红外线发射与接收电路图
红外遥控器的基本原理
![红外遥控器的基本原理](https://img.taocdn.com/s3/m/cbdf8afab84ae45c3a358c58.png)
红外遥控器的基本原理•红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm 之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。
常用的红外发光二极管发出的红外线波长为 940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。
红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
红外遥控器的协议•鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。
了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。
[教材]38kHz红外发射与接收
![[教材]38kHz红外发射与接收](https://img.taocdn.com/s3/m/2926aa2642323968011ca300a6c30c225901f0b6.png)
38kHz 红外发射与接收红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。
1.红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。
由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。
红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。
红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。
电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。
2.红外线发射和接收人们见到的红外遥控系统分为发射和接收两部分。
发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。
常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5 mm发光二极管相同,只是颜色不同。
一般有透明、黑色和深蓝色等三种。
判断红外发光二极管的好坏与判断普通二极管一样的方法。
单只红外发光二极管的发射功率约100mW。
红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。
接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。
红外接收二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。
然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。
红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。
所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。
图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。
接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。
红外探测法简介.
![红外探测法简介.](https://img.taocdn.com/s3/m/be1359d1172ded630a1cb60a.png)
红外探测法简介简介:红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,不断地向外发射红外光,当红外光遇到白色障碍物时发生漫反射,反射光被与之相对的接收管接收;如果遇到黑色物体则红外光被吸收,接收管接收不到红外光。
将接收管的结果送给单片机。
单片机就是否收到反射回来的红外光为依据来进行相应的处理。
根据它的特性可以用于智能小车的寻迹或避障。
红外对管白色为发射管,长引脚为正极,接高电位。
黑色为接收管,长引脚接地,短引脚接高电位。
电路:红外对管的电路如下图所示:电阻R2为限流电阻,防止通过发射管的电流过大。
调节电位器R3可改变红外对管的感应距离。
当有光反射回来时,光电对管中的三极管导通,此时VT1饱和导通,三极管集电极输出低电平。
当没有光反射回来时,光电对管中的三极管不导通,VT1截至,其集电极输出高电平。
集电极接比较器,可调电阻R1可以调节比较器的门限电压。
经示波器观察,输出波形相当规则,可以直接供单片机查询使用。
技术参数:发射管:电流Ia<50mA工作电压V<5v接收管:正向电阻:2.5M反向电阻:7.1K导通时电阻约为53k感应距离:经实验,最大可达1米。
但容易受干扰,实际上寻迹中一般只用在0.8cm~1.5cm。
避障也在20cm 以内。
测试方案:设定基准电压2V。
改变R3的阻值,使无反射时接收管集电极电压V改变,测试红外对管的感应距离D。
测量值如下:注:也可通过适当调节基准电压改变红外测量距离。
扩展:1 为了减小环境干扰,可在接收管上套一短黑色皮管。
2 为使红外对管感应性能更好,可将红外发射管接在三极管集电极,用单片机或555定时器产生一高频方波控制三极管通断来产生红外光。
发射电路如下:实验证明,高频触发的红外光比加直流工作电压性能更强,检测距离更远,可用在小车避障模块中。
3 也可以采用集成红外探测器件。
ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,例如ST168,其内部结构和外接电路均较为简单,如图2所示:ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。
单片机实例--通过实例学习单片机(红外线遥控)
![单片机实例--通过实例学习单片机(红外线遥控)](https://img.taocdn.com/s3/m/407156fc910ef12d2af9e7f3.png)
32 ;
37 ;38 ; 避开低电平,待直接判断高电平 39 L5: 40 41 42 L6: 43 JNB ACALL JMP JB ACALL IRIN, L6 DEL L5 IRIN, DEL L7 ; 等 IR 变为高电平 ; 调用 0.093ms 延时程序 ; 等 IR 变为低电平 ; 调用 0.093ms 延时程序
. . .
12MHz 30P SWR
X1 X2
. . . . . . .
