数据挖掘试题

合集下载

《数据挖掘》试题与答案

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。

知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。

流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。

2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。

例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。

2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。

若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。

3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。

由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。

假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。

数据挖掘试题(单选)

数据挖掘试题(单选)

单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准? (A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD? (A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法? (D)A变量代换 B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

数据挖掘试题(150道)

数据挖掘试题(150道)
.对于分类算法,待分样本集中地大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响.(对)
.法是一种在已知后验概率与类条件概率地情况下地模式分类方法,待分样本地分类结果取决于各类域中样本地全体. (错)
.分类模型地误差大致分为两种:训练误差()和泛化误差(). (对)
.在决策树中,随着树中结点数变得太大,即使模型地训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足地问题.(错)
.是这样一个分类器,他寻找具有最小边缘地超平面,因此它也经常被称为最小边缘分类器()(错)
.在聚类分析当中,簇内地相似性越大,簇间地差别越大,聚类地效果就越差.(错)
.聚类分析可以看作是一种非监督地分类.(对)
.均值是一种产生划分聚类地基于密度地聚类算法,簇地个数由算法自动地确定.(错
.给定由两次运行均值产生地两个不同地簇集,误差地平方和最大地那个应该被视为较优.(错)
.选择一个算法过程使评分函数最优
.决定用什么样地数据管理原则以高效地实现算法.
.数据挖掘地预测建模任务主要包括哪几大类问题?( )
.分类.回归.模式发现.模式匹配
.数据挖掘算法地组件包括:( )
.模型或模型结构.评分函数.优化和搜索方法.数据管理策略
.以下哪些学科和数据挖掘有密切联系?( )
.统计.计算机组成原理.矿产挖掘.人工智能
.数据仓库地主要目标就是帮助分析,做长期性地战略制定
.数据仓库在技术上地工作过程是:()
.数据地抽取.存储和管理.数据地表现个人收集整理勿做商业用途
.数据仓库设计.数据地表现
.联机分析处理包括以下哪些基本分析功能?()
.聚类.切片.转轴.切块.分类
.利用算法计算频繁项集可以有效降低计算频繁集地时间复杂度.在以下地购物篮中产生支持度不小于地候选项集,在候选项集中需要剪枝地是()

2019数据挖掘测试题(100)

2019数据挖掘测试题(100)

1、(单选,4分)以下哪项不属于知识发现的过程?()A、数据清理B、数据挖掘C、知识可视化表达D、数据测试答案:D2、(单选,4分)以下哪些不属于数据挖掘的内容?()A、分类B、聚类C、离群点检测D、递归分析答案:D3、(单选,4分)以下哪个不是常见的属性类型?()A、A.标称属性B、数值属性C、高维属性D、序数属性答案:C4、(单选,4分)以下哪个度量属于数据散度的描述?()A、均值C标准差D 众数A A.均值B 中位数C 众数D 四分位数A 频繁模式挖掘B 分类和预测C 数据预处理D 噪声检测B 、中位数答案:5、(单选,4分)以下哪个度量不属于数据中心趋势度描述?(D )答案:6、(单选,4分)对数据进行数据清理、集成、变换、规约是数据挖掘哪个步骤的任务?()答案:7、(单选,4分)聚类分析是数据挖掘的一种重要技术,以下哪个算法不属于聚类算法?()A K-MeansB DBSCANC SVMD EM答案:C8、(单选,4分)建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?()A、根据内容检索B、建模描述C、预测建模D、寻找模式和规则答案:C9、(单选,4分)当不知道数据所带标签时.可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?()A、分类B、聚类C、关联分析D、隐马尔可夫链答案:B10、(单选,4分)在构造决策树时,以下哪种不是选择属性的度量的方法?()A、信息增益B、信息增益率C、基尼指数D、距离答案:D11、(单选,4分)知识发现流程最核心的步骤是什么?()A、数据挖掘B、数据预处理C、模式评估D、知识表示答案:A12、(单选,4分)将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?()A、频繁模式挖掘B、分类和预测C、数据预处理D、数据流挖掘答案:C13、(单选,4分)以下哪个度量属于数据中心性的描述?()A、均值厂B、极差C、众数D、标准差答案:A14、(单选,4分)类分析是数据挖掘的一种重要技术,以下哪个算法不属于聚类算法?()J A、K—MeansB、DBSCANA 关联规则发现B 聚类C 分类D 自然语言处理A K 必须是事先给定的B 选择C 对于“噪声”和孤立点数据是敏感的D 可伸缩、高效C 、KNND 、EM 答案:C15、(单选,4分)某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?()答案:16、(单选,4分)以下哪些算法是分类算法?()A 、DBSCANB 、C4.5C 、K-MeanD 、EM 答案:B17、(单选,4分)K-means 算法的缺点不包括?()答案:D18、(单选,4分)机器学习中,下面哪些方法不可以避免分类中的过拟合问题?()A、增加样本数量B、增加模型复杂度C、去除噪声D、正则化答案:B19、(单选,4分)下面那个不属于知识发现过程。

