数字频率计.
频率计的发展简介
频率计的发展简介一、数字频率计的简介数字式频率计即DFM-Digital Frequencymeter,也称为数字频率表或电子计数器。
它不仅是电子测量和仪器仪表专业领域中测量频率与周期、测量频率比和进行计数、测时的重要仪器,而且比示波器测频更方便、经济得多,特别是现代电子计数器产品与足见和具有多种测量功能的数字式频率计,已广泛应用于计算机系统、通讯广播设备、生产过程自动化测控装置、带有LED、LCD数字显示单元的多种仪器仪表以及诸多的可许技术领域。
可以说,伴随着数字化技术的发展,电子计算机、通讯设备、音频和视频技术进入科研、生产、军事技术和经济生活领域,直至家庭和个人,使得电子计数器和测频手段与上述电子设备耦连为形影不离的技术。
数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号.方波信号,尖脉冲信号及其他各种单位时间内变化的物理量.频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。
闸门时间也可以大于或小于一秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
本文。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器,电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
二、数字频率计的发展在电子技术中,频率是最基本的参数之一,并且与许多点参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
数字频率计毕业论文
数字频率计毕业论文数字频率计是一种用于测量信号频率的仪器,广泛应用于电子工程、通信工程、无线电技术等领域。
它的原理是通过将输入信号与参考信号进行比较,从而得到信号的频率信息。
本文将从数字频率计的原理、应用以及未来发展方向等方面进行探讨。
一、数字频率计的原理数字频率计的原理基于周期计数法。
它通过将输入信号与参考信号进行比较,并计算两个信号之间的相位差,从而得到信号的频率。
具体来说,数字频率计将输入信号分成若干个周期,并通过计数器记录每个周期的时间。
然后,通过计算每个周期的时间差,即可得到信号的频率。
二、数字频率计的应用数字频率计在电子工程领域有着广泛的应用。
首先,它可以用于测量无线电信号的频率。
在通信工程中,我们经常需要测量无线电信号的频率,以确保信号的稳定性和准确性。
数字频率计能够提供高精度的测量结果,使我们能够更好地了解信号的特性。
其次,数字频率计还可以用于频谱分析。
频谱分析是一种将信号分解成不同频率成分的方法,可以帮助我们了解信号的频率分布情况。
数字频率计可以通过测量信号的频率,为频谱分析提供准确的数据支持,从而帮助我们更好地理解信号的特性。
此外,数字频率计还可以用于音频设备的调试和校准。
在音频工程中,我们经常需要调试和校准音频设备,以确保音频信号的准确性和稳定性。
数字频率计能够提供高精度的频率测量结果,为音频设备的调试和校准提供准确的参考。
三、数字频率计的未来发展方向随着科技的不断发展,数字频率计也在不断演进和改进。
未来,数字频率计有望在以下几个方面得到进一步发展。
首先,数字频率计的测量精度将进一步提高。
随着技术的进步,数字频率计的测量精度将得到进一步提升。
高精度的测量结果将使得我们能够更准确地了解信号的特性,为相关领域的研究和应用提供更可靠的数据支持。
其次,数字频率计的测量范围将进一步扩大。
目前,数字频率计的测量范围通常在几十Hz到几GHz之间。
未来,随着技术的发展,数字频率计的测量范围有望进一步扩大,从而能够满足更广泛的应用需求。
数字频率计±1个字误差的探讨
数字频率计±1个字误差的探讨数字频率计是一种广泛应用于电子测量领域的仪器,用于测量电路中的频率。
在实际的应用中,数字频率计的精度是非常重要的,其中误差是一个不可避免的问题。
本文将探讨数字频率计的误差来源及其对精度的影响,以及如何降低误差,提高精度。
一、误差来源数字频率计的误差来源主要有以下几个方面:1. 时钟误差:数字频率计是通过计算时间间隔来计算频率的,因此时钟的精度对频率计的精度有很大影响。
时钟误差可以通过校准时钟来减小。
2. 计数误差:数字频率计的计数器是通过计算电路中的脉冲数来计算频率的,而计数误差是由于计数器的计数精度不够造成的。
计数误差可以通过增加计数器的分辨率来减小。
3. 信号源误差:数字频率计的精度还受到信号源的影响,信号源的稳定性和精度越高,数字频率计的精度就越高。
4. 温度漂移误差:数字频率计的电路元件随着温度的变化会产生漂移,这种漂移会影响数字频率计的精度。
温度漂移误差可以通过控制温度来减小。
二、误差对精度的影响数字频率计的误差对精度的影响是非常显著的,误差越大,精度越低。
例如,如果数字频率计的误差为±1个字,而测量的频率为10MHz,那么误差就是10ppm。
如果误差增加到±10个字,那么误差就是100ppm,这会对测量结果造成很大的影响。
三、如何降低误差,提高精度为了降低数字频率计的误差,提高精度,我们可以采取以下措施:1. 选择高精度的时钟和计数器,以减小时钟误差和计数误差。
2. 使用高精度的信号源,以提高数字频率计的精度。
3. 控制温度,以减小温度漂移误差。
4. 校准数字频率计,以确保其精度符合要求。
5. 采用数字信号处理技术,以提高数字频率计的精度和稳定性。