+5V
R1k
. . .
+ 10μF 10 kΩ
。 。
P3.2 RST
SPK
+5V
1 2 3 VSS
S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 0 S 1 S 2 S 3 S 4 S 5 S 6 S 7 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7
引导码
用户码
用户码
图 C.6
红外线接收电路图
C.1.3
程序设计
程序中,主程序通过调用解码子程序,将接收到的红外线遥控器信号进行解码,再调 用遥控执行子程序,将解码后的按键值由 LED 显示出来。所以,解码子程序是程序中的主 要部分。 1.主要标号说明 ? ? ? ? ? ? ?
实例 C
红外线遥控应用实例
27║
成信号,再经红外线发射二极管,将红外线信号发射出去。
发射端部分 键盘 编码和调制 模块 红外线发射 LED
图 ห้องสมุดไป่ตู้.1
红外线发射端工作方框图 接收端部分
51单片机设计的红外线遥控器电路图及工作原理
![51单片机设计的红外线遥控器电路图及工作原理](https://img.taocdn.com/s3/m/40ad961e650e52ea551898e8.png)
51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控解码器”。
该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF 一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。
发光二极管8个。
价钱不足20元。
电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。
晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么简单了,现在分析具体的编程过程吧。
如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。
开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms 高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。
定时器0的工作方式设置为方式1:mov tmod,#09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。
红外遥控的发射和接收
![红外遥控的发射和接收](https://img.taocdn.com/s3/m/41eb03204b35eefdc8d3333a.png)
红外遥控的发射和接收Donna 发表于2006-5-12 10:08:00光谱位于红色光之外,波长为0.76~1.5μm,比红色光的波长还长,这样的光被称为红外线。
红外遥控是利用红外线进行传递信息的一种控制系统,红外遥控具有抗干扰,电路简单,编码及解码容易,功耗小,成本低的优点,目前几乎所有的视频和音频设备都支持这种控制方式。
一、红外遥控系统结构红外遥控系统主要分为调制、发射和接收三部分,如图1 所示:图1 红外遥控系统1.调制红外遥控发射数据时采用调制的方式,即把数据和一定频率的载波进行“与”操作,这样可以提高发射效率和降低电源功耗。
调制载波频率一般在30khz到60khz之间,大多数使用的是38kHz,占空比1/3的方波,如图2所示,这是由发射端所使用的455kHz晶振决定的。
在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。
图2 载波波形1.发射系统目前有很多种芯片可以实现红外发射,可以根据选择发出不同种类的编码。
由于发射系统一般用电池供电,这就要求芯片的功耗要很低,芯片大多都设计成可以处于休眠状态,当有按键按下时才工作,这样可以降低功耗芯片所用的晶振应该有足够的耐物理撞击能力,不能选用普通的石英晶体,一般是选用陶瓷共鸣器,陶瓷共鸣器准确性没有石英晶体高,但通常一点误差可以忽略不计。
红外线通过红外发光二极管(LED)发射出去,红外发光二极管内部材料和普通发光二极管不同,在其两端施加一定电压时,它发出的是红外线而不是可见光。
图3a 简单驱动电路图3b 射击输出驱动电路如图3a和图3b是LED的驱动电路,图3a是最简单电路,选用元件时要注意三极管的开关速度要快,还要考虑到LED的正向电流和反向漏电流,一般流过LED的最大正向电流为100mA,电流越大,其发射的波形强度越大。
图3a电路有一点缺陷,当电池电压下降时,流过LED的电流会降低,发射波形强度降低,遥控距离就会变小。
