伺服控制(电液伺服系统 )课件
电液伺服控制系统
1电液伺服控制系统1.1电液控制系统的发展历史概述液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构———水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。
电液比例控制技术及比例阀在20世纪60年代末70年代初出现。
70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域。
现代飞机上的操纵系统。
如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。
飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。
液压伺服控制系统第7章电液伺服阀PPT课件
永 磁 动 铁 式 力 矩 马 达 的 工 作 原 理
力 矩 马 达 磁 路 原 理 图
三、 永磁动圈式 力马达
图示为永磁动式 力马达的结构原理。 力马达的可动线圈 悬置于作气隙中, 永久磁铁在工作气 隙中形成极化磁通, 当控制电流加到线 圈上时,线圈就会 受到电磁力的作用
而运动。
四、动铁式力矩马达与动圈式力矩马达的比较
比例环节。
两级伺服阀 此类阀克服了单级伺服阀缺点,是最常用的型 式。
三级伺服阀 此类阀通常是由一个两级伺服阀作前置级控制 第三级功率滑阀.功率级滑阀阀芯位移通过电气反馈形成闭环 控制,实现功率级滑阀阀芯的定位。三级伺服阀通常只用在大 流量的场合。
按第一级阀的结构形式分类: 可分为:滑阀、单喷嘴挡板阀、双喷嘴挡板阀 射流管阀和偏 转板射流阀。
伺服阀系统方块图
三、力反馈伺服阀的传递函数
给出的传递函数是一个惯性加振荡的环节,重点介绍 近似的传递函数:在大多数电液伺服系统中,伺服阀 的动态响应往往高于动力元件的动态响应。为了简化 系统的动态持性分析与设计,伺服阀的传递函数可以 进一步简化,一般可用二阶振荡环节表示。如果伺服 阀二阶环节的固有频率高于动力元件的固有频率,伺 服阀传递函数还可用一阶惯性环节表示,当伺服阀的 固有频率远大于动力元件的固有频率,伺服阀可看成
4)减小工作气隙的长度可提高动圈式力马达和动铁式力矩马达 的灵敏度。但动圈式力马达受动圈尺寸的限制,而动铁式力 矩马达受静不稳定的限制。
5)在相同功率情况下,动圈式力马达比动铁式力矩马达体积大, 但动圈式力马达的造价低。
7.3 力反馈两级伺服阀
一、工作原理
无控制电流时,衔铁由弹簧管支承在上、下导磁体的中间位 置,挡板也处于两个喷嘴的中间位置,滑阀阀芯在反馈杆小球 的约束下处于中位,阀无液压输出。当有差动控制电流输入 时.在衔铁上产生逆时针方向的电磁力矩,使衔铁挡板组件绕 弹簧转动中心逆时针方向偏转,弹簧管和反馈杆产生变形,挡 板偏离中位。这时,喷嘴挡板阀右间隙减小而左间隙增大,引 起滑阀左腔控制压力增大,右腔控制压力减小,推动滑阀阀芯 左移。同时带动反馈杆端部小球左移,使反馈杆进一步变形。 当反馈杆和弹簧管变形产生的反力矩与电磁力矩相平衡时,衔 铁挡板组件便处于一个平衡位旨。在反馈杆端部左移进一步变 形时,使挡板的偏移减小,趋于中位。这使左腔控制压力又降 低,右腔控制压力增高,当阀芯两端的液压力与反馈杆变形对 阀芯产生的反作用力以及滑阎的液动力相平衡时,阀芯停止运 动,其位移与控制电流成比例。在负载压差—定时,阀的输出 流量也与控制电流成比例。所以这是一种流量控制伺服阀。
液压伺服控制(机液伺服系统)课件
x p K q / Ap
xv
s
式中: Kq——阀的流量增益,Ap——小液压缸的活塞面积。
由此可见,用阀-缸组成的元件,不仅是放大元件,而且
还是一个积分元件。
28
3 (三)耗能元件——阻尼器
流量通过节流口,就消耗能量。所以用小液压缸及节流
器就组成液压阻尼器。
25
3 4.3.1 基本液压校正元件
校正元件主要由耗能、储能和放大等元件组成。
26
3 (一) 储能元件
最简单可靠的机械储能元件就是弹簧。它受力变形储存 能量,力撤消后复元而放出能量。另外,机械弹簧还是力-位 移转换元件,其线性好,工作可靠。
27
3 (二)放大元件
阀缸组合就是最简单的放大元件。 作为校正元件,它所需要的功事必然远小于系统负载运 动时的功率,也就是作校正元件用的小液压缸必然远小于作 执行元件用的液压缸。 因此,小液压缸的质量可忽略不计。这样,阀控缸的传
第四章 机液伺服系统
4.1 机液位置伺服系统 4.2 结构柔度对系统稳定性的影响 4.3 液压校正与动压反馈 4.4 机液扭矩放大器
3
4.1 机液位置伺服系统
液压动力元件是一个开环控制系统。
如果将液压执行元件的输出位移反馈到放大元件的输入 位移,就可构成闭环机液 位置控制系统。
