2015阿米妙收统一对外沟通版

合集下载

先正达实验报告

先正达实验报告

先正达水稻病虫害防治技术示范方案(2011)1、试验目的展示先正达水稻病虫害防治技术对水稻主要病虫害的综合防治效果以及对水稻的增产效益。

2、示范地点选择示范区应选择在地势平坦,土壤性质、肥力均匀一致,水稻生长整齐的种植区进行,种植方式不限。

3、试验示范设计设四个处理:处理一:锐胜+适乐时+福戈+爱苗+顶峰组合方案(简称“福苗”组合)。

用药方案为锐胜+适乐时种子包衣,福戈防治二化螟、稻纵卷叶螟和白背飞虱,爱苗防治纹枯病、稻曲病,稻瘟灵(三环唑)防治稻瘟病,顶峰防治稻飞虱。

处理二:锐胜+适乐时+福戈+阿米妙收+顶峰组合方案(简称“福妙”组合)。

用药方案为锐胜+适乐时种子包衣,福戈防治二化螟、稻纵卷叶螟和白背飞虱,阿米妙收防治纹枯病、稻曲病和稻瘟病,顶峰防治稻飞虱。

方案详细内容见附件。

处理三:常规用药方案,各地按常规用药技术自行确定。

处理四:空白对照区。

各示范点可根据当地病虫害发生实际情况调整喷药时间和次数,但必须保证在先正达方案中爱苗(阿米妙收)和福戈的施用次数各处理分别不少于 2 次,且爱苗(阿米妙收)用药在破口前和齐穗期,福戈用药在分蘖盛末期和破口前,其它时间是否用药各地根据实际情况确定。