红外红外传感器电路图及工作原理
![红外红外传感器电路图及工作原理](https://img.taocdn.com/s3/m/482a51130640be1e650e52ea551810a6f524c86d.png)
红外红外传感器电路图及⼯作原理红外红外传感器电路图及⼯作原理Infrared IR Sensor Circuit Diagram and Working Principle红外传感器是⼀种电⼦设备,它发射是为了感知周围环境的某些⽅⾯。
红外传感器既能测量物体的热量,⼜能检测物体的运动。
这些类型的传感器只测量红外辐射,⽽不是发射被称为被动红外传感器。
通常,在红外光谱中,所有物体都会发出某种形式的热辐射。
这些类型的辐射对我们的眼睛是看不见的,可以通过红外传感器探测到。
发射器只是⼀个红外发光⼆极管(发光⼆极管),探测器只是⼀个红外光电⼆极管,对红外发光⼆极管发出的相同波长的红外光敏感。
当红外光照射到光电⼆极管上时,电阻和输出电压将随接收到的红外光的⼤⼩⽽成⽐例变化。
红外传感器电路图及⼯作原理红外传感器电路是电⼦设备中最基本、最常⽤的传感器模块之⼀。
这种传感器类似于⼈类的视觉感官,可以⽤来检测障碍物,是实时检测中常⽤的应⽤之⼀。
该电路由以下部件组成· 2 IR transmitter and receiver pair· Resistors of the range of kilo-ohms.· Variable resistors.· LED (Light Emitting Diode).LM358 IC2红外收发对千欧姆范围内的电阻器。
可变电阻器。
LED(发光⼆极管)。
IR Sensor Circuit在本项⽬中,发射器部分包括红外传感器,其发射连续的红外射线以供红外接收器模块接收。
接收器的红外输出端根据其接收到的红外光线⽽变化。
由于这种变化不能这样分析,因此可以将该输出馈送到⽐较器电路。
这⾥使⽤LM 339的运算放⼤器(运放)作为⽐较器电路。
当红外接收器不接收信号时,反转输⼊处的电势⾼于⽐较器IC的⾮反转输⼊(LM339)。
因此⽐较器的输出变低,但LED不发光。
TX-05C 红外线对射检测电路
![TX-05C 红外线对射检测电路](https://img.taocdn.com/s3/m/724e401d0740be1e650e9a6b.png)
TX-05C 红外线对射检测电路TX-05C 红外线对射检测电路对射式红外传感器:TX05C-1是一种对射式的红外线检测电路,人眼不能直接观察到光线的传输路径。
其光路含有产品特定的密码,如在外部强制干涉或用其他光源解密,只能导致检测电路报警。
本电路已经被广泛用于门窗及各种人行通道的报警系统:流水线的自动控制,量值的统计上。
TX05C-1分发射电路和接收电路两部分,可以采用集中或分散供电方式。
TX05C-1发射电路:外形见图一、内部电路见图二、工作参数见表一、以供参考:图一图二表一发射电路的作用距离与工作电压有关,以下是4档电压的作用距离,供参考:当电压为5V时,TX05C-1的作用距离大约是3米,当电压为6V时,TX05C-1的作用距离大约是4米,当电压为9V时,TX05C-1的作用距离大约是6米,当电压为12V时,TX05C-1的作用距离大约是7米,(以上测试是在接收电路工作电压12V,室温为25oC的情况下完成的。
)工作电压5-12VDC工作电流5V时16mA6V时25mA9V时50mA 12V时70mA工作指示有外形尺寸32X46X17mm在TX05C-1安装时,发射和接收管的方向一定要正对,电路的指示灯闪动时,说明方向没有对正或发射功率不够。
可以通过调整接收、发射管的方向和提高发射电路的工作电压来解决。
在TX05C-1的作用距离足够大的前提下,应尽量降低发射电路的工作电压,一是有效的降低功耗。
二是减少内部47Ω限流电阻的发热量。
注意:发射电路的工作电源尽量使用稳压电路供电,以免瞬间超过12V时,烧毁内部电路。
TX05C-1的接收电路采用进口的微功耗稳压电路和解码电路,有着很小的电流功耗,在能接收到发射信号且解码有效时的电流仅为1mA,解码错误,发光二极管点亮时电流为3.5mA。
接收电路的工作电压为7-12V.DC。
接收电路引出一条线缆,以便引入电源和输出信号。
其中铜网接地(负极),红线接电源(正极),白线为输出(正常有信号时为低电平,小于0.1V,无信号时为高电平,大于3.5V<不带载>,此时发光管亮。
红外线的应用及其原理图
![红外线的应用及其原理图](https://img.taocdn.com/s3/m/e8a23d5d58eef8c75fbfc77da26925c52dc59153.png)