闭环机液 位置控制系统主要用于输出功率不大于10kW 的场合:
=g。
31
3
因为 所以
Q d 2v
4
p
150l d 4
Q
RQ
式中,R——节流小孔液阻,计算式为
R
150l d 4
活塞运动时的阻尼力F为
第六章电液伺服系统PPT课件
§6-2 电液位置伺服系统的分析
➢ 电液位置伺服系统是最基本和最常用 的液压伺服系统,如机床工作台的位 置、板带扎机的板厚、带材跑偏控制、 飞机和舰船的舵机控制、雷达和火炮 控制系统以及振动试验台等。在其它 物理量的控制系统中,如速度控制和 力控制系统中,也常用位置控制小回 路作为大回路中的一个环节。
一、系统的组成及其传递函数
➢ 电液伺服系统的动力元件有阀控式和泵控 式两种基本型式,但是由于其所采用的指 令装置、反馈测量装置和相应的放大、校 正的电子部件不同,就构成了不同的系统。 如果采用电位器作为指令装置和反馈装置, 就可以构成直流电液位置伺服系统;如果 采用自整角机或旋转变压器作为指令装置 和反馈装置,就可以构成交流电液位置伺 服系统。
❖ 数字-模拟混合式伺服系统,如图6-2所示。数字装置发出的 指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转换器 把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟 元件。系统输出通过数字检测器(即模数转换器)变为反馈 脉冲信号。
➢ 数字检测装置具有很高的分辨能力,所以数字 伺服系统可以得到很高的绝对精度。数字伺服 系统的输入信号是很强的脉冲电压,受模拟量 的噪声和零漂的影响很小。因此,当要求较高 的绝对精度,而不是重复精度时,常采用数字 伺服系统。
5.95
211.8A/m
➢ 系统的跟随误差为
er
vm Kv
2.2 102 24.7
m 0.89 103 m
➢ 静摩擦力引起的死区电流为
I D1
第5章 电液伺服阀PPT课件
液压伺服系统
第五章 电液伺服阀
Part 5.3.3 稳定性分析
包括两个反馈回路:滑阀位移的力反馈回路
作用在挡板上的压力反馈回路
1、力反馈回路:
Kvf 2mf mf
2、压力反馈回路:
设计时:
K vf 0.25
mf
液压伺服系统
3、力反馈伺服阀的传递函数:
第五章 电液伺服阀
Kt
sXv
Kf rb
I
xvmax06.4110033 1567
不能采用全周开口,取阀芯直径 d5103m
阀杆直径 dr 3103m
按
4
d2dr2
4xvmax
验算,满足要求。
液压伺服系统
第五章 电液伺服阀
2)喷嘴挡板阀主要结构参数的确定:
①根据设计要求,并考虑留有一定的余地,取喷嘴
挡板阀的零位泄漏量 qc 0.45Lmin
第五章 电液伺服阀
力矩马达的分析计算包括: 1)永磁磁路计算 2)电路计算 3)静态特性和动态特性的分析计算
电磁力矩的计算属于永磁磁路计算的一个内容
3、传递函数和静动态分析:
液压伺服系统
第五章 电液伺服阀
Part 5.2.4 永磁动圈式力马达
根据载流导体在磁场中受力而工作的。改变控制线圈电流的大小 和方式,可以得到不同大小和方向的输出力。
根据滑阀流量方程可求出阀的最大开口面积
xvmaxcdQ 0m psax0.6 15 5 2 10 1 0 1 30 6 0 38052.4 01 0 6m 2
根据经验取阀芯行程 xvma x0.41 03m
则滑阀节流窗口面积梯度 02..44 1100 63 6103m
液压伺服系统
《电液伺服系统》课件
介绍电液伺服系统的定义、组成、工作原理,控制元件的种类,动作元件的 特点,系统调试与维护,以及应用场景、优势、发展前景。
概述
电液伺服系统是控制和调节液压机械运动的先进系统,由动力元件、控制元件和动作元件组成,能够实现高效、 精确的运动控制。
动力元件
液压泵
将输入的机械能转换为液压能,提供压力和流 量。
液压马达
将液压能转化为旋转运动,驱动液压机械的转 动部分。
系统调试与维护
1
Байду номын сангаас
系统调试
调试前的准备工作,调试流程和步骤,确保系统正常运行。
2
系统维护
维护前的准备工作,维护周期和方法,延长系统的使用寿命。
应用场景
• 工业生产自动化 • 船舶与海洋工程 • 机床与自动化装备 • 飞行器和航天器
结语
电液伺服系统具有精确控制、高效能转换等优势,未来的发展前景广阔。
液压马达
将液压能转换为机械能,驱动液压机械的运动。
控制元件
比例控制阀
通过调节液压系统中的流量 比例,实现运动速度和位置 的精确控制。
压力控制阀
根据系统需求,控制液压系 统中的压力水平,确保系统 的安全运行。
流量控制阀
调节液压流量大小,实现对 液压元件的精确控制。
动作元件
