高等代数线性方程组42页PPT
合集下载
高等数学线性代数线性方程组教学ppt(4)
1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
高等代数课件北大版第三章线性方程组
定义:将线性方程 组中的每一行进行 加减、倍乘等操作, 使得方程组简化
作用:将增广矩阵 化为阶梯形矩阵, 便于求解线性方程 组
步骤:对增广矩阵 进行初等行变换, 得到阶梯形矩阵
注意事项:变换过 程中需保持矩阵的 行列式不变,避免 出现错误结果
矩阵的逆法
定义:如果矩阵A存在逆矩阵,则称A为可逆矩阵 性质:可逆矩阵的行列式不为0 计算方法:通过行初等变换将矩阵变为单位矩阵,得到逆矩阵 应用:解线性方程组的重要工具之一
束优化问题等。
线性方程组在其他领域的应用
物理学中的应用:描述物理现象和规律,如牛顿第二定律、万有引力定律等。 经济学中的应用:分析经济问题,如供需关系、生产成本等。 计算机科学中的应用:解决优化问题、机器学习算法等。 统计学中的应用:处理数据分析和预测问题,如回归分析、主成分分析等。
线性方程组的扩展知识
添加标题
逆矩阵的计算方法:通过高斯消元法或拉普拉斯展开式等方法计算行列式|A|,然后通过|A|*|A^(1)|=1计算逆矩阵A^(-1)。
添加标题
逆矩阵的应用:在解线性方程组、求矩阵的秩、计算行列式、求向量空间的一组基等方面都有应用。
线性方程组的通解与特解的关系
通解与特解的定义
通解与特解的关系
通解与特解的求解方法
线性方程组在计算机科学中的应用
线性方程组在计算机图形学中 的应用:用于计算光照、纹理 映射和渲染等。
线性方程组在计算机视觉中的 应用:用于图像处理、特征提
取和目标检测等。
线性方程组在机器学习中的应 用:用于训练和优化模型,如 线性回归和逻辑回归。
线性方程组在人工智能领域的 应用:用于优化算法、求解约
通解与特解的应用
感谢您的耐心观看
线性代数第四章线性方程组课件
方程组 AX 0 的两个基础解系, 则由这两个基础解
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
扬州大学高等代数课件北大三版--第三章线性方程组-PPT课件
→
2 4 2
3
把第1个方程分别乘以(-2)、 (-1)加到第2个、3个方程
把第1行分别乘以(-2)、 (-1)加到第2、3行
线 性 方 程 组
2 x1 x 2 3 x 3 1 4 x2 x3 2 x2 x3 5
→
2 0 0
1 4 1
3 1 1
1 2 5
课件
4
高 等 代 数
把第3个方程分别乘以(-4)、 1加到第2个、1个方程
把第3行分别乘以(-4)、 1加到第2、1行
2 x1
2 x3 6 3 x3 18 x 2 x3 5
→
2 0 0 2 0 0
—(1)
3
线 性 方 程 组
当m=n,且系数行列式 D 0 时,我们知方程组(1)有唯一解, 其解由Gramer法则给出。但是若此时D=0,我们无法知道此时 方程组是有解,还是无解。同时,当 m n 时,我们也没有解 此方程组(1)的有效方法。因此我们有必要对一般线性方程
课件 3
高 等 代 数
性 方 程 组
用一个数乘矩阵的某一行加到另一行上; 用一个非零数乘矩阵的某一行;
课件 6
互换两行的位置。 这三种变换被称为矩阵的初等行变换。 从上面可以看出,解线性方程组的问题可以转化成对 由方程组的未知量系数和常数项所排成的一个“数表”进行 相应的“变换”,从而得到方程组的解。这个数表就称为矩 阵。抛开具体的背景,下面引进矩阵的定义和它的初等变换。 定义1(矩阵):数域 F 上 mn 个元素排成形如下数表 a1n a11 a12 a a a 22 2n 21 3 称为数域 F 上的m行n列 amn a m1 a m 2 线 矩阵,简称 mn阶矩阵,记为 A 或 a ij m n 。 a i j 称为矩阵的 mn 性 元素,i称为元素 a i j 所在行的行下标,j称为元素 a i j 所在列的 方 n n 矩阵亦称为方阵。 列下标。 当m=n时,
