现代热物理测试技术一些知识点总结
现代力学测试技术
![现代力学测试技术](https://img.taocdn.com/s3/m/f73852c385868762caaedd3383c4bb4cf7ecb7dc.png)
动态力学测试技术
用于研究材料在动态载荷作用下的力学性能,如冲击、疲 劳等试验。在航空航天、汽车、军事等领域有重要应用。
断裂力学测试技术
主要研究材料在裂纹扩展过程中的力学性能,如断裂韧性 、裂纹扩展速率等。在结构安全评估、材料耐久性等方面 有重要意义。
无损检测技术
在不破坏被检测对象的前提下,利用声、光、磁等物理现 象对材料或构件进行内部缺陷或性能变化的检测。广泛应 用于航空航天、石油化工等领域。
磁结构分析
中子具有磁矩,可用于研究材料的磁结构和磁畴行为。
电子显微镜观察
01
透射电子显微镜(TEM)
利用高能电子束穿透样品,通过电磁透镜成像,观察材料的微观形貌、
晶体结构和缺陷。
02
扫描电子显微镜(SEM)
用电子束扫描样品表面,通过检测样品发射的次级电子等信号,获取表
面形貌和成分信息。
03
原位力学测试
有限元法在复杂结构力学测试中的应用
针对复杂结构如复合材料、多孔材料等,有限元法可建立精细化的模型,准确预测其力学 行为。
离散元法
离散元法基本原理
将连续体离散为一系列刚性元素的集合,元素之间通过接触力相互作用,通过求解元素运动方程 得到整体结构的力学响应。
离散元法在破碎、磨损等问题中的应用
针对涉及大变形、破碎和磨损等问题的力学测试,离散元法可有效模拟元素间的相互作用和破坏 过程。
金属、非金属、复合材料等材料的抗疲劳性能测 试,如桥梁、建筑、机械零部件等。
振动试验
振动试验原理
通过施加振动载荷,模拟实际使用中的振动环境,测试材料的抗 振性能。
振动试验设备
电磁振动台、液压振动台等。
振动试验应用
电子电器产品、航空航天产品、轨道交通产品等的抗振性能测试。
(完整版)现代测试技术及应用
![(完整版)现代测试技术及应用](https://img.taocdn.com/s3/m/22d133565fbfc77da269b1d4.png)
现代测试技术及应用作业学号2013010106姓名刘浩峰专业核技术及应用提交作业时间2014 12 10无损检测中的CT重建技术1无损检测1.1无损检测概述无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。
中国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。
此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。
无损检测缩写是NDT(或NDE,non-destructive examination),也叫无损探伤,是在不损害或不影响被检测对象使用性能的前提下,采用射线、超声、红外、电磁等原理技术并结合仪器对材料、零件、设备进行缺陷、化学、物理参数检测的技术。
利用材料内部结构异常或缺陷存在引起的热、声、光、电、磁等反应的变化,以物理或化学方法为手段,借助现代化的技术和设备器材,对试件内部及表面的结构、性质、状态及缺陷的类型、性质、数量、形状、位置、尺寸、分布及其变化进行检查和测试。
无损检测是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,无损检测的重要性已得到公认,主要有射线检验(RT)、超声检测(UT)、磁粉检测(MT)、液体渗透检测(PT)、涡流检测(ECT)、声发射(AE)和超声波衍射时差法(TOFD)。
1、射线照相法(RT)是指用X射线或γ射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。
工作原理是射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线强度也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。
测试技术考试知识点总结
![测试技术考试知识点总结](https://img.taocdn.com/s3/m/b09459b865ce0508763213f9.png)
1仪器测量的主要性能指标:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间。
2测量误差可分:系统误差、随机(偶然)误差、过失误差。
系统误差的分类:仪器误差、安装误差、环境误差、方法误差、操作误差、动态误差。
3随机误差的四个特性为:单峰性、对称性、有限性、抵偿性。
4热电偶性质的四条基本定律:均质材料定律、中间导体定律、中间温度定律、标准电极定律。
5造成温度计时滞的因素:感温元件的热惯性和指示仪表的机械惯性。
6流量计可分为:容积型流量计、速度型流量计、质量型流量计。
7扩大测功机量程的方法:采用组合测功机、采用变速器。
8现代常用的测速技术:除利用皮托管测量流速外,热线(热膜)测速技术、激光多普勒测速技术(LDV )、粒子图像测速技术。
温度、压力、流量、功率、转速等。
按照得到最后结果的过程不同,测量方法分三类:直接测量(直读法、差值法、替代法、零值法)间接测量、组合测量10任何测量仪器都应包括感受件,中间件和效用件。
11测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。
12系统误差的综合包括:代数综合法、算数综合法和几何综合法。
消除系统误差的方法:消除产生系统误差的根源、用修正方法消除系统误差、 常用消除系统误差的具体方法:交换低消法、替代消除法、预检法。
16使用较多的温标:热力学温标、国际实用温标、摄氏温标和华氏温标。
17热力学温标T 和摄氏温标t 的转换关系T=t+273.1519流量计的类型:容积型流量计、速度型流量计和质量型流量计。
21可疑测量数据剔除的准则:莱依特准则、格拉布斯准则、t 检验准则、狄克逊准则、肖维涅准则。
取压设备、后面的直管段三部分组成。
孔板取压有:角接取压、法兰取压、径距取压。
23常用的压力传感器有:应变式、压电式、压阻式、电感式和电容式等型式。
24热电阻测温常采用“三线制”接法,其目的在于消除连接导线电阻造成的附加误差 。
现代材料测试技术整理
![现代材料测试技术整理](https://img.taocdn.com/s3/m/c4349b30376baf1ffd4fad05.png)
一衍射2、衍射的基本要素只有三个:即衍射线的峰位、线形、强度。
3、在X射线衍射仪法中,对光源的基本要求是稳定、强度大、光谱纯洁。
4、利用吸收限两边质量吸收系数相差十分悬殊的特点,可制作滤波片。
5、测量X射线衍射线峰位的方法有七种,它们分别是7/8高度法、峰巅法、切线法、弦中点法、中线峰法、重心法、抛物线法。
7、特征X射线产生的根本原因是原子内层电子的跃迁。
8、X射线衍射仪扫描方式可分连续扫描、步进扫描、跳跃步进扫描三种。
9、X射线管阳极靶发射出的X射线谱可分为两类:连续X射线光谱和特征X射线光谱。
10、当X射线穿过物质时,由于受到散射,光电效应等的影响,强度会减弱,这种现象称为X射线的吸收。
11、用于X射线衍射仪的探测器主要有盖革-弥勒计数管、闪烁计数管、正比计数管、固体计数管,其中闪烁计数管和正比计数管应用较为普遍。
15、当X射线照射到物体上时,一部分光子由于和原子碰撞而改变了前进的方向,造成散射线;另一部分光子可能被原子吸收,产生光电效应;再有部分光子的能量可能在与原子碰撞过程中传递给了原子,成为热振动能量。
2、产生特征X射线的根本原因是什么?内层电子跃迁:阴极发出的电子动能足够大,轰击靶,使靶原子中的某个内层电子打出,使它脱离原来的能级,致使靶原子处于受激态。