综上所述,数字频率计的误差是一个不可避免的问题,但是我们可以通过选择高精度的器件、控制温度、校准仪器等措施来减小误差,提高数字频率计的精度和稳定性。
数字频率计
数字频率计数字频率计是一种用十进制数字显示被测信号频率的数字测量仪器,它的基本功能是测量正弦信号、方波信号、尖脉冲信号的频率及其他各种单位时间内变化的物理量,因此,它的用途十分广泛。
一、设计目的掌握数字频率计的设计二、设计内容技术要求:测量频率范围 0-9999 Hz和1Hz-100 KHz。
测量信号方波峰--峰值为3-5V(与TTL兼容)。
闸门时间 10ms,0.1s,1s和10s,脉冲波峰—峰值为3-5V。
三、数字频率计的基本原理数字频率计的原理框图如图所示:它由4个基本单元组成:1.带衰减器的放大整形系统包括从被测信号到衰减放大整形系统此部分。
其中衰减放大整形系统包括衰减器、跟随器、放大器、施密特触发器。
它将正弦波输入信号Vx整形成同频率方波Vo,测试信号通过衰减开关选择输入衰减倍数,衰减器有分压器构成幅值过大的被测信号经过分压器的分压送入后级放大器,以避免波形失真。
由运算放大器构成的射极跟随器起阻抗变换作用,使输入阻抗提高。
系统的整形电路由施密特触发器组成,整形后的方波送到闸门以便计数。
2.石英晶体振荡器及多级分频系统石英晶体振荡器如图振荡频率为4MHz,经过÷4(用74LS47芯片),÷10(用74LS90芯片)等分频器的分频作用,使输出频率的周期范围1us~10s。
根据被测信号的频率大小,通过闸门时基选择开关选择时基。
时基信号经过门控电路得到方波,其正脉宽时间T控制闸门的开放时间。
3.闸门电路闸门电路由与门组成,其开通与否受门控信号的控制,当门控信号为高电平“1”时,闸门开启,为“0”时,闸门关闭。
显然,只有在闸门开启时间内,其产生的脉冲信号送到计数器,计数器开始计数,直到门控信号结束,闸门关闭4.可控制的计数锁存、译码显示系统本系统由计数器、锁存器、译码器、显示器、单稳态触发器组成。
其中计数器按十进制计数。
如果在系统中不接锁存器,则显示器上的数字就会随计数器的状态不停地变化,只有在计数器停止计数时,显示器上的显示数字才能稳定,所以,在计数器后边必须接锁存器。
数字频率计
6 7
B
9
R9(1Q)B 8
2 R9(2Q)C
U4A
1
2
3
3
R0(1) QD
11 74LS08N
R0(2)
74LS90N
U3
14
12
1 A QA
6Байду номын сангаас7
B
9
R9(1Q)B 8
2 R9(2Q)C
3
R0(1) 11 QD
R0(2)
74LS90N
时基电路
U5A
1
2
3
74LS08N
U6
14
12
1 A QA
U7A
I
II
T
III N
IV
V
四:设计分析
1. 时基电路 其基本电路图如下:
锁存信号 请零信号
VCC 5V R1 430ohm
J1 Key = A
500ohm R4
C3 1uF
8 U1
4 VCC RST
7
3
6 DIS OUT
2 THR
TRI
5
CON GND
1 C4 LM555CH
0.01uF
U2
14
12
1 A QA
74LS90N
U9A
1
IO2
2
3
74LS08N 时基输出端
其中一级分频后的波形如下:
(注:上面的波形为振荡器产生) 。由此可见,设计的电路是正确的.
附 1 74LS90 各管脚作用:
置9端 (R9(1)=R9(2)=1时,
生的时基信号,其脉冲宽度分别为: 1s, 0.1s; 5. 当被测信号的频率超出测量范围时,报警.
数电课程设计数字频率计
1.概述数字频率计是通过一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常是计算每秒内的脉冲个数,也就是我们所称的闸门时间为1秒。
闸门时间不定,但闸门时间影响频率计的准确度,闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
本次课程设计中画图与仿真主要用到了Proteus软件,Proteus是一款电路分析实物仿真系统,可仿真各种电路和IC,元件库齐全,有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器。
具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真,使用和操作起来非常方便。
2.数字频率计原理与框图所谓频率,就是周期性信号在单位时间内变化的次数.若在一定时间间隔t 内测得这个周期性信号的重复变化次数为n,则其频率可表示为nft若在闸门时间1S内计数器计得的脉冲个数为n,则被测信号频率等于nHz。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
它一般由放大整形电路、时基电路、逻辑控制电路、闸门电路、计数器、锁存器、译码器、显示器等几部分组成。
其基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。
计数信号并与锁存信号和清零复位信号共同控制计数、锁存和清零三个状态,然后通过数码显示器件进行显示。
图2-1 数字频率计整体框图2武汉理工大学《数字电子技术》课程设计说明书33.数字频率计的设计3.1 放大整形电路放大整形电路由晶体管 放大器与74LS00等组成,放大器将输入频率为的周期信号如正弦波、三角波等进行放大。
数字频率计安全操作及保养规程
数字频率计安全操作及保养规程数字频率计是一款广泛应用于电力、工业、医疗、机械等领域的便携式计量仪器。
使用数字频率计需要遵守一定的安全操作和保养规程,以确保设备的安全性、稳定性和准确性。