数据挖掘考试题库及答案

数据挖掘考试题库及答案

数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。

答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。

答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。

答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。

答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。

答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。

()答案:错误12. 数据挖掘是数据仓库的一部分。

()答案:正确13. 决策树算法适用于处理连续属性的分类问题。

()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。

()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。

()答案:错误四、简答题16. 简述数据挖掘的主要任务。

答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。

17. 简述决策树算法的基本原理。

答案:决策树算法是一种自顶向下的递归划分方法。

它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。

数据挖掘试题

数据挖掘试题

数据挖掘试题1. 解释什么是数据挖掘(Data Mining)。

答:数据挖掘是通过应用统计学、机器学习和模式识别等技术,从大量数据中发现隐藏在其中的模式、关联和规律的过程。

它可以帮助人们从原始数据中提取有价值的信息,以支持决策、预测和优化等任务。

2. 请说明数据挖掘的主要任务。

答:数据挖掘的主要任务包括以下几个方面:- 分类:根据已有的数据标签和特征构建分类模型,将新的数据实例分到预定义的类别中。

- 聚类:根据数据的相似性将其分组,以发现隐藏的数据群体和类别。

- 关联规则挖掘:发现数据项之间的关联和依赖关系,如购物篮分析中发现常一起购买的商品。

- 预测分析:通过已有的数据建立预测模型,用于预测未来的趋势、结果或行为。

- 回归分析:根据数据的特征和标签之间的关系建立回归模型,用于预测连续值的结果。

- 异常检测:发现与正常模式不符的异常数据点,如欺诈检测。

- 文本挖掘:从大量的文本数据中提取有意义的信息和知识,如情感分析、主题提取等。

- 图像和视频挖掘:从图片和视频数据中提取有价值的信息和特征。

3. 请列举常用的数据挖掘算法。

答:常用的数据挖掘算法包括:- 决策树算法(Decision Tree)- 支持向量机算法(Support Vector Machine)- 贝叶斯分类算法(Naive Bayes)- 逻辑回归算法(Logistic Regression)- 人工神经网络算法(Artificial Neural Networks)- 随机森林算法(Random Forest)- 聚类算法(K-means,DBSCAN等)- 关联规则挖掘算法(Apriori,FP-Growth等)- 主成分分析算法(Principal Component Analysis)- 线性回归算法(Linear Regression)4. 数据预处理在数据挖掘中的作用是什么?答:数据预处理是数据挖掘的一个重要步骤,其作用主要有以下几个方面:- 数据清洗:处理缺失值、异常值和噪声,以确保数据的完整性和质量。