红外线的应用及其原理图红外线的概述红外线(Infrared Rays),简称红外线,是指在光谱中位于可见光和微波之间的一种电磁波。
它的波长范围通常为0.75-1000微米。
红外线具有很多特点,例如穿透力强、不可见、不破坏大气层、不受光线照射干扰等,因此广泛应用于各行各业。
红外线的应用1. 红外线传感器红外线传感器是红外线应用的常见方式之一。
它们基于物体对红外线的反射、吸收和辐射等特性进行工作。
红外线传感器被广泛应用于自动门、自动扶梯、人员计数器、红外线遥控器等设备中。
2. 红外线测温红外线测温技术是一种通过测量物体表面的红外辐射能量来获取物体温度的技术。
它被广泛应用于工业生产、医疗诊断、火灾预警等领域。
红外线测温技术可以非接触、快速、准确地测量物体的温度。
3. 红外线通信红外线通信是一种利用红外线进行数据传输的技术。
它常用于近距离通信,例如无线耳机、红外线遥控器等设备。
红外线通信具有传输速度快、不受电磁干扰、保密性好等优点。
4. 红外线成像红外线成像技术利用物体辐射的红外能量来进行图像的采集和处理。
它被广泛应用于军事侦察、安防监控、医学诊断等领域。
红外线成像技术可以检测到物体表面的温度分布,并生成热像图。
5. 红外线热成像红外线热成像技术是通过测量物体表面的红外辐射能量来获取物体温度分布的技术。
它被广泛应用于建筑能效评估、电力巡检、工业设备维护等领域。
红外线热成像技术可以快速、准确地检测到热点和异常温度区域。
红外线的原理图红外线的原理图如下所示:•红外线发射器:将电能转换为红外线辐射能量。
•红外线接收器:将红外线辐射能量转换为电能。
•控制电路:控制红外线发射器和接收器的工作状态。
•传感器:用于检测待测物体的红外线信号。
•处理器:对传感器获取的红外线信号进行处理和分析。
总结红外线作为一种特殊波长的电磁波,在科技发展中发挥着重要的作用。
它被广泛应用于各种领域,如传感技术、测温技术、通信技术、成像技术等。
红外通信原理
![红外通信原理](https://img.taocdn.com/s3/m/c351ca36f111f18583d05aef.png)
图 9 发送一组完整的编码脉冲 (4 ) 单片机采用外部中断 INT0 管脚和红外接收头的信号线相连, 中断方式 为边沿触发方式。 计算中断的间隔时间, 来区分前导码、 二进制的 “1” 、 “0” 码。并将 8 位操作码提取出来在数码管上显示。 红外接收头输出的原始遥控数据信号,正好和发射端倒向.也就是以前发射端 原始信号是高电平,那接收头输出的就是低电平,反之. 三、 程序 (1)发送程序
6
红外数据传输
2009-8-11
endcount=10; flag=1; count=0; do{}while(count<endcount); flag=0; } void delay(unsigned int z) { unsigned char x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } /*********************4 ×4 键盘扫描按下按键发射数据************************/ void keyscan() { P1=0xfe; temp=P1; temp=temp&0xf0; while(temp!=0xf0) { temp=P1; switch(temp) { case 0xee:num=1; break; case 0xde:num=2; break; case 0xbe:num=3; break; case 0x7e:num=4; break; } while(temp!=0xf0) { temp=P1; temp=temp&0xf0; } P2=table[num-1]; SendIRdata(table[num-1]); } P1=0xfd; temp=P1; temp=temp&0xf0; while(temp!=0xf0) { temp=P1; switch(temp) { case 0xed:num=5; break; case 0xdd:num=6; break; case 0xbd:num=7; break; case 0x7d:num=8;
(完整版)红外遥控电路设计
![(完整版)红外遥控电路设计](https://img.taocdn.com/s3/m/43d5478ffc4ffe473268ab4a.png)
引言随着远程教育系统的不断发展和日趋完善,利用多媒体作为教学手段在各级各类学校都得到了广泛应用。
近年来,在多媒体教学系统的使用、开发和研制中,经常遇到同时使用多种设备,如:数字投影机、DVD、VCD、录像机、电视机等,由于各种设备都自带遥控器,而且不同的设备所遵循的红外传输规约也不尽相同,操纵这些设备得使用多种遥控器,给使用者带来了诸多不便。
