可靠性基础知识讲解
可靠性基础知识
进一步的理论(书中没有,供参考)
2013-11-8
16
瞬时故障(失效)率 (T表示寿命,它是一个随机变量)
F (t t ) F (t ) P (t T t t | T t ) R (t ) (t ) lim lim t 0 t 0 t t F (t t ) F (t ) F ' (t ) t lim t 0 R (t ) R (t ) P ( AB ) P ( B | A) P ( A) P ( AB ) F (t t ) F (t ) P( A) R(t ) F ' (t ) (t ) R (t )
第五章
可靠性基础知识
第一节 可靠性的基本概念 一、故障(失效)及其分类 1. 故障:产品或产品的一部分不能或将不能 完成预定功能的事件或状态 失效:对于不可修复的产品,故障也称为失效 严格讲,故障是指产品不能执行规定功能的状态
故障(失效)模式:故障的表现形式
故障(失效)机理:引发故障的原因
第一节 可靠性的基本概念 2.产品故障分类 按故障的规律 偶然故障:偶因引起,风险可忽略; 耗损故障:性能随时间衰退引起,可统计预测, 通过预防维修防止其发生,延寿。 按故障的后果 致命性故障:引发人、物的重大损失或任务失败 非致命性故障:不影响任务完成,导致非计划维修 按故障的统计特性 独立故障:自发性,评价产品可靠性只统计独立故障 从属故障: 诱发性
在相同的条件下,F(t)是t的一元函数
3. 可靠度函数与不可靠度函数的关系
R t F t 1
3.故障密度函数:f(t)
dF t f t dt
t 0t f udu F
R( t ) t f ( u )du (三者关系图见P201 图5.1-2)
可靠性理论基础知识
可靠性理论基础知识可靠性理论基础知识1.可靠性定义我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义为:产品在规定的条件下,规定的时间内,完成规定功能的能力。
“规定条件”包括使用时的环境条件和工作条件。
“规定时间”是指产品规定了的任务时间。
“规定功能”是指产品规定了的必须具备的功能及其技术指标。
可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。
典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。
早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。
偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。
耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。
1.1可靠性参数1、失效概率密度和失效分布函数失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。
它是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为)()(t T P t F ≤=失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。
它是产品在包含t 的单位时间内发生失效的概率,可表示为)()()('t F dtt dF t f ==。
2、可靠度可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。
可靠度是时间的函数,可靠度是可靠性的定量指标。
可靠度是时间的函数,记为)(t R 。
通常表示为?∞=-=>=t dt t f t F t T P t R )()(1)()(式中t 为规定的时间,T 表示产品寿命。
3、失效率已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻t 的失效率函数,简称失效率,记为)(t λ。
)(1)()()()()()(''t F t F t R t F t R t f t -===λ。
可靠性基础知识