数据挖掘测试题及答案

数据挖掘测试题及答案

数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。

答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。

答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。

答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。

数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。

2. 描述什么是关联规则挖掘,并给出一个例子。

答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。

例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。

四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。

(2) 计算规则A => B的置信度。

答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。

(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。

五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。

答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。

- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。

- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。

数据挖掘试题

数据挖掘试题

数据挖掘试题及答案
1.数据挖掘的定义是什么?
数据挖掘是指从大量数据中通过算法自动发现和提取有用的信息,并对其进行分析和解释,以帮助企业做出决策的过程。

1.数据挖掘的主要任务是什么?
数据挖掘的主要任务包括关联分析、聚类分析、分类和预测、偏差检测等。

1.什么是关联分析?
关联分析是指通过发现大量数据中项集之间的关联性或相关性来进行分析的一种方法。

常见的关联分析算法有Apriori算法和FP-Growth算法。

1.什么是聚类分析?
聚类分析是指将物理或抽象对象组成的多个组或类按照它们的相似性进行分类。

聚类分析的目标是将相似的对象归为一类,同时将不相似或不同的对象分离出来。

1.什么是分类和预测?
分类是指根据历史数据和经验建立模型,然后使用该模型对新的未知数据进行预测或分类。

预测则是利用已知的变量和参数来预测未来的结果或趋势。

1.什么是偏差检测?
偏差检测是指通过检测数据中的异常值、离群点或不寻常的模式来发现异常情况或错误的过程。

偏差检测可以帮助企业发现数据中的问题和不一致性,及时纠正错误或采取相应措施。

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案

数据挖掘及应用考试试题及答案第一部分:选择题(每题4分,共40分)1.数据挖掘的定义是以下哪一个选项?A)从大数据中提取有用的信息B)从数据库中提取有用的信息C)从互联网中提取有用的信息D)从文件中提取有用的信息2.以下哪个是数据挖掘的一个主要任务?A)数据的存储和管理B)数据的可视化展示C)模型的建立和评估D)数据的备份和恢复3.下列哪个不是数据挖掘的一个常用技术?A)关联规则挖掘B)分类算法C)聚类分析D)数据编码技术4.以下哪个不属于数据预处理的步骤?A)数据清洗B)数据集成C)数据转换D)模型评估5.以下哪个是数据挖掘任务中的分类问题?A)预测数值B)聚类分析C)异常检测D)关联规则挖掘6.以下哪个不属于数据可视化的一种方法?A)散点图B)柱状图C)热力图D)关联规则图7.在使用决策树算法进行分类任务时,常用的不纯度度量指标是:A)基尼指数B)信息增益C)平方误差D)均方根误差8.以下哪个算法常用于处理文本数据挖掘任务?A)K-means算法B)Apriori算法C)朴素贝叶斯算法D)决策树算法9.以下哪种模型适用于处理离散型目标变量?A)线性回归模型B)逻辑回归模型C)支持向量机模型D)贝叶斯网络模型10.数据挖掘的应用领域包括以下哪些?A)金融风控B)医疗诊断C)社交网络分析D)所有选项都正确第二部分:填空题(每题4分,共20分)1.数据挖掘的基础是______和______。

答案:统计学、机器学习2.数据挖掘的任务包括分类、聚类、预测和______。

答案:关联规则挖掘3.常用的数据预处理方法包括数据清洗、数据集成和______。

答案:数据转换4.决策树算法的基本思想是通过选择最佳的______进行分类。

答案:划分属性5.支持向量机(SVM)算法适用于______问题。

答案:二分类问题第三部分:简答题(每题10分,共40分)1.请简述数据挖掘的流程及各个阶段的主要任务。

答:数据挖掘的流程一般包括问题定义、数据收集、数据预处理、模型选择与建立、模型评估与选择、知识应用等阶段。

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解

数据挖掘期末考试试题及答案详解一、选择题(每题2分,共20分)1. 数据挖掘中,关联规则分析主要用于发现数据中的哪种关系?A. 因果关系B. 相关性C. 聚类关系D. 顺序关系答案:B2. 在决策树算法中,哪个指标用于评估特征的重要性?A. 信息增益B. 支持度C. 置信度D. 覆盖度答案:A3. 以下哪个是数据挖掘的常用方法?A. 线性回归B. 逻辑回归C. 神经网络D. 所有选项答案:D4. K-means聚类算法中,K值的选择是基于什么?A. 数据的维度B. 聚类中心的数量C. 数据的分布情况D. 数据的规模答案:B5. 以下哪个是数据挖掘中常用的数据预处理技术?A. 数据清洗B. 数据转换C. 数据归一化D. 所有选项答案:D...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述什么是数据挖掘,并列举其主要的应用领域。

答案:数据挖掘是从大量数据中自动或半自动地发现有趣模式的过程。

它主要应用于市场分析、风险管理、欺诈检测、客户关系管理等领域。

2. 解释什么是朴素贝叶斯分类器,并说明其在数据挖掘中的应用。

答案:朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。

在数据挖掘中,朴素贝叶斯分类器常用于文本分类、垃圾邮件检测等任务。

3. 描述K-means聚类算法的基本原理,并举例说明其在实际问题中的应用。

答案:K-means聚类算法是一种基于距离的聚类方法,其目标是将数据点划分到K个簇中,使得每个数据点与其所属簇的中心点的距离之和最小。

例如,在市场细分中,K-means聚类可以用来将客户根据购买行为划分为不同的群体。

三、计算题(每题25分,共50分)1. 给定一组数据点:{(1,2), (2,3), (3,4), (4,5)},请使用K-means算法将这些点分为两个簇,并计算簇的中心点。