此时,原子中较高能级上的电子自发跃迁到该内层空位上,多余的能量变为X射线辐射出。
由于任一原子各个能级间的能量差值都是某些不连续的确定值,该差值转变为X射线的波长必为确定值,即产生特征X射线。
3、简述特征X-射线谱的特点。
特征X-射线谱有称作标识射线,它具有特定的波长,且波长取决于阳极靶元素的原子序数。
5、X射线连续光谱产生的机理。
答:当X射线管中高速电子和阳极靶碰撞时,产生极大的速度变化,就要辐射出电磁波。
由于大量电子轰击阳极靶的时间和条件不完全相同,辐射出的电磁波具有各种不同波长,因而形成了连续X射线谱。
6、X射线所必须具备的条件。
热物理量测试技术 闪光法测热扩散系数
![热物理量测试技术 闪光法测热扩散系数](https://img.taocdn.com/s3/m/3320804169eae009581bec37.png)
微桥法
• 加热丝产生交变热流沿薄膜传播,在薄膜边界,由于硅基底的热沉作用,热流急 剧降低,因而可以认为边界处的温度为环境温度。通过解一个一维瞬态热传导 方程可以得到在x 处的相位及幅值变化。热扩散率可以根据相移及热波频率 ω求出,也可以根据振幅随频率增加而衰减的关系,在已知热导率k 的情况下 求出
德国耐驰LFA 447和LFA 457的功能
up to 300 °C. 500 kHz. Accuracy : +/-3 %
-125 ... 500℃,RT ... 1100℃
闪光法测量的难点和优点
优点: 1.准确 2.测量时间短 3.可同时测得热导率、热扩散性系数和比热容 难点: 1.材料越薄,温升时间越短(100微秒),对红外 测温等的响应时间要求很高 2.薄膜材料的黑化带来误差 3.光源:均匀、脉冲时间短 4.温度探测器:0.05K 5.放大器的响应时间:<2%
薄膜材料和纤维材料的热扩散系数测量
111081053
麻景峰
交流量热法
当用一定频率和一定脉冲宽度的激光加热样品时,样 品表面会呈现出同频的交变温度波。在一定距离上, 该温度波的衰减和相位滞后与样品的热物性有关。 因此,如果已知一定距离上不同两点间的温度波,便可 以根据温度波的幅度衰减或相移计算出样品的热扩 散率
闪光法原理理论推导 闪光法原理理论推导
对于一绝热平板的初始温度分布为T(x,0),则该平板在任意时刻t的 温度分布为:(1)式
在前表面施 加一热量Q
平板背面温度随时间变化函数 (3)
闪光法原理 闪光法原理
代入式(3)
α = 1.38 L2 (材料热扩散系数
闪光法原理 闪光法原理
闪光法的前提假设: 闪光法的前提假设: ( 1) 试样为均匀材料, 热传导是试样中唯一的传热方式; ( 2) 试样内的热流是一维的; ( 3) 加热脉冲被式样表面无限薄的区域均匀吸收; ( 4) 试样表面没有热损失; ( 5) 在窄的温升范围内试样的物性不随温度变化; ( 6) 加热脉冲时间远小于背面温度上升时间;
现代检测技术
![现代检测技术](https://img.taocdn.com/s3/m/7e8e684ff02d2af90242a8956bec0975f465a4e3.png)
偿电路、基准电源电路等在内的各个单元它使传感器和集成电路融为一体。
热电偶、热电阻的典型应用
金属表面温度的测量 热电偶炉温控制系统 钢水漏钢预报系统 采用集成温度传感器的数字式温度计 电动机保护器
强度随物质的厚度而变,I=I0e-μΗ,I、I0射入介质前和通过介质后的射线强度,μ为介质对 射线的吸收系数,H为介质厚度,I0、μ为常数,只要能测知穿过介质后的射线强度I,则介质的 厚度即物位的高度,可求出。放射源和接收器放置在被测容器旁,由放射源放射出的射线强 度I0 穿过设备和被测介质,由探测器接收并把探测出的射线强度I转换成电信号,经放大器放 大送入显示仪表进行显示
光电高温计
热辐射:任何物体,其温度超过绝对零度,以电磁波的形式向周围辐射能量,其中与物体本身温度有关的 传播热能那部分辐射.
辐射式温度计:把能对被测物体热辐射能量进行检测,来确定被测物体温度的仪表. 光电高温计工作原理:
11
10
12
7
2
64
3
1
3
17
5
15
16
14
13
压力传感器
弹性式压力传感器:当被测压力作用于弹性元件时,弹性元件就产生相应变形,根据变形的 大小,可以知道被测压力的数值。如:弹簧管式压力表。霍尔片式远传压力传感器。
声速受到介质的温度、压力影响,造价高。
探头
电容式液位计
将液位的变化转换成电容量的变化,通过测量电容量的大小,来间接测量液位高低的液位测 量仪表。
电极
绝缘套 管
在液体中插入一根带绝缘套管的电极,金属电极作为一个电极, 容器和液体可视为另一个电极,绝缘套管为中间介质,三者组 成圆筒形电容器
热能与动力工程测试技术完整版
![热能与动力工程测试技术完整版](https://img.taocdn.com/s3/m/e33fdc57e009581b6ad9eb33.png)
热能与动力工程测试技术HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、何为动压静压总压P129答:静压是指运动气流里气体本身的热力学压力。
总压是指气流熵滞止后的压力,又称滞止压力。
动压为总压与静压之差。
2、试画出皮托管的结构简图,说明皮托管的工作原理,并导出速度表达式(条件自拟,不考虑误差)。
P143~P1443、某压力表精度为级,量程为0~,测量结果显示为,求精确度、最大绝对误和差示值相对误差δ4、在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜。
P55、测量误差可分为系统误差、随机(偶然)误差、过失误差。
6、随机误差正态分布曲线的四个特性为单峰性、对称性、有限性、抵偿性。
7、热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律。
8、流量计可分为:容积型流量计、速度型流量计、质量型流量计。
P1619、除利用皮托管测量流速外,现代常用的测速技术有:热线(热膜)测速技术、激光多普勒测速技术(LDV)、粒子图像测速技术。
10、简述金属应变式传感器的工作原理。
答:金属应变式传感器的工作原理是基于金属的电阻应变效应,即导体或半导体在外力作用下产生机械形变时,电阻值也随之产生相应的变化。
P6311、在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等。
12、按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量。
13. 按工作原理,任何测量仪器都应包括感受件,中间件和效用件。
14. 测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差。
15. 系统误差的综合包括代数综合法、算术综合法和几何综合法。
16. 金属应变式电阻传感器温度补偿的方法有桥路补偿(补偿片法)和应变片自补偿。
现代力学测试技术PPT课件
![现代力学测试技术PPT课件](https://img.taocdn.com/s3/m/c15ab7c958fb770bf68a5504.png)
计量 计量的主要任务是建立统一的基准单位,使测量有客观标准。
测试 测试的基本任务是获取有用的信息,通常包含了测量、计量、计算、
检验,判断等多层含义,具有比单纯的测量更为丰富的内容。
第4页/共39页
测试的范畴有:
1、将被测量与标准量进行比较,以获得 被测对象的数值结果。
2、将被测量与设定值进行比较,以获得 被测对象在性能、参数、质量、功能等方面的 评价。这种评价常采用通过/不通过、合格/ 不合格、正常/越限、好/坏等定性指标来表 示或采用分成若干等级的分类值来表示。
