周土体剪切滑动区发生在有限范围的土体中,最大剪应变首先出现 在桩顶及桩底附近土体中,而后向桩身中部发展,在极限荷载条件下,最大剪应变沿 桩身呈“两头大中间小”的分布形式。试验结果为合理建立桩- 土接触面模型和相 关数值计算提供有益的参考。 桩- 土接触面试验设计
数字图像处理算法的使用方法与实践案例
数字图像处理算法的使用方法与实践案例数字图像处理算法是指利用计算机算法对数字图像进行处理和分析的技术。
随着计算机技术的不断发展,数字图像处理算法已经成为了一个重要的研究领域,在图像处理、模式识别、计算机视觉等各个领域都有广泛的应用。
本文将介绍数字图像处理算法的使用方法,并通过实践案例来展示其在实际应用中的效果。
首先,我们将介绍数字图像处理算法的基本概念和分类。
数字图像处理算法主要包括图像增强、图像复原、图像分割、图像压缩等几个主要方向。
图像增强算法是对图像进行色彩、对比度、亮度、清晰度等方面的调整,以提升图像质量。
图像复原算法是通过去除噪声、恢复模糊等方式,使得图像恢复到原本的清晰度和细节。
图像分割算法是将图像分成若干个区域,以便后续的目标检测、图像识别等任务。
图像压缩算法是利用数学和信息理论的方法,将图像表示为更紧凑的形式,以减小存储和传输的成本。
接下来,我们将介绍几种常见的数字图像处理算法,并通过实践案例来展示它们的使用方法和效果。
第一种算法是直方图均衡化算法。
直方图均衡化是一种常用的图像增强算法,通过重新分配图像的像素值,使得图像的整体对比度增加,从而提升图像的质量。
例如,当我们需要增强一张过暗的照片时,可以通过直方图均衡化算法来调整图像的对比度,使得照片更明亮。
在实践中,我们可以使用Python中的OpenCV库来实现直方图均衡化算法。
第二种算法是高斯滤波算法。
高斯滤波是一种常用的图像平滑算法,通过对图像进行卷积操作,使得图像中的噪声得到抑制,同时保留图像的边缘信息。
例如,在人脸识别中,为了提高识别准确度,我们常常会对图像进行平滑操作,以减小噪声的影响。
在实践中,我们可以使用Python中的OpenCV库来实现高斯滤波算法。
第三种算法是基于边缘检测的图像分割算法。
边缘检测是一种常用的图像分割算法,通过检测图像中的边缘信息,将图像分离成不同的区域。
例如,在医学影像中,我们常常需要将影像中的组织或病灶分割出来,以便进行进一步的分析和诊断。
数字图像相关法(DIC)
DIC是一种非接触式的高精度位移、用于全场形状、变形、运动测量的方法,也是现代光测量力学领域内最有应用前景的测量方法。
其应用研究方向,正朝着从常规材料到新型材料的测量,从弹性问题测量到强塑性问题的测量,从常温到高温的测量,从宏观测量到微观测量的趋势发展。
DIC方法在上世纪80年代初被提出,经过30多年众多学者的研究,DIC 技术上已经非常成熟。
这种方法又被称为数字散斑相关法,它直接处理的对象是具有一定灰度分布的数字图像(散斑图),通过对比材料或者结构表面在变形前后的散斑图运用相关算法得到全场位移和应变。
该方法对实验环境要求极为宽松,并且具有全场测量、抗干扰能力强、测量精度高等优点。
其基本测量原理如下图:用于固体材料和结构表面位移、变形和形貌测量的数字图像相关方法(Digital image correlation, DIC)是一种基于数字图像处理和数值计算的非干涉变形测量方法,与其它基于相干光波干涉原理的光测方法(如电子散斑干涉、云纹干涉法)相比,数字图像相关方法具有其明显和独特的优势:1)仅需要一个(2D DIC)或两个数字相机(3D DIC)拍摄变形前后被测物体表面的数字图像,其光路布置、测量过程和试样准备简单;2)无需激光照明和隔振,对测量环境要求较低;3)可与不同时间分辨率和空间分辨率的数字成像设备(如高速摄像机、光学显微镜、扫描电子显微镜)直接结合,因此适用测量范围广泛。
可以说,数字图像相关方法是当前实验力学领域最活跃也最受关注的光测力学方法之一,作为一种灵活、有效和功能强大的变形测量手段,数字图像相关方法在各种材料和结构表面变形测量、力学和物理参数表征以及验证力学理论和有限元分析的正确性等方面获得了无数令人影响深刻的成功应用。
以上就是关于关于DIC数字图像相关法的介绍,如果想了解更多关于DIC的资料,欢迎咨询武汉中创联达科技有限公司。
数字图像处理的概念