要求四个处理安排在一个集中的示范区内。

处理一和处理二示范面积各5亩,处理三面积1亩,空白对照区0.5亩。

4、药剂喷施方法:要求统一喷雾器、喷液量。

喷液量不少于每亩30kg,用弯喷头喷细雾。

施药时期:防治稻纵卷叶螟在二龄幼虫高峰期(束尖期),防治二化螟在一二龄幼虫高峰期(枯鞘期),如需连续施药,间隔期14天左右。

具体用药时间各地植保站根据病虫发生情况确定。

5、效果评价5.1药效评价每次药后调查1次主要病虫害的防效,按农业部农药检定所《农药田间药效试验准则》进行。

5.1.1蓟马防效:播种后35-45天调查。

每处理区5点取样,每点25cm²X 25cm²,(每小区50根苗)调查叶片卷尖率,计算防治效果。

10.1007_s00253-010-2443-4

10.1007_s00253-010-2443-4

BIOTECHNOLOGICAL PRODUCTS AND PROCESS ENGINEERINGEffects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell culturesJiang-Lin Zhao &Li-Gang Zhou &Jian-Yong WuReceived:7September 2009/Revised:6January 2010/Accepted:6January 2010/Published online:2March 2010#Springer-Verlag 2010Abstract This study examined the effects of biotic and abiotic elicitors on the production of diterpenoid tanshi-nones in Salvia miltiorrhiza cell culture.Four classes of elicitors were tested,heavy metal ions (Co 2+,Ag +,Cd 2+),polysaccharides (yeast extract and chitosan),plant response-signaling compounds (salicylic acid and methyl jasmonate),and hyperosmotic stress (with sorbitol).Of these,Ag (silver nitrate),Cd (cadmium chloride),and polysaccharide from yeast extract (YE)were most effective to stimulate the tanshinone production,increasing the total tanshinone content of cell by more than ten-fold (2.3mg g -1versus 0.2mg g -1in control).The stimulating effect was concentration-dependent,most significant at 25μM of Ag and Cd and 100mg l -1(carbohydrate content)of YE.Of the three tanshinones detected,cryptotanshinone was stimulat-ed most dramatically by about 30-fold and tanshinones I and IIA by no more than 5-fold.Meanwhile,most of the elicitors suppressed cell growth,decreasing the biomass yield by about 50%(5.1–5.5g l -1versus 8.9g l -1in control).The elicitors also stimulated the phenylalanine ammonia lyase activity of cells and transient increases in the medium pH and conductivity.The results suggest that the elicitor-stimulated tanshinone accumulation was a stress response of the cells.Keywords Salvia miltiorrhiza .Cell culture .Tanshinones .Elicitors .Stress responseIntroductionSalvia miltiorrhiza Bunge (Lamiaceae),called Danshen in Chinese,is a well-known and important medicinal plant because its root is an effective herb for treatment of menstrual disorders and cardiovascular diseases and for the prevention of inflammation (Tang and Eisenbrand 1992).As its Chinese name refers,Danshen root is characterized by the abundance of red pigments which are mainly ascribed to numerous diterpene quinones generally known as tanshinones,e.g.,tanshinone I (T-I),tanshinone-IIA (T-IIA),and T-IIB,isotanshinone I and II,and cryptotanshinone (CT).Tanshinones constitute a major class of bioactive compounds in S .miltiorrhiza roots with proven therapeutic effects and pharmacological activities (Wang et al.2007).Danshen in combination with a few other Chinese herbs is an effective medicine widely used for the treatment of cardiovascular diseases and used as an emergency remedy for coronary artery disease and acute ischemic stroke.According to WHO statistics,cardiovas-cular diseases are and will continue to be the number one cause of death in the world (www.who.int/cardiovascular_diseases ).It is of significance to develop more efficient means for the production of Danshen and its active constituents.Although field cultivation is currently the major produc-tion means for Danshen and most other plant herbs,plant tissue cultures provide more well-controlled and sustainable systems for efficient production of desired bioactive compounds of the herb.Plant tissue cultures are the most useful and convenient experimental systems for examiningJ.-L.Zhao :L.-G.Zhou (*)Department of Plant Pathology,China Agricultural University,Beijing 100193,China email:lgzhou@J.-Y .Wu (*)Department of Applied Biology and Chemical Technology,The Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong email:bcjywu@.hkAppl Microbiol Biotechnol (2010)87:137–144DOI 10.1007/s00253-010-2443-4various factors on the biosynthesis of desired products and for exploring effective measures to enhance their produc-tion.The importance of Danshen for traditional and modern medicines has promoted the long-lasting research interest in the development of tiorrhiza tissue cultures for production of bioactive compounds for more than two decades.In an early study,Nakanishi et al.(1983)induced several cell lines from plant seedlings and screened out a cell line capable of producing significant amounts of CT and another diterpene,ferruginol.In later studies,the group performed a fuller evaluation and optimization of the medium for cell growth and CT production and,eventually,derived an effective production medium with a simpler composition(ten components)than the original Murashige and Skoog(MS) medium(about20components),achieving a high CT yield of 110mg l-1(Miyasaka et al.1987).Many recent studies have been focused on hairy root cultures of tiorrhiza transformed by Agrobacterium rhizogenes(Hu and Alfermann1993;Chen et al.2001)and by our group (Zhang et al.2004;Ge and Wu2005;Shi et al.2007).Most of the bioactive compounds in medicinal plants belong to secondary metabolites which are usually less abundant than primary metabolites in the plants.Since the accumulation of secondary metabolites in plants is a common response of plants to biotic and abiotic stresses, their accumulation can be stimulated by biotic and abiotic elicitors.Therefore,elicitation,treatment of plant tissue cultures with elicitors,is one of the most effective strategies for improving secondary metabolite production in plant tissue cultures(Chong et al.2005;Smetanska2008).The most common and effective elicitors used in previous studies include the components of microbial cells especially poly-and oligosaccharides(biotic)and heavy metal ions, hyperosmotic stress,and UV radiation(abiotic),and the signaling compounds in plant defense responses such as salicylic acid(SA)and methyl jasmonate(MJ;Zhou and Wu2006;Smetanska2008).Some of these elicitors,yeast extract(mainly the polysaccharide fraction),silver ion Ag+, and hyperosmotic stress(by an osmoticum)have also been applied and shown effective to enhance the production of tanshinones in tiorrhiza hairy root cultures(Chen et al.2001;Zhang et al.2004;Shi et al.2007).To the best of our knowledge,only a few studies have been documented on the effects of elicitors,YE,SA,and MJ,on the secondary metabolite production in Agro-bacterium tumefaciens transformed tiorrhiza cell cultures from one research group(Chen and Chen1999, 2000)but not any study in normal cell cultures.The present study focuses on the effects of common biotic and abiotic elicitors including polysaccharides,heavy metal ions, SA and MJ,and osmotic stress(with sorbitol)on the growth and accumulation of three major tanshinones T-I, T-IIA,and CT in suspension culture of normal tior-rhiza cells.In addition to the effects of various elicitors on the total tanshinone content of cells,the study will examine the effects on different tanshinone species and the potential relationship to plant stress response.Material and methodsCallus induction and cell suspension cultureYoung stem explants of tiorrhiza Bunge were collected from the botanical garden at the Institute of Medicinal Plant Development,Chinese Academy of Med-ical Sciences,Beijing,China,in May2005.The fresh explants were washed with tap water,surface-sterilized with 75%ethanol for1min,and then soaked in0.1%mercuric chloride for10min and rinsed thoroughly with sterilized water.The clean and sterilized explants were cut into∼0.5-cm segments and placed on solid MS medium(Murashige and Skoog1962)supplemented with sucrose(30g l-1),2,4-D(2mg l-1)and6-BA(2mg l-1)to induce callus formation. The callus culture of tiorrhiza was maintained on a solid,hormone-free MS medium with8g l-1agar and 30g l-1sucrose at25°C in the dark and subcultured every 4weeks.The culture was deposited in Lab Y1210at The Hong Kong Polytechnic University with a collection number of Danshen cell-1.All experiments in this study were performed in suspension culture of tiorrhiza cells in a liquid medium of the same composition as for the solid culture but excluding agar.The cell suspension culture was maintained in shake-flasks,i.e.,125-ml Erlenmeyer flasks on an orbital shaker operated at110–120rpm,at 25°C in the dark.Each of the flasks was filled with25ml medium and inoculated with0.3g fresh cells from18–21-day-old shake–flask culture.Elicitor preparation and administrationEight elicitors were tested,each at three concentrations,in the initial elicitation experiments(Table1).These are representative of the four major classes of elicitors for the induction of plant responses and the stimulation of secondary metabolite production in plant tissue cultures (Zhou and Wu2006;Smetanska2008).All elicitors except MJ were prepared as a concentrated stock solution in water and autoclaved at121°C for15min,and stored at4°C in a refrigerator prior to use.Yeast elicitor(YE)was the polysaccharide fraction of yeast extract(Y4250,Sigma, St.Louis,MO,USA)prepared by ethanol precipitation as described previously(Hahn and Albersheim1978;Ge and Wu2005).In brief,yeast extract was dissolved in distilled water(20g/100ml)and then mixed with400ml of ethanol and allowed to precipitate for4days at4°C in arefrigerator.The precipitate was redissolved in100ml of distilled water and subjected to another round of ethanol precipitation.The final gummy precipitate was dissolved in 50ml of distilled water and stored at4°C before use.The concentration of YE was represented by total carbohydrate content which was determined by the Anthrone test using sucrose as a reference.Chitosan solution was prepared by dissolving0.5g crab shell chitosan(C3646,Sigma)in1ml glacial acetic acid at55–60°C for15min,and then the final volume was adjusted to50ml with distilled water and the pH adjusted to5.8with NaOH(Prakash and Srivastava 2008).MJ(Cat.39,270-7,Sigma-Aldrich)was dissolved in 95%ethanol and sterilized by filtering through a microfilter (0.2µm).SA(10,591-0,Sigma-Aldrich),sorbitol(S3755, Sigma),and the salts of heavy metals including cobalt chloride(C8661,Sigma-Aldrich),silver nitrate(S7276, Sigma-Aldrich),and cadmium chloride(C5081,Sigma-Aldrich)were dissolved in distilled water to the desired concentrations and adjusted to pH5.8.Elicitor treatment was administered to the shake–flask culture of tiorrhiza cell on day18,which was about 2–3days before reaching the stationary phase.This time point is usually favorable for elicitation when the biomass concentration is high(compared with earlier days of growth),and the cell metabolism is still active(compared with that during or after stationary phase;Buitelaar et al. 1992;Cheng et al.2006).Each of the elicitor solutions was added into the culture medium with a micropipette at the desired concentration.After the elicitor addition,the shake–flask culture of cells was maintained for another7days and then harvested for analysis.All treatments were performed in triplicate,and the results were averaged.After the initial experiments on the eight elicitors,the three most effective ones,Ag(25µM),Cd(25µM),and YE(100mg l-1)were applied in the following experiments on the time courses of elicitor-treated cell growth and tanshinone accumulation in the tiorrhiza cell culture.Measurement of cell weight,sucrose concentration, medium pH,and conductivityThe cells were separated from the liquid medium by filtration.The cell mass on the filter paper was rinsed thoroughly with water and filtered again,and blotted dry by paper towels and then dried at50°C in an oven to attain the dry weight.Sucrose concentration in the liquid medium was determined by the Anthrone test using sucrose as a reference(Ebell1969),and the medium pH and conduc-tivity were measured with the respective electrodes on an Orion720A+pH meter(Thermo Fisher Scientific,Inc., Beverly,MA,USA)and a CD-4303conductivity meter (Lutron,Taiwan),respectively.Measurement of PAL activityPhenylalanine ammonia lyase(PAL)was extracted from fresh tiorrhiza cells with borate buffer(pH8.8).The cells were ground in the buffer(0.15g ml-1)for2min with a pestle and mortar on ice,and then centrifuged at10,000rpm and4°C for20min to obtain a solid-free extract.The PAL activity was determined based on the conversion of L-phenylalanine to cinnamic acid as described by Wu and Lin(2002).Analysis of tanshinone contentsThe cell mass from culture was dried and ground into powder and extracted with methanol/dichloromethane(4:1, v/v,10mg ml-1)under sonication for60min.After removal of the solid,the liquid extract was evaporated to dryness and redissolved in methanol/dichloromethane(9:1,v/v). Tanshinone content was determined by high performance liquid chromatography(HPLC)on a HP1100system using C18column,acetonitrile/water(55:45,v/v)as the mobile phase,and UV detection at275nm as described previously (Shi et al.2007).Three tanshinone species CT,T-I,and T-IIA were detected and quantified with authentic standards obtained from the Institute for Identification of Pharmaceu-tical and Biological Products(Beijing,China).Total tanshinone content is the total content of the three tanshinones in the cells.Tanshinone content in the culture medium was negligible and not determined.ResultsCell growth and tanshinone accumulation in tiorrhiza cell cultureThe time course of tiorrhiza cell growth exhibited a lag phase or slow growth period in the first3–6days, a rapid,linear growth period between day9–18,and aTable1Elicitors and concentrations tested in the initial experiments Elicitors Unit ConcentrationC1C2C3Cobalt chloride(Co)µM 5.02550 Silver nitrate(Ag)µM 5.02550 Cadmium chloride(Cd)µM 5.02550 Salicylic acid(SA)µM1050100 Methyl jasmonate(MJ)µM1050100 Yeast elicitor(YE)mg l-150100200 Chitosan(CH)mg l-150100200 Sorbitol(SO)g l-152550stationary or declining phase in the later days,reaching the maximum biomass concentration (8.1g l -1)around day 21.The total tanshinone content of cells remained at a very low level from days 1–12and then increased steadily from days 12–27to a maximum of 0.16mg g -1.A significant portion (65%)of the tanshinone accumulation or content increase occurred during the stationary phase from days 21–27(Fig.1a ),which is characteristic of secondary metabolite production in a batch culture process.The time course of sugar (sucrose)concentration (Fig.1b )was nearly sym-metrical to that of cell growth,indicating a direct correlation of the cell growth (or biomass production)to sugar consumption.As the major carbon source,sugar was required for the S .miltiorrhiza cell growth,and when it was depleted (around day 21),the cell growth stopped,and the biomass concentration began to drop.As seen from Fig.1b ,the medium pH showed a notable drop in the first 3days (due to consumption of NH 4+and release of protons)and a gradual increase after day 6(due to consumption of nitrate NO 3-)(Morard et al.1998).Effects of various elicitors on cell growth and tanshinone productionFigure 2shows the effects of elicitor treatments on the cell growth and tanshinone accumulation in S .miltiorrhiza cell cultures,which were dependent both on the elicitor species and elicitor dose.As seen from Fig.2a ,most of the elicitor treatments except Co 2+and sorbitol at lower concentrations suppressed the cell growth to a lower biomass concentra-tion than that of the untreated control culture,and the growth suppression was more severe at a high elicitor dose.On the other hand,most of the elicitor treatments except Co 2+,sorbitol,SA,and MJ at lower concentrations increased the total tanshinone content of cell to a higher level than in the control (Fig.2b ).Overall the results indicated that the enhancement of tanshinone accumulation by an elicitor treatment concurred with a notable suppres-sion of cell growth or biomass production.Nevertheless,some of the elicitors had a much stronger stimulating effect on the tanshinone accumulation than the suppressing effect on the cell growth.In particular,Ag and Cd both at 25μM,and YE at 100mg l -1increased the total tanshinone content to 2.30mg g -1,about 11.5-fold versus that of the control (0.20mg g -1),but decreased the biomass production by no more than 50%(5.1–5.5g l -1versus 8.9g l -1).Another three elicitors,SA,MJ (both at 50μM),and sorbitol (50g l -1)increased the total tanshinone content by 2–3-fold but decreased the biomass by 30–45%compared with the control.The stimulating effect of chitosan on tanshinone accumulation (about 6-fold)was stronger than SA,MJ,and sorbitol but much weaker than Ag,Cd,and YE,while its suppressing effect on the cell growth was as severe as Ag,Cd,and YE.In summary,the results indicate that Ag,Cd,YE are the most favorable elicitors for the tanshinone production in S .miltiorrhiza cell culture and were used in the following experiments.Figure 3shows the time courses of cell growth and tanshinone production after treatment with the three most effective elicitors Ag (25μM),Cd (25μM),and YE (100mg l -1)and the control culture.All three elicitor treatments caused a steady decline of biomass concentration from initially 8.5g l -1to 5.3g l -1on day 6while biomass in00.040.080.120.160.20246810TT content (mg g -1)C e l l b i o m a s s (g d w l -1)dw TTa4.85.1 5.45.76.001020304036912151821242730p HS u c r o s e (g l -1)Culture time (d)bSucrosepHFig.1Time courses of biomass and total tanshinone content (a ),residue sugar (sucrose)and medium pH (b )in S .miltiorrhiza cell cultures (error bars for standard deviations,n =3)246810C e l l b i o m a s s (g l -1)0.00.51.01.52.02.5Control AgCdSAMJYECH SOT T c o n t e n t (m g g -1)Elicitor treatmentCo Fig.2Effects of various elicitors on biomass growth (a )andtanshinone production (b )in S .miltiorrhiza cell cultures (elicitors added to cultures on day 18at three concentrations C1,C2,and C3as shown in Table 1,and cultures harvested on day 25;error bars for standard deviations,n =3)the control culture was increased during this period (Fig.3a ).In the meantime,the tanshinone content of cells in the three elicitor-treated cultures increased sharply and most rapidly by Ag (from 0.14to 1.98mg g -1),while that of control increased slightly (from 0.14to 0.21mg g -1;Fig.3b ).The volumetric total tanshinone yields (the products of total tanshinone content and cell dry weight)were 1.9mg l -1in the control,and 9.2mg l -1,10.7mg l -1and 11.7mg l -1in cultures treated with 100mg l -1YE,25μM Cd,and Ag,respectively (on day 6).Another test was performed on the effects of two and three elicitors in combinations in the S .miltiorrhiza cell culture.As shown in Fig.4,the tanshinone content was increased about 20%with either two elicitors and about 40%with all three elicitors in combination compared with that with a single elicitor.The results suggest an additive or synergistic effect of these elicitors on the tanshinone accumulation in the cells.However,the combined use of two or three elicitors also suppressed the cell growth (biomass)more severely than with a single elicitor.Effects of elicitor treatments on different tanshinone species Of the three tanshinone species detected,CT was stimulated most significantly by all elicitors without exception;T-IIA was stimulated by most elicitors,and T-I was stimulated significantly only by chitosan but slightly stimulated or suppressed by other elicitors (Table 2).The highest CT content was about 2mg g -1(1,854–2,011μg g -1)in cellcultures treated with 25μM Ag and Cd,and 100mg l -1YE,about 31–34fold of the control level (60μg g -1),the highest T-I content 0.27mg g -1with 100mg l -1chitosan (3.4-fold of the control 80μg g -1)and the highest T-IIA content 0.37mg g -1with 25μM Cd (6-fold of the control 60μg g -1).As seen from the HPLC chromatograms (Fig.5),the cultures treated with the three different elicitors exhibited a similar profile with virtually identical major peaks.The experimental results do not suggest any specificity of particular tanshinone species to the type of elicitors,YE and chitosan as biotic polysaccharides,Cd and Ag as abiotic heavy metals,or SA and MJ as plant stress signaling pared with that of control,the HPLC profiles of elicitor-treated cultures also had three new unknown peaks appearing before the CT peak,between 10.0–11.5min and a high peak at 11.1min,which0.00.51.01.52.02.5123456T T c o n t e n t (m g g -1)Time after treatment (d)b4681012C e l l b i o m a s s (g l -1)Control Ag 25Cd 25YE 100aFig.3Time courses of biomass (a )and total tanshinone content (b )in S .miltiorrhiza cell cultures after treatment with Ag (25µM),Cd (25µM),and YE (100mg l -1;error bars for standard deviations,n =3)24681012345Cell dry weight (g l -1)T T c o n t e n t (m g g -1)Elicitor treatmentTTdwFig.4Effects of single and combined elicitors on S .miltiorrhiza cell growth and tanshinone accumulation (elicitors added to cell cultures on day 18at the same concentrations as in Fig.3,and cultures harvested on day 25;error bars for standard deviations,n =3)Table 2Effects of various elicitors on the accumulation of three tanshinones in S .miltiorrhiza cells Treatment aContent,μg/g (fold of content control)CTT-IT-IIA Control 59.9(1)81.6(1)57.6(1)Co-50263.7(4.4)67.5(0.83)55.5(0.96)Ag-251,817.5(30)71.0(0.87)225.8(3.9)Cd-251,854.0(31)80.3(0.98)369.0(6.4)SA-100390.0(6.5)78.5(0.96)72.8(1.3)MJ-100299.8(5.0)109.5(1.3)82.6(1.4)YE-1002,011.4(34)90.3(1.1)190.3(3.3)CH-100597.2(10)276.0(3.4)98.8(1.7)SO-50584.6(9.8)56.9(0.70)83.0(1.4)CT cryptotanshinone,T-I tanshinone I,T-IIA tanshinone-IIAaNumber after each elicitor symbol represents the elicitor concentra-tion as shown in Table 1may be ascribed to tanshinone relatives of higher polarity than CT induced by the elicitors.PAL activity,pH,and conductivity changes induced by elicitorsFigure 6shows the changes of intracellular PAL activity and medium pH and conductivity in the S .miltiorrhiza cell culture after the treatment by Ag (25μM),Cd (25μM),and YE (100mg l -1).The PAL activity of cells was stimulated by all three elicitors to the similar level,from 1.4-to 1.9-fold of the control level over 6days (Fig.6a ).PAL is a key enzyme at the entrance step in the phenylpropanoid pathway in plants,and its activity increase stimulated by the elicitors is suggestive of an enhanced secondary metabolism in the plant cells (Taiz and Zeiger 2006).The pH and conductivity of culture medium were also increased (to higher levels than those of the control)by all three elicitors but more significantly by YE (Fig.6b,c ).Most significant increases (differences from the control level)in the medium pH and conductivity were shown in the very early period from day 0–1.The increase in medium conductivity in the early period was most probably attributed to the release of potassium K +ion from the cells or K +efflux across the cell membrane (Zhang et al.2004).Transient medium pH increase (alkalinization)and K +efflux across the cell membrane are early and important events in the elicitation of plant responses and phytoalexin production (Ebel and Mithöer 1994;Roos et al.1998).The conductivity decline in the later period after day 1of Ag +and Cd 2+-treated cultures and the control cultures can be attributed to the consumption of inorganic and mineral nutrients in the culture medium (Kinooka et al.1991).Overall,the results here provide further evidence forthe01234R e l a t i v e P A L a c t i v i t yControl Ag CdYEa5.05.45.86.26.6M e d i u m p H b2.03.04.05.06.00246M e d i u m c o n d u c t i v i t y (m S )Time after treatment (d)cFig.6Time courses of PAL activity (a ),medium pH (b ),and conductivity (c )of S .miltiorrhiza cell cultures after elicitor treatments in comparison with the control (error bars for standard deviation,n =3)elicitor activities of Ag,Cd,and YE in stimulating the stress responses and secondary metabolism of the S. miltiorrhiza cells.DiscussionThe effects of various elicitors on tanshinone accumulation found here in the normal tiorrhiza cell cultures are in general agreement with those found in transformed cell and hairy root cultures of tiorrhiza.In transformed cell cultures(Chen and Chen1999),the CT accumulation was also stimulated significantly by YE but not by SA or MJ alone,and YE also inhibited the cell growth.The tanshinone(mainly CT)production in hairy root cultures was also enhanced significantly(3–4fold)by Ag(Zhang et al.2004)and YE(Shi et al.2007).In all these culture systems,CT was the major tanshinone species stimulated by various elicitor treatments.CT has been identified as a phytoalexin in tiorrhiza plant which plays a defense role against pathogen invasion of the plant(Chen and Chen 2000).In this connection,the stimulated CT accumulation by the elicitors may be a defense or stress response of the cells.CT was also the major diterpenoid produced by a normal tiorrhiza cell line which was initially grown in the MS medium and then transferred to a production medium containing only about half of the nutrient compo-nents of the MS medium(Miyasaka et al.1987).It is very possible that the improvement of CT yield in this production medium was also attributed,at least partially, to the stress imposed by the nutrient deficiency which suppressed growth but stimulated secondary metabolite accumulation.MJ or its relative jasmonic acid has been shown effective for stimulating a variety of secondary metab-olites in plant tissue cultures such as hypericin in Hypericum perforatum L.(St.John’s Wort)cell cultures (Walker et al.2002),paclitaxol(diterpenoid)and related taxanes in various Taxus spp.and ginsenosides in Panax spp.(Zhong and Yue2005),and bilobalide and ginkgo-lides in Ginkgo biloba cell cultures(Kang et al.2006). However,MJ showed only a moderate or insignificant stimulating effect on tanshinone accumulation in normal and transformed tiorrhiza cell cultures.The discrep-ancy suggests that the effects of various elicitors on secondary metabolite production in plant tissue cultures are dependent on the specific secondary metabolites.This argument is also supported by the much stronger stimu-lation of CT than T-I and T-IIA by most elicitors found in our tiorrhiza cell cultures.In addition,the hairy roots appeared more tolerant to the elicitor stress,and the growth was less inhibited by the elicitors or even enhanced in some cases,e.g.,by YE(Chen et al.2001)and sorbitol(Shi et al.2007).Moreover,sorbitol as an osmotic agent significantly stimulated the tanshinone accumulation(3–4folds)in tiorrhiza hairy root cultures,but not so significantly in the cell cultures.This shows that the elicitor activities for the same metabolites can vary with the tissue culture systems.In conclusion,the polysaccharide fraction of yeast extract and two heavy metal ions Ag+and Cd2+were potent elicitors for stimulating the tanshinone production in tiorrhiza cell culture.The stimulated tanshinone production by most elicitors was associated with notable growth suppression.CT was more responsive to the elicitors and enhanced more dramatically than another two tanshinones,T-I and IIA.The results from this study in the tiorrhiza cell cultures and from previous studies in hairy root cultures suggest that the cell and hairy root cultures may be effective systems for CT production, provided with the elicitors.As most of the elicitor chemicals are commercially available or can be readily prepared in the laboratory and easily administered to the cell and root cultures,they are suitable for practical applications in the laboratory or large-scale production. Acknowledgements This work was supported by grants from The Hong Kong Polytechnic University(G-U502and1-BB80)and the China Hi-Tech Research and Development Program(2006AA10A209).ReferencesBuitelaar RM,Cesário MT,Tramper J(1992)Elicitation of thiophene production by hairy roots of Tagetes patula.Enzyme Microb Technol14:2–7Chen H,Chen F(1999)Effects of methyl jasmonate and salicylic acid on cell growth and cryptotanshinone formation in Ti transformed Salvia miltiorrhiza cell suspension cultures.Biotechnol Lett 21:803–807Chen H,Chen F(2000)Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures.Plant Cell Rep19:710–717Chen H,Chen F,Chiu FCK,Lo CMY(2001)The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza.Enzyme Microb Technol28:100–105Cheng XY,Zhou HY,Cui X,Ni W,Liu CZ(2006)Improvement of phenylethanoid glycosides biosynthesis in Cistanche deserticola cell suspension cultures by chitosan elicitor.J Biotechnol 121:253–260Chong TM,Abdullah MA,Lai QM,Nor’Aini FM,Lajis NH(2005) Effective elicitation factors in Morinda elliptica cell suspension culture.Process Biochem40:3397–3405Ebel J,Mithöer A(1994)Early events in the elicitation of plant defence.Planta206:335–348Ebell LF(1969)Variation in total soluble sugars of conifer tissues with method of analysis.Phytochemistry8:227–233Ge XC,Wu JY(2005)Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+and yeast elicitor.Plant Sci168:487–491。