第16页/共39页
常用方法: (1)基于固有频率变化的识别技术; (2)基于振型变化的识别技术: (3)基于柔度变化的识别技术; (4)基于刚度变化的识别技术; (5)基于能量变化的识别技术; (6)基于传递函数变化的识别技术; (7)基于统计信息的识别技术。
第17页/共39页
2.超声波法检测 超声检测是利用超声波在介质内传播时的反射、透射和散射特性进行的。
利用振动响应和动力特性参数的变化来进行 故障的监测、预报,是结构故障诊断中的重要研究 手段之一。任何结构都可以看作是由刚度、质量、 阻尼矩阵组成的力学系统。结构动力特性是结构的 固有特性。结构的损伤必然引起结构动态响应的变 化,进而引起结构实验获取的模态参数的变化。因 此,模态参数的改变可视为结构损伤发生的标志。 实验模态分析技术就是对被测结构系统进行激励, 通过振动测试、数据采集和信号分析,由输入和输 出确定结构的动力特性。
第37页/共39页
参考文献: 1.《土木工程监测技术》中国建筑工业出版社 2.《基坑工程手册》,中国建筑工业出版社 3.《结构混凝土现场检测技术》,湖南大学出版社 4.《无损检测手册》,机械工业出版社 5.《结构损伤检测与智能诊断》,科学技术出版社 6.《现代光测力学技术》,哈尔滨工业大学出版社
现代测试技术与信号处理_复习
![现代测试技术与信号处理_复习](https://img.taocdn.com/s3/m/09ccd912a76e58fafab00345.png)
一般说来,测试系统由传感器、中间变换装置和显示记录装置三部分组成。
传感器将被测物理量(如噪声,温度) 检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经A/D变换后用软件进行信号分析,显示记录装置则测量结果显示出来,提供给观察者或其它自动控制装置2.1信号的分类主要是依据信号波形特征来划分的,在介绍信号分类前,先建立信号波形的概念信号波形:被测信号信号幅度随时间的变化历程称为信号的波形。
2.1 确定性信号与非确定性信号可以用明确数学关系式描述的信号称为确定性信号。
不能用数学关系式描述的信号称为非确定性信号。
2.2 信号的时域波形分析信号的时域波形分析是最常用的信号分析手段,用示波器、万用表等普通仪器直接显示信号波形,读取特征参数。
2.5 信号的频域分析信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。
X(t)= sin(2πnft)时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简谐波外,很难明确揭示信号的频率组成和各频率分量大小。
4 傅立叶变换的性质a.奇偶虚实性b.线性叠加性若x1(t) ←→X1(f),x2(t) ←→X2(f)则:c1x1(t)+c2x2(t) ←→c1X1(f)+c2X2(f)c.对称性若x(t) ←→X(f),则X(-t) ←→x(-f)d. 时间尺度改变性若x(t) ←→X(f),则x(kt) ←→1/k[X(f/k)]e. 时移性若x(t) ←→X(f),则x(t±t0) ←→e±j2πft0 X(f)f. 频移性若x(t) ←→X(f),则x(t) e±j2πf0t ←→X(f ±f0)2.6卷积分1 卷积卷积积分是一种数学方法,在信号与系统的理论研究中占有重要的地位。
特别是关于信号的时间域与变换域分析,它是沟通时域-频域的一个桥梁。
现代测试方法
![现代测试方法](https://img.taocdn.com/s3/m/cb111a1b6edb6f1aff001f29.png)
现代测试方法随着科学技术的进步和工业技术的发展,对物质的测试提出了更多更高的要求,于是涌现出了一些特点各异的方法。
以下简要介绍几种不同的方法。
1.综合热分析法{TG/DTA}综合热分析法是在程序控制下测量物质质量{TG}随温度{OTA}变化的一种测试技术%许多物质在加热过程中会在某一温度发生分解,脱水,氧化,还原和升华等物理,化学变化而出现质量变化及吸,放热现象"利用加热或冷却过程中物质质量变化,热效应的特点"可以区别和鉴定不同的物质"而发生质量变化的温度,质量变化百分数及热效应的大小随物质的结构及组成而异"所以可用物质的热分析曲线研究物质的变化过程"如试样的组成,热稳定性,热分2.X-射线衍射分析(XRD)当X-射线射入品体样品时会发生衍射,衍射的条件满足布拉格方程,即:2dsin6=}(1)式中:d-品体而网间距e-x-射线束与品而的夹角}-x-射线束的波长当种胶体或品体的结构定时,a值是系列的定值。
囚此若波长己知,而衍射峰的角度e用实验方法确定后,叫用上式得而网间距a。
小断改变e,而获得系列a值,进而据此确定胶体或品体的类刑。
根据这原理,叫通过x-射线衍射分析技术,研究胶凝材料-的种类胶凝材料-化产物的判别及水化反应速度和水化过程等。
3.扫描电子显微镜分析(SEM扫描电子显微镜分析是通过高能电子束轰击样品表而,探测发射出来的电子信号以得到微观结构信息的种装置。
在发射出来的电子中,背散射电子的能量较高,其产额取决于样品表而组成的原子序数,而}}_还受表而起伏四凸所控制,囚此利用背散射电子成像叫得到平均原子序数、表而形貌的信息。
次级电子的能量较低,只能从样品表而发射出来,样品表而的形貌、表而电位及磁场对低能次级电子的影}}向很大,利用次级电子成像叫得到表而形貌、表而电位,磁解温度、热分解产物和热分解动力学,即借助于热分析曲线叫推断该物质的反应机理及产物。
现代测试技术
![现代测试技术](https://img.taocdn.com/s3/m/7ce220b8f121dd36a32d82cb.png)
现代测试技术1,测试通常包含测量与试验两部分内容,测量是对某一物理量的“数量”的描述,而试验则是对其“性质”的探讨。
2,现在测试技术的一个主要特点是基于计算机的测试,也就是以计算机为核心构成测试系统。
该系统一般具有开放化、远程化、智能化、多样化、网络化、测控系统大型化和微型化、数据处理自动化等特点,它将成为仪器仪表与测控系统新的发展方向。
3,测试技术的作用:(1)测试技术是技术部门和科研院所进行研究、认识、维护不同对象的必不可少的手段。
(2)测试技术是产品检验和质量控制的重要手段。
(3)测试技术是大型设备安全经济运行的保证。
(4)测试技术是自动化系统中不可缺少的部分。
(5)测试技术是推动现代科技技术进步的重要力量,测试技术的完善和发展直接影响着现代科学技术能否以较快的速度发展和进步。
(6)测试技术是理论研究成果形成的推进剂。
4,测试系统包括被测对象、传感器、调理变换装置、信号传输装置、结果显示装置。
被测对象是测试系统信息的来源,它决定着整个系统的构成形式;传感器是把被测量信号转换成电信号输出的器件;调理变换装置的作用是将传感器的输出信号进行调理,将其转换成易于测量的电压或电流信号,并进行相应的处理变换。
5,计量具有准确性、一致性、法制性和原创性的特点。
6,电子测量的特点:(1)测量频率范围宽。
(2)量程宽。
(3)测量精度高。
(4)响应时间短、测量速度快。
(5)可进行遥测。
(6)易于实现测试智能化和自动化。
7,测量方法的选择原则:(1)被测量本身的特性。
(2)所要求的测量准确度。
(3)测量环境。
(4)现有测量设备等。
8,电子测量仪器的主要性能指标:(1)精确度:是指测量仪器的读数或测量结果与被测量真值接近的程度,也称为精度。
(2)灵敏度(3)稳定性(4)输入阻抗与输出阻抗(5)线性度(6)动态特性9,电子测量仪器的发展:模拟式仪器、数字式仪器、智能化仪器和虚拟仪器。