数字图像处理的概念数字图像处理是指利用计算机对数字图像进行各种操作和处理的技术。
数字图像处理广泛应用于医学影像、遥感图像、工业检测、安防监控、图像识别等领域。
本文将详细介绍数字图像处理的概念、原理、方法和应用。
一、概念数字图像处理是指对数字图像进行各种算法和技术处理的过程。
数字图像是由离散的像素点组成的,每个像素点都有自己的亮度值或颜色值。
数字图像处理通过对这些像素点进行操作,改变图像的亮度、对比度、颜色、清晰度等特征,从而达到图像增强、图像复原、图像分割、图像压缩等目的。
二、原理数字图像处理的原理基于图像的数字化表示和计算机的处理能力。
首先,将模拟图像通过采样和量化的方式转换为数字图像。
然后,利用计算机的算法和技术对数字图像进行处理。
常用的处理方法包括滤波、变换、编码、分割、识别等。
最后,将处理后的数字图像重新转换为模拟图像,以便显示和输出。
三、方法1. 图像增强图像增强是指通过调整图像的亮度、对比度、清晰度等特征,使图像更加清晰、鲜明和易于观察。
常用的图像增强方法有直方图均衡化、灰度拉伸、滤波、锐化等。
2. 图像复原图像复原是指通过消除图像受到的噪声和失真,恢复图像的原始信息。
常用的图像复原方法有空域滤波、频域滤波、最小二乘法、反卷积等。
3. 图像分割图像分割是将图像分成若干个区域,每个区域具有相似的特征。
常用的图像分割方法有阈值分割、边缘检测、区域生长等。
4. 图像压缩图像压缩是通过减少图像的数据量,以达到减小存储空间和传输带宽的目的。
常用的图像压缩方法有无损压缩和有损压缩。
5. 图像识别图像识别是指通过计算机对图像中的目标进行自动识别和分类。
常用的图像识别方法有模板匹配、特征提取、机器学习等。
四、应用数字图像处理在各个领域都有广泛的应用。
1. 医学影像数字图像处理在医学影像领域中起到了重要的作用。
它可以帮助医生对病人进行诊断和治疗,如CT扫描、MRI、X光等。
2. 遥感图像数字图像处理在遥感图像领域中用于地理信息系统、农业、林业、环境保护等方面。
数字图像处理 数字图像基础
数字图像处理数字图像基础数字图像处理是将数字图像进行分析、处理和理解的过程,它的目标是提高数字图像的质量、抽取图像的特征、提取图像的信息和实现图像的应用。
数字图像处理技术已经渗透到几乎所有领域,如医学、电影、远程通讯、安全监控等。
数字图像处理基础知识包括采集、压缩、存储、预处理、增强、分割、特征提取、分类和应用。
图像采集采集是数字图像处理中最基础的环节,它将物理光学信号转化为数字信号。
常见的图像采集设备包括CCD、CMOS和磁介质等。
图像压缩图像压缩是将图像文件从原始大小减小,并通过各种手段来减少文件大小和传输时间的过程。
图像压缩通常有两种方式,一种是有损压缩,一种是无损压缩。
图像存储图像存储是将数字图像保存在计算机或外部储存设备中。
常用的图像存储格式包括BMP、PNG、JPEG和GIF。
图像预处理图像预处理是在进行其他数字图像处理操作之前,对原始图像进行预处理以去除噪声、平滑、增强、锐化等。
常见的预处理方法包括空间域滤波、频率域滤波、直方图均衡化、形态学操作等。
图像增强图像增强是为了改善图像的质量、提高图像的视觉效果和增强图像的细节而进行的操作。
常见的图像增强方法包括灰度拉伸、对数变换、伽马变换、直方图规定化等。
图像分割图像分割是将数字图像分成不同的区域并对这些区域进行分析和理解的过程。
图像分割可以有多种方法,包括阈值分割、区域分割、边缘分割等。
特征提取图像特征提取是从原始图像中提取一些相关的特征以便于后续的分类和识别。
特征提取的常见方法包括边缘检测、角点检测、纹理描述等。
图像分类图像分类是将数字图像按照其特征划分为不同的类别。
常见的图像分类算法有SVM、KNN、神经网络等。
应用数字图像处理在很多领域都有广泛的应用,如医学影像处理、智能交通、虚拟现实等。
最近,随着深度学习的兴起,数字图像处理技术也被广泛应用于计算机视觉、自然语言处理等领域。
以上是数字图像处理的基础知识,数字图像处理应用广泛,研究数字图像处理可以掌握现代图像处理的基本技能,有利于提高计算机视觉,图像识别和其他领域的研究水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像相关方法(DICM)
前言