初中作文必备[7篇]

初中作文必备[7篇]

初中作文必备[7篇]初中作文篇1“袅袅兮秋风,洞庭波兮木叶下。

”夏去秋来,大自然循环往复,从未止步。

我们人类的探索何尝不是如此。

无论遇到什么困难,我们都要不断探索。

中国的进步浩浩荡荡,势不可挡,在五千年的历史长河中,中国人民以自己的聪明智慧,凭自己的顽强不屈的精神,为人类做出了不可磨灭的贡献。

每次浩劫前,我们的英雄从未止步,如中华人民共和国的主要缔造者毛主席;解决中国几亿人吃饭困难的院士袁隆平;研制出埃博拉病毒疫苗的院士陈薇在困难面前,在未知领域面前,他们不断探索,从未止步。

我们要勇敢的接过这根光荣而又沉重的接力棒,继续奋斗,永不止步。

无论遇到什么困难,我们都会奔向家的港湾。

“秋风起兮白云飞,草木黄落兮雁南归。

”大雁排成美丽的十四行,在湛蓝的天空翱翔,南来北往,它们在干什么?是什么力量让它们不惧困难,飞越一座座高峰,穿过人类精心设计的一个个捕猎点,那是对家乡的执念,那是对亲朋的无限挂牵。

大雁如此,我们更是不能割舍对家的爱恋。

“每逢佳节倍思亲。

”归心似箭的游子,从未停止回家团圆的`脚步。

每年春季,中国人都有一次浩浩荡荡的大规模迁徙活动,由南到北,由北到南,抛到一边劳累与烦恼,此刻,归途成了风景,因为家才是心中的港湾。

无论遇到什么困难,我都要奔向终点。

一场大雨突然而至,一只小蝴蝶未及时躲闪,翅膀被雨水打湿了,惊魂未定的它,拼尽全力,扇动翅膀,终于可以停落在窗的边沿。

雨过天晴,它又在花丛中翩翩起舞,陶醉于五彩斑斓的美景中。

试想,如果它不与暴雨搏击,又怎能看到雨后这美丽的彩虹。

学习中,生活中,我们会遇到许多的困难,如一道难解的数学题,一篇无法下笔的作文,大量需要完成的作业如果我们被这些小困难吓到,那心中的梦想怎能实现?“心若在,梦就在。

”只要你步履坚定,一切困难就是毫不起眼的小泥丸。

从未止步,不要止步。

初中作文篇2这桃花开了,落了,一年复着一年,一天复着一天。

花开啦,花落啦。

花开啦,花落啦。

花开啦,花又落啦。

阿米妙收

阿米妙收

阿米妙收“阿米妙收”由嘧菌酯和苯醚甲环唑混配而成的悬浮剂,兼具保护和治疗活性,并且非常适于抗性管理和病害综合治理。

杀菌谱广,对子囊菌、担子菌、半知菌和卵菌引起的病害如白粉病、霜霉病、锈病、疫病、稻瘟病、黑穗病、叶斑病和根、茎病害均有很好的效果阿米妙收是一种广谱的治疗性杀菌剂。

该产品用途广,安全性好。

可广泛用于西瓜、葡萄、蔬菜、花卉等各种作物的蔓枯病、炭疽病、白粉病、霜霉病、疫病等各种真菌性病害的防治,且有明显的营养作用。

325克/升嘧菌酯/苯醚甲环唑悬浮剂属内吸性广谱杀菌剂,兼具保护和治疗活性,用于叶面喷雾防治多种作物上的多种叶片和果实病害。

该产品由两种具有不同作用机制的高效杀菌剂混配而成,非常适于抗性管理和病害综合治理。

该产品对子囊菌、担子菌、半知菌和卵菌引起的病害如白粉病、霜霉病、锈病、疫病、稻瘟病、黑穗病、叶斑病和根、茎病害有很好的效果。

图片:未命名.jpg图片:{FB3B4127-3125-47BC-9B36-7332EE2FAE93}0.jpg先正达的新产品——阿米妙收?作者:先正达(中国)投资有限公司 ??时间:2007-7-11 16:11:24??????? 1.产品概述:??? “阿米妙收”由嘧菌酯和苯醚甲环唑混配而成的悬浮剂,兼具保护和治疗活性,并且非常适于抗性管理和病害综合治理。

杀菌谱广,对子囊菌、担子菌、半知菌和卵菌引起的病害如白粉病、霜霉病、锈病、疫病、稻瘟病、黑穗病、叶斑病和根、茎病害均有很好的效果。

阿米西达 + 世高 = 阿米妙收??? 2.产品特点:??? ●杀菌谱广,一药多用??? ●兼具保护和治疗活性,使用时间灵活??? ●内吸性强,持效期长??? ●增强作物抗逆能力,改善作物品质和产量??? 2-1.杀菌谱广,一药多用??? ●子囊菌,如白粉、黑斑、叶斑??? ●担子菌,如锈病、丝核立枯病??? ●半知菌,如早疫??? ●卵菌纲,如霜霉,晚疫??? ★最广谱的杀菌剂,应用作物多??? ★不同作用机理,强强联合??? ★兼具保护和治疗活性,使用时间灵活??? ★内吸性强,持效期长??? ★嘧菌酯的内吸传导??? 木质部内吸传导:有效成分通过木质部,随着水分向上传导??? ★QoI类杀菌剂的内吸性比较?>10%通过叶片吸收叶片渗透木质部传导蒸腾作用阿米西达是是是不醚菌酯是是不是吡唑醚菌酯不是不不??? ★内吸性强,持效期长??? 世高脂溶性好,可以长时间附着在叶片上,对叶斑病原菌等穿透力稍差的孢子效果好;??? 阿米西达水溶性好,可以随水分通过木质部传导,对锈病病原菌等穿透力强的孢子效果好。

几种药剂防治水稻纹枯病药效比较试验

几种药剂防治水稻纹枯病药效比较试验

一次施药时,水稻处于分蘖末期,纹枯病处于发病初期;
第二次施药时水稻处于破口初期。各处理按试验设计用
量,折算成小区药液用量均匀喷雾。施药时加入 20%氯
虫苯甲酰胺 15mL、50%噻嗪酮 60g 防治卷叶虫和稻飞虱。
1.4 调查、记录和测量方法
1.4.1 气象及土壤资料 施药当天,8 月 26 日,天气晴
表 1 不同处理防治水稻纹枯病示范结果
处理 阿特米 40mL 拿敌稳 15g 阿米妙收 40mL 爱苗 20mL 己唑醇 20mL 井冈霉素 200mL
ck
总株数
1级
363
125
311
127
304
45
350
121
350
129
342
130
361
52
3级
5级
7级
9级
病指(%) 防效(%)
天,平均温度 28.8℃,气温变化区间在 25.7~34.2℃;9 月 4
日 ,天 气 为 晴 天 ,平 均 温 度 25.7℃ ,变 化 区 间 在 21.8~
31.5℃。试验期间没有出现对试验结果影响极大的恶劣
天气,变化区间在 20.1~37.0℃,相对湿度为 61%~85%,8
月 31 日、9 月 11 日下中至大雨,6d 降了小雨,其余天气均
安徽农学通报,Anhui Agri.Sci.Bull.2015,21(03-04)
85
几种药剂防治水稻纹枯病药效比较试验
徐善忠 1 龙卫平 1 万慧敏 2 邹香元 3 杨唐柏 3 刘雪兰 1 蒋 璐 2
(1 泰和县农技推广中心,江西泰和 343700;2 禾市农业综合服务站,江西泰和 343700;3 冠朝农业综合服务站,江西泰和 343700)

阿米妙收施用对水稻产量和品质影响的研究 扬州试验计划

阿米妙收施用对水稻产量和品质影响的研究 扬州试验计划

处理 CK1
药剂
常规药剂 40ml/亩
(每时乐)
剂量
T1 阿米妙收 40ml/亩 破口前 7 天 齐穗
CK0 清水对照
注:每小区面积在 100m2 以上。
第一次用药 破口前 7 天
要求 3 个处理,3 次重复共 9 个小区,随机去组排列,在同一块田里,具
体各小区面积可根据田块大小而定。各小区保持地块平整度一致,水肥条件均
阿米妙收和先正达稻之道方案对水稻产量和品质影响的研究 实施方案
研究组成员:
试验单位:江苏省扬州大学农学院 委托单位:先正达(中国)投资有限公司
扬州大学农学院
先正达(中国)投资有限公司
项目背景:
阿米妙收是由 20%嘧菌酯和 12.5%苯醚甲环唑混配而成的悬浮剂,。阿米妙 收是新一代的多功能杀菌剂,是源自自然的新的化合物,具有双重全新独特作 用机理,同时内吸传导性强,根、茎、叶全面吸收,兼具保护和治疗活性,并且 非常适于抗性管理和病害综合治理超广谱,对子囊菌、担子菌、半知菌和卵菌引 起的大部分病害均有很好的效果。对水稻纹枯病,稻曲病,稻瘟病均有很好的 效果,同时能健壮植株,提升产量和品质。
1. 试验目的:
1.1 定量分析阿米妙收对水稻产量和品质影响 1.2 定量分析先正达稻之道方案对水稻品质的影响
2. 试验方案:
分为两大部分:Ⅰ、阿米妙收和稻之道方案的稻米样品的品质测试 Ⅱ、扬州大学农学院试验基地阿米妙收对水稻产量
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试农民易懂的语言,将水稻的生长分为秧苗期,分蘖 期,孕穗期和成 熟期,针对每特阶段的特点来提供简单高效的病虫草害以及其 他田间管理的综合解决方法。在与农业技术推广中心近年多点的示范中证明, 稻之道能带给农民 15%左右的增产,同时比传统的田间管理要至少减少一次用 药。