答案:首先随机选择两个点作为初始中心点,然后迭代地将每个点分配到最近的中心点,接着更新中心点。

数据挖掘技术考核模拟测试卷

数据挖掘技术考核模拟测试卷

数据挖掘技术考核模拟测试卷一、选择题(共 20 题,每题 3 分)1、以下不属于数据挖掘任务的是()A 数据分类B 数据清洗C 关联规则挖掘D 聚类分析2、在数据挖掘中,用于发现数据中隐藏模式的技术是()A 预测建模B 关联分析C 异常检测D 以上都是3、以下哪种算法常用于分类问题?()A KMeansB 决策树C AprioriD EM 算法4、数据挖掘中的预处理步骤不包括()A 数据清洗B 数据集成C 模型训练D 数据变换5、决策树算法中,用于选择最佳分裂属性的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率6、以下哪种数据挖掘技术可以用于市场篮分析?()A 分类B 聚类C 关联规则挖掘D 预测7、对于高维数据,以下哪种降维方法较为常用?()A 主成分分析(PCA)B 线性判别分析(LDA)C 因子分析D 以上都是8、在聚类分析中,KMeans 算法的初始聚类中心通常是()A 随机选择B 根据数据分布选择C 用户指定D 以上都可以9、以下哪种评估指标常用于评估分类模型的性能?()A 均方误差B 准确率和召回率C 轮廓系数D 调整兰德系数10、数据挖掘中的过拟合现象是指()A 模型在训练集上表现良好,但在测试集上表现差B 模型在训练集和测试集上表现都差C 模型在训练集和测试集上表现都好D 模型无法训练11、以下哪种方法可以用于处理数据中的缺失值?()A 直接删除含缺失值的记录B 用均值或中位数填充C 基于其他变量进行预测填充D 以上都是12、逻辑回归是一种()A 线性分类算法B 非线性分类算法C 聚类算法D 关联规则挖掘算法13、以下关于支持向量机(SVM)的说法,错误的是()A 可以处理线性可分和非线性可分问题B 核函数的选择对模型性能影响较大C 训练速度较快,适用于大规模数据D 目标是找到一个最优的分类超平面14、在关联规则挖掘中,最小支持度和最小置信度的作用是()A 控制规则的数量和质量B 提高挖掘效率C 降低计算复杂度D 以上都是15、以下哪种数据结构常用于存储频繁项集?()A 数组B 链表C 哈希表D 二叉树16、对于不平衡数据集,以下哪种方法可以提高分类效果?()A 过采样B 欠采样C 生成合成样本D 以上都是17、以下哪种数据挖掘技术可以用于发现异常值?()A 聚类分析B 分类C 关联规则挖掘D 以上都不是18、随机森林是由多个()组成的集成学习算法。

数据挖掘试题(110道)

数据挖掘试题(110道)

单选题1.某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A.xx规则发现B.聚类C.分类D.自然语言处理2.以下两种描述分别对应哪两种对分类算法的评价标准?(A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。

(b)描述有多少比例的小偷给警察抓了的标准。

A. Precision,RecallB. Recall,PrecisionA. Precision,ROC D. Recall,ROC3.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A.频繁模式挖掘B.分类和预测C.数据预处理D.数据流挖掘4.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A.分类B.聚类C.关联分析D.隐马尔可夫链5.什么是KDD?(A)A.数据挖掘与知识发现B.领域知识发现C.文档知识发现D.动态知识发现6.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则7.为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则8.建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则9.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A.根据内容检索B.建模描述C.预测建模D.寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换B离散化C 聚集D 估计遗漏值12.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215使用如下每种方法将它们划分成四个箱。

数据挖掘考试题库完整

数据挖掘考试题库完整

一、名词解释1.数据仓库:是一种新的数据处理体系结构.是面向主题的、集成的、不可更新的(稳定性)、随时间不断变化(不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。

2.孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。

3.OLAP:OLAP是在OLTP的基础上发展起来的.以数据仓库为基础的数据分析处理.是共享多维信息的快速分析.是被专门设计用于支持复杂的分析操作.侧重对分析人员和高层管理人员的决策支持。