线性方程组课件
对一般的线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 2 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
(*)
分别称
a11 a A 21 a m1 a12 a22 am 2 a1n a11 a a2 n , A 21 a amn m1 a12 a22 am 2 a1n a2 n amn b1 b2 bm
例2
解线性方程组
x3 x3 x3 x3 2 x4 4 x4 x4 3 x5 4 x5 5 x5 8 x5 1 2 3 2
x1 x2 2 x 2 x 1 2 3 x1 3 x2 x1 x2
。
§1.2 线性方程组解的情况及判别
情形一:
d r 1 0 0 d r 1
此时阶梯形方程组中出现了
这种矛盾方程,因此阶梯形方程组无解。
情形二:
d r 1 0
子情形一:
r n
则上述阶梯形方程组为
c11 x1 c12 x2 c1n xn d1 c22 x2 c2 n xn d 2 cnn xn d n
定理 方程组的初等变换把一个线性方程组变成 另一个同解的线性方程组。
定理 任一矩阵均可通过有限次初等行变换化为 阶梯形矩阵。
给定线性方程组
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 2 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
高等代数 线性方程组
增广矩阵
9
a11 x1 a12 x2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0
AX O
~ A ( A | O)
2 3 1
4 1 1
1 2 1
3 1 0
4 1 1
1 3 41 21 3
齐次方程组有非零解,则 D 0
所以 0 , 2 或 3时齐次方程组有非零解.
1 r ( 1)r r ( 1)r 0 0 0
2 3 1 3
7 1 0 1 1 0 3 r (1)r 0 1 0 0 1 3 0 0 0 0 0 0 0 0
1 2
1 2 0
4 0 3 0 4 3 3 0
k 0或k =2
7
例2 问 取何值时,齐次方程组
1 x1 2 x2 4 x3 0, 2 x1 3 x2 x3 0, x x 1 x 0, 1 2 3
有非零解? 1 解: D 2 1
3
其中c为任意常数.
例4 设有线性方程组
x1 x2 x3 1 x1 x2 x3 x x x 2 1 2 3
问取何值时 有唯一解? 有无穷多个解 无解? , ?
解:
对增广矩阵 A 作初等行变换,
A1 1
1
1
1 1 r r 1 1 1 3 2
阶梯形矩阵
行简化阶梯形矩 阵
9
a11 x1 a12 x2 a1 n xn 0 a x a x a x 0 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0
AX O
~ A ( A | O)
2 3 1
4 1 1
1 2 1
3 1 0
4 1 1
1 3 41 21 3
齐次方程组有非零解,则 D 0
所以 0 , 2 或 3时齐次方程组有非零解.
1 r ( 1)r r ( 1)r 0 0 0
2 3 1 3
7 1 0 1 1 0 3 r (1)r 0 1 0 0 1 3 0 0 0 0 0 0 0 0
1 2
1 2 0
4 0 3 0 4 3 3 0
k 0或k =2
7
例2 问 取何值时,齐次方程组
1 x1 2 x2 4 x3 0, 2 x1 3 x2 x3 0, x x 1 x 0, 1 2 3
有非零解? 1 解: D 2 1
3
其中c为任意常数.
例4 设有线性方程组
x1 x2 x3 1 x1 x2 x3 x x x 2 1 2 3
问取何值时 有唯一解? 有无穷多个解 无解? , ?