国际著名工程公司简介

国际著名工程公司简介

垄项目。 •风力収申 仅 1980 年廹始 COWI 涉足风能颀域,幵丏参不了许多风力収申项目,总裃机容量超迆几 千兆瓦;仅卑独风力収申机系统,到风力柴油収申复合系统,直至大垄风力収申机制造厂, 涉及的项目十分广泌,为私人投资者、政店、以及陆上戒海上风申的供应商和承包商的各 种项目提供了与业的服务。 •石油和天然气 COWI 为石油天然气行业提供与业的和多学科综合的服务,服务范围包括海上和陆上的油 田廹収、设备巟程及平台拆除。关他仸何行业的波劢都丌如石油天然气行业剧烈。丌断波 劢的油价要求操作者、权姕机杴和承包商兴有持续的适应能力。自仅上丧丐纨 60 年代, COWI 就廹始帮劣宠户应对这丧持续发化市场的挅戓。所以,圃石油天然气行业的各丧斱 面都可提供与业的多学科综合的服务。 ★ 水和环境
丹麦 COWI 公司
COWI 是丹麦一家颀兇的国际咨询公叵。创立二 1930 年,至仂工圃全球 175 丧国家迈 作了 50,000 多丧项目。COWI 圃全球有 4500 名雇员,包括巟程帅、生物学家、地质学 家、绉济学家、测量学家、人类学家、社伕学家和廸筑帅。COWI 颀导着一部分全球最大 的基础设斲巟程项目。COWI 公叵设有 9 丧部门,圃 35 丧国家有分公叵和办亊处,所有 国家的项目办公客都是自巤管理的。关丨最大的一家海外子公叵圃挪姕,约有 700 名员巟。 COWI 公叵绉营管理层讣为,国际市场不丹麦本圁同样重要。 COWI 公叵圃巟程、环境及社伕绉济三丧颀域提供多学科的咨询服务,仅对兴体项目的与 业咨询到综合觃划以及对大垄巟程迚行包括监理、迈营维护等典容圃典的整体设计服务。 桥梁巟程是该公叵的一项核心业务,公叵参不了丹麦及丐甸上许多大桥的设计监理巟作, 著名桥梁有:丹麦大贝尔特通道主跨为 1624 米长的悬索桥,厄勒海峡通道的引桥和主跨 为 490 米长的公路铁路两用斜拉桥、香港昂船洲大桥、智利查考海峡大桥、泋国诹曼底大 桥等。 2000 年 5 月公叵确定了新的収屍目标。收贩了徇国铁路咨询公叵 ETC 和丹麦著名的咨询 集团 Kampsax,吐实现公叵的新目标更迈迚了一步。公叵对未来的屍望是:要成为北欧 颀兇的、多学科咨询公叵,幵圃提供某互与业咨询服务斱面成为国际市场的颀导者。 COWI 公叵圃云洲(包括丨国)、欧洲、丨东、非洲和美洲等许多国家拞有帯设分支机杴 和附屎办亊处。2007 年的营业额约达到 4 亿欧元,使关圃北欧继续俅持着颀兇的咨询公 叵之一的地位,幵成为丐甸上这三丧与业颀域的行业颀兇者。这充分证明了 COWI 圃以下 颀域典提供的咨询服务兴有丐甸级水准: ★ 巟业不能源 圃巟业化国家,能源是基础设斲廸设丨的重要部分,征多居民和机杴都依赖二能源供应结 杴,幵丏叐到它的影响。COWI 积杳致力二能源廹収颀域,幵丏满足绉济和环境可持续収 屍的要求。关丨包括气候发化、能敁提高、风力収申、石油和天然气等。 •气候发化 气候发化工绉成为全球人类兯同体最大的环境挅戓。气候发化的挅戓圃丐甸范围典影响着 政店资劣的企亊业以及私营部门。通迆联合国气候发化框架公约理亊伕,气候发化大伕以 及《亪都讧定乢》的签订生敁,国际以及各国均兇后对政答、绉济、金融以及制庙影响做 出应对政答。为了达到《亪都讧定乢》丨所仃终的兰二清洁収屍机制环境挃标的要求, COWI 圃相兰清洁収屍机制项目斱面提供了技术支持不咨询服务。COWI 员巟对《联合国 气候发化框架公约》及《亪都讧定乢》相兰的政答泋觃斱面拞有敂锐的洞察力。为政店部 门实斲国际谈判之后的结果提供了详实的分杵报告。同旪也帮劣他们设计和诂估了相兰政 答和斱泋以及相兰制庙的廸立。 •能敁提高 COWI 圃全球参不了伒多的能源巟程和能源觃划项目,多年为丹麦能源部门提供觃划和収 屍的咨询服务。而丏,由二拞有多与业的咨询团队,可提供对环境产生最小影响的设计斱 案。COWI 的服务包括能源诂估研究、总体觃划和全系统的巟程设计。另外,项目管理、 巟程监理、项目试迈行及关后续巟程咨询均为服务范围。项目既包括小垄项目,也包括大

阿米妙收产品介绍

阿米妙收产品介绍

较差 抑制
好 优秀
Untreated
Amistar
31
31
阿米妙收在水稻,花生,小麦,棉花上的应用
越南:1500倍液于分蘖期,初花期各喷施一次,防治多 种病害,增产效果突出。
疫病 多种病害混合发生,且危害程度不一 抗早衰,延长采收期,错开上市时间
20
妙收回春,临危不乱
21
黄瓜叶片黄点病(褐斑病)
预防:达科宁—阿米西达 治疗:发病初期,阿米妙收1500倍液
,咪酰胺1000倍液+多菌灵800倍液交 替喷施。
22
阿米妙收在葡萄上 应用
作用: 1. 高效免疫, 2. 延缓叶片衰老, 3. 提高果实含糖量 4. 减轻裂果 5. 主治炭疽病,白腐病,霜霉病,白粉病,
4
不同作用机理,强强联合
阿米妙收- 抑制细胞线 粒体的呼吸 作用
真菌细胞
线粒体
高尔基体
细胞壁
6
世高-抑制 细胞膜和细 胞壁的合成
兼具保护和治疗活性,使用时间灵活
孢子萌发
侵染
显症
孢子形成
预防
治疗
铲除
保护/早期治疗 -阿米妙收
专业治疗剂-世高
抑制产孢
高效
8
低效或无效
嘧菌酯的内吸传导
木质部内吸传导:有效成分通过木质部,随着水份向上传导
阿米妙收水溶性好,可以随水分 通过木质部传导,对锈病病原菌 等穿透力强的孢子效果好
滞留
渗透
内吸
分布
传导
渗透
13
内吸传导
叶片
增加作物抗逆能力,改善作物品质和产量
改善作物和品质
广谱病害控制
+

Powerline Nano500 设备说明书

Powerline Nano500 设备说明书

Installationsanleitung für das Powerline© 2012 NETGEAR, Inc. Alle Rechte vorbehalten.Kein Teil dieser Publikation darf ohne schriftliche Genehmigung von NETGEAR, Inc. in irgendeiner Form oder Weise reproduziert, übertragen, transkribiert, in einem Datenabfragesystem gespeichert oder in irgendeine Sprache übersetzt werden.Stapeln Sie elektronische Geräte NICHT, stellen Sie Geräte NICHT in engen Räumen auf, oder legen Sie sie NICHT in Schubladen. Stellen Sie sicher, dass das Gerät in einem freien Abstand von mindestens 5 Zentimetern aufgestellt ist.Technischer SupportDanke, dass Sie sich für NETGEAR entschieden haben. Unter können Sie Ihr Produkt registrieren, die neuesten Produkt-Updates beziehen oder den Online-Support in Anspruch nehmen.Telefon (nur USA und Kanada): 1-888-NETGEARTelefon (andere Länder):Siehe /app/answers/detail/a_id/984.MarkenNETGEAR, das NETGEAR-Logo und Connect with Innovation sind Marken und/oder eingetragene Marken von NETGEAR, Inc. und/oder seiner Tochtergesellschaften in den USA und/oder anderen Ländern. Informationen können ohne vorherige Ankündigung geändert werden. Andere Marken- und Produktnamen sind eingetragene Marken oder Marken der jeweiligen Inhaber. © 2011 NETGEAR, Inc. Alle Rechte vorbehalten. NutzungsbedingungenZur Verbesserung des internen Designs, des Betriebs und/oder der Zuverlässigkeit behält NETGEAR sich das Recht vor, die in diesem Dokument beschriebenen Produkte ohne vorherige Ankündigung zu ändern. NETGEAR lehnt im Zusammenhang mit dem Einsatz oder der Anwendung der hier beschriebenen Produkte oder Schaltpläne jegliche Haftung ab.Hardware-FunktionenPower-LEDPowerline-LEDNetzwerk-LEDSecurity-TasteReset-TasteNetzwerkanschlussBeschreibung der LEDsDie LEDs zeigen den Status der Powerline-Adapter an.• Wenn Sie den Adapter anschließen, leuchtet die Power LED auf und leuchtet grün.Der Adapter ist nicht aktiv, wenn seit mehr als 10 Minuten keine Netzwerkverbindung vorhanden ist. Der Adapter wechselt in den Energiesparmodus, und die Power-LED leuchtet gelb .• Die Powerline-LED leuchtet, wenn der Adapter mindestens ein anderes kompatibles Powerline-Gerät findet.Die Funktion Pick A Plug ermöglicht Ihnen die Auswahl desAnschlusses mit der besten Übertragungsrate, zu erkennen an der Farbe der Powerline-LED:- Grün: Übertragungsrate > 80 MBit/s (am besten)- Gelb: Übertragungsrate > 50 und < 80 MBit/s (besser)- Rot: Übertragungsrate < 50 MBit/s (gut)• Die Netzwerk-LED leuchtet, wenn Sie ein eingeschaltetes Netzwerkgerät mit mindestens einem Netzwerkanschlussverbinden.TastenbeschreibungenDie Tasten an Ihren Powerline-Adaptern haben die folgenden Funktionen:• Reset-Taste — Mit der Reset-Taste kann das Powerline-Gerät auf die werkseitigen Voreinstellungen zurückgesetzt werden.Halten Sie die Reset-Taste für eine Zeitspanne von 1 bis5 Sekunden lang gedrückt, und lassen Sie sie wieder los.• Security-Taste — Die Security-Taste dient zum Festlegen der Sicherheit zwischen den Powerline-Geräten. Halten Sie dieSecurity-Taste für eine Zeitspanne von 2 bis 5 Sekunden lang gedrückt, und lassen Sie sie wieder los.Weitere Informationen zu den Einstellungen für die Sicherheit finden Sie unter Installieren der Powerline-Adapter auf Seite 7.Installieren der Powerline-AdapterAdaptern.Schritt 1:Stecken Sie diezwei Powerline-eine Steckdose.Schritt 2:Drücken Sie aufSecurity-Tastebis 5 Sekundenlang, und lassenSie sie los. DiePowerline-LEDblinkt.Die Power-LEDleuchtet auf. Diestellungen istabgeschlossen.Hinzufügen eines neuen Powerline-Adapters zum sicherenTechnischer SupportVielen Dank, dass Sie sich für Produkte von NETGEAR entschieden haben.Nach der Installation des Geräts können Sie das Produkt mit der Seriennummer, die Sie auf dem Etikett Ihres Produkts finden, unter https:// registrieren.Die Registrierung ist Voraussetzung für die Nutzung des telefonischen Supports. Die Registrierung über die NETGEAR-Website wird dringend empfohlen.Produkt-Updates und Internetsupport finden Sie unter.Weitere Informationen zur Einrichtung, Konfiguration und Verwendung Ihres Powerline-Adapters finden Sie im Benutzerhandbuch.Kompatible NETGEAR Powerline-Geräte Ihr Powerline-Adapter kann ein Powerline-Netzwerk mit diesen kompatiblen NETGEAR-Geräten teilen: XAV101, XAV1004,XAV2001, XAV1101, XAV1301, XAV1401, XAV1601, XAV2101, XAV2501, XAV2602, XAV5001, XAV5501, XAV5601 und XAV5004. Eine vollständige Liste HomePlug-AV-zertifizierter Geräte finden Sie unter /certified_products.VorschrifteneinhaltungKonformitätserklärungenDie vollständige DoC finden Sie auf der NETGEAR-Website mit der EU-Konformitätserklärung unter: /app/answers/detail/a_id/11621/. Informationen über GNU General Public License (GPL) finden Sie unter/app/answers/detail/a_id/2649.WARNUNG: Stapeln Sie elektronische Geräte NICHT, stellen Sie sie NICHT in engenRäumen oder auf Teppichboden auf, und legen Sie sie NICHT in Schubladen. Stellen Sie sicher, dass das Gerät in einem freien Abstand von mindestens 5 Zentimetern aufgestellt ist.Dieses Symbol wurde in Übereinstimmung mit der EU-Richtlinie 2002/96/EGüber Elektro- und Elektronik-Altgeräte (WEEE-Richtlinie) hier angebracht. DieEntsorgung dieses Produkts innerhalb der Europäischen Union sollte inÜbereinstimmung mit den in Ihrem Land zur Implementierung der WEEE-Richtlinie geltenden Gesetzen gehandhabt werden.NETGEAR, das NETGEAR-Logo und Connect with Innovation sind Marken und/oder eingetragene Marken von NETGEAR, Inc. und/oder seiner Tochtergesellschaften in den USA und/oder anderen Ländern. Informationen können ohne vorherige Ankündigunggeändert werden. Andere Marken- und Produktnamen sind Marken oder eingetragene Marken der jeweiligen Inhaber. © 2012 NETGEAR, Inc. Alle Rechte vorbehalten.NETGEAR, Inc.350 East Plumeria Drive San Jose, CA 95134, USAJanuar 2012。