质量人员必读----- 可靠性基础知识1. 平均故障间隔时间;可维修的产品,其可靠性主要的参数是MTBF(Mean Time Between Fail ),即平均故障间隔时间,也就是两次维修间的平均时间;不可维修的产品,用MTTB(Mean Time To Fail );两个参数的计算没有区别,下文只提到MTBF。
MTBF越大,说明产品的可靠性越高。
可以用以下理想测试来精确测试一批产品的MTBF;即将该批产品投入使用,当该批产品全部出现故障以后(假如第1个产品的故障时间为t1,第2个产品的故障时间为t2,第n个产品的故障时间为tn ),计算发生故障的平均时间,则由上式可以看出,理想测试就是用全部的时间和全部的故障数来算出精确的MTBF;2、失效密度入另外一个常用的参数是入,它是指在产品在t时刻失效的可能性,是失效间隔时间的倒数,也就是:入=1/MTBF。
对某一类产品而言,产品在不同的时刻有不同的失效率(也就是失效率是时间的函数),对电子产品而言,其失效率符合浴盆曲线分布(如下图):浴盆曲线,分为三部份(I、II、III 三部份):第I部份是早期失效阶段。
这段时间内,从外形上看,在失效率从一个很高的指标迅速下二降;从物理意义上理解,由于少数产品在制作后,存在一些制程、运输、调试等问题,产品有比较明显的缺陷,在投入使用的最初期,这缺陷很快就显露出来,随着时间的增长,这些明显的缺陷越来越少,也就形成了失效率迅速下降”的现象;第II部份是中期稳定阶段。
这段时间内,产品的失效率稳定在一个较低水平;从物理意义上理解,当少数产品的明显缺陷显露出来后,剩下的就是正常的产品,这部份产品可以较稳定、持久地工作,所以失效率也稳定在一个较低水平;第III部份是后期失效阶段;这段时间内,产品的失效率迅速上升;从物理意义上理解,到了后期,产品经过长时间的工作、磨损、老化,慢慢接近寿命终点,随着时间的增加(Tmax 以内),到达寿命终点的产品越来越多,失效率也就随之上升;知道了入,就可以找到产品连续工作了t时间后、还正常的概率为R(t)=e-t , 此时已经失效的概率为F(t)= 1-R(t)= 1 —e-& #61548;t 。
可靠性工程师考试资料2024
可靠性工程师考试资料(二)引言概述:可靠性工程师是现代工程领域中一个非常重要的职位,他们负责确保产品和系统的可靠性,以及减少可能出现的故障和风险。
为了成为一名合格的可靠性工程师,需要有一定的知识储备和专业技能。
本文将深入探讨可靠性工程师考试相关的资料,帮助考生更好地准备考试。
正文内容:一、可靠性基础知识1. 可靠性概念与定义:介绍可靠性的基本概念,如MTBF(平均无故障时间)、故障率、可靠度等,以及它们的定义与计算方法。
2. 可靠性工程原理:解析可靠性工程的基本原理,包括可靠性需求分析、可靠性设计、可靠性测试与评估等环节,以及它们之间的关系。
3. 可靠性统计方法:介绍可靠性工程中常用的统计方法,如生存分析、故障模式与影响分析(FMEA)、故障树分析(FTA)等,以及它们的应用场景和具体步骤。
二、可靠性设计与优化1. 可靠性要求确定:阐述如何根据产品和系统的使用环境、功能需求等因素确定可靠性要求,并建立相应的性能指标和测试标准。
2. 可靠性设计方法:介绍常用的可靠性设计方法,如设计失效模式与影响分析(DFMEA)、故障模式与影响分析(FMEA)、信号完整性分析等,以及它们的步骤和工具的应用。
3. 可靠性验证与验证测试:详细描述可靠性验证的流程和关键步骤,包括设计评审、模拟测试与实验验证等,以及常用的验证测试方法和技术。
三、可靠性评估与维护1. 可靠性评估方法:介绍可靠性评估的方法和指标,如可靠性预测、可靠性增长试验等,以及它们的原理和适用范围。
2. 故障数据分析与故障诊断:解析如何进行故障数据的分析和故障诊断,包括故障率分析、故障模式与效应分析等方法和工具的使用。
3. 可靠性维护与改进:探讨如何进行可靠性维护和改进,包括维护计划的制定、故障处理与预防措施等方面的技巧和方法。
四、可靠性测试与试验1. 可靠性试验方法:介绍可靠性试验的方法和技术,如加速寿命试验、可靠性生命周期试验等,以及它们的步骤和数据分析方法。
可靠性基础知识