液压缸
将液压能转化为机械线性运动,用于推动、拉 动或举升物体。
电液控制-机液伺服系统
四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:
电液伺服系统
电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
根据输入信号的形式不同,又可分为模拟伺服系统和数字伺服系统两类。
下面对模拟伺服系统和数字伺服系统作一简单的说明。
模拟伺服系统在模拟伺服系统中,全部信号都是连续的模拟量,如图1所示。
在此系统中,输入信号、反馈信号、偏差信号以及其放大、校正都是连续的模拟量。
电信号可以是直流量,也可以是交流量。
直流量和交流量相互转换可以通过调制器或解调器完成。
模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。
伺服系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字伺服系统。
另外模拟伺服系统中微小信号容易受到噪声和零漂的影响,因此当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制了。
图1 模拟伺服系统方块图数字伺服系统在数字伺服系统中,全部信号或部分信号是离散参量。
因此数字伺服系统又分为数字伺服系统和数字—模拟伺服系统两种。
在全数字伺服系统中,动力元件必须能够接收数字信号,可采用数字阀或电液步进马达。
数字模拟混合式伺服系统如2所示。
数控装置发出的指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转化器把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟元件。
系统输出通过数字检测器(即模数转换器)变为反馈脉冲信号。
图2 数字伺服系统方块图数字伺服系统有很高的绝对精度,受模拟量的噪声和零漂的影响很小。
当要求较高的绝对精度,而不是重复精度时,常采用数字模拟系统。
从经济性可靠性方面来看,简单的伺服系统采用采用模拟型控制为宜。
系统特点及使用场合电液伺服系统综合了电气和液压两方面的优点,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点。
因此,在负载质量大又要求响应速度快的场合最为适合,其应用已遍及国民经济的各个领域,比如飞机与船舶舵机的控制、雷达与火炮的控制、机床工作台的位置控制、板带轧机的板厚控制、电炉冶炼的电极位置控制、各种飞机车里的模拟台的控制、发电机转速的控制、材料试验机及其他实验机的压力控制等等。
电液伺服系统
一、系统的组成及其传递函数
当采用电位器作为指令装置和反馈测量装置,就构成了直 流电液位置伺服系统。
当采用自整角机或旋转变压器作为指令装置和反馈测量装 置时,就可构成交流电液位置伺服系统。
自整角机是一种回转式电磁感应元件,由转子和定子组成。 定子上绕有星形联接的三相绕组,转子上绕有单相绕组。
在伺服系统中,自整角机是成对运行的,与指令轴相联的 自整角机成为发送器,与输出轴相联的成为接受器。发送 器转子绕组接激磁电压,接收器转子绕组输出误差信号电 压。接收器和发送器的定子的三相绕组相联。
K
SV
GSV
(s)
Q0 I
s2 2SV
K SV 2 SV
SV
s 1
(6-4)
当伺服阀的频宽大于液压固有频率(3~5倍)时,伺服 阀可近似看成惯性环节
KSV GSV (s)
Q0 I
K SV TSV s 1
(6-5)
当伺服阀的频宽远大于液压固有频率(5~10倍) 时,伺服阀可近似看成比例环节
KSV GSV (s)
二、系统的稳定性分析
系统的稳定条件为
KV 2 hh
(6-11)
系统要有适当的稳定裕量,通常相位裕量在30°~
60°之间,增益裕量20 lg Kg应大于6dB(或Kg 2 )
如果取增益裕量 20 lg K g 6dB ( K g 2 )则有
KV 1 1
2 hh K g 2
可得
KV
h
h
(6-12)
自整角机测量装置输出的误差信号是一个振幅调制 波,频率等于激磁电压(载波)的 频率,其幅值 与输入轴和输出轴之间误差角的正弦成正比,即:
Ue Ke sin(r c )
液压伺服与比例控制系统课件-电液力控制系统
6.5 电液力控制系统
图6-35 力控制系统方块图 图6-36 电液位置伺服系统方块图
当满足
6.5 电液力控制系统
则传递函数可近似写成: 简化方块图:
图6-37 简化方块图
6.5 电液力控制系统
简化传递函数: 负载固有频率:
刚度与负载质量形成的固有频率:
加滞后校正 、速度与加速度校正 、压力反馈和动压反馈校正的主要 目的是什么?