4.粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。

粒度影响存放在数据仓库中的数据量的大小.同时影响数据仓库所能回答查询问题的细节程度。

5.数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如0-1)以提高数据挖掘效率的方法。

规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。

6.关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。

如果两项或多项属性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。

7.数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

8.OLTP:OLTP为联机事务处理的缩写.OLAP是联机分析处理的缩写。

前者是以数据库为基础的.面对的是操作人员和低层管理人员.对基本数据进行查询和增、删、改等处理。

9.ROLAP:是基于关系数据库存储方式的.在这种结构中.多维数据被映像成二维关系表.通常采用星型或雪花型架构.由一个事实表和多个维度表构成。

10.MOLAP:是基于类似于“超立方”块的OLAP存储结构.由许多经压缩的、类似于多维数组的对象构成.并带有高度压缩的索引及指针结构.通过直接偏移计算进行存取。

11.数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要.并且能够得到和原始数据相同的分析结果。

(完整版)数据挖掘考试题库

(完整版)数据挖掘考试题库

干馏处理污泥制造生物炭(论文)10-7-28LT干馏法处理污泥制备生物炭Dry Distillation Sludge Treatment Preparation of Biochar〔干馏法为污水处理厂解决污泥处理难题〕(Dry Distillation for Wastewater Treatment Plants to Solve Sludge Treatment Difficulties) 摘要:污泥处置难,究竟难在哪?传统的污泥处置技术有填埋、堆肥、固化、土地利用、制造建材、干化燃烧、发电厂掺烧、水泥窑协同处理等等。

为什么有如此多的处置方法,而污泥处置却成为全国性难题呢?如果对污泥问题全面分析,就会发现并不是污泥本身难处理,而是传统的污泥处置技术难实施!以往的研究过多地关注污泥本身的处理,缺乏从污水处理厂的角度去研究污泥处理需要克服的技术和非技术难题!作为污泥处理的责任实体,当一个污水处理厂方案进行污泥处理时,他们必须要解决:〔1〕污泥处理工程实施的独立性,〔2〕污泥处理工程的经济性,〔3〕污泥处理过程的可控性,〔4〕污泥处理系统的稳定性。

干馏法处理污泥技术是专为污水处理厂解决其所面临的上述问题而开发的!干馏法处理污泥,使污水处理厂掌握了实施污泥处理工程的主动权,并使污泥处理工程实施具有了可操作性以及可控性。

干馏法处理污泥解决了污水处理领域的一个难题,同时也解决了各国面临的土壤退化难题和无法大规模、低本钱制造土壤改进急需的生物炭难题!科学家们将以生物质为原料,在无氧状态下干馏、热解所形成的一种炭质材料称为“生物炭〞。

理论上,任何植物或动物都可以在无氧环境下热解后形成生物炭。

制造生物炭的生物质来源广泛,如污水处理厂污泥、生活垃圾,以及动物粪肥、稻米谷壳、花生壳、玉米秆、树木废料等。

生物炭被称为“黑金〞,广泛用于土壤改进。

生物炭富含微孔,不但可以补充土壤的有机物含量,还可以改善土壤的透气性和排水性,蓄留植物根部所需水分,有效地保存水分和养料,提高土壤肥力。

数据挖掘试题及答案

数据挖掘试题及答案

数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。

答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。

聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。

2. 解释什么是异常检测,并给出一个实际应用的例子。

答案:异常检测是一种识别数据集中异常或不寻常模式的方法。

它通常用于识别欺诈行为、网络安全问题或机械故障。

例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。

3. 描述决策树的工作原理。

答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。

从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。

#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。

使用数据挖掘技术来识别哪些客户更有可能购买新产品。

答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。

通过训练模型,可以预测哪些客户更有可能购买新产品。

2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。

数据挖掘期末试题及答案

数据挖掘期末试题及答案

数据挖掘期末试题及答案一、选择题(每题2分,共20分)1. 数据挖掘中,以下哪个算法是用于分类的?A. AprioriB. K-meansC. KNND. ID32. 以下哪个不是数据挖掘的步骤?A. 数据预处理B. 数据集成C. 数据可视化D. 数据存储3. 在关联规则挖掘中,支持度(Support)是指什么?A. 规则出现的频率B. 规则的可信度C. 规则的覆盖范围D. 规则的强度4. 以下哪个是聚类算法?A. Logistic RegressionB. Decision TreeC. Naive BayesD. Hierarchical Clustering5. 数据挖掘中,特征选择的目的是什么?A. 增加数据量B. 减少数据量C. 增加模型复杂度D. 减少模型复杂度二、简答题(每题10分,共30分)1. 请简述数据挖掘中过拟合的概念及其预防方法。