1. 可靠性的基本概念1.1 可靠性(Reliability):产品在规定条件下和规定时间内完成规定功能的能力称为产品的可靠性。
1.2 广义可靠性(Dependability):广义可靠性是可靠性性能、可维护性性能和维护支持性能的综合描述。
1.3 可维护性(Maintainability):当在给定条件下和使用规定程序及资源进行维护时,产品保持或恢复到执行规定功能的能力。
1.4 维护支持性(Maintenance support performance):维护机构在规定条件下,按照给定的维护方针为产品提供维护所需资源的能力。
1.5 评定产品可靠性时的注意事项:(a) 产品的可靠性与规定条件分不开,在评价产品的可靠性时,尤其应注意其工作条件与所规定的条件是否一致。
(b) 产品的可靠性与规定时间密切相关。
(c) 产品的可靠性与规定功能有关,它要对产品的所有技术性能指标作出综合性评价。
2. 可靠性常用指标2.1 平均故障间隔时间MTBF(Mean Time Between Failure)指相邻两故障间正常工作时间,也叫平均无故障工作时间,它是衡量产品可靠性的主要指标。
华为公司的质量方针提出“实现产品无故障工作2000天”,这是个高标准要求,要靠我们大家共同努力来实现。
2.2 平均故障前时间MTTF(Mean Time To Failure)指系统从开始工作到失效这一段时间的平均值。
所谓失效是指产品执行规定功能能力的终止。
2.3 平均修复时间MTTR(Mean Time To repair)对产品实施修复所需时间的平均值,它反映了产品的可维护性。
2.4 可用度A(Availability)产品工作时间与总时间之比。
若不考虑产品的储存时间和闲置时间,可用度A可用如下公式表示:A=MTBF/(MTBF+MTTR)可用度取决于一个产品的可靠性性能、可维护性性能和维护支持性能的综合状况,所以要提高产品的可用度,应尽可能同时改善产品的可靠性和维修性。
第五章 可靠性基础知识(1)可靠性的基本概念及常用度量
第五章可靠性基础知识第五章可靠性基础知识【考试趋势】单选3-4题,多选4-5题,综合分析1题。
考查方式以理解题和计算题为主。
总分值25-35分。
总分170分。
【大纲考点】基本脉络:可靠性概念——测量——模型——分析——试验——管理。
一、可靠性的基本概念及常用度量1.掌握可靠性、维修性与故障(失效)的概念与定义(重点)2.熟悉保障性、可用性与可信性的概念(难点)3.掌握可靠性的主要度量参数(难点)4.熟悉浴盆曲线(重点)5.了解产品质量与可靠性的关系二、基本的可靠性维修性设计与分析技术1.了解可靠性设计的基本内容和主要方法2.熟悉可靠性模型及串并联模型的计算(重点)3.熟悉可靠性预计和可靠性分配(难点)4.熟悉故障模式影响及危害性分析(重点)(难点)5.了解故障树分析(重点)6.熟悉维修性设计与分析的基本方法;三、可靠性试验三、可靠性试验1.掌握环境应力筛选(重点)2.了解可靠增长试验和加速寿命试验(重点)3.手续可靠性测定试验(难点)4.了解可靠性鉴定试验四、可信性管理1.掌握可信性管理基本原则与可信性管理方法(难点)2.了解故障报告分析及纠正措施系统(重点)3.了解可信性评审作用和方法第一节可靠性的基本概念及常用度量【考点解读】第一节可靠性的基本概念及常用度量学习目标要求:1、掌握可靠性、维修性与故障的概念与定义2、熟悉保障性、可用性及可信性的概念3、掌握可靠性的主要度量参数4、了解浴盆曲线5、了解产品质量与可靠性关系基本脉络是:可靠性——不可靠(故障)——可靠度——可靠度函数——常用指标——模型——地位意义(与质量的关系)典型考题典型考题:单选题22、下述设计方法中不属于可靠性设计的方法是()。
a、使用合格的部件b、使用连续设计c、故障模式影响分析d、降额设计23、产品使用寿命与()有关。
a、早期故障率b、规定故障率c、耗损故障率d、产品保修率一、故障(失效)及其分类一、故障(失效)及其分类1、故障定义:产品或产品的一部分不能或将不能完成预定功能的事件或状态称为故障。
产品可靠性基础知识
一、故障(失效)及其分类
1. 故障:丧失完成规定功能的状态 2. 故障分类
按故障的规律 早期故障、偶然故障、耗损故障