其中虚拟仪器是通过各种与检测技术相关的软件和硬件与工业计算机相结合,用于替代传统概念的仪器设备;或者利用软件和硬件与传统仪器设备相连接,通过通信方式采集、分析、显示数据,监控测试过程、生产过程的仪器设备。
热重分析(TG)
![热重分析(TG)](https://img.taocdn.com/s3/m/fe42d800f524ccbff0218404.png)
热天平种类
➢根据试样与天平横梁支撑点之间的相对位置,热
天平可分为下皿式,上皿式与水平式三种。
热天平测量原理
➢ 当天平左边称盘中试样因受热产生重量变化时,天平横梁连同光栏则向
上或向下摆动,此时接收元件接收到的光源照射强度发生变化,使其输 出的电信号发生变化。这种变化的电信号送给测重单元,经放大后再送 给磁铁外线圈,使磁铁产生与重量变化相反的作用力,天平达到平衡状 态。因此,只要测量通过线圈电流的大小变化,就能知道试样重量的变 化。(零为平衡)
➢粒度越小,反应速率越快,使TG曲线上的Ti和Tf
温度降低,反应区间变窄。
➢试样粒度大往往得不到较好的TG曲线。粒度减小
不仅使热分解温度下降,而且也使分解反应进行 的很完全。
德国NETZSCH STA449C型综合热分析仪
应用举例
• 大同煤的TG-DTG分析
Weight loss(wt%, daf) Rate of weight loss (%/s)
为了获得精确的实验结果,分析各种 因素对TG曲线的影响是很重要的。影响TG 曲线的重要因素包括:
一、仪器因素 二、试样因素
仪器因素
➢升温速率 ➢炉内气氛 ➢支持器及坩埚材料 ➢炉子的几何形状 ➢热天平灵敏度
(1) 升温速率
➢对热重法影响比较大。 ➢升温速率越大,所产生的热滞后现象越严重,
往往导致热重曲线上的起始温度Ti和终止温度 Tf偏高。虽然分解温度随升温速率变化而变化, 但失重量保持恒定。
CuSO4·5H2O的TG曲线
曲线EF段也是一平台,相应质量 为m2;曲线FG 为第三台阶,
质量损失为0.8mg,可求得质量 损失率
现代测试分析技术SEM、TEM、表面分析技术、热分析技术
![现代测试分析技术SEM、TEM、表面分析技术、热分析技术](https://img.taocdn.com/s3/m/dcc219e9760bf78a6529647d27284b73f24236a9.png)
现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。
电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。
物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。
电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。
此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。
2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。
扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。
扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。
2、扫描电镜的特点分辨本领较⾼。
⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。
热工测试技术第1章
![热工测试技术第1章](https://img.taocdn.com/s3/m/1cd9807f33687e21af45a9ca.png)
1.2 误差的基本知识
示值的绝对误差与约定值之比值称为相对误差, 其为无量纲数,以百分数表示。
100%
m 一般约定值m有如下几种取法:
m取测量仪表的指示值x时,γ称为标称相对误差; m取测量的实际值X时,γ称为实际相对误差; m取仪表的满刻度值时,γ称为引用相对误差。
它是测量系统直接与被测对象发生联系的部分。 理想敏感元件应满足的要求:
敏感元件输入与输出之间应该有稳定的单值函数关系。 敏感元件应该只对被测量的变化敏感,而对其它一切可
能的输入信号不敏感。 在测量过程中,敏感元件应该不干扰或尽量少干扰被测
介质的状态。
15
1.1 测量系统概述
鼠标:光电位移传感器 摄象头:CCD传感器 声位笔:超声波传感器
减少仪器误差的主要途径是根据具体测量任务,正 确地选择测量方法和使用测量仪器。
30
1.2 误差的基本知识 2、人身误差
它指由于测量者感官的分辨能力、视觉疲劳、固有 习惯等而对测量实验中的现象与结果判断不准确而 造成的误差。
减少人身误差的途径
3、影响误差
它是指各种环境因素与要求条件不一致而造成的误差。 主要的影响因素是环境温度、电源电压和电磁干扰等。
A0 Aum Alm
问:某温度计测量的最低温度为-20℃, 最高温度为100℃,它的量程是多少?
120℃
19
1.1 测量系统概述
2.精度(精确度)
指测量值与真值符合的程度,常用满量程时仪表所允许的最大相 对误差的百分数来表示:
max 100 %
A0
据此分为: I级标准表:0.01、0.02、0.05级; II级仪表:0.1、0.2、0.5级 工业用仪表:1、1.5、2.5、4级。
《现代分析测试技术》复习知识点答案
![《现代分析测试技术》复习知识点答案](https://img.taocdn.com/s3/m/3b4fe2b1f5335a8103d2203d.png)
I F —入激发作图,便可得到荧光物质的激发光谱、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生 1%吸收率即得到 0.0044 的吸光 度的某元素的浓度称为特征浓度。
计算公式: S=0.0044 X C/A ( ug/mL/1%)S —— 1%吸收灵敏度 C ——标准溶液浓度 0.0044 ——为 1%吸收的吸光度 A —— 3 次测得的吸光度读数均值 2. 原子吸收检出限: 是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最 小浓度或最小含量。
通常以产生空白溶液信号的标准偏差 2〜3倍时的测量讯号的浓度表示。
只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠 地区分开。
计算公式: D = c K 5 /A mD--- 元素的检出限 ug/mL c -------- 试液的浓度 5 ------- 空白溶液吸光度的标准偏差 A m ----- 试液的平均吸光度 K 置信度常数,通常取 2~3 3. 荧光激发光谱:将激发光的光源分光,测定不同波长的 激发光照射 下所发射的荧光强度的变化,4. 紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收 200 ~ 800 nm 光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃 迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合 IR )。
5.热重法:热重法(TG 是在程序控制温度下,测量物质质量与温度关系的一种技术。
TG 基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、 蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学 现象。
热重分析通常可分为两类:动态(升温)和静态(恒温) 。