MAX2880

MAX2880

General DescriptionThe MAX2880 is a high-performance phase-locked loop (PLL) capable of operating in both integer-N and fractional-N modes. Combined with an external reference oscillator, loop filter, and VCO, the device forms an ultra-low noise and low-spur frequency synthesizer capable of accepting RF input frequencies of up to 12.4GHz.The MAX2880 consists of a high-frequency and low-noise-phase frequency detector (PFD), precision charge pump, 10-bit programmable reference counter, 16-bit integer N counter, and 12-bit variable modulus fractional modulator.The MAX2880 is controlled by a 3-wire serial interface and is compatible with 1.8V control logic. The device is available in a lead-free, RoHS-compliant, 20-pin TQFN and 16-pin TSSOP packages, and operates over an extended -40°C to +85°C temperature range.Applications●Microwave Point-to-Point Systems ●Wireless Infrastructure ●Satellite Communications ●Test and Measurement●RF DAC and ADC ClocksBenefits and Features●Integer and Fractional-N Modes●250MHz to 12.4GHz Broadband RF Input ●Normalized In-Band Noise Floor• -229dBc/Hz in Integer Mode • -227dBc/Hz in Fractional Mode ●-10dBm to +5dBm Wide Input Sensitivity ●Low-Noise Phase Frequency Detector• 125MHz in Fractional Mode • 140MHz in Integer Mode ●Reference Frequency Up to 210MHz ●Operates from +2.8V to +3.6V Supply ●Cycle Slip Reduction and Fast Lock ●Software and Hardware Shutdown ●Software Lock Detect ●On-Chip Temperature Sensor ●Compatible with +1.8V Control Logic ●Phase AdjustmentOrdering Information appears at end of data sheet.19-6871; Rev 1; 11/15MAX2880250MHz to 12.4GHz, High-Performance,Fractional/Integer-N PLLFunctional DiagramEVALUATION KIT AVAILABLEV CC_ to GND_ ......................................................-0.3V to +3.9V V CP to GND_........................................................-0.3V to +5.8V CP to GND_ .............................................-0.3V to (V CP + 0.3V)All Other Pins to GND_ ..........................-0.3V to (V CC_ + 0.3V)RFINP , RFINN ................................................................+10dBm Continuous Power Dissipation (T A = +70°C)TQFN (derate 25.6mW/°C above +70°C)...............2051.3mWJunction Temperature ......................................................+150°C Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) ................................ +300°C Soldering Temperature (reflow) .......................................+260°CTQFNJunction-to-Ambient Thermal Resistance (θJA ) ..........39°C/W Junction-to-Case Thermal Resistance (θJC ) .................6°C/WTSSOPJunction-to-Ambient Thermal Resistance (θJA ) ..........90°C/W Junction-to-Case Thermal Resistance (θJC ) ...............27°C/W(Note 1)(Measured using the MAX2880 Evaluation Kit. V CC_ = 3V to 3.6V, V CP = V CC_ to 5.5V, V GND_ = 0V, f REF = 50MHz, f PFD = 50MHz, T A = -40°C to +85°C. Typical values measured at V CC_ = 3.3V, V CP = 5V, T A = +25°C, no RF applied, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)(Measured using the MAX2880 Evaluation Kit. V CC_ = 3V to 3.6V, V CP = V CC_ to 5.5V, V GND_ = 0V, f REF = 50MHz, f PFD = 50MHz, f RFINN = 6000MHz, T A = -40°C to +85°C. Typical values measured at V CC_ = 3.3V, V CP = 5V, T A = +25°C, P RFINN = 2dBm, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)PARAMETERCONDITIONSMIN TYP MAX UNITS Supply Voltage (V CC_) 2.8 3.33.6V Charge-Pump Supply (V CP )V CC_5.5VV CC_ Supply Current PRE = 0, RFINN = 6GHz3950mA PRE = 1, RFINN = 12GHz 4959Shutdown Mode1V CP Supply Current0.652.0mA PARAMETERCONDITIONSMIN TYPMAX UNITS Input Frequency 25012,400MHz Input Power-10+5dBm REF Input Frequency Range 10210MHz REF Input Sensitivity 0.7V CC_V P-P REF Input Capacitance 2pF REF Input Current -60+60µA Phase Detector FrequencyFractional mode 125MHzInteger mode140Sink/Source Current CP[3:0] = 1111, R RSET = 5.1kΩ 5.12mACP[3:0] = 0000, R RSET = 5.1kΩ0.32Fractional/Integer-N PLLNote 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layerboard. For detailed information on package thermal considerations, refer to /thermal-tutorial .Absolute Maximum RatingsPackage Thermal Characteristics DC Electrical CharacteristicsAC Electrical Characteristics(V CC_ = 3V to 3.6V, V GND_ = 0V, T A = -40°C to +85°C. Typical values at V CC_ = 3.3V, T A = +25°C.) (Note 2)(Measured using the MAX2880 Evaluation Kit. V CC_ = 3V to 3.6V, V CP = V CC_ to 5.5V, V GND_ = 0V, f REF = 50MHz, f PFD = 50MHz, f RFINN = 6000MHz, T A = -40°C to +85°C. Typical values measured at V CC_ = 3.3V, V CP = 5V, T A = +25°C, P RFINN = 2dBm, Registers 0 through 4 settings: 303C0000, 00000009, 00008052, 00000BC3, 00000084, unless otherwise noted.) (Note 2)PARAMETERCONDITIONSMIN TYPMAX UNITS RSET Range2.710kΩCharge-Pump Output Voltage 0.5V CP - 0.5V In-Band Noise Floor Normalized (Note 3)-229dBc/Hz 1/f NoiseNormalized (Note 4)-122dBc/Hz In-Band Phase Noise (Note 5)-101dBc/Hz Integrated RMS Jitter (Note 6)0.14ps Spurious Signals Due to PFD -84dBc ADC Resolution7Bits Temperature Sensor AccuracyT A = -40°C to +85°C ±2.0°CPARAMETERSYMBOL CONDITIONSMINTYP MAXUNITS Input Logic-Level Low V IL 0.4V Input Logic-Level High V IH 1.5V Input Current I IH /I IL -1+1µA Input Capacitance 1pF Output Logic-Level Low V OL 0.3mA sink current 0.4V Output Logic-Level High V OH 0.3mA source currentV CC_ - 0.4V Output Current Level HighI OH0.5mAFractional/Integer-N PLLDigital I/O CharacteristicsAC Electrical Characteristics (continued)Note 2: Production tested at T A = +25°C. Cold and hot are guaranteed by design and characterization.Note 3: Measured at 100kHz offset with 50MHz Bliley NV108C1954 OCVCXO with 500kHz loop bandwidth. Registers 0 through 4settings: 303C0000, 00000009, 0F008052, 000025C3, 00000094.Note 4: 1/f noise contribution to the in-band noise is computed by using 1/f NOISE = PN - 10log(10kHz/f OFFSET )- 20log(f RF /1GHz). Registers 0 through 4 settings: 303C0000, 00000009, 0F008052, 000025C3, 00000094.Note 5: f REF = 50MHz; f PFD = 50MHz; offset frequency = 10kHz; VCO frequency = 6GHz, N = 120; loop BW = 100kHz,CP[3:0] = 1111; integer mode. Registers 0 through 4 settings 303C0000, 00000009, 0F008052, 000025C3, 00000094.Note 6: f REF = 50MHz; f PFD = 50MHz; VCO frequency = 6GHz; N = 120; loop BW = 100kHz, CP[3:0] = 1111; integer mode.Registers 0 through 4 settings 303C0000, 00000009, 0F008052, 000025C3, 00000094.(V CC_ = 3V to 3.6V, V GND_ = 0V, T A = -40°C to +85°C. Typical values at V CC_ = 3.3V, T A = +25°C.) (Note 2)(Measured using the MAX2880 Evaluation Kit. V CC_ = 3.3V, V GND_ = 0V, V CP = 5.0V, CP[3:0]= 1111, f RFINN = 6GHz , f REF = 50MHz, f PFD = 50MHz, T A = +25°C, unless otherwise noted. See Table 1 and Table 2).PARAMETERSYMBOL CONDITIONSMINTYP MAXUNITS CLK Clock Period t CP Guaranteed by SCL pulse-width low and high50ns CLK Pulse-Width Low t CL 25ns CLK Pulse-Width High t CH 25ns LE Setup Time t LES 20ns LE Hold Timet LEH 10ns LE Minimum Pulse-Width High t LEW 20ns Data Setup Time t DS 25ns Data Hold Time t DH 25ns MUX Setup Time t MS 10ns MUX Hold Timet MH10nsFractional/Integer-N PLLSPI Timing CharacteristicsTypical Operating Characteristics(Measured using the MAX2880 Evaluation Kit. V CC_ = 3.3V, V GND_ = 0V, V CP = 5.0V, CP[3:0]= 1111, f RFINN = 6GHz , f REF = 50MHz, f PFD = 50MHz, T A = +25°C, unless otherwise noted. See Table 1 and Table 2).Fractional/Integer-N PLLTypical Operating Characteristics (continued)Table 1. Typical Operating Characteristics Testing ConditionsTable 2. Loop Filter ComponentTOCMODEREG 0 (hex)REG 1 (hex)REG 2 (hex)REG 3 (hex)REG 4 (hex)COMMENTS 1INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHzFRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000042INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHzFRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000043INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHzFRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000044INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHzFRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000045INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHzFRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000046INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 500kHz FRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004FRAC N LOW NOISE 303C00A0040000010F008C8200000343000000047INTEGER N303C0000040000012F00FFFA 0000054300000004LBW = 50kHz 8FRAC N LOW NOISE 303C00A0040000010F008C820000034300000004LBW = 50kHz 9FRAC N LOW SPUR 303C00A0040000016F008C8200000B4300000004LBW = 50kHz 10INTEGER N 303C0000040000012F00FFFA 0000054300000004f RF < 6.2GHz INTEGER N303C0000060000012F00FFFA0000054300000004f RF ≥ 6.2GHzLOOP BW (kHz)K VCO (MHz/V)CP CODE f REF (MHz)f PFD (MHz)MAX2880 EVALUATION KIT COMPONENT VALUES C14C13R10R33C1550851111505010nF 100nF 100W 47.5W 1000pF 1008511115050680pF 0.1µF 174W 100W 18pF 5008500015050Open 330pF 15k W 0W Open 500850111505012pF 2200pF 1820W 100W 18pF 500851111505033pF4700pF910W100W18pFFractional/Integer-N PLLPIN NAME FUNCTION1GND_CP Charge-Pump Ground. Connect to board ground, not to the paddle.2GND_SD Sigma Delta Modulator Ground. Connect to board ground, not to the paddle.3GND_PLL PLL Ground. Connect to board ground, not to the paddle.4RFINP Positive RF Input to Prescaler. AC ground through capacitor, if not used.5RFINN Negative RF Input to Prescaler. Connect to VCO output through coupling capacitor.6V CC_PLL PLL Power Supply. Place decoupling capacitors as close as possible to pin.7V CC_REF REF Power Supply. Place decoupling capacitors as close as possible to pin.8REF Reference Frequency Input. This is a high-impedance input with a nominal bias voltage of V CC_REF /2. AC-couple to reference signal.9, 10GND Ground. Connect to the board ground, not the paddle.11CE Chip Enable. A logic-low powers the device down.12CLK Serial Clock Input. The data is latched into the 32-bit shift register on the rising edge of the CLK line.13DATA Serial Data Input. The serial data is loaded MSB first. The 3 LSBs identify the register address. 14LE Load Enable Input. When LE goes high the data stored in the shift register is loaded into the appropriate register. 15MUX Multiplexed I/O. See Table 5.16V CC_RF RF Power Supply. Place decoupling capacitors as close as possible to pin.17V CC_SD Sigma Delta Modulator Power Supply. Place decoupling capacitors as close as possible to pin.18V CP Charge-Pump Power Supply. Place decoupling capacitors as close as possible to the pin.19RSET Charge-Pump Current Range Input. Connect an external resistor to ground to set the minimum CP current. I CP = 1.63/R SET x (1 + CP).20CP Charge-Pump Output. Connect to external loop filter input.—EPExposed Pad. Connect to board ground.G N D _S DR F I N NG N D _C PL EC L K C E M U XV CP RSET CPGND REF V CC_REF V CC_PLL+G N D _P L LD A T AV CC_SDGND V CC_RF TQFN 4mm × 4mmMAX2880TOP VIEWR F I N P1098761112131415543211617181920EPFractional/Integer-N PLLPin DescriptionPin ConfigurationFractional/Integer-N PLL161514131211101234567VCP VCC MUX LEGNDGND _CPCP RSET TOP VIEWMAX2880DATA CLK CE VCC INN 98GNDREFINP 16TSSOP+Pin Configuration (continued)PIN NAME FUNCTION1RSET Charge-Pump Current Range Input. Connect an external resistor to ground to set the minimum CP current. I CP = 1.63/R SET x (1 + CP).2CP Charge-Pump Output. Connect to external loop filter input.3GND_CP Charge-Pump Ground. Connect to board ground.4GND Ground. Connect to board ground.5RFINP Positive RF Input to Prescaler. AC ground through capacitor, if not used.6RFINN Negative RF Input to Prescaler. Connect to VCO output through coupling capacitor.7VCC Power Supply. Place decoupling capacitors as close as possible to pin.8REF Reference Frequency Input. This is a high-impedance input with a nominal bias voltage of V CC_REF /2. AC-couple to reference signal.9GND Ground. Connect to the board ground.10CE Chip Enable. A logic-low powers the device down.11CLK Serial Clock Input. The data is latched into the 32-bit shift register on the rising edge of the CLK line.12DATA Serial Data Input. The serial data is loaded MSB first. The 3 LSBs identify the register address.13LE Load Enable Input. When LE goes high the data stored in the shift register is loaded into the appropriate register.14MUX Multiplexed I/O. See Table 5.15VCC Power Supply. Place decoupling capacitors as close as possible to pin.16V CPCharge-Pump Power Supply. Place decoupling capacitors as close as possible to the pin.Detailed Description4-Wire Serial InterfaceThe MAX2880 serial interface contains five read-write and one read-only 32-bit registers. The 29 most-significant bits (MSBs) are data, and the three least-significant bits (LSBs) are the register address. Register data is loaded MSB first through the 4-wire serial port interface (SPI). When latch enable (LE) is logic-low, the logic level at DATA is shifted at the rising edge of CLK. At the rising edge of LE, the 29 data bits are latched into the register selected by the address bits. Default values are not guar-anteed upon power-up. Program all register values after power-up.Register programming order should be address 0x04, 0x03, 0x02, 0x01, and 0x00. Several bits are dou b le buffered to update the settings at the same time. See the register descriptions for double buffered settings.Any register can be read back through the MUX pin. The user must first set MUX bits = 0111. Next, write the regis-ter to be read, but with the READ bit of that register (the MSB) = 1. If the READ bit is set, the data of bits 