思考题
8. 电液速度控制系统为什么一定要加校正 ,加滞后校正和加积分校正 有什么不同?
9. 在力控制系统中负载刚度对系统特性有何影响?影响了哪些参数? 10.力控制系统和位置控制系统对伺服阀的要求有什么不同?为什么?
6.5 电液力控制系统
以力为被调量的液压伺服控制系统称为液压力控制系统。 在工程实际中 , 力控制系统应用的很多 , 如材料试验机 、结构 疲劳试验机 、轧机张力控制系统 、车轮刹车装置等都采用电液力控
制系统。
一 、 系统组成及工作原理
系统主要由伺服放大器 、 电液伺服阀 、液压缸和力传感器等组成。 当指今装置发出的指令电压信号作用于系统时 , 液压缸便有输出力。 该力由力传感器检测转换为反馈电压信号与指令电压信号相比较 , 得 出偏差电压信号 。然后经伺服放大器放大后输入到伺服阀产生负载压 差作用于液压缸活塞上 , 使输出力向减小误差的方向变化 , 直至输出 力等于指令信号所规定的值为止。
6.5 电液力控制系统
图6-34 电液力控制控制系统原理图
6.5 电液力控制系统 二、 基本方程与开环传递函数
力传感器传递函数: 放大器传递函数: 伺服阀传递函数: 阀控液压缸的三大基本方程:
F g=APPL=(MS2+BS+K)XP
液压伺服系统电液伺服系统课件
随着科技的不断发展,液压伺服系统也在不断创新和完善。未来,液压伺服系统将朝着智能化、数字 化、网络化方向发展,实现更高效、更精准的控制。同时,液压伺服系统还将更加注重环保和节能, 推动绿色制造和可持续发展。
02 电液伺服系统基础知识
电液转换元件
01
02
03
伺服阀
将电气信号转换为液压流 量或压力,实现液压执行 机构的精确控制。
速度同步
采用液压伺服系统实现多工位、多执行机构的速 度同步,优化生产流程。
航空航天领域中的应用
飞机起落架收放系统
通过电液伺服系统实现飞机起落架的平稳收放,确保飞行安全。
发动机推力控制
利用液压伺服系统对航空发动机进行精确的推力控制,提高飞行 性能。
飞行姿态调整
采用电液伺服系统实现飞行姿态的快速、精确调整,满足复杂飞 行需求。
仿真分析
在系统模型的基础上,进行仿真分析,包括系统动态响应、控制精度、稳定性等方面的评估,以验证设计的合理性。
优化设计
根据仿真分析结果,对系统进行优化设计,包括调整元件参数、改进控制策略等,以提高系统性能。
04 电液伺服系统实现技术
硬件平台搭建
控制器选择
根据系统需求,选用合适的控制器,如PLC、DSP等,确保控制精 度和实时性。
元件选型与计算
元件选型
根据规格书要求,选择合适的液压泵 、马达、阀等元件,确保系统性能达 标。
元件计算
对所选元件进行详细的计算和分析, 包括流量、压力、功率等参数,确保 元件之间的匹配性和系统的稳定性。
系统仿真与优化
系统建模
利用AMESim、MATLAB/Simulink等仿真软件,建立液压伺服系统的数学模型,为后续仿真分析提供基础。
第6部分电液伺服控制系统32页PPT
3
6.1 概述
组成电液比例控制系统的基本元件:
1)指令元件 2)比较元件 3)电控器 4)比例阀 5)液压执行器 6)检测反馈元件
第6章 电液伺服控制系统
4
6.1 概述
6.1.2 电液比例控制系统的特点及组成
第控制的主要优点是: 1)操作方便,容易实现遥控 2)自动化程度高,容易实现编程控制 3)工作平稳,控制精度较高 4)结构简单,使用元件较少,对污染不敏感 5)系统的节能效果好。
第6章 电液伺服控制系统
8
6.2 电液比例控制基本回路
2.采用先导式比例溢流阀的调压回路
第6章 电液伺服控制系统
9
6.2 电液比例控制基本回路
3.电液比例减压控制系统
第6章 电液伺服控制系统
10
6.2 电液比例控制基本回路