本文将介绍数字频率计的安全操作和保养规程。
安全操作规程1. 操作前在使用数字频率计之前,需先仔细查看仪器的外部是否有明显的损坏。
如有明显的破损或质量问题,务必先进行维修或更换。
同时,需要检查电源线是否连接牢固,各部件是否完好无损。
在检查完毕后才能正常使用。
2. 操作中数字频率计使用时应遵循以下操作:•仔细阅读并按说明书正确操作。
•在仪器运行前,先对要测量的对象进行检查与记录。
确保检测对象的电压、频率、相位等参数在仪器测量范围内。
•长时间使用时,为防止超负荷散热,就需要不时检查仪器的温度,如有异常现象要及时关机停用,待温度恢复后再使用。
•测量过程中不要拆动设备,如未达到测量结果,应先检查设备仪器、线路、测量对象、电源之间是否有错误或不稳定现象,确认设备正常后才能进行下一步操作。
•避免不当操作或强外力撞击。
将频率计放置在平稳的台面上,防止其倾斜或翻倒,避免损坏设备或人员受到伤害。
3. 操作后数字频率计使用完毕后,应遵循以下操作:•关闭电源,然后慢慢拔下电源线。
•将频率计放置在干燥通风的环境中。
•定期清洁仪器及标准件,如有损坏需及时更换。
•长时间不使用时,应将仪器放置于阴凉,干燥的地方,定期拿出使用。
保养规程数字频率计的保养可以做到以下几点:1. 定期清理与保养数字频率计长期使用后,仪表表面会有所污染,专用擦拭巾可以清除表面污染,如果污染非常沉重,可以用清洗液加以擦洗,但要注意在擦洗过后必须立即用清水擦拭干净并保持通风干燥。
2. 安全存放数字频率计不使用时,应将其搁置于阴凉、干燥、通风、无腐蚀性气体的地方。
必要时,可以将其包裹防尘。
不要将仪器长期置放在潮湿、高温、有害气体的环境下。
3. 定期校准数字频率计在长期使用的过程中,可能会出现使用误差。
数字频率计
一、总体设计思想1.基本原理数字频率计是用数字显示被测信号频率的仪器,是测量周期信号的频率的。
我们这里要求的是对峰峰值3~5V的方波进行测频。
说到原理,我们应该从什么是频率说起。
所谓频率,就是周期性信号在单位时间(1秒) 内变化的次数。
但是我们既然用到数字测频器,并且用LED显示出来,最好是起到简便的作用,因此如果我们能在给定的单位时间(例如1秒)或其他时间内对信号波形计数,并将计数结果用LED显示出来,就能知道被测信号的频率。
因此,可以将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。
这样方便与下面的控制与测频。
然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是检测是否这两个脉冲信号能否成功送入计数器计数。
而计数器的作用是对输入脉冲计数。
这样我们就有时间脉冲的记录,然后在经过数据锁存器,设置数据锁存器的目的是为了锁定刚刚计数器所记录下来的结果,这样才会有稳定的输出,否则将会造成计数器的结果丢失。
紧接着连接一个显示译码器主要是把信号通过译码器转换成为显示器能够识别的码制,最后则是通过LED显示我们的最终结果。
2.设计框图根据这次课程设计的要求:设计一个数字频率计,测量频率范围:1~100kHz。
频率的LED数字显示。
测量信号方波峰峰值3~5V。
我设计了如下的总体设计框图。
主要是针对我的设计的基本原理也就是先将时钟信号先经过分频器,再把被测信号以及刚刚获得的标准秒信号都经过控制电路,接着是计数器,然后是数据锁存器,数据译码器,最后是LED 显示器。
二、设计步骤和调试过程 1、总体设计电路这次课程设计的要求是设计一个数字频率计,测量频率范围:1~100kHz 。
频率的LED 数字显示。
测量信号方波峰峰值3~5V 。
所以我先将时钟信号先经过分频器把信号的时间脉冲调整成单位时间脉冲,也就是标准秒信号。
这样方便与下面的控制与测频。
然后把被测信号以及刚刚获得的标准秒信号都经过控制电路,设置控制电路的目的是被测信号计数检测是否这两个脉冲信号能否成功送入计数器计数。
数字频率计设计报告
数字频率计设计报告数字频率计是一种用于测量信号频率的仪器,广泛应用于电子领域。
本文将针对数字频率计的原理、工作方式以及应用进行详细介绍。
一、引言数字频率计是一种基于数字信号处理技术的测量仪器,它能够精确地测量信号的频率。
它广泛应用于通信、无线电、音频和视频等领域,对于各种信号的频率测量具有重要意义。
二、原理数字频率计的测量原理基于信号的周期性特征。
当一个信号通过数字频率计时,它会被转换成数字信号,并通过计数器进行计数。
通过计数器的计数结果和时间基准的参考值进行比较,就可以得到信号的频率。
三、工作方式数字频率计的工作方式通常分为两种:直接计数法和间接计数法。
1. 直接计数法:该方法直接对信号进行计数,通过计数器对信号的脉冲进行计数,并将计数结果进行处理得到频率值。
这种方法简单直接,但对于高频率信号的计数精度较低。
2. 间接计数法:该方法通过将信号的频率分频至低频范围内进行计数。
通过将高频信号分频后再进行计数,可以提高测量的精度。
四、应用数字频率计在各个领域都有广泛的应用,以下是一些常见的应用场景:1. 通信领域:数字频率计在通信系统中被用于测量信号的载波频率,确保信号的稳定传输。
同时,数字频率计还可以用于频率偏移的测量,以评估通信系统的性能。
2. 无线电领域:数字频率计被用于测量无线电频率,对于射频信号的测量具有重要意义。
它可以用于无线电台站的调试和维护,以确保无线电信号的质量和稳定性。
3. 音频和视频领域:数字频率计在音频和视频设备的校准和测试中被广泛应用。
它可以测量音频和视频信号的频率,以确保音频和视频设备的正常工作。