30:3 do not matter because they are not latched into the register on a read operation. After the address bits are clocked and the LE pin is set, the MSB of that register appears on the MUX pin after the next rising edge on CLK pin. The MUX pin will continue to change after the rising edge of the next 28 clocks. After the LSB has been read, the user can reset the MUX bits to 0000.Shutdown ModeThe MAX2880 can be put into shutdown mode by setting SHDN = 1 (register 3, bit 5) or by setting the CE pin to logic-low.Figure 1. SPI Timing DiagramFigure 2. Initiating ReadbackFractional/Integer-N PLLReference InputThe reference input stage is configured as a CMOS inverter with shunt resistance from input to output. In shut-down mode this input is set to high impedance to prevent loading of the reference source.The reference input signal path also includes optional x2 and ÷2 blocks. When the reference doubler is enabled (DBR = 1), the maximum reference input frequency is lim-ited to 100MHz. When the doubler is disabled, the refer-ence input frequency is limited to 205MHz. The minimum reference frequency is 10MHz. The minimum R counter divide ratio is 1, and the maximum divide ratio is 1023.Int, Frac, Mod, and R Counter RelationshipThe phase-detector frequency is determined as follows:f PFD = f REF x [(1 + DBR)/(R x (1 + RDIV2))]f REF represents the external reference input frequency. DBR (register 2, bit 20) sets the f REF input frequency doubler mode (0 or 1). RDIV2 (register 2, bit 21) sets the f REF divide-by-2 mode (0 or 1). R (register 2, bits 19:15) is the value of the 5-bit programmable reference counter (1 to 31). The maximum f PFD is 105MHz for Fractional-N and 140MHz for Integer-N. The R-divider can be held in reset when RST (register 3, bit 3) = 1.The VCO frequency is determined as follows:f VCO = f PFD x (N + F/M) x (PRE + 1)N is the value of the 16-bit N counter (16 to 65535), pro-grammable through bits 30:27 (MSBs) of register 1 and bits 26:15 of register 0 (LSBs). M is the fractional modu-lus value (2 to 4095), programmable through bits 14:3 of register 2. F is the fractional division value (0 to MOD - 1), programmable through bits 14:3 of register 0. In fraction-al-N mode, the minimum N value is 19 and maximum N value is 4091. The N counter is held in reset when RST = 1 (register 3, bit 3). PRE is RF input prescaler control where 0 = divide-by-1, and 1 = divide-by-2 (register 1, bit 25). If the RF input frequency is above 6.2GHz, then set PRE = 1.Integer-N/Fractional-N ModesInteger-N mode is selected by setting bit INT = 1 (reg-ister 3, bit 10). When operating in integer-N mode, it is also necessary to set bit Lock Detect Function, LDF = 1 (register 3, bit 9) to set the lock detect to integer-N mode.The device’s fractional-N mode is selected by setting bit INT = 0 (register 3, bit 10). Additionally, set bit LDF = 0 (register 3, bit 9) for fractional-N lock-detect mode.If the device is in fractional-N mode, it will remain in frac-tional-N mode when fractional division value F = 0, which can result in unwanted spurs. To avoid this condition, the device can automatically switch to integer-N mode when F = 0 if the bit F01 = 1 (register 4, bit 29).Phase Detector and Charge PumpThe device’s charge-pump current is determined by the value of the resistor from pin RSET to ground and the value of bits CP (register 2, bits 27:24) as follows:I CP = 1.63/R SET x (1 + CP)When operating in the fractional-N mode, the charge-pump linearity (CPL) bits can be adjusted by the user to optimize in-band noise and spur levels. In the integer-N mode, CPL must be set to 0. If lower noise operation in integer-N mode is desired, set the charge-pump output clamp bit CPOC = 1 (register 3, bit 13) to prevent leak-age current into the loop filter. In fractional-N mode, set CPOC = 0..The charge-pump output can be put into high-impedance mode when TRI = 1 (register 3, bit 4). The output is in normal mode when TRI = 0.The phase detector polarity can be changed if an active inverting loop filter topology is used. For noninverting loop filters, set PDP = 1 (register 3, bit 6). For inverting loop filters, set PDP = 0.Figure 3. Reference InputFractional/Integer-N PLLMUX and Lock DetectMUX is a multipurpose test output for observing various internal functions of the MAX2880. MUX can also be configured as serial data output. MUX bits (register 0, bit 30:27) are used to select the desired MUX signal (see Table 5).The digital lock detect is dependent on the mode of the synthesizer. In fractional-N mode set LDF = 0, and in integer-N mode set LDF = 1. To set the accuracy of the digital lock detect, see Table 3 and Table 4.Cycle Slip ReductionCycle slip reduction is one of two available methods to improve lock time. It is enabled by setting CSR bit (regis-ter 2, bit 28) to 1. In this mode, the charge pump must be set for its minimum value.Fast-LockFast-lock is the other method available for improving lock time by temporarily increasing the loop bandwidth at the start of the locking cycle. It is enabled by setting the CDM bits to 01 (register 4, bits 20:19). In addition, the charge-pump current has to be set to CP = 0000 (register 2, bits 27:24), MUX bits configured to 1100 (register 0, bits 30:27), and the shunt resistive portion of the loop filter has to be segmented into two parts, where one resistor is 1/4 of the total resistance, and the other resistor is 3/4 of the total resistance. Figure 4 and Figure 5 illustrate the twopossible topologies. Once enabled, fast lock is activated after writing to register 0. During this process, the charge pump is automatically increased to its maximum (CP bits = 1111) and the shunt loop filter resistance is reduced to 1/4 of the total resistance when the internal switch shorts the MUX pin to ground. Bits CDIV (register 4, bits 18:7) control the time spent in the wide bandwidth mode. The time spent in the fast lock is:t = CDIV/f PFDThe time should be set long enough to allow the loop to settle before switching back to the lower loop bandwidth.RF InputsThe differential RF inputs are connected to a high-imped-ance input buffer which drives a demultiplexer for select-ing between two RF input frequency ranges: 250MHz to 6.2GHz and 6.2GHz to 12.4GHz. When the RF input fre-quency is 250MHz to 6.2GHz, the fixed divide-by-2 pres-caler is bypassed by setting bit PRE to 0. When the RF input frequency is 6.2GHz to 12.4GHz, the fixed divide-by-2 path is selected by setting PRE to 1. The supported input power range is -10dBm to +5dBm. For single-ended operation, terminate the unused RF input to GND through a 100pF capacitor.Since the RF input of the device is high impedance, a DC isolated external shunt resistor is used to provide the 50Ω input impedance for the system (see the Typical Application Circuit ).Table 3. Fractional-N Digital Lock-Detect SettingsTable 4. Integer-N Digital Lock-Detect SettingsPFD FREQUENCY(MHz)LDS LDP LOCKED UP/DOWN TIME SKEW (ns)NUMBER OF LOCKED CYCLES TO SET LDTIME SKEW TO UNSET LD (ns)≤ 3200104015≤ 320164015> 321X4404PFD FREQUENCY(MHz)LDS LDP LOCKED UP/DOWN TIME SKEW (ns)NUMBER OF LOCKED CYCLES TO SET LDTIME SKEW TO UNSET LD (ns)≤ 320010515≤ 32016515> 321X454Fractional/Integer-N PLLPhase AdjustmentAfter achieving lock, the phase of the RF output can be changed in increments of P (register 1, bits 14:3)/M (reg-ister 2, bits 14:3) x 360°.When aligning the phase of multiple devices, connect their MUX pins together and do the following:1) Force the voltage on the MUX pins to V IL .2) Set MUX = 1000.3) Program the MAX2880s for the desired frequency and allow them to lock.4) Force the voltage on the MUX pins to V IH . This resets the MAX2880s so they are synchronous.5) Set P (register 1, bits 14:3) for the desired amount of phase shift for each part.6) Set CDM bits (register 4, bits 20:19) = 10. This enables the phase shift.7) Reset CDM = 00.Fractional ModesThe MAX2880 offers three modes for the sigma-delta modulator. Low noise mode offers lower in-band noise at the expense of spurs, and the low-spur modes offer lower spurs at the expense of noise. To operate in low noisemode, set SDN bits to 00 (register 2, bits 30:29). In the low-spur mode, choose between two possible dithering modes (SDN = 10 or 11) for the optimal spur performance.Temperature SensorThe device is equipped with an on-chip temperature sen-sor and 7-bit ADC.To read the digitized output of the temperature sensor:1) Set CDM = 11 to enable the ADC clock.2) Set CDIV = f PFD /100kHz. If the result is not an integer, then round down to the nearest integer.3) Set ADCM (register 4, bits 6:4) = 001 for temperature sensor mode.4) Set ADCS (register 4, bit 3) = 1 to start the ADC.5) Wait at least 100µs for the ADC to convert the tem-perature.6) Set MUX = 0111 to read the temperature out of the MUX pin.7) Read back register 6. Bits 9:3 are the ADC digitized value.The temperature can be converted as:t = -1.8 x ADC + 129°CFigure 4. Fast-Lock Loop Filter Topology 1Figure 5. Fast-Lock Loop Filter Topology 2Fractional/Integer-N PLLRegister and Bit DescriptionsThe operating mode of the MAX2880 is controlled via 5 read/write on-chip registers and 1 read-only register.Defaults are not guaranteed upon power-up and are pro-vided for reference only. All reserved bits should only be written with default values. In shutdown mode, the regis-ter values are retained.Table 5. Register 0 (Address: 000, Default: 383C0000 Hex)BIT LOCATION BIT ID NAME DEFINITION31READ READ 0 = Write to register1 = Read from register30:27MUX[3:0]MUX Mode Sets MUX Pin Configuration 0000 = High-Impedance Output 0001 = D_VDD0010 = D_GND0011 = R Divider Output0100 = N Divider Output0101 = Analog Lock Detect 0110 = Digital Lock Detect 0111 = SPI Output1000 = SYNC input1001 = Reserved1010 = Reserved1011 = Reserved1100 = Fast Lock1101 = R Divider/21110 = N Divider/21111 = Reserved26:15N[11:0]IntegerDivision ValueSets integer part (N divider) of the feedback divider factor. MSBs are locatedin register 1. All integer values from 16 to 65,535 are allowed for integermode. Integer values from 19 to 4091 are allowed for fractional mode.14:3F[11:0]FractionalDivision ValueSets Fractional Value. Allowed F values are 0 to M-1.000000000000 = 0 (see F01 bit description)000000000001 = 1----111111111110 = 4094111111111111 = 40952:0ADDR[2:0]Address Bits Register address bitsFractional/Integer-N PLLTable 6. Register 1 (Address: 001, Default: 00000001 Hex)Table 7. Register 2 (Address: 010, Default: 0000FFFA Hex)*Bits double buffered by Register 0.BIT LOCATIONBIT ID NAME DEFINITION31READ Register Read 0 = Write to register 1 = Read from register30:27N[15:12]Integer Division Value Sets Integer part (N divider) of the feedback divider factor. LSBs are located in register 0. All integer values from 16 to 65,535 are allowed for integer mode. Integer values from 19 to 4091 are allowed for fractional mode.26Unused Unused Set to 025PRE RF Input Prescaler Sets RF Input prescaler to divide-by-1 or divide-by-20 = Divide-by-1 (250MHz to 6.2GHz)1 = Divide-by-2 (6.2GHz to 12.4GHz)24:20UnusedUnusedSet to all 0’s.19:15*R[9:5]Reference Divider ModeSets Reference Divide Value (R). LSBs located in register 2.0000000000 = 0 (Unused)0000000001 = 1-----1111111111 = 102314:3P[11:0]Phase ValueSets Phase Value.See the Phase Adjustment section 000000000000 = 0000000000001 = 1-----111111111111 = 40952:0ADDR[2:0]Address BitsRegister address bitsBIT LOCATIONBIT ID NAME DEFINITION31READRegister Read0 = Write to register 1 = Read from register30:29SDN[1:0]Fractional-N ModesSets Noise Mode (see the Fractional Modes section under the Detailed Description ):00 = Low-Noise Mode 01 = Reserved10 = Low-Spur Mode 111 = Low-Spur Mode 228CSRCycle Slip Reduction0 = Cycle Slip Reduction disabled 1 = Cycle Slip Reduction enabledFractional/Integer-N PLLTable 8. Register 3 (Address: 011, Default: 00000043 Hex)Table 7. Register 2 (Address: 010, Default: 0000FFFA Hex) (continued)*Bits double buffered by Register 0.BIT LOCATIONBIT ID NAME DEFINITION27:24CP[3:0]Charge-Pump Current Sets Charge-Pump Current[ICP = 1.63/RSET x (1 + CP[3:0])]23:22Unused Unused Factory Use Only, set to 00.21*RDIV2Reference Div2 Mode Sets Reference Divider Mode 0 = Disable reference divide by 21 = Enable reference divide by 220*DBRReference Doubler ModeSets Reference Doubler Mode 0 = Disable reference doubler 1 = Enable reference doubler19:15*R[4:0]Reference Divider ModeSets Reference Divide Value (R). Double buffered by Register 0. MSBs located in register 1.0000000000 = 0 (Unused)0000000001 = 1-----1111111111 = 102314:3*M[11:0]Modulus ValueFractional Modulus value used to program f VCO . See the Int, Frac, Mod, And R Counter Relationship section. Double buffered by register 0.000000000000 = Unused 000000000001 = Unused 000000000010 = 2-----111111111111 = 40952:0ADDR Address BitsRegister addressBIT LOCATIONBIT ID NAME DEFINITION31READ Register Read 0 = Write to register 1 = Read from register 30:18Unused Unused Write to all 0’s17F01F01Sets integer mode for F =0.0 = If F[11:0] = 0, then fractional-N mode is set 1 = If F[11:0] = 0, then integer-N mode is auto set 16:15CPT[1:0]Charge-PumpTestSets Charge-Pump Test Modes 00 = Normal mode 01 = Reserved10 = Force CP into source mode 11 = Force CP into Sink mode14RSTSDSigma Delta Reset0 = Reset Sigma Delta Modulator to known value after each write to register 0 1 = Do not reset Sigma Delta Modulator to known value after each write to register 0Fractional/Integer-N PLL。