解:
对增广矩阵 A 作初等行变换,
A1 1
1
1
1 1 r r 1 1 1 3 2
阶梯形矩阵
行简化阶梯形矩 阵
《线性代数》教学课件—03线性方程组
1 1 0 2 ((11))rr32 0 1 1 0
0 0 1 3
阶梯形矩阵所对应的线性方程组为
x1 x2 2
x2
x3
0
x3 3
第三步 运用逐步回代求出阶梯形矩阵所对应的线性方程组的解
x1 1
x2
3
x3 3
上述解即为原方程组的解. 由于此方程组中未知数的个数n和方程m的个 数相同,故方程组的解是惟一的.
rr1223rr33 0 1 0 20 5 0 r1(3)r2 0 1 0 20 5 0
0 0 1 7 2 0
0 0 1 7 2 0
0 0 0 0 0 0
0 0 0 0 0 0
第三步 增广矩阵的秩 R(AB) 3,基本未知量的个数是3,未知量的个数是5, 所以自由未知量个数为2个.
第四步 写出行最简形阶梯矩阵所对应的线性方程组
x1 x3,
x2
x3
1,
x4
x3
1.
(3.1.4)
表示式(3.1.4)也是方程组(3.1.1)的一般解. 虽然两个一般解的 表达形式上不一样,但它们本质上是一样的,都表示了方程组(3.1.1) 的所有解.式(3.1.4)的矩阵形式为:
x1 1 0
x2
k
1
1.
x3 x4
3 7 1 1 3 0
1
4
5
1
0
0
第二步用初等行变换将( A B)化为行最简形阶梯矩阵
(3.1.9)
1 3 2 2 1 0
1 3 2 2 1 0
( A B) 2 5 1 5 3 0 rrr342(2r1r13)r10 1 3 1 1 0
3 7 1 1 3 0
0 2 5 5 0 0
线性方程组解PPT课件
VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
数学线性代数方程组PPT课件
a(k ik
1)
) /a a(k)
ij
(k) kk
(i lik
k a(k)
kj
(i
1,...,n) k 1,...,n;
j
k
1,...,n, n
1)
该Gauss消去法为顺序高斯消去法
第7页/共87页
Gauss
for k 1, 2, , n 1
for i k 1, k 2, , n
Cramer法则:
xi
Di D
i 1, 2,
,n
所需乘除法的运算量大约为(n+1)!+n
n=20时,每秒1亿次运算速度的计算机要算30多万年!
直接法
在没有舍入误差的情况下,经过有限次 运算可以得到方程组的精确解的方法。
第2页/共87页
§3.1 Gauss消去与矩阵LU分解
属于解方程的直接法
一 Gauss消去 1 直接法的关键思想
ln,k
1
第26页/共87页
A L1L2 Ln2 Ln1U LU L为单位下三角
1
l21 1 l31 l32 1
L l41 l42 l43 1
u11 u12 ... u1n
U
u22 ... u2n ...
1 ln1 ln2 ln3 lnk lnn1
unn
A LU 矩阵分解为单位下三角 和上三角矩阵的乘积
aii
第13页/共87页
例:在8位制计算机上解方程组
109
x1
x2
1
x1 x2 2
要求用Gauss消去法计算。
解:l21 a21 / a11 109 8个
x1 x2 1
a22 1 l21 1 0.0 ...01109 109 109
线性代数ppt课件
c12 1
c1r c2r 1
dr1 0且rn时,唯一解;
dr1 0且rn时,无穷多解。
c1n d1 c2n d2
crn 0
ddrr1
x1x23x4x5 2 例、求解方程组4x1x1x22x22x36x3x43x144x5 7
2x14x22x34x47x5 1
x1 c12x2
x2
c1nxn d1 c2nxn d2
xr crnxn dr 0dr1
(r n)
(其中r为阶梯形方程组中方程式的个数。)
5
线性代数
第二章 线性方程组
第1节 Gauss消元法
由阶梯形方程组知原方程组(*)的解有以下三种情况:
( 1 ) d r 1 0 , 则 方 程 组 无 解 ;
(2)dr1 0且rn,则方程组(*)可化为如下
x1 c12x2 ...c1nxn d1
阶梯形方程组...... x2 ...c2nxn d2
xn dn
1 c12 由于系数行列式D 1
c1n c2n 10,
1
由Cramer法则,方程组(*)解唯一。
6
线性代数
6 x2 9 x2
3x3 5 10 x3 2
x1 3x2 2 x3 6
(3) 2x1x1 3x62x2 5x33x351 x1 3x2 5x3 4
第1节 Gauss消元法
4
线性代数
第二章 线性方程组
第1节 Gauss消元法
用Gauss消元法可以解一般的线性方程组(*),消元的结 果得到一个与原方程组同解的“标准”的阶梯形方程组或 出现矛盾式,可得如下一般形式:
《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn
《线性代数》课件第4章
此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有
高等代数课件第三章-线性方程组
as1 x1 as2 x2 L asn xn bs
(1')
设 (c1,c2 ,L ,cn )是方程组(1)的任一解,则
§3.1 2020/3/29 消元法
数学与计算科学学院
a11c1 a12c2 L a1ncn b1
aaL2s11ccL11 LaaL2s22ccL22
L a2ncn LLLLL L asncn
L
b2 bs
(1)
先检查(1)中 x1 的系数,若a11,a21,L ,as1 全为零, 则 x1没有任何限制,即x1 可取任意值,从而方程组
(1)可以看作是 x2 ,L , xn的方程组来解.