按故障引起的后果 致命性故障、非致命性故障
按故障的统计特性 独立故障、从属故障
二、可靠性
1.可靠性:产品在规定的条件下和规定的 时间内,完成规定功能的能力。
可靠性模型
—— 串联模型:组成产品的所有单元中任一单 元发生故障都会导致整个产品
故障
—— 并联模型:组成产品所有单元同时工作时, 只要有一个单元不发生故障,产 品就不会故障,亦称贮备模型
式中Ri(t)与λi(t)——第i单元的可靠度与故障率; Rs(t)与λs(t)——第i单元的可靠度与故障率;
六、维修性设计
(1)简化设计 (2)可达性设计 (3)标准化、互换性与模块化设计 (4)防差错及识别标志设计 (5)维修安全性设计 (6)故障检测设计 (7)维修中的人的因素工程设计
第三节 可靠性试验
可靠性试验的概念 —— 可靠性试验:实验室试验,现场试验
可靠性试验
工程试验 统计试验
环境应力筛选试验
演讲完毕,谢谢
三、建立故障报告、分析和纠正措施系统 (FRACAS)
1.故障报告 2.故障分析(调查;核实;工程分析;统
计分析) 3.故障纠正
4.故障报告、分析和纠正措施系统是一个闭 环系统
四、可信性评审
监控的一种管理手段 组织由非直接参加设计的同行专家和有
关代表评审 可靠性设计评审是最重要的一种评审 可靠性评审的作用 一种正规审查程序 应分阶段进行
常用方法:元器件计数法;应力分析法
元器件计数法预计公式:
n
s N iGi Qi i 1
可靠性基础知识----
二 机械可靠性学科发展历史回顾
形成这门学科的起源就是用传统的质量分析方法无 法解释实际中出现的失效问题
第二次世界大战期间,美国空军由于飞行故障而损 失的飞机为21000架,比被击落的多1.5倍;运往远东 的作战飞机上的电子设备60的电子设备70%因 “意外” 事故而失效。这些事实引起美国军方的高度 重视,开始研究这些“意外”事故发生的规律,提出 了可靠性的概念。
二 机械可靠性学科发展历史回顾
•机械可靠性是可靠性学科的一个重要组成部分 •对结构可靠性设计理论和方法的研究可以追溯到四十 年代。A.M.Freudenthal教授是早期从事结构可靠性研 究的代表人物之一。在1947年提出了用于构件静强度 可靠性设计的应力-强度干涉模型 •在此之后的二十几年中,他在结构可靠性与风险率的 分析以及疲劳与断裂的研究等方面一直处于领先地位, 发表了很多具有代表性的论著
1980年,E.B.Haugen出版了比较全面的概率机械设计专著 正象E.J.Henley、H.Kumamoto指出的那样,在七十年代,除了 计算机和环境科学之外,可靠性、安全性和风险估计是发展较快的 应用科学之一。
二 机械可靠性学科发展历史回顾
美国: 七十年代将可靠性技术引入汽车、发电设备、拖拉
产品质量的定义:满足使用要求所具备的特性, 即适用性。
一 研究可靠性的重要意义
产品的质量首先是指产品的某种特性,这 种特性反映着用户的需求。
概括起来产品质量特性包括:性能、可 靠性、经济性和安全性四个方面。
一 研究可靠性的重要意义
性能:产品的技术指标,是出厂时(t=0)产品应具有 的质量特性。显然,能出厂的产品就应满足性能指标 可靠性:产品出厂后(t>0)所表现出来的一种质量特 性,是产品性能的延伸和扩展 经济性:在确定的性能和可靠性水平下的总成本,包 括购置成本和使用成本两部分 安全性:产品在流通和使用过程中保证安全的程度
可靠性基础知识
可靠性基础知识
——产品的失效
1、功能性失效
致命失效、漂移性失效、间歇失效 ➢ 致命失效:是指产品完全失去规定功能能力的一类失效。 ➢ 漂移性失效:是指产品的一个或几个参数超过规定值所引起的
一类失效,漂移性失效在产品使用中有时是允许的 ➢ 间歇失效:是指产品在使用或试验过程中呈现时好时坏一类的
失效。
e x
f
(x)
x0
0
x0
当故障率f(t)服从指数分布时:
f(t) λ
0
t
指数分布的概率密度函数
F(t)
t e xdx
t (e x )dx
t
e x
1 e t
0
0
0
R(t)
e xdx
e x e t
展。
概述
——可靠性定义
产品在规定条件下和规定时间内,完成规定功能的 能力(概率),就叫做电子产品的可靠性。