4. 科学研究领域:数字频率计在科学研究中也起到了重要的作用。
比如,在天文学研究中,数字频率计可以用于测量天体的射电信号频率,从而研究宇宙的演化和结构。
五、总结数字频率计作为一种精确测量信号频率的仪器,在电子领域中有着广泛的应用。
本文从原理、工作方式和应用等方面对数字频率计进行了详细介绍。
等精度数字频率计
等精度数字频率计测量方式:一、测频原理所谓“频率”,确实是周期性信号在单位时刻转变的次数。
电子计数器是严格依照f =N/T的概念进行测频,其对应的测频原理方框图和工作时刻波形如图1 所示。
从图中能够看出测量进程:输入待测信号通过脉冲形成电路形成计数的窄脉冲,时基信号发生器产生计数闸门信号,待测信号通过闸门进入计数器计数,即可取得其频率。
假设闸门开启时刻为T、待测信号频率为fx,在闸门时刻T内计数器计数值为N,那么待测频率为:fx = N/T假设假设闸门时刻为1s,计数器的值为1000,那么待测信号频率应为1000Hz 或1.000kHz,现在,测频分辨力为1Hz。
图1 测频原理框图和时刻波形二、方案设计2.1整体方案设计等频率计测频范围1Hz~100MHz,测频全域相对误差恒为百万分之一,故由此系统设计提供100MHz作为标准信号输入,被测信号从tclk端输入,由闸门操纵模块进行自动调剂测试频率的大小所需要的闸门时刻,如此能够精准的测试到被测的频率,可不能因闸门开启的时刻快慢与被测频率信号转变快慢而阻碍被测频率信号致使误差过大,被测信号输入闸门操纵模块后,在闸门操纵模块开始工作时使encnt端口输出有效电平,encnt有效电平作用下使能标准计数模块(cnt模块)和被测计数模块(cnt模块),计数模块开始计数,直到encnt 从头回到无效电平,计数模块就将所计的数据送到下一级寄放模块,在总操纵模块的作用下,将数据进行load(锁存),然后寄放器里的数据会自动将数据送到下一模块进行数据处置,最后送到数码管或液晶显示屏(1602)进行被测信号的数据显示。
PIN_84VCCreset INPUTPIN_31VCCtclk INPUTcnt_time 100Signed IntegerParameter Value Typeclken_1kHztclkclrloadencntcnt_eninst4cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst1cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst2cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]bcnt_reginst3cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]tcnt_reginst5clken_1kHzresetenencntclr_cntlockclr_regload_encntcontrolinst6clken_1kHzresetclearreset_cntinst16被测频率信号输入闸门信号控制器100M标准频率信号计数器被测频率信号计数器100M标准频率数据寄存被测信号频率数据寄存复位模块闸门、计数、寄存的总控制模块clk_100MHztclk1loadclk_100MHzen_1kHzclk_100MHzen_1kHzen_1kHzclk_100MHzloaden_1kHzclk_100MHzclk_100MHzen_1kHzset_f ashion[4]tclk1reset1cnt_numb[31..0]cnt_numt[31..0]两路数据送到下一级进行数据处理2.2理论分析采纳等精度测量法,其测量原理时序如图1所示从图1中能够取得闸门时刻不是固定的值,而是被测信号的整周期的倍数,即与被测信号同步,因此,不存在对被测信号计数的±1 误差,可取得:变形后可得:对上式进行微分,可得:由于 dn=± 1 ,因此可推出:从式(5)能够看出:测量误差与被测信号频率无关,从而实现了被测频带的等精度测量;增大T或提高fs能够提高测量精度;标准频率误差为dfs/fs,因为晶体的稳固度很高,再加上FPGA核心芯片里集成有PLL锁相环可对频率进一步的稳固,标准频率的误差能够进行校准,校准后的标准误差即能够忽略。
数字频率计用测频法测量的方法
数字频率计用测频法测量的方法
数字频率计是一种常见的测量设备,通常用于测量信号的频率。
测频法是一种常用的测量频率的方法,它可以通过测量信号的周期来确定信号的频率。
数字频率计通常使用测频法来测量信号的频率。
具体来说,数字频率计可以通过以下步骤来测量信号的频率:
1. 将信号输入到数字频率计中,数字频率计会对其进行处理,并显示信号的频率。
2. 测量信号的周期,数字频率计可以通过测量信号的持续时间来确定信号的周期。
3. 根据信号的周期,可以计算出信号的频率。
数字频率计使用测频法来测量信号的频率,具有准确、快速、方便等特点,适用于许多不同的应用场景。
拓展:
测频法是一种测量频率的方法,它可以通过测量信号的周期来确定信号的频率。
具体来说,测频法可以通过以下步骤来测量信号的频率:
1. 将信号输入到测频法仪器中,仪器会对其进行处理,并显示信号的频率。
2. 测量信号的周期,测频法仪器可以通过测量信号的持续时间来确定信号的周期。
3. 根据信号的周期,可以计算出信号的频率。
测频法仪器通常用于测量信号的频率,特别是在电子学、通信学等领域。
什么是数字频率计它在测量仪器中的应用有哪些
什么是数字频率计它在测量仪器中的应用有哪些数字频率计是一种用于测量信号频率的仪器,它可以精确地测量各种周期性信号的频率,并且在不同领域有广泛的应用。