本次毕业设计的主题就是红外遥控电路设计。
红外遥控的特点是利用红外线进行点对点通信的技术,不影响周边环境,不干扰其他电器设备。
室内近距离(小于10米),信号无干扰、传输准确度高、体积小、功率低的特点,遥控中得到了广泛的应用。
通过基于单片机的控制指令来对多种设备进行远程控制,可以选择不同的按键来控制不同的设备。
从而方便快捷的实现远程控制。
常用的红外遥控系统一般分发射和接收两个部分。
发射部分的主要元件为红外发光二极管。
它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。
红外发光二极管一般有黑色、深蓝、透明三种颜色。
判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。
红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。
接收部分的红外接收管是一种光敏二极管。
在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。
红外发光二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率一般都较小,所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。
最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。
成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。
均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。
红外线定义
![红外线定义](https://img.taocdn.com/s3/m/c8c1adcdc8d376eeafaa3121.png)
一红外线定义:红外线是太阳光线中众多不可见光线中的一种,由英国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。
结果发现,位于红光外侧的那支温度计升温最快。
因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。
也可以当作传输之媒介。
二红外线波长范围:●近红外线,波长为(0.75-1)~(2.5-3)μm之间;●中红外线,波长为(2.5-3)~(25-40)μm之间;●远红外线,波长为(25-40)~l000μm 之间。
三红外线的发射与接收:红外对射管由红外发射管和红外接收管两部分组成。
红外发射管在外加电压的情况下可以产生出红外线。
红外线是一种光线,具有普通光的性质,但又不同于普通可见光,它不会被察觉。
红外线具有可以光速直线传播、强度可调、可以通过光学透镜聚焦、可以被不透明物体遮挡等等诸多优点。
红外接收管是与发射管配对的特制二极管,它可以接收到红外发射管发射出的红外线,并产生微小的光电流,可以使用一对红外线发射与接收的装置,构成红外线的对射系统,称为主动式红外线应用系统。
使用中,经常配对出现,当红外线收、发装置之间的隐形光路被阻挡时,接收装置可以立即察觉到。
利用这种对射系统,可以很方便地构建红外线发射与接收的方式有两种,其一是直射式,其二是反射式。
直射式指的是发光管和接收管彼此相对安放在发射与受控物的两端,中间相距一定距离;反射式指发光管与接受管并列一起,平时接收管始终无光照,只有在发光管发出的红外光线遇到反射物时,接收管收到反射回来的红外光线才工作。
红外线发射电路:该图为其中的一幅红外对射电路。
当红外发射管D5加上电压导通之后,红外接收管D6将产生一个微小的光电流,NPN三极管Q15的基极将产生一个微小的电流,基极微小的电流存在使得Q15的b-e之间导通,NPN三极管Q15工作在饱和状态,c-e 之间的电阻很小,近似短路,集电极相当于直接接地,电压为0V。
红外线遥控解码器电路图及工作原理
![红外线遥控解码器电路图及工作原理](https://img.taocdn.com/s3/m/e41f2351ad02de80d4d84052.png)
51单片机设计的红外线遥控器电路图及工作原理--------------------------------------------------------------------------------51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控解码器”。
该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。
发光二极管8个。
价钱不足20元。