可靠性试验是对产品可靠性进行调查、分析和评价 的一类试验。
主要内容
一.概述 二.可靠性基础知识 三.环境试验
可靠性基础知识
——基本知识和术语
可靠性试验与环境试验
可靠性试验是对产品进行评价的各种试验如增长、筛选、验证 、验收、统计等。
可靠性基础知识
主要内容
一.概述 二.可靠性基础知识 三.环境试验
主要内容
一.概述 二.可靠性基础知识 三.环境试验
概述
——可靠性的重要性
1. 关系到企业的生存和壮大。 2. 关系到使用者的安全。 3. 提升形象,减少维护费用。 4. 是军事产品中重要的技术指标。
概述
——可靠性的发展历史
可靠性基础知识
第一章 可靠性基础知识●可靠性的概念。
●可靠性参数体系、常用可靠性参数及可靠性常用分布。
当你准备购买一件电子产品时,你关注的是它的哪些方面?其中最关注的是什么?我们除关注产品的功能和性能外,在谈论某品牌的产品“好”的时候,所隐含的意思就是该品牌产品的质量与可靠性高。
质量与可靠性是我们最为关注的产品质量特性。
随着新材料、新技术的发展与应用使得产品性能得到迅速提高,但随着产品性能的提高,其复杂程度也增加,故障频繁。
出厂检验合格的产品,在使用寿命期内保持其产品质量指标的数值而不致失效,这就是可靠性问题。
本章将在介绍可靠性的基本概念、可靠性术语、可靠性参数体系及常用可靠性参数、可靠性常用分布等知识的基础上,讲解造成产品故障的主要原因,以及可靠性的重要意义。
第一节 可靠性基本概念1.可靠性的概念可靠性的概念,可以说,自从人类开始使用工具起就已经存在。
然而可靠性理论作为一门独立的学科出现却是近几十年的事情。
可靠性归根结底研究的还是产品的可靠性,而通常所说的“可靠性”指的是“可信赖的”或“可信任的”。
一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。
最早的可靠性定义由美国AGREE在1957年的报告中提出,1966年美国又较正规地给出了传统的或经典的可靠性定义:“产品在规定的条件下和规定的时间内完成规定功能的能力”。
它为世界各国的标准所引用,我国的可靠性定义也与此相同。
这里的产品是泛指的,它可以是一个复杂的系统,也可以是一个零件。
出厂检验合格的产品,在使用寿命期内保持其产品质量指标的数值而不致失效,这就是可靠性问题。
因此,可靠性也是产品的一个质量指标,而且是与时间有关的参量。
只有在引进了可靠性指标后,才能和其他质量指标一起,对产品质量做全面的评定。
所谓产品是指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。
公共基础知识可靠性基础知识概述
《可靠性基础知识综合性概述》一、引言在当今科技飞速发展的时代,各种产品和系统的可靠性成为人们关注的焦点。
从日常生活中的电子产品到工业领域的大型设备,从交通运输工具到航天航空系统,可靠性都起着至关重要的作用。
可靠性不仅关系到产品的质量和性能,还直接影响着人们的生命财产安全和社会的稳定发展。
因此,深入了解可靠性基础知识,对于提高产品和系统的质量、降低风险、保障安全具有重要的意义。
二、可靠性的基本概念1. 定义可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能力。
这里的“规定条件”包括使用环境、操作方法、维护保养等;“规定时间”是指产品的使用寿命或工作时间;“规定功能”则是产品设计时所确定的功能和性能指标。
2. 指标(1)可靠度可靠度是产品在规定条件下和规定时间内,完成规定功能的概率。
通常用 R(t)表示,其中 t 为时间。
可靠度是可靠性的一个重要指标,它反映了产品在一定时间内保持正常工作的可能性。
(2)失效率失效率是指产品在某一时刻 t 后的单位时间内发生失效的概率。
通常用λ(t)表示。
失效率是衡量产品可靠性的另一个重要指标,它反映了产品在使用过程中的失效速度。
(3)平均寿命平均寿命是指产品的寿命的平均值。
对于不可修复产品,平均寿命是指产品从开始使用到失效的平均时间;对于可修复产品,平均寿命是指产品在两次相邻故障之间的平均时间。