本文将介绍数字频率计的原理和测量方法,并探讨它在不同测量仪器中的应用。
一、数字频率计的原理数字频率计是基于现代计算机和数字信号处理技术的一种测量仪器。
它通过对输入信号进行数字化处理,获得信号的周期或脉冲宽度,并由此计算出信号的频率。
数字频率计的工作原理可以简化为以下几个步骤:首先,将输入信号通过模数转换器(ADC)转换成数字信号;然后,通过计数器对数字信号进行计数,以获得信号的周期或脉冲宽度;最后,根据信号的周期或脉冲宽度计算出信号的频率,并显示在数字频率计的显示屏上。
二、数字频率计的测量方法数字频率计可以使用不同的测量方法获得准确的频率值,其中常见的方法包括时间测量法、周期测量法和脉冲宽度测量法。
1. 时间测量法时间测量法是最常用的数字频率计测量方法之一。
它通过测量信号周期内的时间来计算频率。
该方法适用于周期性信号,如正弦波、方波等。
时间测量法的基本原理是:首先,将输入信号信号与参考时间间隔进行比较,以判断信号周期的整数倍;然后,使用高精度时钟计数器测量信号周期内的时间,最后根据测得的时间计算出信号的频率。
2. 周期测量法周期测量法适用于脉冲信号或周期性信号。
它通过测量脉冲宽度或信号的占空比来计算频率。
周期测量法的基本原理是:首先,测量脉冲信号或周期性信号的周期或脉冲宽度;然后,根据测得的周期或脉冲宽度计算信号的频率。
3. 脉冲宽度测量法脉冲宽度测量法适用于脉冲信号。
它通过测量脉冲信号的宽度来计算频率。
脉冲宽度测量的基本原理是:首先,检测脉冲信号的上升沿和下降沿;然后,测量脉冲信号上升沿和下降沿之间的时间差,即脉冲信号的宽度;最后,根据脉冲信号的宽度计算信号的频率。
三、数字频率计在测量仪器中的应用数字频率计在各个领域的测量仪器中有广泛的应用,下面将介绍几个主要的应用领域。
数字频率计
数字频率计(51单片机)(总21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--自动化与电子工程学院单片机课程设计报告课程名称:单片机原理与应用学院:自动化与电子工程院专业班级:学生姓名:完成时间:报告成绩:评阅意见:评阅教师日期目录第1章数字频率计概述 (1)数字频率计概述 0数字频率计的基本原理 0单脉冲测量原理 (1)第2章课程设计方案设计 (1)系统方案的总体论述 (1)系统硬件的总体设计 (2)处理方法 (2)第3章硬件设计 (3)单片机最小系统 (3)第4章软件设计 (4)系统的软件流程图 (4)程序清单 (6)第5章课程设计总结 (6)参考文献 (7)附录Ⅰ仿真截图 (8)附录Ⅱ程序清单 (14)第1章数字频率计概述数字频率计概述数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。
本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。
测量范围从10Hz—,精度为1%,用单片机实现自动测量功能。
基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。
它以测量频率的方法对方波的频率进行自动的测量。
数字频率计的基本原理数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T(如图所示)。
图频率测量原理频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。
用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。
缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。
数字频率计实训报告
一、实训目的本次数字频率计实训旨在使学生掌握数字频率计的基本原理、结构、工作原理以及实际操作技能。
通过实训,学生能够了解数字频率计在电子技术中的应用,提高电子测量和信号处理能力,为今后从事相关领域的工作打下坚实基础。
二、实训环境1. 实训设备:数字频率计、示波器、信号发生器、万用表等。
2. 实训软件:数字频率计操作软件、示波器操作软件等。
3. 实训场地:电子实验室。
三、实训原理数字频率计是一种用于测量信号频率的仪器,它通过数字电路对输入信号进行采样、计数、处理,最终显示出信号的频率。
其基本原理如下:1. 采样:将输入信号按照一定的采样频率进行采样,得到一系列离散的采样值。
2. 计数:对采样值进行计数,得到在一定时间内信号变化的次数。
3. 处理:根据计数结果和采样频率,计算出信号的频率。
四、实训过程1. 数字频率计的结构认识:了解数字频率计的组成部分,如:模拟输入电路、数字信号处理电路、显示电路等。
2. 数字频率计的使用方法:学习数字频率计的操作步骤,包括:开机、设置测量范围、输入信号、读取频率值等。
3. 信号发生器的使用:掌握信号发生器的操作方法,产生不同频率、幅度和波形的信号。
4. 数字频率计的测量:使用数字频率计测量信号发生器产生的信号频率,并与理论值进行比较,分析误差原因。
5. 示波器的使用:观察信号波形,分析信号的频率、幅度、相位等特性。
6. 数据分析与处理:对测量数据进行处理和分析,得出结论。
五、实训结果1. 成功掌握了数字频率计的基本原理、结构和工作原理。
2. 熟练掌握了数字频率计的操作方法,能够独立进行测量和数据分析。
3. 通过实验,验证了数字频率计在电子技术中的应用价值。
4. 提高了电子测量和信号处理能力。