§3.1 2020/3/29 消元法
数学与计算科学学院
如果 x1的系数不全为零,不妨设,a11 0. 分别把第一个方程 ai1 的倍加 到第i个方程 (i 2,L , .s)
L
b2 bs
(1)
简便起见,不妨设把第二个方程的k倍加到第一个 方程得到新方程组(1').
(a11 ka21 ) x1 (a12 ka22 ) x2 L (a1n ka2n )xn b1 kb2
a21 x1 a22 x2 L a2n xn b2 LLLLLLLLLLL
2.方程组的解
设 k1, k2 ,L , kn 是 n 个数,如果x1, x2 ,L , xn 分别用 k1, k2 ,L , kn 代入后,(1)中每一个式子都变成恒等式, 则称有序数组 (k1, k2 ,L , kn ) 是(1)的一个解.
(1)的解的全体所成集合称为它的解集合. 解集合是空集时就称方程组(1)无解.
A
a21 L
a22 L
L L
as1 as2 L
(1')
设 (c1,c2 ,L ,cn )是方程组(1)的任一解,则
§3.1 2020/3/29 消元法
数学与计算科学学院
a11c1 a12c2 L a1ncn b1
aaL2s11ccL11 LaaL2s22ccL22
L a2ncn LLLLL L asncn
L
b2 bs
(1)
先检查(1)中 x1 的系数,若a11,a21,L ,as1 全为零, 则 x1没有任何限制,即x1 可取任意值,从而方程组
(1)可以看作是 x2 ,L , xn的方程组来解.
§3.1 2020/3/29 消元法
数学与计算科学学院
如果 x1的系数不全为零,不妨设,a11 0. 分别把第一个方程 ai1 的倍加 到第i个方程 (i 2,L , .s)
L
b2 bs
(1)
简便起见,不妨设把第二个方程的k倍加到第一个 方程得到新方程组(1').
(a11 ka21 ) x1 (a12 ka22 ) x2 L (a1n ka2n )xn b1 kb2
a21 x1 a22 x2 L a2n xn b2 LLLLLLLLLLL
2.方程组的解
设 k1, k2 ,L , kn 是 n 个数,如果x1, x2 ,L , xn 分别用 k1, k2 ,L , kn 代入后,(1)中每一个式子都变成恒等式, 则称有序数组 (k1, k2 ,L , kn ) 是(1)的一个解.
(1)的解的全体所成集合称为它的解集合. 解集合是空集时就称方程组(1)无解.
A
a21 L
a22 L
L L
as1 as2 L
大学线性代数课件线性方程组第四章 线性方程组
4 4
1 2 2 1 1 0 2 53
0
1
2
4
3
0
1
2
4 3
0 0 0 0 00 0 0
对应于矩阵
1 0 0
0 1 0
2 2 0
5
4 3
0
3
的同解方程组为
x 1
x 2
2x 3
2x 3
5 3
4 3
x 4
x 4
0 0
x =2 1
x 3
5 3
x 4
移项得, xx12=2x32x3
然而,许多线性方程组并不能同时满足这两个条件. 为此,必须讨论一般情况下线性方程组的求解方法和解 的各种情况.