检测质量的变化最常用的办法就是 用热天平(图 1),测量的原理有两种:变位法和零位法。
材料现代分析测试方法知识总结
![材料现代分析测试方法知识总结](https://img.taocdn.com/s3/m/b6657d57fd4ffe4733687e21af45b307e871f906.png)
材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。
这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。
以下是对现代分析测试方法的一些知识的总结。
一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。
2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。
3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。
4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。
二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。
2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。
3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。
4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。
三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。
2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。
以上是现代材料分析测试方法的一些知识总结。
通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。
现代分析测试技术_07热分析技术综合练习
![现代分析测试技术_07热分析技术综合练习](https://img.taocdn.com/s3/m/a30fb359581b6bd97e19ea33.png)
第七章热分析技术(红色的为选做,有下划线的为重点名词或术语或概念)1.名词、术语、概念:热分析,差热分析,差示扫描量热法,热重法(或热重分析),参比物(或基准物,中性体),程序控制温度,外推始点。
2.影响DTA(或DSC)曲线的主要因素有()、()、()、()、()、()等。
3.影响TG曲线的主要因素有()、()、()、()、()、()等。
4.金属铁粉在空气气氛中进行热重分析(TGA)和差热分析(DTA),其TGA曲线上会有增重台阶,DTA曲线上会出现放热峰。
这种说法()。
A.正确;B.错误5.碳酸钙分解在DTA曲线上表现为放热峰。
这种说法()。
A.正确;B.错误6.如果采用CO2气氛,DTA曲线上碳酸钙分解吸热峰的位置会向高温方向移动。
这种说法()。
A.正确;B.错误7.物质脱水在DTA曲线上表现为吸热谷。
这种说法()。
A.正确;B.错误8.升温速率对DTA曲线(或DSC曲线)没有影响。
这种说法()。
A.正确;B.错误9.样品粒度对DTA曲线(或DSC曲线)没有影响。
这种说法()。
A.正确;B.错误10.样品用量对DTA曲线(或DSC曲线)没有影响。
这种说法()。
A.正确;B.错误11.炉内气氛对DTA曲线(或DSC曲线)可能有影响。
这种说法()。
A.正确;B.错误12.无论测试条件如何,同一样品的差热分析曲线都应是相同的。
这种说法()。
A.正确;B.错误13.升温速率对TG曲线没有影响。
这种说法()。
A.正确;B.错误14.样品粒度对TG曲线没有影响。
这种说法()。
A.正确;B.错误15.样品用量对TG曲线没有影响。
这种说法()。
A.正确;B.错误16.炉内气氛对TG曲线可能有影响。
这种说法()。
A.正确;B.错误17.无论测试条件如何,同一样品的TG曲线都应是相同的。
这种说法()。
A.正确;B.错误18.同一样品在不同仪器上的热分析结果应该完全相同。
这种说法()。
A.正确;B.错误19.差热分析(DTA)测量的物理量是()。
物理热的知识点总结
![物理热的知识点总结](https://img.taocdn.com/s3/m/5a571488ba4cf7ec4afe04a1b0717fd5360cb2e0.png)
物理热的知识点总结
1. 热的概念
热是一种物质内部微观粒子和电磁场的能量。
在热平衡状态下,物体之间的热量不会再发
生变化。
2. 热量
热量是流经物体与环境间的热传输的量度。
热量可以通过传导、辐射和对流三种方式传输。
3. 热传导
热传导是热从高温区传到低温区的过程。
在热传导过程中,热量通过物质内部的震动和碰
撞传递。
4. 热辐射
热辐射是物体通过辐射能量传递热量的过程。
热辐射可以是对流换热的主要方式,在太阳
核心等地方,热辐射是能量传输的主要方式。
5. 热力学定律
热力学定律包括零th、第一th、第二th、第零th和第四th定律。
这五大基本定律一并
可以阐述热力学在自然界中的普遍适用性。
以上是我对热的知识总结,希望对您有所帮助。
热能与动力工程测试技术
![热能与动力工程测试技术](https://img.taocdn.com/s3/m/56798d4959fafab069dc5022aaea998fcc2240df.png)
1、何为动压静压总压P129答:静压是指运动气流里气体本身的热力学压力;总压是指气流熵滞止后的压力,又称滞止压力;动压为总压与静压之差;2、试画出皮托管的结构简图,说明皮托管的工作原理,并导出速度表达式条件自拟,不考虑误差;P143~P1443、某压力表精度为级,量程为0~,测量结果显示为,求精确度、最大绝对误和差示值相对误差δ4、在选用仪器时,应在满足被测要求的前提下,尽量选择量程较小的仪器,一般应使测量值在满刻度要求的2/3为宜;P55、测量误差可分为系统误差、随机偶然误差、过失误差;6、随机误差正态分布曲线的四个特性为单峰性、对称性、有限性、抵偿性;7、热电偶性质的四条基本定律为均质材料定律、中间导体定律、中间温度定律、标准电极定律;8、流量计可分为:容积型流量计、速度型流量计、质量型流量计;P1619、除利用皮托管测量流速外,现代常用的测速技术有:热线热膜测速技术、激光多普勒测速技术LDV、粒子图像测速技术;10、简述金属应变式传感器的工作原理;答:金属应变式传感器的工作原理是基于金属的电阻应变效应,即导体或半导体在外力作用下产生机械形变时,电阻值也随之产生相应的变化;P6311、在热能与动力工程领域中,需要测量的物理量主要有温度、压力、流量、功率、转速等;12、按照得到最后结果的过程不同,测量方法可以分为直接测量,间接测量和组合测量;13. 按工作原理,任何测量仪器都应包括感受件,中间件和效用件;14. 测量误差按照产生误差因素的出现规律以及它们对测量结果的影响程度来区分可以将测量误差分为系统误差,随机误差和过失误差;15. 系统误差的综合包括代数综合法、算术综合法和几何综合法;16. 金属应变式电阻传感器温度补偿的方法有桥路补偿补偿片法和应变片自补偿;17. 自感式电感传感器分为变气隙式、变截面式和螺管式;18. 光电效应分为三类:外光电效应元件有光电管、光电倍增管、内光电效应元件有光敏电阻、光导管、光生伏特效应元件光电池、光敏晶体管19. 使用较多的温标有热力学温标、国际实用温标、摄氏温标和华氏温标;20. 