三、可靠性的核心理论1. 可靠性模型可靠性模型是用于描述产品或系统的可靠性结构和关系的数学模型。
常见的可靠性模型有串联模型、并联模型、混联模型等。
(1)串联模型串联模型是指产品或系统由多个子系统组成,只有当所有子系统都正常工作时,整个产品或系统才能正常工作。
串联系统的可靠度等于各个子系统可靠度的乘积。
(2)并联模型并联模型是指产品或系统由多个子系统组成,只要有一个子系统正常工作,整个产品或系统就能正常工作。
并联系统的可靠度等于 1 减去各个子系统失效率的乘积。
(3)混联模型混联模型是指产品或系统由串联和并联子系统组成的复杂结构。
可靠性基础知识介绍
表1:电子元件累计失效统计
序号 失效时间范围h 失效数 累计数r(t) 仍在工作数Ns R(t) F(t)
10
0
0
110
1
0
2 0~400
6
6
104
0.945 0.055
3 400~800
28344 800~来自2003771
5 1200~1600 23
94
6 1600~2000 9
103
7 2000~2400 5
382
=
=4.33/h
3
平均修复时间MTTR,是度量产品维修性的重 要指标。
8、贮存寿命 产品在规定条件下存储时,仍能满足规定质量 要求的时间长度,称为贮存寿命。产品出厂后 即使不工作,在规定的条件下存贮,产品也有 一个非工作状态的偶然故障率,非工作的偶然 故障率比工作故障率小的多,但贮存产品的可 靠性也在不断下降,因此,储存寿命是度量产 品存储可靠性的一个不可忽视的度量参数。
=1000+1500+2000+2200+2300 5
=1800h
λ(t)= 1 = 1 =0.00056/h
MTTF 1800
R(t)
e= 0.000561800 = e1
例:有100个不可修复的电子产品进行试验, 在500小时内,3个坏掉了,到600小时时,又 有2个坏掉了,求λ(t)在500小时这个时刻的故 障率? 已知:t=500h, △t=600-500=100,△r(t)=2,
故障率趋于常数,A、B区是耗损期到来之前产 品的主要使用期。 出现的偶然故障,只能通过统计方法来预测。 ③耗损故障期 产品使用很长一段时间后,故障迅速上升,直 至极度。此时的故障主要由产品的老化、疲劳、 磨损、腐蚀等原因引起。 对耗损故障可通过实验数据分析耗损期到来的 起始拐点,并通过预防维修来延长产品的寿命。
产品可靠性基础知识
(五)贮存寿命 产品在规定条件下贮存时,仍能满足规
定质量要求的时间长度。
(六)平均修复时间(MTTR) MTTR ∑n ti / n
i 1
式中ti:第i次修复时间 n:修复次数
七、浴盆曲线 1.早期故障期 2.偶然故障期 3.耗损故障期
A 规定的故障率
使用寿命
B
维修后故 障率下降
早期故障
偶然故障
常用方法:元器件计数法;应力分析法
元器件计数法预计公式:
n
s N iGi Qi i 1
应力分析法预计公式:
(1)p b E K
n
(2) s N ipi i 1
(3) MTBFS
1
S
四、故障模式、影响及危害分析
1. FMECA 2. FMECA包括FMEA和CA
FMEA CA 3. 故障模式 4. 故障影响
可靠性的概率度量称为可靠度 定义中的“三个规定”是理解可靠性概念 的 产核品心是。指硬件和流程性材料等有形产品及
软件等无形产品。可大到一个系统,小到 一个零件。
2.产品可靠性分类:
可靠性
固有可靠性 使用可靠性
可靠性
基本可靠性 任务可靠性
三、维修性
产品在规定的条件下和规定的时间内,按规 定的程序和方法进行维修时,保持或恢复执行规 定状态的能力。
可靠性增长试验 可靠性测定试验 可靠性鉴定试验 可靠性验收试验
一、环境应力筛选试验 二、可靠性增长试验 三、加速寿命试验 四、可靠性测定试验 五、可靠性鉴定试验 六、可靠性验收试验
第五节 可信性管理
(一)可信性管理应遵循的原则
(1)可信性设计与性能设计同步进行 (2)将可信性管理纳入统一计划 (3)遵循预防为主、早期投入的方针 (4)重视和加强信息工作与故障报告、分析、
可靠性基础知识
Yuntong Forever
4
规定条件
规定条件
环境条件
工作条件
温度
工作应力
振动
工作负荷
湿度
循环周期
盐雾
….