§2 齐次线性方程组
一般地,齐次线性方程组可以写成
a11x1 a12 x2 a1n xn 0,
a21x1 a22 x2 a2n xn
0,
am1x1 am2 x2 amn xn 0.
(1)
am1x1 am2 x2 amnxn bm.
其中x1, x2,, xn是n个未知量,
m是方程组所包含的方程 个数,
aij (i 1,2,, m; j 1,2,, n)称为方程组的系数 ,
bj ( j 1,2,, m)称为常数项 .
A
aij
,
mn
x1
x
x2
,
xn
n1
x1 7x2 5x3 2, 2x1 5x2 3x3 3,
3x1 2x2 8x3 17.
解:对增广矩阵进行行初等变换
A
b
1 2
7 5 5 3
2 1 7 3 0 19
5 13
2 1
【2021】线性代数ppt第三章 线性方程组.完整资料PPT
注: 倍乘变换必须用非零的数去乘 非齐次线性方程组的相容性
(space of solutions)
某一个方程(multiplying by a
nonzero scalar).
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0= 1
a11 a12 … a1n
x1
b1
设A =
a21 a22 … a2n …………
,
x=
x2 …
, b=
b2 …
,
am1 am2 … amn
xn
bm
vector of unknowns vector of constants
a11x1+a12x2+…+a1nxn = b1
则
a21x1+a22x2+… a2nxn = b2 …………………
r2 = r1 = n
12112 00143 00000
第三章 线性方程组
§3.2 齐次线性方程组
关于自由未知量的选择还可参见例题3.4 这是一个难点
作业: P105 (A) 一、(1) 预习3.2,3.3节
第三章 线性方程组
Ax = b.
am1x1+am2x2+…+amnxn = bm
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
a11 a12 … a1n
称A =
(space of solutions)
某一个方程(multiplying by a
nonzero scalar).
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
2. 阶梯形线性方程组的有三种基本类型.
例如:
2x1+3x2 x3 = 1 2x2+x3 = 2 0= 1
a11 a12 … a1n
x1
b1
设A =
a21 a22 … a2n …………
,
x=
x2 …
, b=
b2 …
,
am1 am2 … amn
xn
bm
vector of unknowns vector of constants
a11x1+a12x2+…+a1nxn = b1
则
a21x1+a22x2+… a2nxn = b2 …………………
r2 = r1 = n
12112 00143 00000
第三章 线性方程组
§3.2 齐次线性方程组
关于自由未知量的选择还可参见例题3.4 这是一个难点
作业: P105 (A) 一、(1) 预习3.2,3.3节
第三章 线性方程组
Ax = b.
am1x1+am2x2+…+amnxn = bm
通解:线性方程组全部解的表达式
同解方程组(having the same set of solutions);
第三章 线性方程组
§3.1 线性方程组和Gauss消元法
a11 a12 … a1n
称A =
高等代数课件PPT之第3章线性方程组
该方程组的一个解;而该方程组的解的全体称为
它的解集合;
若两个方程组有相同的解集合,称它们是同解的.
第3章 线性方程组
消元法 n 维向量空间 向量组的线性相关性 矩阵的秩 线性方程组有解判别定理 线性方程组解的结构
§3.1 高斯消元法
高斯消元法是中学所讲的用消元法解二元、三元 线性方程组的发展. 基本思想是:逐次把方程组中 一部分方程变成含未知量较少的方程,直到得到一 个一元一次方程,进而求出方程组的解.