电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE 的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。
晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么简单了,现在分析具体的编程过程吧。
如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。
开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms 高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
8路红外遥控电路
![8路红外遥控电路](https://img.taocdn.com/s3/m/9a647cf184868762caaed592.png)
电子基础遥控电路有有线遥控、无线电遥控和红外遥控,有线遥控一般长达数米,使用受到限制,无线电遥控有距离长的特点,但作为电子业余爱好者,制作起来也不太方便。
而红外遥控是一种无线、非接触控制技术,虽然距离短,但抗干扰能力强,可靠性能高,功耗低、成本低、易实现等显著优点。
在家用电器里应用比较广泛,原理也比较简单,作为无线电业余爱好者,制作非常方便,也适用于学校电子制作技能训练的组装和调试。
下面就谈谈红外遥控电路。
红外遥控电路设计方法很多,有不少成熟电路,但大多数电路比较复杂,调试困难,本电路只用到通用的数字集成电路,结构简单,各模块清晰,制作便捷,调试简单,很适用于业余爱好者制作,又用于电子技术基本技能中电路的设计制作和调试的练习,也有一定的实用价值。
1 电路组成整个电路分发射和接收两部分。
图1为发射电路,图2为接收电路。
发射电路由通道选择按键组,低频振荡电路,高频振荡电路和调制放大发射电路这几部分组成的。
S1~S8是通道选择按键组;W1、R9、D9、C1、U1以及与S1~S8串联的电阻R1~R8组成低频振荡电路;R10、W2、C2和U2组成高频振荡电路;D10和D11、R11组成二极管与门电路;Q1用于放大,D12是发射指示LED,D13是红外发射二级管。
接收电路由信号接收、定时器控制门、计数器和译码器组成,H1用于接受红外信号,U2A和U2B以及其外围元件组成两个定时器,D1和D2,D3和D4两个二极管控制门;U1为计数器,U3是译码器。
2 工作原理发射:有当S1~S8无一按下时,电路电源未接通,不工作,也无漏电。
当S1~S8有任一被按下时,6V的电源通过对应的二极管D1~D8加到整个电路中,电路工作,此时由U2及其外围元件组成的高频震荡器工作于38kHz左右,而由U1及其外围元件组成的低频振荡器的工作频率则依按下的是S1~S8中的不同按键而不同,高频信号经过低频信号在二极管与门中调制,再被送到Q1放大后,由D13发射8路红外遥控电路张凌辰(南京高等职业技术学校电气工程系,江苏南京,210019)摘要:遥控是通过媒体对远距离被控对象进行控制的技术;红外遥控是一种无线、非接触控制技术;本电路由8通道选择按键等组成的发射电路和接收电路构成。
红外收发对管电路
![红外收发对管电路](https://img.taocdn.com/s3/m/9a7e586fa58da0116d174902.png)
红外收发对管1、红外收发对管是一种利用红外线的开关管,接受管在接受和不接受红外线时电阻发生明显的变化,利用外围电路可以时输出产生明显的高低电平的变化,高低电平的变化输入单片机就可使之识别,从而实现智能控制。
我们使用的单片机是凌阳61板,经过我们试验,在输入电压小于1.5伏时单片机识别为低电平,在输入电压大于1.85 伏时单片机识别为高电平。
2、用途:蔽障、计数(记液体点滴的个数、记玻璃小球的个数、记小车轮子的转数)、寻迹3、红外发射接收电路:3 . 1输入信号采用38KHZ的调制波红外发射电路由电阻R2三极管Q2电阻R3与红外发射二极管D1构成,如图vcc接收电路由红外接收管和放大电路组成,如图2.2。
Q4接收到红外信号后,经过三极管Q1进行第一级放大,放大后的信号送入三极管Q3进行第二级放大,通过Rx就可以得到放大后的红外接收信号。
为了降低干扰,Tx 一般采用调制方式,这里,其波形如图 2.3图2.3 38KHZ调制波对应图2.3的调制波,如果VCC为5V,发射接收对管的有效距离(单片机可检测)大概为20cm如果VCC为3V,发射接收对管的有效距离(单片机可检测)大概为10cm3. 2直接采用直流电源本电路电路简单,性能稳定,安装方便,但距离比较近。
当阻挡了接收管接收红外线的强度时,产生一个低电平的脉冲信号,由于对管的发射口径较小,单光束发射,小球相对红外装置正交落下时,很容易检测处理。