商品说明书:ATLAS SOUND AT 系列商业抑制器

商品说明书:ATLAS SOUND AT 系列商业抑制器

©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Commercial AttenuatorsAT Series, E408 SeriesFeatures• M odels Feature a Range of Attenuation Steps (1.5dB or 3dB Steps) as Well as Continuous to Meet Application and Budget Requirements • W all Plates are Stainless Steel with Stamped and Filled or Screen Printed Dial Scale, and a Skirted Black Knob (White and Ivory Plastic Plates with Matching Skirted Knobs Also Available in Decora Style-D Series Only)• P opular Rack Mount Attenuator Versions are Available on the AT and E408 Series for Mounting on to Blank Panels in Equipment Cabinets• All AT Models Mount into Most 1-Gang E.O. Boxes. (23⁄4" Deep)• AT and E408 Series are UL ListedGenenal DescriptionAT Series Industry Standard Auto Transformer. High-quality auto transformer series provides the advantages of excellent frequencyresponse, low insertion loss and reliable performance for volume control application in 25V/70.7V systems. Attenuation is accomplished in ten make before break steps plus positive Off position. (No stop between maximum and Off position to prevent switch damage). Contacts are silver plated for noise-free operation. Features a removable terminal block. Includes stainless steel plate, with stamped and filled or screen printed dial scale and a skirted black knob. (White and ivory plastic plates with matching skirted knobs also available in Decora style-see AT model description chart).E408 Auto Transformer with Precision Level Control. Specially designed for attenuation in masking and sound reinforcement systems where fine tuning of level control is required. Employs a ten-position, non-shorting rotary switch without stop. Attenuation rate is 1.5dB per step. (All other specifications are the same as the AT Series including the UL listing).PA Series Priority Paging Option. Priority paging feature by-passes the effect of the attenuator to provide program level selection of individual emergency and paging signals at the amplifier. Option isavailable on all AT attenuators. The SPDT relay is operated with 24VDC at 10mA. Includes protective relay cover to ensure lasting trouble-free performance. Terminations to the relay and attenuator are made via a removable terminal block. (All other specifications except for dimensions are the same as selected AT models).RM Series Rack Mount Option. For attenuation convenience of rack-mounted equipment in cabinets and consoles, the AT, E408Series attenuators are available without mounting plate for rack panel installation. Attractive matte black polycarbonate dial scale overlay with adhesive backing replaces the mounting plate. Includes skirted black knob. Overlay size is 29 square (51mm). (To order, simply add RM after the selected attenuator model number. Example: AT10-RM or AT10-PARM.) (Dial scale overlays to retrofit existing installations are available, see Model HX23.)Replacement Knobs©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Specfications AT10-(PA)Power Rating * 10 WattsUL ListingAttenuation Per Step 3dB Total Attenuation33dB**Insertion Loss .4dB Plate Size 1 gang Resistance NoneAT35-(PA)Power Rating *35 WattsUL ListingAttenuation Per Step 3dB Total Attenuation27dBInsertion Loss .6dB Plate Size 1 gang Resistance NoneAT100-(PA)Power Rating *100 WattsUL ListingAttenuation Per Step 3dB Total Attenuation27dBInsertion Loss .6dB Plate Size 1 gang Resistance NoneE408-100Power Rating *100 WattsUL ListingAttenuation Per Step 1.5dB Total Attenuation15dBInsertion Loss .6dB Plate Size 1 gang Resistance None* Continuous** These units have two steps of 6dB before off position.Note: Attenuation curve is steeper for a 25-volt lineArchitect and Engineer SpecificationsAT Series Attenuator(s) shall be Atlas Sound AT Series Model____________ auto transformer or approved equal. The power rating shall be __________ and attenuation range shall be _________dB. Attenuation per step for AT-____ shall be 8 steps of 3dB and 6dB each for the last two positions. Attenuator shall be a step type control with a positive off position. There shall be no stop between the maximum and off positions (AT Series only). Switch shall have silver plated contacts to eliminate noise and contact loss. All terminations must be made via a removable terminal block. Unit(s) shall be supplied with one of the following single gang face plates to be noted by model number suffix: Standard stain l ess steel faceplate (with dial scale to indicate attenuator position), Decora style plastic face plate-Ivory color, Decora style plastic face plate-White color. All models are designed to mount in a standard E.O. box.E408 UL Listed attenuator shall be Atlas Sound Model E408-100 auto transformer or approved equal. The power rating shall be 100W. The at t enu a tion per step shall be 1.5dB. Unit shall be a step type control with a positive off position. There shall be no stop between the maximum and off positions. Switch shall have silver plated contacts to elimi n ate noise and contact loss. The attenuator shall be mounted to a standard gang stainless steel wall plate which mounts to a standard E.O. box.RM Option Attenuator shall be Atlas Sound Model ____________ [(AT, E408 (-RM)] or ap p roved equal. Face plate shall be replaced by an adhesive matte black poly c ar b on a te dial scale escutcheon for attachment to a rack mount panel. Escutcheon size shall be 2" SQ.PA Option Specified AT Series attenuators include a priority relay. Relay shall be an SPDT, 24 VDC type securely mounted to the attenuator assembly wired at the factory. Relay shall include a protective cover.AT10 (dc) (-PA) (-RM)AT35 (dc) (-PA) (-RM)Faceplate Options:d = D - Decora Style FaceplateIvory and White inserts, trim ring and knobs icluded.If there is not the above 1 letter suffix, the attenuator is shipped with the standard stainless steel faceplate or is the RM version without a faceplate.©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13AT SeriesDimensional Specifications Plate Mounted AttenuatorsMODEL A B C D EAT10 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT10-PA 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT3541⁄2"21⁄8" 23⁄4" 23⁄4" 13⁄4"AT35-PA 41⁄2" 21⁄8" 23⁄4" 23⁄4" 13⁄4"AT10041⁄2"21⁄2" 23⁄4" 23⁄4" 13⁄4"AT100-PA 41⁄2" 21⁄2" 23⁄4" 23⁄4" 13⁄4"E408-100 41⁄2"25⁄8"23⁄4"23⁄4"13⁄4"©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13WIRING - AT SeriesEach terminal will hold up to 2-16AWG stranded wire.For larger wires or home run situations, a small length of wire and a wire nut are recommended.Attach wire according to label on terminal black as shown below (Non-PA Models will not have the "VDC+" and "VDC-" terminals).* Install the unit with the terminal block on top. This will ensure that theoff position is on the bottom.©2011 A t l a s S o u n d L .P . A l l r i g h t s r e s e r v e d . A t l a s S o u n d a n d S t r a t e g y S e r i e s a r e t r a d e m a r k s o f A t l a s S o u n d L .P . A l l o t h e r t r a d e m a r k s a r e t h e p r o p e r t y o f t h e i r r e s p e c t i v e o w n e r s . A T S 001063 R e v D 10/13Wiring - (-Pa) Priority AttenuatorsRelay SpecificationsCOIL VOLTAGE: 24VDC COIL CURRENT: 10MACONTACTS: S PDT-2AMP RatingRelay Has a Protective CoverPower Switching Req. For - Pa Attenuators。

cc-link 兼容产品集(中文版)说明书

cc-link 兼容产品集(中文版)说明书

2015年10月中文版J a p a nK o r e aT a i w a nA m e r i c a sE u r o p eC h i n aA S E A NI n d i aT u r k e yC H I N An e r P r o d u c t f o r C h i n aC-L i n k P a r t(中国用户选型专用)C C-L i n k P a r t n e r P r o d u c t f o r C h i n aC C-L i n k兼容产品集(中国用户选型专用)深圳市杰曼科技股份有限公司称重仪表/过程设备可通过CC-Link通讯快速组建重量监控反馈、控制系统特点●拥有单排高亮LED显示;外型小巧,节省安装空间●120/240/480次/秒多种A/D采样速度可选●1/100000显示精度●立抗振数字滤波器,开启后可最大限度屏蔽现场干扰●支持AC 90V~260V宽范围电源输入●板防护等级达到IP65●方便连接CC-Link产品,快速组建称重控制系统站类型远程设备站占用站数1,2或4个站CC-Link版本Ver.1.10外形尺寸105(W)×57(H)×151(D)mm 重量大约550g联系方式深圳市杰曼科技股份有限公司电话:*************网址:南京华太自动化技术有限公司适配器CC-Link适配器FR8000smartLink远程IO.可将数字量,模拟量,温度,定位,计数等模块混合接入CC-Link系统稳定,可靠,性价比高。

特点●插片式IO,便于扩展●优秀的背板总线,数据传输“0”延时●全系产品通过CE认证,性能稳定●所有电器特征符合IEC61131-2标准●诊断功能丰富,支持远程诊断和维护●体积小,节约安装空间站类型远程设备站占用站数1-4逻辑站可配CC-Link版本Ver.1.1外形尺寸适配器(94mm x 68mm x 50mm)IO模块(94mm x 68mm x12mm)重量0.13kg联系方式南京华太自动化技术有限公司电话:************邮箱:*********************网址:CC-Link 协会(中国)CC-Link作为亚洲最早开发的现场总线,2001年4月在高速发展的中国设立了CC-Link推广中心,开始了现场网络推广工作。

阿米妙收成功故事图集

阿米妙收成功故事图集
阿米妙收成功故事图集
阿米妙收试验示范总结的特点
• 试验示范主要突出了阿米妙收的以下特点: 1. 对稻瘟病,纹枯病及稻曲病的防治效果好 2. 显著的CE效果 3. 显著的增产效果
示范成功故事一
示范地点:江西省南昌县塘南镇 示范户:李建华 示范田:中稻直播 示范面积:1亩 用量:阿米妙收30毫升/亩 施药时间:破口和齐穗期各一次 跟踪:9月25日 水稻青枝蜡秆、叶色金黄、谷粒饱满,没有纹枯病和稻曲病
阿米妙收处理:茎秆基部清秀,无纹枯,稻瘟病斑
示范成功故事十九
农户姓名:张远勇 用药/水量:40毫升/30公斤亩 用药时间:分蘖盛末期、破口前各一次 调查时间:8月28号 效果反馈:药后10天阿米妙收田块未见稻曲病、穗颈瘟,纹枯病害较轻,功能叶未 早衰,青枝蜡杆
阿米妙收对稻瘟病防治,亩用50毫升 2次效果好,30毫升效果一般
使用过阿米妙收的叶子光泽好,无纹枯(施药后8天)
阿米妙收
对照
示范成功故事五
示范地点:江苏宝应 示范户:江苏宝应植保站 时间:8月4日,8月19日,8月26日,9月4日 施药浓度:60毫升/亩 福妙组合的整体效果肉眼看上去十分明显,剑叶挺拔,叶色青绿,抗倒伏。常规对照出现了倒伏。
福戈+阿米妙收
常规
示范成功故事六
实际产量
16.2Kg 19.4Kg 阿米妙 收30毫 升/亩 18.7Kg 阿米妙收 30mL/mu (早) 空白
产量以及CE差异(20穗)
对照
阿米妙收 30毫升/亩
阿米妙收 50毫升/亩
CK
示范成功故事十八
农户:陈木安 地点:茂南区金塘镇长坂村 浓度:阿米妙收20毫升兑水120斤,叶面喷施1亩地 喷药时间:2012年9月1日,水稻开始封行 观察时间:2012年9月18日

阿米妙收施用对水稻产量和品质影响的研究-扬州试验方案

阿米妙收施用对水稻产量和品质影响的研究-扬州试验方案

阿米妙收和先正达稻之道方案对水稻产量和品质影响的研究实施方案试验单位:江苏省扬州大学农学院委托单位:先正达(中国)投资有限公司研究组成员:扬州大学农学院朱庆森教授张祖建教授先正达(中国)投资有限公司孟香清博士全国水稻作物方案经理项目背景:阿米妙收是由20%嘧菌酯和12.5%苯醚甲环唑混配而成的悬浮剂,。

阿米妙收是新一代的多功能杀菌剂,是源自自然的新的化合物,具有双重全新独特作用机理,同时内吸传导性强,根、茎、叶全面吸收,兼具保护和治疗活性,并且非常适于抗性管理和病害综合治理超广谱,对子囊菌、担子菌、半知菌和卵菌引起的大部分病害均有很好的效果。

对水稻纹枯病,稻曲病,稻瘟病均有很好的效果,同时能健壮植株,提升产量和品质。

先正达稻之道方案是用农民易懂的语言,将水稻的生长分为秧苗期,分蘖期,孕穗期和成熟期,针对每特阶段的特点来提供简单高效的病虫草害以及其他田间管理的综合解决方法。

在与农业技术推广中心近年多点的示范中证明,稻之道能带给农民15%左右的增产,同时比传统的田间管理要至少减少一次用药。

为了更好地体现和展示阿米妙收单品和稻之道方案给水稻带来的产量和品质的影响,特共同开展此项研究。

1.试验目的:1.1 定量分析阿米妙收对水稻产量和品质影响1.2 定量分析先正达稻之道方案对水稻品质的影响2.试验方案:分为两大部分:Ⅰ、阿米妙收和稻之道方案的稻米样品的品质测试Ⅱ、扬州大学农学院试验基地阿米妙收对水稻产量和稻米品质的影响试验2.1 阿米妙收和稻之道方案的稻米样品的品质测试样本由先正达在全国的各试验协作点提供。

(1)阿米妙收样本来自江苏、江西两省的第三方试验和安徽、湖南、广东、浙江四省的第三方示范;(2)稻之道方案样本来自先正达与全国农技推广中心合作的27个项目县。

供试稻米取样方法:样本来自每个试验或示范的3个处理,分别为先正达方案/药剂,常规药剂,空白对照。

每个处理取5个点,每个点割1m2脱粒,风干后装袋。

不同药剂种类和浓度对火龙果溃疡病的防治效果试验

不同药剂种类和浓度对火龙果溃疡病的防治效果试验

火龙果,学名量天尺(Hylocereus undatus ),为仙人掌科量天尺属植物,原产于中美洲热带,是热带、亚热带的著名水果之一。

溃疡病是目前危害火龙果最严重的病害之一,刘峰曾对火龙果常见病害及其防治进行研究,认为70%甲基托布津800倍液或50%多菌灵粉剂600~800倍液、50%退菌特1000倍液对火龙果溃疡病的防治效果良好[1]。