六、实训总结1. 数字频率计是一种重要的电子测量仪器,广泛应用于电子技术领域。
2. 掌握数字频率计的基本原理、结构和工作原理,对于从事电子技术工作具有重要意义。
3. 实训过程中,应注意以下几点:- 熟悉数字频率计的操作方法,避免误操作。
数字频率计的组成及工作原理
数字频率计的组成及工作原理数字频率计是用来测量频率与周期,并进行计数、测时的重要仪器,现已在许多领域得到广泛应用,本文主要讨论一下数字频率计的硬件组成及工作原理。
在单位时间内,周期性信号变化的次数称之为频率,举个例子来说明:若在一定时间间隔t内测得这个周期性信号重复变化的次数为n,则其频率可表示为:f=n/t.数字频率计是由放大整形电路、时基电路、闸门电路、逻辑控制电路、分频器电路、数据选择电路、进位采集电路、计数器电路、锁存译码电路、显示电路组成。
数字频率计的工作原理是被测信号经过放大整形电路的处理输出计数器能够接受的脉冲信号格式,频率和被测信号的一样。
放大整形电路的作用是,当某些输入信号的电压较小时,使用放大电路对输入的周期信号(正弦波、三角波)进行放大,使得这些输入的信号更容易测量。
时基电路是用来产生一个标准的时间信号,这个标准的时间信号是控制计数器的计数标准时间,其精度在很大程度上决定了频率计的测量精度。
例如:时基电路提供标准时间信号T,其高电平持续时间为1s。
当1s信号到来时,闸门打开,被测脉冲信号通过闸门时计数器启动计数,1s信号结束时闸门关闭,计数器结束计数,同时保持原有的状态不变。
如果在闸门时间1s内计数器记录得的脉冲个数为N,则被测信号频率=NHz。
逻辑控制电路的作用有二方面:(1)产生锁存脉冲,使显示器上的数字稳定显示;(2)产生清零脉冲,使计数器每次的测量从0开始计数。
厂家:189********QQ:2563113967闸门电路用来控制计数时间,由一个与非门构成。
与非门的一端由时基电路提供的秒脉冲输入,另一端由待测信号整形后输入。
电路的工作原理为:时基电路提供的秒脉冲作为门控信号,当门控信号为高电平时,闸门开通,整形后的脉冲信号经过闸门进入分频电路;当门控信号为低电平时,闸门关闭,禁止脉冲信号通过。
锁存译码电路由锁存器和译码器构成。
这一部分最重要的工作原理是只有当计数器闸门信号由高电平变低电平也就是停止计数后,才将计数值锁存并输出译码显示,锁存信号由逻辑控制电路提供。
数字频率计实训报告总结
一、实训背景与目的随着科技的飞速发展,数字频率计在各个领域得到了广泛应用。
为了更好地了解数字频率计的工作原理和实际应用,提高自身的实践能力,我们选择了数字频率计作为实训项目。
本次实训旨在使学生掌握数字频率计的设计原理、实现方法及调试技巧,提高学生在电子设计、电路分析等方面的综合能力。
二、实训内容与过程1. 实训内容本次实训主要包括以下内容:(1)数字频率计的基本原理和设计方法(2)TMS320F2812 DSP芯片及其在数字频率计中的应用(3)数字频率计的硬件电路设计(4)数字频率计的软件编程(5)数字频率计的调试与优化2. 实训过程(1)理论学习:通过查阅相关资料,了解数字频率计的基本原理、TMS320F2812 DSP芯片的功能和应用,为后续的实践环节打下理论基础。
(2)硬件电路设计:根据实训要求,设计数字频率计的硬件电路,包括电源管理模块、输入调理模块、信号处理模块、通讯模块和D触发器等。
(3)软件编程:编写数字频率计的软件程序,实现频率测量、脉宽和占空比测量等功能。
(4)调试与优化:对数字频率计进行调试,检查电路性能,优化软件程序,确保数字频率计能够稳定、准确地测量频率。
三、实训成果与分析1. 实训成果本次实训成功设计并实现了一款基于TMS320F2812 DSP芯片的简易数字频率计。
该频率计具有以下特点:(1)高精度:采用多周期测量原理,提高了测量精度。
(2)宽量程:在保证最大相对误差的前提下,尽可能扩大了测量范围。
(3)易于扩展:可根据实际需求,增加其他功能模块。
2. 实训成果分析(1)硬件电路设计方面:在硬件电路设计过程中,我们充分考虑了电路的稳定性和可靠性,选用合适的元器件,确保电路性能。
(2)软件编程方面:在软件编程过程中,我们采用了模块化设计,提高了代码的可读性和可维护性。
同时,针对数字频率计的测量原理,进行了详细的误差分析,优化了软件程序。
(3)调试与优化方面:在调试过程中,我们针对电路性能和软件程序进行了多次优化,确保数字频率计能够稳定、准确地测量频率。
数字频率计
数字频率计数字频率计是采纳数字电路制做成的能实现对周期性变化信号频率测量的仪器。
频率计重要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。
其扩展功能可以测量信号的周期和脉冲宽度。
通常说的,数字频率计是指电子计数式频率计。
目录优点用途重要构成基本原理优点用途在电子技术领域,频率是一个最基本的参数。
数字频率计作为一种最基本的测量仪器以其测量精度高、速度快、操作简便、数字显示等特点被广泛应用。
很多物理量,例如温度、压力、流量、液位、PH值、振动、位移、速度等通过传感器转换成信号频率,可用数字频率计来测量。
尤其是将数字频率计与微处理器相结合,可实现测量仪器的多功能化、程控化和智能化.随着现代科技的进展,基于数字式频率计构成的各种测量仪器、掌控设备、实时监测系统已应用到国际民生的各个方面。
重要构成频率计重要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及掌控电路。
输入电路:由于输入的信号可以是正弦波,三角波。