使用此电路寻迹实现小车跟黑色轨道行驶,在行驶过程中不超出该线。
考虑到黑线和白纸组合,我们采用红外对管辨认路面的黑白两种不同状态。
由于红外对管对黑白色的感应比较明显,又不需要很高的精度,适用于简单的寻迹。
但外部影响比较大,所以须将接收头用黑皮套套上以提高信号的接受率。
该小车采用三对红外对管,通过他们送入单片机信号的不同,将其逻辑组合后向小车的各个电机发送启动信号,从而,驱动小车实现寻迹功能。
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力就一定可以获得应有的回报)。
红外线光控开关电路图及工作原理
![红外线光控开关电路图及工作原理](https://img.taocdn.com/s3/m/e73365cc767f5acfa1c7cdad.png)
红外线光控开关电路图及工作原理一、特点该装置采用锁相环单音检测电路LM567构成自发射自接收的闭环控制形式。
就是说,把LM567产生的方波电信号调制在红外线光信号上并发射出去,红外线光敏二极管接收该信号,并把其变为电信号,经放大,又被该LM567自身检测。
这样,LM567自身的振荡频率与要接收的信号频率永远相同,即使由于某种原因使LM567的振荡频率发生了变化。
在一定的频带宽度内,由于LM567只对与自身振荡频率非常接近的信号产生响应,而对其他频率的干扰信号不响应,所以,该装置具有可靠性高、抗干扰性强、安装调试简单的特点。
该装置可应用于自动门、自动水龙头、防盗报警、危险区域误入报警、警戒区域侵入报警等控制。
二、工作原理电路原理图见图1。
红外线光敏二极管PH检测到由红外线发射二极管LE发出的红外线光信号,并将其转换成电信号。
该信号经由IC1A构成有源高通滤波器,滤除外界低频干扰信号;再经IC1B、IC1C两级固定增益放大器的放大、以及IC1D可调增益限幅放大器的放大,进入锁相环单音检测电路IC2的第③脚。
IC2检测到与自身振荡频率相同的信号后,其第⑧脚输出低电平,使继电器DL吸合,触点S1、S2接通,控制其他设备。
IC2第⑧脚的最大吸入电流为100mA。
IC2第⑤脚输出的方波信号,经C8、R16组成的微分电路和N1、N2驱动电路,使红外线发射二极管发出该频率调制的红外线光信号。
微分电路使正方波信号变为低占空比的方波信号。
用低占空比方波调制红外线发射管,可提高红外线发射管的工作效率,即其峰值电流很大,而平均工作电流却很小。
这样,有利于红外线光敏二极管的接收。
电阻R12、R13和电解电容E3是集成电路IC1的中点电位偏置电路,使IC1工作于单电源方式。
该装置有两种工作方式。
一种是:红外线发射二极管和红外线光敏二极管都在同一侧,构成反射检测方式,见图2。
另一种是:红外线发射二极管在一侧,而红外线光敏二极管在另一侧,构成对射式检测方式,见图3。
红外线遥控原理
![红外线遥控原理](https://img.taocdn.com/s3/m/cde8c50590c69ec3d5bb7550.png)
红外线遥控原理1、红外遥控系统通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。
发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
图12、遥控发射器及其编码遥控发射器专用芯片很多,根据编码格式可以分成脉冲宽度调制和脉冲相位调制两大类。
编码原理:日本NEC的UPD6121G当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。
这种遥控码具有以下特征:1) 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”。
图22) 上述“0”和“1”组成的42位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。
然后再通过红外发射二极管(二极管HSR7021-2.3-21)产生红外线向空间发射图3图3遥控型号编码波形图3)UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。
该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。
UPD6121G最多额128种不同组合的编码。
4)遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。
一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4。