数字图像相关法(Digital Image Correlation Method,简称DICM),又称为数字散斑相关法(Digital Speckle Correlation Method,简称DSCM),是应用于计算机视觉技术的一种图像测量方法。
数字图像相关(Digital Image Correlation,i.e. DIC)测量技术是应用计算机视觉技术的一种图像测量方法,是一种非接触的、用于全场形状、变形、运动测量的方法。
它是现代先进光电技术、图像处理与识别技术与计算机技术相结合的产物,是现代光侧力学领域的又一新进展。
它将物体表面随机分布的斑点或伪随机分布的人工散斑场作为变形信息载体,是一种对材料或者结构表面在外载荷或其他因素作用下进行全场位移和应变分析的新的实验力学方法。
在实验固体力学领域中,对于不同载荷下,材料和结构表面的变形测量一直是一个较难的课题。
一般包括接触式和非接触式两种,对于一般使用的电阻应变片接触式测量方法,受其测量手段的限制,不能得到全场数据,且测量范围有限,不能得到物体整体上的变形规律。
而对于全场的非接触式光学测量方法,包括干涉测量技术(例如全息照相干涉法,散斑千涉法)和非干涉技术(例如网格法和数字图像相关测量法)。
由于干涉测量技术要求有相干光源,光路复杂,且测量结果易受外界震动的影响,多在具有隔振台的实验室中进行,应用范围受到了极大的限制。
而非干涉测量技术是通过对比变形前后物体表面的灰度强度来决定表面变形量,对光源和测量环境要求较低。
数字图像相关测量技术可以直接采用自然光源或白光源,通过具有一定分辨率的CCD相机采集图像,并利用相关算法进行图像处理得到变形信息,可以说,DIC是一种基于数字图像处理和数值计算的光学测量方法。
由于该技术的直接处理对象是数字图像,而随着科学技术和数字化技术的不断发展与更新,数字图像的分辨率和清晰程度不断扩大,因此,数字图像处理技术的测量精度也在不断提升。
由于数字图像测量技术的上述优点,使得DIC技术被广泛接受,并被视为测量表面变形的一种有力而又灵活的工具。
在材料科学领域,对于不同材料的应变、变形的测量一直是一个较为重要的
课题,对于研究材料的性能以及内在的变形规律等具有重要的意义。
而数字图像相关测量技术具有测量应变、变形显著的优点,因此,将数字图像相关测量技术应用在该领域具有很大的前景。
目前,DIC技术已经在材料的力学行为测试与分析上有着许多应用。
尤其是对于低维膜材料、生物材料、木材及岩石材料的变形场的定量测量。
但是对于在金属材料方面的运用并不是很普遍,尤其是在国内这方面的报道相对较少。
在国外,Puerto Rico大学的Rommel等人米用DIC方法研究了铝、砖块等材料的变形行为,并与理论应变值以及引伸计测量值进行了对比,得出对于砖块两种方法测量应变很准确,对于¢3釆用DIC测得值要高于理论值。
M.Rossi等人研究了数字图像相关测量方法在板材平面各向异性方面的报道,测量了板材的塑性应变比r值。
此外,V.SavicL.G.Hector等人将DIC方法用在了马氏体钢的变形以及断裂方面的研究工作上,给出了该钢在拉伸过程中应变场的分布。
B.Ahn和S.R.Niitt等人利用数字图像相关测量方法对绍镁合金在微尺度下的变形行为及应变值进行了相关研究。
在国内,采用DIC方法来进行金属材料变形过程的研究较少。
徐飞鸿等人利用数字图像相关测量方法的理论提出了一种金属材料塑性变形过程中塑性变形区域的识别方法。
桂良进、高付海等人进行了数字图像相关技术的试验,将DIC 方法利用在双相钢的单向拉伸断裂失效的研究上,详细分析研究了试样的拉伸断裂过程,捕捉了其分散性失稳和集中性失稳的发生时刻,得到了颈缩时刻的横向应变分布。
刘主琛等人利用数字散斑相关法研究了铅和铜裂纹尖端损伤区内应变场的测量。
DIC在变形及应变方面的应用与其它基于相干光波干涉原理的光测方法(如电子散斑干涉、云纹干涉法)相比,数字图像相关方法具有其明显和独特的优势:1)仅需要一个(2D DIC)或两个数字相机(3D DIC)拍摄变形前后被测物体表面的数字图像,其光路布置、测量过程和试样准备简单;2)无需激光照明和隔振,对测量环境要求较低;3)可与不同时间分辨率和空间分辨率的数字成像设备(如高速摄像机、光学显微镜、扫描电子显微镜)直接结合,因此适用测量范围广泛。