而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。
在整形之前由于不清楚被测信号的强弱的情况。
所以在通过整形之前通过放大衰减处理。
当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。
当输入信号电压幅度较小时,若前级输入衰减为零时不能驱动后面的整形电路,则调整输入放大的增益,被测信号得以放大。
时基和闸门电路:闸门电路是掌控计数器计数的标按时间信号,被测信号的脉冲通过闸门进入计数器的个数就是由闸门信号决议的,闸门信号的精度很大程度上决议了频率计的频率测测量精度。
当要求频率测量精度高时,应使用晶体振荡器通过分频获得。
时基信号可由555定时器构成一个较稳定的多谐振荡器,经整形分频后,产生一个标准的时基信号,作为闸门开通的基按时间。
被测信号通过闸门,作为计数器的时钟信号。
计数显示电路:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
数字频率计(51单片机)
数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。
在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。
一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。
在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。
二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。
可以使用一个输入接口电路,将信号连接到51单片机的IO口上。
2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。
在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。
3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。
通过将结果以可视化的方式呈现,方便用户进行观察和读数。
三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。
通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。
2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。
3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。
通过简单的公式计算,即可得到测量结果。
四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。
2.根据硬件设计要求,配置定时器的工作模式和计数范围。
3.编写中断服务程序,实现对计数器的相应操作。
4.编写主程序,实现数字频率计算和显示。
5.下载程序到51单片机,进行测试。
五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。
通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。
数字频率计
二 、数字频率计的设计实例(一)、.频率计测量的工作原理数字频率计是用于测量信号频率的电路。
测量信号的频率参数是最常用的测量方法之一。
实现频率测量的方法较多,在此我们主要介绍三种常用的方法:时间门限测量法、标准频率比较测量法、等精度测量法。
(1) 时间门限测量法在一定的时间门限T 内,如果测得输入信号的脉冲数为N,设待测信号的频率为f x ,则该信号的频率为 TNf x =改变时间T ,则可改变测量频率范围。
此方法的原理框图如图2-1所示,时序波形图如图2-2所示。
用时间门限测量方法测量时,电路实现起来较容易,但对产生的时间门限要求精度较高,测量的时间误差最大是正负一个待测信号周期,即x f /1t ±=∆。
图2-1 测频原理图图2-2 测频时序波形图(2)标准频率比较测量法用两组计数器在相同的时间门限内同时计数,测得待测信号的脉冲个数为N 1、已知的标准频率信号的脉冲个数为N 2,设待测信号的频率为f x ,已知的标准频率信号的频率为f 0;由于测量时间相同,则可得到如下等式:21N f N f x = 从上式可得出待测信号的频率公式为: 021f N N f x =标准频率比较测量法对测量产生的时间门限的精度要求不高,对标准频率信号的频率准确度和稳定度要求较高,标准信号的频率越高,测量的精度就越高。
该方法的测量时间误差与时间门限测量法的相同,可能的最大误差为正负一个待测信号周期,即x f /1t ±=∆。
测量时可能产生的误差时序波形如图2-3所示。
(3)等精度测量法以上介绍的两种测量频率的方法实现电路容易,但是,测量的精度与待测信号的频率有关,待测信号频率越高,测量的精度就越高,反之,测量精度越低。
为了提高测量低频时的精度,使得测量的高、低频率精度都一样,一般采用等精度测量法。
上面介绍的两种方法都是在闸门门限的控制下来实现计数器的计数开始和结束的。
当闸门门限的上升沿到来时,计数器计数开始,当闸门门限的下降沿到来时,计数器计数结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锁存显示电路
共阳极
锁存 译码 器
超量程报警显示电路