图4遥控信号的周期性波形5)当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结束码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。
红外线接收头原理图LF1638A
![红外线接收头原理图LF1638A](https://img.taocdn.com/s3/m/5d841e956bec0975f465e2c2.png)
4.应用电路图:
5.原理图:
6.光电参数(T=25℃ Vcc=5v f0=38KHZ): 参 数 符号 VCC Icc Ice L θ1/2 f0 fBW VOL VOH TPWL TPWH -3Db Bandwidth Vin=0V Vcc=5V Vcc=5V Vin=50mVp-p Vin=50mVp-p Vcc-0.3 500 540
6
4
型号: LF1638A
Typical Electrical Curves at Temp=25℃
5
型号: LF1638A
9.极限参数: 项目 供应电压 工作温度 储存温度 焊接温度 10.推荐使用条件: 项目 工作电压 输入频率 工作温度 11.接收角度: 符号 VCC Topr Tstg Tsol 规格 -0.3—6.5 -20— +85 -40 —— +125 260(5S) 单位 V ℃ ℃ ℃
LF1638A
1
型号:LF1638A(深圳兰丰科技产红外线接收头、发射管、发光二极管等光电系列产品)
1.特性: ●小型设计; ●内置专用 IC; ●宽角度及长距离接收; ●抗干挠能力强; ●能抵挡环境干挠光线; ●低电压工作; 2.应用: ■视听器材(音箱,电视,录影机,碟机) ■家庭电器(冷气机,电风扇,电灯) ■其它红外线遥控产品; LF1638A
无信号输入时 ※
测试条件
Min 2.7 0.6 0.1 13
Type 0.8 15
+/-35
Max 5.5 0.5
单 位 V mA mA M Deg KHZ
工作电压 工作电流 静态电流 接收距离 接收角度 载波频率 BMP 宽度 低电平输出 高电平输出 输出脉冲 宽 度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外线发射与接收电路图
由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455KHZ的方波信号。
经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。
再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。
由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。
与非门的另一输入端接38KHZ的载波信号。
与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。
这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。
发射电路的调制采用的是时分制幅度键控调制方式。
因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。
所以单片机TXD 发送的编码应是反码。
据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200b
设计中采用一种高效能的红外接收器——德律风根TFMS5380。
德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。
同一组件内已装上了接收二级管和前置放大器。
TFMS5380特点:(1)单一的接收器和前置放大器的组合。
(2)超敏感度和传送距离。
(3)内置PCM频率过滤器。
(4)无外置组件需要。
(5)特强光及电场干扰屏蔽。
(6) TTL及CMOS兼容,适用于微处理器操作控制。
(7)可选频率由30KHZ至56KHZ。
(8)低功耗。
(9)ISO9000认可。
TFMS5380适用于数据传送、电视机、录像机、组合音响及
卫星接收器等。
TFMS5380的内部框图及构成的接收电路。
如图3所示。
红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。
发光的波长和半导体的禁带宽度有关。
光敏红外二极管和普通的光敏二极管也是一样的。
在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。
一般光敏管反向偏置,有光时反向电阻会变化。
一般红外管用来通信,比如电视机的遥控器。
或者测距,比如自动冲水马桶。