6.2.2 电液比例流量控制
电液比例速度调节三种方式: 1)比例节流调速 2)比例容积调速 3)比例容积节流调速
6.3 电液比例电控技术
(2)阶跃函数发生器
(3)双路平衡电路
第6章 电液伺服控制系统
22
6.3 电液比例电控技术
(4)初始电流设定电路
第6章 电液伺服控制系统
23
6.3 电液比例电控技术
第6章 电液伺服控制系统
24
6.3 电液比例电控技术
第6章 电液伺服控制系统
25
6.3 电液比例电控技术
第6章 电液伺服控制系统
16
6.3 电液比例电控技术
6.3.3 比例控制放大器主要电路的构成、原理及功能
第6章 电液伺服控制系统
17
6.3 电液比例电控技术
1.电源电路 比例控制放大器电源电路主要作用:从标准电源中获得和分离出比例控制 放大器正常工作所需的各种直流稳定电源,并且在电网电压、负载电流及环境 温度允许范围内变化,保证输出直流电压的稳定性。同时,还兼有电源电压极 性反接、过流、短路自保护自恢复等非熔断式保护功能,以保证比例控制放大 器的工作可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)系统的闭环刚度特性
闭环惯性环节转折频率的无因次曲线
17
闭环振荡环节固有频率无因次曲线
当h和Kv/h较小时
nc h
18
当h和Kv/h较小时
2 nc 2 h — Kv / h
闭环振荡环节阻尼系数无因次曲线
19
系统频宽主要受h和h的影响 和限制,应适当提高h和 h , 但过大的 h会降低nc,影响响
应速度。
电液位置控制系统闭环频率特性曲线
4)只有在工作频率接近谐振频率h时才有稳定性问题。当工作频率 接近h时,负载压力且也将接近ps了,也就是说压力趋于饱和,Kc变得很
大,阻尼系数比较高。
14
P116页使系统满足一定稳定要求的参数估算
由于以上几点原因,估算时一般可用
Kv
h
3
电液位置伺服系统难于得到较大的幅值稳定裕量Kg,而相位稳定
裕量 易于保证。
6
位置比较用电压比较代替 缸
电液伺服阀 液压能源
样板 给定
xi 位移 ei 比较eg 电伺服 I
传感器
- 放大器
ef
力矩 马达
液压 放大元件
扰动
液压 xp
执行件
位移 传感器1
A 双传感器阀控位置控制系统
7
由计算机图 形代替样板
程序 ei 比较eg
给定
-
ef
电液伺服阀 液压能源
电伺服 i 放大器
力矩 马达
11
将电液伺服阀看成比例环节
Kv
Ke Kd Ka Ksv iDm
TL
K V ce
iD K m
4
s
t
1
e ce
i +
iKv
-
+
-
1
m 1 L
s
s2
2 h
2
h h
s
1
i
电液位置系统简化方块图
12
二、系统的稳定性分析
典型的积分+振荡环节波德图 其稳定判据及稳定裕量Kg分别为:
20lg|G| dB
模型可写为
m
1 Dm
Q0
Kce iDm2
( Vt
4e Kce
s
1)TL
s2
s(h2
2 hs h
1)
i m c
10
TL
K V ce
iD K m
4
s
t
1
e ce
r +
e
-
Ke
K Ue
Ug
Q0 1
u Ka KsvGsv s
Dm
+
-
1
m 1 c
s
s2
2 h
2
h h
s
1
i
电液位置伺服系统方块图
频宽近似地正比于响应速度,根据频宽可推算其它指标,所以频宽是
一个重要品质指标。 系统闭环传递函数
c rs3K2vh1 2 hs2 Kvh
s Kv
1
系统的特征式是三阶方程,可以因式分解为一个惯性环节和一个二
阶振荡环节
c r
(s b
1
1)(
s2 2
nc
2 ncs nc
1)
16
当h和Kv/h较小时
b Kv
液压 放大元件
位移传感器
缸
扰动
液压 xp
执行件