5输入与门的5个输入端(软件中未找到6输 • 在被测信号频率范围未知的情况 入与门,用两个与门代替),分别与个十百 千万位计数器的进位端RCO连接,另一个 下,如果选择了不合适的档位, 与门与闸门电路的输出端连接。总的输出端 连接到一个运算放大器上,再接一个指示灯 特别是量程小于被测频率的档, 以及蜂鸣器的一端。当闸门仍然处于开启状 态,计数至99999后,四个计数器进位端都 处于高电平时,与门输出高电平,指示灯亮, 此时不能正确测量信号频率。超 且蜂鸣器发出报警声音。 量程报警显示电路在超量程测量 时会进行报警,并且通过铃声进 行显示,提醒用户更换更高量程 的档位。
谢谢观看
单稳态触发器电路
• 输出缓冲电路由反相器G8和G9组成,用于提高电路带负 载能力。 • 根据门G6输出端电路结构和门G7输入端电路结构可以求 出计算输出脉冲宽度的公式 • Tw≈Rext*Cext ln2=0.69Rext*Cext • 通常Rext的取值在2~30kΩ 之间,Cext的取值在 10pF~10uF之间,得到的Tw范围可达20ns~200ms。 • 2)在使用外接电阻Rext(下降沿触发)时,取 Cext=10uF,Rext=10kΩ ,Tw能达20ns~200ms之间的70ms, 连接两个这样10 11脚接电容Cext,11 14脚接电阻Rext, 4 5脚接高电平的74121,有前后两个单稳态分别输出至 锁存器STB和计数器RD¯ ,即在高电平计数完70ms后, 开始锁存,70ms后,再清零,如此反复。
锁存显示电路
• 锁存显示电路功能: • 当计数完成,即闸门关闭时,通过锁 存电路将计数结果锁存,计数结果 (为十进制,读数方便)通过7447译 码,送给五个七段共阳极显示数码管 显示。7447的主要功能是输出低电平 驱动的显示码,用以推动共阳极7段 LED数码管显示相应的数字。
锁存显示电路
锁存器4508如图3.5 所示,在 OE¯ MR接 地时,STB每来一个 触发信号,锁存器就 将D0~D3的信号锁存, 待到触发信号过去, 无论D0~D3 怎样 变化,输出Q0~Q3都 保持所存信号不变 直到下一个触发脉 冲到达。四个锁存 器的输入端D分别与 计数器的QA~QD相连, 输出端Q分别与后面 的显示电路相连。
单稳态触发器电路
整机电路
仿真结果(PROTEUS)
• 仿真所测值与理论值大致相等。 HZ档误差为±1HZ,10HZ档误差为 ±10HZ, 100HZ档误差为±100HZ, 1kHZ档误差为±1kHZ。(由于软 件运行问题,测试时信号频率一 律为1024Hz,而没有显示出大频 率信号的测量结果)
脉冲波形产生及分频电路
• 多谐振荡器电路
脉冲波形产生及分频电路
• 多级分频器电路
是两个D触发器,通过D与 Q¯¯相连,S R接地,构成二 分频电路,相连接即是四分频。
脉冲波形产生及分频电路
• 多级分频器电路
六十分频电路,参照数字电子计数实验教程 实验十一 脉 冲分配器及其使用,用两片CC4017和一片CC4013及与 非门实现(将第二片5端和第一片11端接与非门).
设计原理
• 总体框图
设计原理
• 信号经过放大整形后变为方波信 号,当门控信号到来后,闸门电 路开启,时间为T1,计数器实现 计数功能,T1时间过后闸门关闭, 计数停止,锁存器使能端置零, 计数结果被锁存,通过数码管可 以方便读出被测信号频率。
整形电路---将被测信号整形成方波,方便计数
• 555定时器构成施密特触发器
数字频率计的设计
杜昌波 指导教师
12100505 刘权 吴敏
2014 年 06 月
设计任务与要求
• • • • • • • 1.1 基本功能 1)能够测量正弦信号,矩形信号等波形的频率; 2)测量信号的频率范围为1HZ~100KHZ,分辨率为1HZ; 3)测量结果直接用十进制数值计数,通过五个数码管显示; 4)具有自较和测量两种功能; 5)测量误差小于5%; 6)多谐振荡器采用12M晶振电路,闸门用与门实现,显示用共阳极 数码管。 • 1.2 扩展功能 • 1)分成四个频段,即1~99Hz,100~1KHz,1~10KHz,10~100KHz; • 2)有超量程警告功能,当测量信号频率超过所选档位的量程时, 频率计发出铃声警报。
计数电路
• 计数电路的功能
Hale Waihona Puke 脉冲信号进入十进制计数器,在闸 门时间T1=tw内,累计信号脉冲个数 N=T×f,计数器通过对脉冲信号计 数,可直接或间接测出周期信号的 频率。
计数电路
•
用并行进位的方式。这里我将五个74LS160 级联成5位同步十进制计数器(计数输入接每一 片74160的CLK端,第一片74160的EP ET接VCC, 进位RCO接下一片的EP ET,每一片的LD接VCC, D0~D3接地)。 • 整个计数电路的输入端(每一个74LS160 的CLK端)与闸门电路的输出端连接,闸门打开, 计数器开始计数。闸门关闭,计数器停止计数。 RCO为进位端,在之后的超量程报警中用到。
脉冲波形产生及分频电路
• 多级分频器电路
并行进位法
为5片74160级联的10^5分频器,结构原理同《数字电子技术基 础》书上P.303百进制计数器。通过选取不同片数过来的RCO作 为闸门信号,即可实现0.5Hz 5Hz 50Hz 500Hz不同频率信号。
闸门电路
1HZ
10HZ
• 闸门电路功能
只有当闸门开启时,计数器才实现 计数功能,计数器开启的时间就是闸 门开启时间。计数结果为外界整形之 后得到的方波的负脉冲个数。可见, 1000HZ 当闸门开启时间一定时,被测信号频 100HZ 率可由计数结果与闸门开启时间相除 求得。