a11 a12 a1n b1
a21
a22
a2n
b2
as1
as2
asn
bs
消元法解方程组的过程 就是对数表中的行作变 换的过程;一个方程组 对应着一张数表
2. 矩阵及其初等变换
(1)矩阵的定义 数域P上的s×n个数排成的s行(横的)
n列(纵的)的数表
a11
a12
a1n
a21
a22
a2
第3章 线性方程组
上一章利用行列式理论解决了一类特殊的线 性方程组 (方程个数与未知量个数相等且系 数行列式不为零)的求解问题.本章讨论一般 的线性方程组,即形如
a11 x1 a12 x2 a1n xn b1
a21x1a22 as1 x1 as2
x2 x2
a2n xn asn xn
a21c1
a22c2
a2ncn b2
as1c1
as2c2
asncn bs
可见(c1 ,c2,…,cn)也为(**)的解;同理可证(**)的任
一解也为也为(*)的解.因此(**)与(*)同解. 由引例可见,对方程组施行初等变换,只是系数和
常数项在变,与未知量x1 ,x2,…,xn无关. 因此可以擦去 未知量,只写出其系数和常数项——一张数表:
它的解集合;
若两个方程组有相同的解集合,称它们是同解的.
第3章 线性方程组
消元法 n 维向量空间 向量组的线性相关性 矩阵的秩 线性方程组有解判别定理 线性方程组解的结构
§3.1 高斯消元法
高斯消元法是中学所讲的用消元法解二元、三元 线性方程组的发展. 基本思想是:逐次把方程组中 一部分方程变成含未知量较少的方程,直到得到一 个一元一次方程,进而求出方程组的解.
a11 a12 a1n b1
a21
a22
a2n
b2
as1
as2
asn
bs
消元法解方程组的过程 就是对数表中的行作变 换的过程;一个方程组 对应着一张数表
2. 矩阵及其初等变换
(1)矩阵的定义 数域P上的s×n个数排成的s行(横的)
n列(纵的)的数表
a11
a12
a1n
a21
a22
a2
第3章 线性方程组
上一章利用行列式理论解决了一类特殊的线 性方程组 (方程个数与未知量个数相等且系 数行列式不为零)的求解问题.本章讨论一般 的线性方程组,即形如
a11 x1 a12 x2 a1n xn b1
a21x1a22 as1 x1 as2
x2 x2
a2n xn asn xn
a21c1
a22c2
a2ncn b2
as1c1
as2c2
asncn bs
可见(c1 ,c2,…,cn)也为(**)的解;同理可证(**)的任
一解也为也为(*)的解.因此(**)与(*)同解. 由引例可见,对方程组施行初等变换,只是系数和
常数项在变,与未知量x1 ,x2,…,xn无关. 因此可以擦去 未知量,只写出其系数和常数项——一张数表:
高等代数课件--第三章 线性方程组§3.1 消元法
增广矩阵
a11 a 21 A a s1
a12 a 22 as 2
a1 n b1 a 2 n b2 a sn bs
二、消元法
1.引例 解线性方程组
2 x1 x 2 3 x 3 1 4 x1 2 x 2 5 x 3 4 2x x 2x 5 1 2 3
三、齐次线性方程组的解
定理1 在齐次线性方程组
a11 x1 a12 x 2 a1 n x n 0 a 21 x1 a 22 x 2 a 2 n x n 0 a s1 x1 a s 2 x 2 a sn x n 0
第三章 线性方程组
——解决一般的线性方程组的解的 相关问题,解的结构问题
§3.1 消元法
一、一般线性方程组
1.一般线性方程组是指形式为
a11 x1 a12 x 2 a1 n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 a s1 x1 a s 2 x 2 a sn x n bs
成恒等式,则称有序数组(k1, k2,…, kn)是(1)的
一个解.
解集合 方程组(1)的解的全体所成集合称 为它的解集合.
解集合是空集时就称方程组(1)无解.
3.同解方程组
如果两个线性方程组有相同的解集合, 则称它们是同解的
4.方程组的系数矩阵与增广矩阵
系数矩阵
a11 a 21 A a s1 a12 a 22 as 2 a1 n a2 n a sn
方程.于是(1)就变成
a11 x1 a12 x 2 a1 n x n b1 a 22 x 2 a 2 n x n b2 a s 2 x 2 a sn x n bs
线性代数课件PPT 第3章.线性方程组
2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT
a2
M
an
3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。