C 单传感器阀控位置控制系统
8
自整角机输出误差信号的幅值与输入输出轴之间的误差角的正 弦成比例
Ue Ke sin(r c )
r c 很小时,sinr c r c
因此,自整角机的增益为
Ue
r c
Ke
V/rad
相敏放大器将交流信号电压转换成直流电压,其动态过程与液压动 力元件相比可以忽略并可以看成比例环节,即:
20lg Kv
Kv 2 hh
Kg
20 lg
Kv
2 hh
20 lg Kv
01
2 h h
-20dB/dec
c h
/秒(s-1)
-60dB/dec
电液位置控制系统开环波德图
13
一般说来,h的计算值比较精确。液压系统的阻尼系数h一般为
0.1~0.2,根据稳定条件,就可以计算出系统的开环增益Kv。
由Kv≈c可求出穿越频率c。穿越频率高,相当于频宽高。
或者在信号传递过程中用了电元件和电信号)
4)适用于负载质量大、响应速度快的系统 目前已遍及国民经济和军事工业的各个技术领域
2
6.1 电液伺服系统的类型
控制信号:位置、速度、力控制 控制方式:阀控、泵控 输入信号:模拟、数字 功率大小、开闭环形式
一、模拟伺服系统
所有信号都是连续的模拟量
1)重复精度高,分辨能力较低(绝对精度低)(模拟式检测装置的 精度低)
阻尼系数h的计算值一般要小于系统的实测值。因为:
1)滑阀的径向间隙实际上有正开口作用,也就是实际阀的压力-流量 系数可能高于理论计算值。
2)计算时忽略了各种摩擦,而摩擦都能提高阻尼。 3)计算时用空载时的零位阀系数Kq0及Kc0,实际工作时都是有载的。 有载时的Kq小于Kq0,Kc大于Kc0。Kq减小有利于稳定,Kc增大也提高了阻 尼系数,也有利于稳定。
因为稳定性限制了Kv值,而Kv值小时系统的精度就差。如果又要
稳定性好而裕量大,精度高而Kv大,就必须采取提高h的其它措施或者
对系统校正。
15
三、系统响应特性分析
(一)对指令输入的闭环频率响应
闭环幅频特性峰值Mr、闭环振荡环节固有频率nc 、闭环频宽b以及 闭环阻尼系数nc
上升时间tr、峰值时间tp、调节时间ts、超调量 %
3
2)微小信号易受到噪声和零漂的影响
二、数字伺服系统
全部或部分信号是离散参量 1)全数字伺服:数字阀或电液步进马达 2)数字-模拟系统:A/D + D/A;A/D + 数字检测器
特点: 1)得到很高的绝对精度 2)受模拟量噪声和零漂的影响很小 3)应用计算机进行存贮、结算和控制,可实现多环路、多参量的实时控制
第六章 电液伺服系统
本 6.1 电液伺服系统的类型 章 6.2 电液位置伺服系统的分析 介 6.3 电液伺服系统的校正
绍
6.4 电液速度控制系统 6.5 电液力控制系统
1
电液伺服系统概述
1)综合了电气和液压两方面的特长(兼有电信息快速及液压元件大功
率高响应)
2)控制精度高、响应速度快、输出功率大 3)信号处理灵活、易于实现各种参量的反馈(输入信号是电量,
Ug Ue
Kd
(无因次)
9
从直流电压Ug到电液伺服阀的阀芯位移xv间的传递函数可根据伺服阀 的频宽和液压固有频率的距离写出。
1)相近(二阶振荡) 2)3~5倍(惯性环节) 3)5~10倍(比例环节)
从伺服阀阀芯位移xv到液压马达轴转角m之间是典型的阀控马达。如 果马达没有弹性负载,也不考虑机架刚度,阀控马达液压动力元件的数学
4
第六章 电液伺服系统
本 6.1 电液伺服系统的类型 章 6.2 电液位置伺服系统的分析 介 6.3 电液伺服系统的校正
绍
6.4 电液速度控制系统 6.5 电液力控制系统
5
电液位置伺服系统概述
最基本最常用的一种液压伺服系统
机床工作台的位置 板带轧机的板厚 带材跑偏控制 飞机和船舶的舵机控制 雷达和火炮的控制系统 振动试验台 其它控制系统中的小闭环(机器人柔性力控制)