Yuntong Forever
5
环境应力对产品可靠性的影响
环境越恶劣可靠性越差 • 温度应力会提高产品的故障率 • 振动应力会加速产品的疲劳 • 湿度和化学应力会缩短产品的寿命
环境应力和可靠性一般是指数关系: • 温度- Arrhenius • 振动- Coffin-Manson • 湿度和其他- Eyring
Yuntong Forever
16
(续前)
1960s,可靠性工程的系统化
• 阿波罗项目全面采用的可靠性工程技术,极大地推动了可靠性技术
在全世界的推广
• 可靠性工程已经成为系统工程的一部分,日益系统化 • 可靠性统计试验逐步完善
1970s,进入可靠性保证阶段
• 可靠性管理的作用突出显现,美国将可靠性管理作为质量管理的核
世界可靠性工程发展: 1940s年,起源于美国
• 重点在于电子管和真空管的可靠性研究 • 成立AGREE,电子设备可靠性顾问委员会
1950s年,推广发展
• 美国制定了一系列军用可靠性标准 • AGREE在1957年发表的《军用电子设备的可靠性》报告成为后来全世
界可靠性工作的指南
• 前苏联、日本、英国等国家开始介入可靠性研究 • 可靠性由电子设备拓展到电力、机械、动力等方面
易修
» 修得快 - 定位快、维修快、确认快 » 修得好 - 修如旧、修如新
Yuntong Forever
12
1.3 可用性
可用性(Availability)
质量管理学--可靠性基础知识讲义PPT(45张)
第12章 可靠性基础知识
12.1.5 可靠性与产品质量的关系 质量: 性能特性——容易评价 专门特性——可用性、难于直观判断 安全性——难于直观判断 经济性——容易判别、比较 时间性——容易判别、比较 适用性——容易判别、比较
第12章 可靠性基础知识
12.1.6 可靠性发展历史 二战:雷达 军事→电子→机械→其它、民用 可靠性—维修性—维修保障性—安全性 宏观→微观. 定性→定量. 手工→计算机 统计试验→工程试验、筛选、强化. 以可靠性为中心的全面质量管理 可靠性与性能最大区别:看不见、测不到。 但可以统各个阶段对可靠性的影响大小: 设计 40~50% 制造 20~30% 固有可靠性 使用 20~30% 使用可靠性 实际过程中表现出的能力 —— 使用可靠性, 与安装、操作使用、维修保障有关。 还可分为:基本可靠性、任务可靠性。 在规定任务剖面内完成规定的功能的能力。
第12章 可靠性基础知识
产品的特征寿命 产品寿命:可靠寿命、使用寿命、总寿命、 贮存期限 可靠寿命:t R 一定可靠度下的寿命 使用寿命:t r 一定故障率下的寿命 总寿命:投入使用到报废的总工作时间 贮存期限:在规定条件下,产品能贮存的 日历持续时间→启封使用能满足规定要求。
第12章 可靠性基础知识
第12章 可靠性基础知识
浴盆曲线
第12章 可靠性基础知识
①早期故障阶段
机械:跑合期(磨合期)、设计缺陷、 加工缺陷、安装缺陷 ②偶然:偶然因素,操作、负荷
③耗损:老化、疲劳、磨损、腐蚀。可 通过维修、更换
第12章 可靠性基础知识
故障率与可靠度及故障密度函数的关系 四个函数之间的关系: R(t) F(t) λ (t) f(t)
产品可靠性基础知识
产品可靠性基础知识什么是产品可靠性?产品可靠性是指产品在特定的操作条件下,在一定的时间内能够正常工作的能力。
它是一个评估产品质量的重要指标,能够帮助生产商预测和评估产品在使用过程中可能出现的问题,从而采取相应的措施来改进产品的可靠性。
产品可靠性与产品的寿命、故障率和维修时间等指标密切相关。
在产品设计阶段,通过合理的设计和工艺选择,可以提高产品的可靠性。
同时,在产品生产过程中,严格的质量控制和测试也可以确保产品的可靠性。
产品可靠性评估方法1. 故障模式和效果分析(FMEA)故障模式和效果分析(FMEA)是一种常用的产品可靠性评估方法。
它通过分析产品可能出现的故障模式及其对产品性能和使用效果的影响,来评估产品的可靠性。
FMEA的基本步骤包括:确定故障模式、评估故障后果、确定故障频率和风险等级。
通过这一过程,可以帮助设计人员和工程师识别潜在的故障点,找出可能导致故障的原因,从而采取相应的措施来提高产品的可靠性。
2. 可靠性测试可靠性测试是评估产品可靠性的常用方法之一。
通过对大量的样本进行试验和测试,收集产品在不同工作条件下的故障数据,来估计产品的故障率和可靠性。
可靠性测试的主要目标是确定产品的寿命、故障率和可靠度等参数。
根据产品的特性和使用环境的不同,可靠性测试可以采用不同的方法,如加速寿命试验、可靠性增长试验等。
3. 统计分析统计分析方法可以帮助我们从大量的数据中分析产品的可靠性。
常用的统计分析方法包括故障随机过程分析、故障树分析、可靠度增长分析等。
这些方法可以通过对故障数据的处理和分析,来确定产品的故障模式和故障率,并预测产品在未来的使用过程中可能出现的问题。
提高产品可靠性的方法1. 合理的设计合理的产品设计是提高产品可靠性的基础。
在设计阶段,应充分考虑产品的使用环境和工作条件,合理选择材料、工艺和结构,以减少产品的故障点和故障模式。
同时,还应考虑容错设计和可维修性,以降低故障的影响和维修的难度。