热力学温标T和摄氏温标t的转换关系T=t+21. 可用于压力测量的传感器有压阻式传感器、压电式传感器和电容式差压传感器;22. 流量计的类型有容积型流量计、速度型流量计和质量型流量计;;24①易于实现集中检测、控制和远距离测量②响应速度快,可以测量瞬时值及动态过程③使热动测试的连续测量、自动记录和自动控制成为可能④测量的准确度和灵敏度高,可以测量微弱信号并将其放大与长距离传输⑤易于和计算机等进行连接,记录和处理数据方便25、电阻式传感器原理—将物理量的变化转换为敏感元件电阻值的变化,再经相应电路处理后转换为电信号输出;26、金属应变式传感器原理—导体或半导体在歪理作用下产生机械变形时,电阻值也随之产生相应的变化---------应变片结构:基底,敏感栅,覆盖层,引出线应变片的温度补偿:1桥路补偿2应变片自补偿:选择特定的应变片,采用双金属敏感栅自补偿应变片,热敏电阻补偿;27、半导体压阻式传感器:压阻效应—固体材料在受到应力作用后,电阻率都会发生变化的效应;28、电感式传感器—在电磁感应基础上,利用线圈自感或互感变化,把被测量转换为线圈电感量变化的传感器;分为自感式和互感式两种1自感式:①变气隙式—电感量L=N 2N0N2N;δ:气隙厚度A:气隙截面积μ:真空磁导率;δ越小,灵敏度越高;②变截面式;③螺管式:结构简单、制作容易,但由于磁阻较大因而灵敏度低,主要用于测量大位移的场合2互感式电感传感器:又称差动变压器,他把被测位移变化转化为传感器互感变化;目前用的最多的就是螺管形差动变压器,由线圈和铁芯组成;29、电容式传感器—功率小、阻抗高、动态性能好、结构简单,可用于非接触式测量两极板间的电容量C=NNN =N N NN×8.854×10−12;A:面积,N:介电常数,N=N N N N,N N=N.NNN×NN−NN N N⁄;d:极板间距,改变其中任意一个,C都会变化,因此可再分为:变极板间隙型、变面积型、变介电常数型30、压电式传感器—基于某些物质的压电效应,这些物质在外力作用下表面会产生电荷,经过电荷放大器的放大,可实现电测的目的;压电效应:某些结晶物质,当沿它的某个结晶轴施力时,内部会出现极化现象,从而在表面形成电荷集结,电荷量大小和作用力大小成正比逆压电效应:在晶体某些表面之间施加电场,在晶体内部会出现极化现象,促使晶体变形31、磁电式传感器—转速测量时最常用的传感器之一,也称感应式传感器;32、热电式传感器是将温度变化转为电量变化的传感器;1热电阻式传感器→热电阻效应:电阻率随本身温度变化而变化的现象;电阻随温度变化导体或半导体称为热电阻器件;金属随温度升高电阻增大,半导体随温度升高电阻下降;2热电偶式传感器→热电现象:两种不同的导体A和B组成闭合回路,若两连接点温度T和T不同,则在回路中产生热电动势,形成热电流的现象;A和B两导体称为热电极,他们组合称为热电偶;接触热场的一端温度为T为工作端,另一端称为自由端;热电偶输出电动势的大小只取决于两种金属的性质和两端温度;热电偶四大基本定律:①均质材料定律:一种材料组成的闭合回路不会产生热电动势②中间导体定律:插入第三种多种,只要插入材料的两端温度相同,就不会使热电偶的热电动势发生变化③中间温度定律:EAB t,t=EABt,tn+EABtn,t④标准电极定律:EAB t,t=EACt,t-EBCt,t对热电极材料的要求:①测量结果不随时间变化②足够的物理化学稳定性③热电动势应尽可能大并与温度成单值线性或近似于线性关系④电阻温度系数小,电导率高⑤材料复制性好,制造简单,价格便宜33 1.在光线的作用下能使电子溢出物质表面的称为外光电效应,有光电管,2.在光线作用下使物体电阻率改变的称为内光电效应,有光敏电阻和由光敏电阻制成的光导管等;3.在光线作用下使物体产生一定方向电动势的称为光生伏特效应,有光电池和光敏晶体管等;34、霍尔传感器:利用半导体的霍尔效应进行测量的传感器35、温标:用来度量温度高低的尺度称为温度标尺,简称温标,它规定了温度的零点和基本361接触式温度计则无此问题;2接触式温度计感温元件与被测物体达到热平衡需要一定时间,所以产生的时间滞后比较大;非接触式温度计直接测量被测物体的热辐射,响应速度较快;3由于感温元件难以承受很高的温度,所以接触式温度计测量高温时受到限制,非接触式温度计则无此问题;4由于低温时物体热辐射很小,所以非接触式温度计不适合测量低温;5一般来说,接触式温度计的测量精度比非接触式温度计高;37、1膨胀式温度计:利用物质体积随温度升高而膨胀的特性制作的温度计;具体有三种:玻璃管液体温度计、压力式温度计、双金属温度计;玻璃管液体温度计:常用水银温度计,水银不粘玻璃,不易氧化,在相当大的温度范围内-38~356℃保持液体,在200℃以下,膨胀系数几乎与温度呈线性关系,所以可做精密标准温度计;使用玻璃管温度计注意两个问题:①零点漂移②露出液柱校正压力式温度计:基于密闭系统内的气体或液体受热后压力变化的原理而制成,由温包、毛细管和弹簧管组成;双金属温度计:线膨胀系数不同的两金属构成的金属片作为感温元件,当温度变化时,由于两种金属的线膨胀系数不同,双金属片就产生与被测温度大小成比例的变形,这种变形通过相应的传动机构由指针指示出温度数值,分为螺旋形和盘形双金属温度计两种;2热电阻温度计:利用导体或半导体的电阻值随温度的变化而变化的特性制成;3热电偶温度计:利用热电效应而制成的感温元件见热电偶传感器;4温度计的校验①热电阻温度计的校验:a、比较法 b、两点法;5接触式温度计的感温元件正确反映物体温度,必须满足的两个条件:①热力平衡条件,使感温元件与被测对象组成孤立的热力学系统,并经历足够的时间,使两者完全达到热平衡;②当被测对象温度变化时,感温元件的温度能实时的跟着变化,即使传感器的热容和热阻为零6造成温度计时滞的两个因素:①感温元件的热惯性②指示仪表的机械惯性;38、非接触式温度计:基于热辐射原理;39、气体温度计:常用于测量热力学温度;根据热力学原理,理想气体的状态方程pV=nRT,用理想气体温度计测出的温度就是热力学温度;气体温度计分为三种:定容气体温度计、定压气体温度计、测温泡定温气体温度计;40、压力——流体对单位面积上的垂直作用力,即压强;绝对压力:以完全真空作为零标准的压力,也就是作用于单位面积上的全部压力;表压力相对压力:在压力仪表上指示的压力,其数值为绝对压力减当地大气压;绝对压力=表压力+当地大气压常用单位有Pa帕、at工程大气压、atm标准大气压、bar巴、mmHg毫米汞柱O= Pa1bar=1×105 Pa;1atm=101325 Pa;1at= Pa;1mmHg= Pa;1mmH2压力测量方法:重力与被测压力的平衡法;弹性力与被测压力的平衡法;利用物质某些与压力有关的物理性质进行测压41、液柱式测压仪表:利用工作液又称封液,常用的有水、酒精、水银的液柱重力与被测压力平衡,根据液柱高度确定被测压力大小的压力计;①U型管压力计②单管压力计③斜管微压计1液柱式压力计的测量误差及修正A、环境温度变化的影响:环境温度偏离规定20℃时的修正公式B、重力加速度变化的影响C、毛细现象的影响:封液引起的误差,误差大小取决于封液种类、温度、管径等,实际中,可以加大管径减小毛细现象,封液为酒精时,管内径d≥3mm;水或水银则≥8mmD、水和酒精读数,应与凹面持平;水银与凸面持平2弹性测压仪表:弹簧管压力计、膜式压力计膜片和膜盒两种、波纹管式压差计单波纹管和双波纹管两种3弹簧管压力计属于弹性测压仪表:由弹簧管、齿轮传动机构、指针和刻度盘组成;弹簧管的横截面呈椭圆形或扁圆形,是一根空心金属管,其一端封闭为自由端,另一端固定在仪表的外壳上,并用与被测介质相通的管接头联接;原理:当具有压力的介质进入管内腔后,在压力的作用下,弹簧管会发生变形,由于椭圆形短轴方向的内表面积比长轴方向大,因此受力也大,管子截面趋于变圆,产生弹性变形,使弯