散斑
激光照射在具有漫反射性质的物体的表面,根据惠更斯原理,物体表面每一点都可以看成一个点光源,从物体表面反射的光在空间相干叠加,就会在整个空间发生干涉,形成随机分布的亮斑与暗斑,称为激光散斑。
对于较强纹理的自然表面本身就可以作为散斑图,即自然散斑。
在DIC实验过程中,为了取得较高的测量精度,需要在试件表面制作人工散斑。
即对于光滑表面和单颜色表面,需要通过人工方法改变它的表面反射变化,获得随机的灰度斑点。
散斑测量:根据与物体变形有内在联系的散斑图将物体表面位移或变形测量出来。
散斑测量又分为散斑照相测量,散斑干涉测量。
散斑照相检测法是在一张照相底片上通过两次曝光(根据需要也可多次乃至连续曝光),记录表面粗糙的物体位移前后,变形前后或某种变化过程中的散斑图样,继而对所得散斑图样进行适当的时候处理,以获取有关物体位移或变形等信息的方法。
主观散斑图的记录
与散斑照相法基于散斑颗粒位置变化而进行的测量不同,散斑干涉是基于散斑场相位的变化而进行检测的。
激光散斑干涉主要分为两步:
(1)用相干光照射物体表面,记录带有物体表面位移和变形信息的散斑图;(2)将记录的散斑图置于一定的光路系统中,将散斑图中的位移或变形信息分离出来,进行定性或定量分析。
数字图像相关法的基本原理
数字图像相关测量方法的基本原理是基于有一定特征点分布的图像(称为散斑图),这些特征点是以像素点为坐标,并且以像素的灰度作为信息载体,在相关算法运行之前,选取一个正方形的图像子区,这个子区的中心为所感兴趣的像素点。
在图像移动或变形的过程中,通过追踪图像子区在变形后图像(即目标图像)中的位置即可以获得子区中心点处的位移矢量,如图1所示。
经过分析多个
子区中心点的位移矢量,便构成了整个分析区域的位移场。
图1变形前后Die图像追踪示意图
如图2所示,在参考图像中,子区中心点P(x0,y0)以及子区中任意临近点Q(x i,y i),在变形后图像的目标子区中为P′(x0′,y0′)、Q′(x0′,y0′).由变形的连续性假设,在参考子区中的一系列临近点在目标子区中依旧是中心点的临近点。
如图3的位移分析示意图,对于点P′,有下式成立
x0′=x0+u
y0′=y0+v
图2参考子区与目标子区(变形子区)在变形前后的示意图
图3位移分析示意图
其中:u、v为点P′位移在x、y轴的分量。
对于点Q′,有下式成立:
x i′=x i+u Q
y i′=y i+v Q
其中: u Q、v Q为点位移在x、y轴的分量。
变形前后0点的灰度可以写做:
f(Q)=f(x i,y i)
g(Q′)=g(x i′,y i′)
其中:f,g分别表示变形前后所记录的两帧图像的灰度分布。
若: u Q=u+u x∆x+u y∆y
v Q=v+v x∆x+v y∆y
∆x=x i−x0
∆y=y i−y
定义P=[u u x u y v v x v y]T为式中未知矢量,包含位移变量.
为了能准确的确定位移矢量,就要确定目标子区与参考子区的唯一对应关系,引
入相关系数(或相关判据)C(f,g)的概念,作为反映两幅图像相似程度的一个数学指标。
C(f,g)=C(x i,y i,x i′,y i′)=C(P)
即相关系数为P的函数。
求解相关系数的最小值:
ðC
≈0
ðP i
通过一定的迭代算法便可以确定P值。
其迭代算法包括整像素搜索和亚像素搜索两个过程,分析流程如图4所示,通过对全场子区进行搜索,即可以唯一确定变形前后相同的子区,此时子区的位移矢量也已经确定出来,由位移和应变的关系即可确定应变场。
图4 DIC相关分析流程图
总结
数字图像相关方法是当前实验力学领域最活跃也最受关注的光测力学方法之一,作为一种灵活、有效和功能强大的变形测量手段,数字图像相关方法在各种材料和结构表面变形测量、力学和物理参数表征以及验证力学理论和有限元分析的正确性等方面获得了无数令人影响深刻的成功应用。
参考文献
[1]高建新. 数字散斑相关方法及其在力学测量中的应用[D].北京:清华大学,1989.
[2]白晓虹. 数字图像相关(DIC)测量方法在材料变形研究中的应用[D].沈阳:东北大学,2011.
[3]潘兵,谢惠民,续伯钦,戴福隆. 数字图像相关中的亚像素位移定位算法进展[J ] . 力学进展,2005 ,34 (3) :345~352。