宋晓兵等进行了5种新型复配药剂对火龙果溃疡病的防治试验,结果表明,在供试的5种复配药剂中,400g·L -1氟菌·戊唑醇悬浮剂、325g·L -1苯甲·嘧菌酯悬浮剂和75%肟菌·戊唑醇水分散粒剂对火龙果溃疡病菌具有较强的抑制效果,当药剂浓度为10μg·mL -1,3个复配药剂对病原菌的抑制效果为92.57%~97.21%。

田间药效试验结果表明,上述3种药剂对田间火龙果溃疡病具有较好的防治效果,3次药后12d 的平均防治效果为71.12%~77.45%[2]。

但是在上述筛选出的效果较好的药剂中,火龙果溃疡病对部分药剂已开始表现出抗药性[3]。

为了寻求安全、有效的防治火龙果溃疡病的药剂,减缓抗药性发展的速度,提高当地火龙果的产量和品质,保证火龙果产业的健康发展,笔者进行了火龙果溃疡病防治的药效比较试验。

1材料与方法1.1试剂与仪器背负式电动喷雾器(3WBD-16L ),上海柯尼喷雾系统有限公司;电子天平,型号:ACS-W (SA ),上海宿衡实业有限公司;10%世高(苯醚甲环唑)水分粒散剂,瑞士先正达作物保护有限公司;325g·L -1阿米妙收(苯甲·嘧菌酯)乳油,瑞士先正达作物保护有限公司;45%石硫合剂(晶体),河北双吉化工有限公司。

1.2试验设计试验于2023年3—10月在广西岑溪市安安农场火龙果种植基地开展,年平均气温21.4℃,年均降水量1450mm ,果园土壤为红壤土。

种植品种为金都一号火龙果,树龄6年,水肥管理水平中等,溃疡病等病收稿日期:2023-02-04基金项目:广西重点研发计划项目(桂科AB17292076)。

先正达用药方案对水稻稻飞虱防效研究

先正达用药方案对水稻稻飞虱防效研究

先正达用药方案对水稻稻飞虱防效研究作者:王桂香来源:《现代农业科技》2016年第15期摘要对先正达公司用药方案20%氯虫苯甲酰胺+20%噻虫嗪水分散粒剂(福戈)+15%苯醚甲环唑+15%丙环唑(爱苗)+50%吡蚜酮(顶峰)或20%氯虫苯甲酰胺+20%噻虫嗪水分散粒剂(福戈)+12.5%苯醚甲环唑+20%嘧菌酯(阿米妙收)+50%吡蚜酮(顶峰)防治水稻稻飞虱的药效进行研究,结果表明:应用此方案防治稻飞虱效果好,持效期长,安全、环保,值得大面积推广。

关键词先正达;用药方案;水稻稻飞虱;防效中图分类号 S435.112+.3;S481+.9 文献标识码 A 文章编号 1007-5739(2016)15-0118-02瑞士先正达公司主打农药福戈、爱苗、顶峰、阿米妙收在双峰县已推广应用多年,为验证该产品在双峰县的应用效果,植保站于2015年6—10月在双季晚稻田开展了先正达水稻病虫害防治技术田间示范,现将示范情况总结如下。

1 材料与方法1.1 试验概况示范田选择在双峰县锁石镇梽木村,地势平坦,双季晚稻区,耕作水平高。

实行统一供种,统一施肥,统一管水。

底肥施尿素225 kg/hm2+45%氮磷钾复合肥375 kg/hm2,追肥施尿素150 kg/hm2。

供试水稻品种为隆两优华占,6月20日播种,7月20日移栽,密度20 cm×23 cm,9月2日始穗,9月9日齐穗,10月16日成熟收割。

1.2 试验设计试验共设4个处理,分别为处理A:锐胜+适时乐+福戈+爱苗+顶峰组合方案(简称“福苗”组合)。

用药方案为锐胜+适时乐种子包衣,福戈防治二化螟、稻纵卷叶螟和白背飞虱,爱苗防治纹枯病、稻曲病,顶峰防治稻飞虱;处理B:锐胜+适时乐+福戈+阿米妙收+顶峰组合(简称“福妙”组合)。

用药方案为锐胜+适时乐种子包衣,福戈防治二化螟、稻纵卷叶螟和白背飞虱,阿米妙收防治纹枯病、稻曲病,顶峰防治稻飞虱;处理C(常规用药):用药方案为48%毒死蜱、1.8%阿维菌素防治二化螟、稻纵卷叶螟,25%噻嗪酮、80%敌敌畏防治稻飞虱,5%井冈霉素防治纹枯病和稻曲病;空白对照区(CK)。

经贸传真

经贸传真

JI 人边 境 服 务 辫对 我 铜 制 管 件 反 倾 销 期 ・ J拿 l 1 1
除 天 津 钢 管 公 司 和 5 获 得 分 别 税 率 的 企 业 外 ,其 他 中 国 家
t 做 …裁 定 I f
加 拿 大 边 境 服 务 署 ( BS 4月 1 C A) 曰发 布 公 告,就
£f或 出 口 自中 国 、美 国 和 韩 国 的 铜 制 管 件 ( o p r i C p e P i i g )反 倾 销 期 中 复 审 做 出 裁 定 。经 过 对 涉 案 产 品 tn s t 正 常 价 值 和 出 口 格 的 重 新 计 善 CBS 认 定 中 国 A
欧 盟 对 我 烫衣 板 企 业作 山 反倾 销 临 时 复审 裁
欧 委 会 近 日发 布 公 告 ,对 我 烫 衣 板 企 业 广 州 宝 和 天 用 品 有 限 公 司 作 出 临 时 复 审 正 式 裁 决 ,决 定 将 针 对 该 公 的 反 倾 销 税 率 由 来 的 3 5 提 高 至 3 .%。对 其 他 非 6.% 96 作 的 我 方 企 业 也 相 应 提 高 税 率 至 4 .%。2 0 23 0 9年 1 8日 月 我 广 小I 和 天 日用 品 有 限 公 司 申 请 ,欧 委 会 开 启 此 次 反 卜 宝 销临 时 复 审调 查 。
颅 销 。两 家 强 制 应 诉 企
业 天 津 钢 管 公 司 和 衡 阳 华 菱 钢 管 公 司 的 反 倾 销 税 率 分 别 为 3 .9 和 23 %
9 .3 19 %,5 获 得 分 圳 税 率 企 业 为 6 .6 家 2 1%,其 他 所 有 涉案
企 业 的 反 倾 销 税 率 为 9 .7 8 3 %。此 外 ,美 国 商 务 部 还 裁 定 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省湛江市廉江吴川安铺茅坡村
示范方案:封行期 30ml/亩 破口期 30ml/亩
测产结果:
测产面积 实测产量 折亩产量
阿米妙收 215㎡ 351斤 1087斤
常规对照 117㎡ 172斤 980斤
增产 11%
增加产量
收割1㎡稻谷比较 常规对照
提升稻谷出米率
试验地点:湖南省长沙县春华镇龙王庙村 品种/靶标: C两优4488 施药时间:5月14日,6月8日 喷液量:675 L/ha (45 L/mu) 施药时CK病害程度0%
常规用药
试验地点:安徽省合肥市肥东 用药期: 分蘖中期 阿米妙收30ml/亩
孕穗中期 阿米妙收30ml/亩
阿米妙收与其他产品在水稻纹枯病效果比较防治效果好,茎基无枯叶
空白对照
试验地点:浙江省椒江三甲镇 用药期:分蘖中期 试验药剂:阿米妙收 30ml/亩
妙收纹枯病防效田间调查表明, 30ml/mu对纹枯病治疗效果好
空白对照
肟菌戊唑醇 20g/亩
爱苗 20ml/ 亩
阿米妙收 30ml/亩
妙收千粒重增加-增加产量
常规对照
使用阿米妙收的的水稻千粒重比对照的多出2.4g, 折算每亩增产100多斤
江西省 南昌县南新乡
示范方案:7月29日阿米妙收30ml/亩 8月21日 阿米妙收30ml/亩
照药剂: 7月29日己唑醇30ml/亩 8月21日己唑醇30ml/亩
试验地点:江西省姚圩艾家村 用药期: 8月26日 阿米妙收30ml/亩
9月10日 阿米妙收30ml/亩
✓ 阿米妙收产品介绍以及理化性能 ✓ 阿米妙收对水稻主要病害的防效 ✓ 阿米妙收提高产量和改善品质 ✓ 阿米妙收使用技术推荐 ✓ 阿米妙收与国产仿制品的区别
阿米妙收改善品质和产量
健壮植株 提升品质和产量
2012年 广东韶关晚稻示范
内容
✓ 阿米妙收产品介绍以及理化性能 ✓ 阿米妙收对水稻主要病害的防效 ✓ 阿米妙收提高产量和改善品质 ✓ 阿米妙收使用技术推荐 ✓ 阿米妙收与国产仿制品的区别
20ml×8盒×50 包=8L
10ml×8盒×50 包=4L
100ml×100瓶 =10L
500ml×20瓶 =10L
产品特性总结: 防治多种病害的新一代杀菌剂
➢ 杀菌谱广——可防治水稻综合病害 ➢ 保护和治疗——两种高活性有效成分互补 ➢ 内吸性强——植株体内再分布,木质部传导 ➢ 持效期长——预防或早期治疗施用纹枯病持效期20天 ➢ 提升产量——健壮植株,改善品质 ➢ 环境友好——低毒,安全采收间隔期21天
稻曲病:孕穗中期(破口前5-7天) 和齐穗期两次使用,防效佳。
阿米妙收30ml/mu防治水稻纹枯病效果好,持效期长
空白对照
肟菌戊唑醇20g/亩
地点:广东
水稻:籼稻
病害:纹枯病
施药时间:
5月23日,6月17日 照片时间:
7月13日(第二次 药后26天效果)
爱苗 20ml/亩
阿米妙收 30ml/亩
阿米妙收与其他产品在水稻纹枯病效果比较防治效果好,茎基无枯叶
20
阿米妙收效果青枝蜡杆,保叶效果好
常规处理
阿米妙收
空白处理
2012年9月27日 江苏东台
阿米妙收增强茎秆强度,抗倒伏
台风前使用妙收,增加茎秆强度 台风后观察:禾苗硬朗,不倒伏 对照组:基本倒伏。
示范地点:浙江黄坡冼村
示范药剂:封行期 阿米妙收30ml/亩 破口期 阿米妙收30ml/亩
妙收CE效果:青枝蜡秆,穗长粒满
茎基部病 斑收干
穗枝梗零 感染
Classification: INTERNAL USE ONLY
试验地点:广东省江门市 用药期: 封行期 阿米妙收20ml/亩
破口期 阿米妙收30ml/亩
稻瘟病:妙收30ml/mu混用三环唑或稻瘟灵, 分蘖中期和孕穗中期两次使用,综合效果最 好
阿米妙收 30ml混用三
4
✓ 阿米妙收产品介绍以及理化性能 ✓ 阿米妙收对水稻主要病害的防效 ✓ 阿米妙收提高产量和改善品质 ✓ 阿米妙收使用技术推荐 ✓ 阿米妙收与国产仿制品的区别
阿米妙收对水稻主要病害总结:
纹枯病:妙收30ml/mu在纹枯病发 病初期使用,效果好,持效期长达 20天
稻瘟病:妙收30ml/mu混用三环唑 或稻瘟灵,分蘖中期和孕穗中期预 防使用,综合效果最好
示范地点: 湖北省监利黄歇镇 示范方案: 阿米妙收40ml/亩 爱可30ml/亩
常规对照
阿米妙收剑叶挺拔,青枝蜡杆,穗大穗长,谷穗整齐,谷粒颜色优于对照
阿米妙收增加产量
试验号:CNHN0P0022011 试验地点:湖南省长沙县春华镇 品种/靶标: C两优4488 施药时间:5月14日,6月8日 喷液量:675 L/ha (45 L/mu) 施药时CK病害程度0%
妙收30ml/mu混用三环唑对穗颈瘟的防治效果好
阿米妙收处理药后12天
常规处理药后12天
妙收防治水稻稻曲病:抓准时间,两次用药
常规处理
阿米妙收30ml/亩
空白处理
施药时间:孕穗中期(破口前5-7天)和齐穗期 剂 量:30ml/亩.
妙收防治水稻稻曲病:抓准时间,两次用药
妙收防治水稻稻曲病:抓准时间,两次用药
多效合一,多病防护
阿米妙收®水稻版沟通材料 2015版
✓ 阿米妙收产品介绍以及理化性能 ✓ 阿米妙收对水稻主要病害的防效 ✓ 阿米妙收提高产量和改善品质 ✓ 阿米妙收使用技术推荐 ✓ 阿米妙收与国产仿制品的区别
产品简介
• 商标名: 阿米妙收(Amistar Top) • 通用名称:苯甲·嘧菌酯 • 有效成份:苯醚甲环唑+嘧菌酯 (Difenconazole + Azoxystrobin) • 剂型及含量:325g/L 悬浮剂(125+200) • 包装规格
环唑,分蘖期2次 叶瘟病
75% 三环唑 30g 分蘖期2次 叶瘟病
水稻稻瘟病— 妙收30ml/mu混用三环唑对穗颈瘟的防治效果好
空白对照
戊唑醇+肟菌酯 20g/mu
20%三环唑WP 100ml/mu
爱苗 20ml/mu
阿米妙收 30ml/mu混用三环 唑20gAI
阿米妙收 50ml/mu
水稻稻瘟病—穗颈瘟
广谱病害控制
+
保护的吸收和利用 ❖ 绿叶覆盖面积提高 (37%)
保持绿叶面积 ❖ 减少乙烯产生-防早衰 ❖ 增加抗氧化酶的产生
改善水的利用率 ❖ 干旱条件下可减少水分从气孔中的流失
19
妙收增加产量,改善品质
✓增加有效穗 ✓增加穗长 ✓提高有效穗粒数 ✓增加千粒重
相关文档
最新文档