成圆弧状的弹簧管向外伸张,在自由端产生位移,通过拉杆带动齿轮传动机构,使指针相对于刻度盘转动;当变形引起的弹性力与被测压力平衡时,变形停止,指针指示出被测压力值;为了提高弹簧管的灵敏度,可采用螺旋形弹簧管或S形回形弹簧管;齿轮传动机构的作用是把自由端的位移转换成指针的角位移;4弹性压力计弹性测压仪表误差分析:①迟滞误差主要原因,同一元件在相同压力下正反行程的变形量不一样,而且元件变形远远落后于压力的变化,可采用迟滞误差极小的全弹性材料,如熔炼石英;②温度误差,仪表精度标定是在标准温度下进行的,当使用环境的温度偏离标准温度很多时,弹性元件的弹性模量会产生变化,因而误差,可采用恒弹性材料做弹性元件,如合金Ni42CrTi等;间隙和摩擦误差,传动系统机构间的间隙和摩擦阻力或仪表安装不当会引起附加误差,可采用新传动技术,减小或取消中间传动机构,如采用电阻应变转换技术,还可以采用无感摩擦弹性支承或磁悬浮支承;42、1气流压力是指气流单位面积上所承受的法向表面力;在静止气体中,不存在切向力,这个表面力与所取面积的方向无关,该压力称为静压;在流动气体中,静压是指运动气流里气体本身的热力学压力,当感受器在气流中与气流以相同的速度运动时,感受到的就是静压;总压是指气流熵制止后的压力,又称制止压力;动压=总压-静压2总压的测量工具是总压管,原理为理想气体的伯努利方程;为了得到满意的测量结果,必须使总压管口无毛刺且壁面光滑,并要求感受孔轴线对准来流方向;习惯上取测量误差为速度头1%的偏流角α作为总压管的不敏感偏流角,记作αp ,αp越大越好;半圆形感受头αp角最小,带导流套的总压管αp角最大;总压管的类型:L形总压管、圆柱形总压管、带导流套的总压管、多点总压管、边界层总压管;静压管的类型:L形静压管、圆盘形静压管、带导流套的静压管;43、容腔效应:由于测压元件前的空腔和导压管存在,必然导致压力信号的幅值衰减和相位滞后,这种效应称为动态压力测量的容腔效应;44、上止点位置的确定:磁电法、气缸压缩线法、电容法;曲轴转角信号的测定:磁电法、光电法、上止点基准法;45、1皮托管测流速皮托管:由总压探头和静压探头组成,利用总压和静压之差,即动压来测流速;又称动压管、风速管;它的优点是:结构简单,价格低廉,制造使用方便,较高测量精度;皮托管测取的是流场空间某点的平均速度;皮托管测速原理:p+12NN2=N0;p:静压;p0:总压;12NN2:动压;ρ:流体密度,v:流速;∴流速N=√2(N0−N)N;这就是皮托管的基本测速原理;最终用马赫数Ma表示气体流速,Ma=ζ√2(N0−N)NN(1+N);ζ皮托管校准系数,一般1.01~1.02;κ气体等熵指数,空气κ= 1.40;ε压缩性修正系数,查表可得。
热工实验原理名词解释
![热工实验原理名词解释](https://img.taocdn.com/s3/m/f6781132ee06eff9aef807c6.png)
1PIV 技术PIV 技术,粒子跟踪测速技术。
PIV 源于一种瞬态流动平面二维速度场测量技术,其基本原理是在流场中施放合适的示踪粒子,用脉冲激光片光照射所测流场切面区域,通过成像记录系统得到两次或多次曝光的粒子图像,形成PIV 底片;再用光学杨氏条纹法或粒子图像相关等方法逐点处理,获得每一判读点小区中粒子图像的平均位移,由此确定流场切面上多点的二维速度。
2均方误差均方误差也称为标准误差,均方误差的定义为n n i i∑==12δσ3类比方法大自然中有许多相类似的现象,所谓类似是指事物的客观发展过程不同,而描述它们的数学模型形式相同的现象。
因此可以利用那些具有相同的数学微分方程式所表达的物理现象来互相模拟,以揭示所研究物理现象的一些规律。
这种方法就是类比方法。
4虚拟仪器技术虚拟仪器概念在20世纪80年代发源于美国,是计算机和微电子技术迅速发展的产物。
它是指现代计算机技术、通讯技术和测量技术相结合在一起的新型仪器。
从结构上,它包括计算机、应用软件、仪器硬件和接口模块等三部分。
它可以代替传统的测量仪器,如电流表和电压表或者功率表、示波器、逻辑分析仪、信号发生器、频谱分析仪等;又可集成自动控制系统;又可自由构建专用仪器系统。
5电化学分析方法电化学分析方法是利用溶液的电化学性质,包括构成电池的电化学性质和化学性质,通过传感元件—电极,将被测量的气体浓度转换成电学参数的测量分析方式。
6仪器的精确度 仪器精确度也叫精度,它由准确度和精密度综合决定。
准确度的含义是仪器显示值与被测量物理量真值的偏离程度,它反映了测量装置的系统误差大小。
而精密度的含义是仪器测量结果的分散程度。
测量系统准确度高,未必精密度就高。
而精密度才能真正反映仪器的综合性能。
7膜状凝结和珠状凝结当壁面温度低于蒸汽的饱和温度时,在壁面上就会发生凝结现象。
蒸汽释放出汽化潜热,凝结成液体附于壁面上。
当凝结液体能润湿壁面时,凝结液会在壁面上形成一层液膜,这种凝结称为膜状凝结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章:红外气体分析分子光谱: 分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱).E E E E ∆=∆+∆+∆电子振动转动 .气体特征吸收带: 气体:1~25μm 近、中红外 .红外吸收的前提: 存在偶极距(对称分子无法分析)、频率满足要求 . 非分光红外(色散型)原理、特点 : 原理:课本P195 特点:优点:灵敏度高、选择性好、不改变组分、连续稳定、维护简单寿命长. 缺点:无法检测对称分子气体(如O 2,H 2,N 2.)、测量组分受探头限制.烟气预处理的作用 :滤除固液杂质(3224SO H O H SO +=)、冷凝保护(1.酸露点温度达155℃ 2.冷凝器 )、去除水气影响(1.红外吸收干扰 2.气体溶解干扰 ). 分光红外原理: ? (三棱镜分光原理)傅立叶分光原理(属于分光红外常用一种)、特点 :原理:光束进入干涉仪后被一分为二:一束透射到动镜(T),另一束反射到定镜(R)。
透射到动镜的红外光被反射到分束器后分成两部分, 一部分透射返回光源(TT), 另一部分经反射到达样品(TR);反射到定镜的光再经过定镜的反射作用到达分束器,一部分经过分束器的反射作用返回光源(RR), 另一部分透过分束器到达样品(RT)。
也就是说,在干涉仪的输出部分有两束光,这两束相干光被加和, 移动动镜可改变两光束的光程差,从而产生干涉,得到干涉图,做出此干涉图函数的傅立叶余弦变化即得光谱, 这就是人们所熟悉的傅立叶变换.特点:优点:测试时间短、同时测多组分、可测未知组分;而且,分辨能力高、具有极低的杂散辐射、适于微少试样的研究、研究很宽的光谱范围、辐射通量大、扫描时间极快.第12章:色谱法色谱法的发明和命名、色谱法原理 : P173-174 色谱系统的组成:分析对象、固定相、流动相气相色谱与液相色谱的区别 :气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。
物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。
高效液相色谱法是用高压输液泵将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,经进样阀注入供试品,由流动相带入柱内,在柱内各成分被分离后,依次进入检测器,色谱信号由记录仪或积分仪记录。
气相色谱和液相色谱优缺点:1、气相色谱采用气体作为流动相,由于物质在气相中的流速比在液相中快得多,气体又比液体的渗透性强,因而相比液相色谱,气相色谱柱阻力小,可以采用长柱,例如毛细管柱,所以分离效率高。
2、由于气相色谱毋需使用有机溶剂和价格昂贵的高压泵,因此气相色谱仪的价格和运行费用较低,且不易出故障。
3、能和气相色谱分离相匹配的检测器种类很多,因而可用于各种物质的分离与检测。
特别是当使用质谱仪作为检测器时,气相色谱很容易把分离分析与定性鉴定结合起来,成为未知物质剖析的有力工具。
4、气相色谱不能分析在柱工作温度下不汽化的组分,例如,各种离子状态的化合物和许多高分子化合物。
气相色谱也不能分析在高温下不稳定的化合物,例如蛋白质等。
5、液相色谱则不能分析在色谱条件下为气体的物质,但却能分离不挥发、在某溶剂中具有一定溶解度的化合物,例如高分子化合物、各种离子型化合物以及受热不稳定的化合物(蛋白质、核酸及其它生化物质)。
色谱系统组成及各部分作用: 载气、进样、温控、分离、检测 (P176) 温控的作用:P178色谱柱:填充柱(不锈钢;直径2~6mm;柱长0.5 ~ 10m.填充固定相,根据相似相溶的原则选择)、毛细管柱(玻璃或石英;直径0.1 ~ 0.5mm;柱长10 ~ 100m.没有填料,内壁涂一层固定液膜或吸附剂)(P177)。
检测器:热导检测器(TCD)、氢火焰离子化检测器(FID)(P197)色谱图(P175)、定性分析、定量分析:第11章:阴影法与纹影法阴影法原理、反映的参数 :密度梯度==》光线折射偏转,导致光偏转,适用范围可压缩流体。
反映折射率二阶导。
(P160)阴影法装置:阴影图像简单识别:?纹影原理、两对成像(?)、反映的参数:光强反映折射率的一阶导数。
(P161)纹影法装置:纹影图像简单识别:?透射式、反射式对比:P(162)第8章:LDV与PIV多普勒现象 :波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。
双光束系统原理(干涉条纹的理解)、方向模糊性解决 :?激光多普勒测速(LDV)的优点和缺点 :LDV优点:非接触式测量、干扰少,精度最高、无需标定、测量分辨率高、动态响应好、可扩展2D、3D ;LDV缺点:成本高、单点测量、需要示踪粒子.粒子图像测速(PIV)原理、系统组成:查问区、相关法原理 :?示踪粒子要求、双激光、粒子衍射 :示踪粒子要求: 粒子直径 、直径小跟随性好、直径大光散射强 、密度与流体接近、球形最佳、散射性好。
双激光为了获得两个不同时间的像?。
粒子衍射,粒子典型直径:10μm 、放大率M 0<1 、像素典型尺寸:5~10μm 、衍射光斑直径: 02.44(1)S d M F λ≈+、典型值:6 μm 、实际直径:d τ≈ PIV 优缺点、激光安全 :PIV 优点:非接触测量、可测速度场、干扰少,精度高 。
PIV 缺点:添加示踪粒子、透明流道、流体、需要尺寸标定。
激光致盲、实验注意事项:摘掉手表及金属饰物、确定紧急停止激光器、不在疲劳时使用、采取适当防护措施、所有人员方位确认、移动前确认光路 。
注意点:测量区物体、两相流、多相流 、颗粒不均匀 、蒸汽凝结 、叶轮、水面 发现大粒子后立即停止测量,去除大粒子。
第6章:CCD 基础及图像处理CCD(电荷耦合器件)原理:光电转换、电荷存储、电荷转移、电荷检测CCD彩色获得原理及其缺点 :光圈、景深,以及相互影响关系 :曝光时间: 曝光时间长会线性增加图像亮度,同时造成拖尾增益、白平衡 :全局增益: Gain、对所有信号等比例放大(变亮),但噪声也被同时放大。
普通相机中,表现为ISO(感光度)可调。
支路增益:R Gain,G Gain,B Gain 、对单路信号放大,该路噪声也被放大。
普通相机中,表现为白平衡调节。
高速摄像及其要求:帧率高(帧率高:>128fps )、曝光时间短(冻结图像)。
第4章:压力测量技术压力单位、种类 :Pa, bar, atm, kgf/cm2;绝对压力、表压、真空度;应变式压力计与压阻式压力计应变式压力计原理(P45)、测量电路:单臂桥路、半桥差动、全桥差动;温度补偿压阻效应、(扩散型)压阻式传感器及其特点:(即优点:灵敏度高、误差较小、简单方便,不用接线等、、、、、)压电效应、压电材料种类(P48):压电效应;压电材料受力发生机械变形,内部将发生极化现象,并在表面产生电荷。
压电传感器及其特点:特点;电荷少、内阻大、漏电(边界漏电、导线电流)压电传感器的漏电影响:无法测静态压力、不可静态标定(压电式最严重的缺陷)压电传感器优缺点 :优点:体积小,重量轻、简单可靠,工作温度高、灵敏度高,线性好、测量范围宽(100MPa)、动态响应好,常测动态压力、无电源,减少噪声缺点:无法测静态压力、需要信号放大、仪表高输入阻抗、定期动态标定、电缆影响大(固定、干燥、绝缘)压阻式传感器:优点:体积小(Φ1.8~2mm)、灵敏度高、测量范围宽(109Pa)、动态性好(数千Hz)、准确度高(0.02~0.2)、重复性好,频带宽。
缺点:温度影响大、非线性、灵敏系数不稳定,受方向影响。
应变式压力计特点:优点:结构简单,使用方便、工艺成熟,价格便宜、性能稳定,灵敏度高(相对)、测量速度快,可静态、动态测量。
缺点:受温度影响大、灵敏系数小、尺寸较大、粘贴导致应变传递差传统(弹簧管压力计、液柱式压力计)方法的弱点:动态性差、非电信号,不易记录、远传、准确度低。
第3章:温度测量技术温标:经验温标、热力学温标、国际温标热电阻原理、电阻温度系数、热电阻分度表??:物体电阻随温度变化而变化热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。
原理;热电阻测温是基于金属导体的电阻值随温度的增加而增加(或减小)这一特性来进行温度测量的。
热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。
热电阻材料、类型、接线制:铂、铜、半导体;装配、铠装、铂膜;两线制、三线制热电效应、热电偶原理:(P37可以理解为Seeback效应)热电偶四大定律及其应用 :标准热电偶、热电偶分度表 :补偿导线及其要求、冷端补偿 :补偿导线:在一定温度范围内,其热电特性与被连接的热电偶的热电特性相接近的连接导线,称为该热电偶的补偿导线。
补偿导线的作用:(1) 将热电偶参考端从温度波动的地方(t n )延伸到温度稳定的地方(t 0)。
(2) 节省贵金属材料补偿导线注意点:只能与相应型号热电偶配套 + 与热电偶连接处温度必须相同 + 在规定温度范围使用(一般0~100℃) + 存在正、负之分.冷端温度补偿器原理:根据电桥平衡原理,让电桥在20ºC (或0℃)时达到平衡,当偏离20ºC 时,电桥输出)20,(n AB t E 根据中间温度定律)20,()20,(),(t E t E t t E CD n CD n CD =+辐射测温原理、辐射测温的最大障碍 :热电阻温度计的特点:优点:应用范围广,性价比高。
稳定性好,准确度高,便于远传,无需冷端补偿。
灵敏度高,输出信号大。
铂电阻稳定、准确、互换性好,可用作基准仪表。
缺点:需要电源;自热现象,影响测量精度;测温上限不能太高,铂电阻上限低于1000 ℃。
热电偶 :目前应用最广泛的测温手段 ;精度高、简单方便、便宜、响应快、电信号使用中注意: 选型及分度表匹配 ;冷端补偿 ;补偿导线 ;降低传热误差 ;动态性第2章:热分析热分析技术、TG 、DTA 、DSC 方法的基本概念、基本原理 :热分析是在程序温度控制下测量物质的物理性质与温度关系的一类技术 。
热分析法的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化.TG ;1786年英国人Wedgwood 在研究粘土时测得了第一条热重曲线,观察到粘土加热到“暗红”时出现明显的失重,这就是热重法的开始.DTA; 差热分析法由法国科学家Le Chatelier 在1887年首次提出。
他第一次使用热电偶测温的方法研究粘土矿物在升、降温过程中热性能的变化。