2. 解释什么是决策树,并说明其在数据挖掘中的应用。

3. 描述数据预处理的重要性及其主要步骤。

三、应用题(每题25分,共50分)1. 假设你有一个包含客户购买历史的数据集,描述如何使用数据挖掘技术来发现潜在的购买模式。

2. 给出一个实际例子,说明如何使用关联规则挖掘来提高零售业的销售效率。

四、案例分析(共30分)1. 阅读以下案例描述,并分析使用数据挖掘技术解决该问题的优势和可能遇到的挑战。

案例描述:一家电子商务公司想要通过分析用户浏览和购买行为来优化其推荐系统。

公司收集了大量用户数据,包括浏览历史、购买记录、用户评分和反馈。

答案:一、选择题1. D2. D3. A4. D5. D二、简答题1. 过拟合是指模型在训练数据上表现良好,但在新的、未见过的数据上表现差的现象。

预防过拟合的方法包括:使用交叉验证、正则化技术、减少模型复杂度等。

2. 决策树是一种监督学习算法,用于分类和回归任务。

它通过一系列的问题将数据分割成不同的子集,直到达到一个纯度的节点,即决策点。

数据挖掘考试题

数据挖掘考试题

数据挖掘考试题1.选择题1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( )A.分类B.聚类C.关联分析D.主成分分析2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。

A.MIN(单链)B.MAX(全链)C.组平均D.Ward方法3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。

A 分类B 预测 C关联规则分析 D聚类4.关于K均值和DBSCAN的比较,以下说法不正确的是( )A.K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。

B.K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。

C.K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇D.K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇5.下列关于Ward’s Method说法错误的是:( )A.对噪声点和离群点敏感度比较小B.擅长处理球状的簇C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似6.下列关于层次聚类存在的问题说法正确的是:( )A.具有全局优化目标函数B.Group Average擅长处理球状的簇C.可以处理不同大小簇的能力D.Max对噪声点和离群点很敏感7.下列关于凝聚层次聚类的说法中,说法错误的事:( )A.一旦两个簇合并,该操作就不能撤销B.算法的终止条件是仅剩下一个簇C.空间复杂度为D.具有全局优化目标函数8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( )A.0.4,0.4B.0.67,0.67C.0.4,0.67D.0.67,0.49.下列( )是属于分裂层次聚类的方法。

A.MinB.MaxC.Group AverageD.MST10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX 计算,第二步是哪两个簇合并:( )A.在{3}和{l,2}合并B.{3}和{4,5}合并C.{2,3}和{4,5}合并D. {2,3}和{4,5}形成簇和{3}合并2.填空题:1. 属性包括的四种类型: 、 、 、 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

For personal use only in study and research; not for commercial use单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。

等频(等深)划分时,15在第几个箱子内?(B)A 第一个B 第二个C 第三个D 第四个13.上题中,等宽划分时(宽度为50),15又在哪个箱子里?(A)A 第一个B 第二个C 第三个D 第四个16. 只有非零值才重要的二元属性被称作:( C )A 计数属性B 离散属性C非对称的二元属性 D 对称属性17. 以下哪种方法不属于特征选择的标准方法:(D)A嵌入 B 过滤 C 包装 D 抽样18.下面不属于创建新属性的相关方法的是:(B)A特征提取B特征修改C映射数据到新的空间D特征构造22. 假设属性income的最大最小值分别是12000元和98000元。

利用最大最小规范化的方法将属性的值映射到0至1的范围内。

对属性income的73600元将被转化为:(D)A 0.821B 1.224C 1.458D 0.71623.假定用于分析的数据包含属性age。

数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。

第二个箱子值为:(A)A 18.3B 22.6C 26.8D 27.928. 数据仓库是随着时间变化的,下面的描述不正确的是(C)A. 数据仓库随时间的变化不断增加新的数据内容;B. 捕捉到的新数据会覆盖原来的快照;C. 数据仓库随事件变化不断删去旧的数据内容;D. 数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合.29. 关于基本数据的元数据是指: (D)A. 基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息;B. 基本元数据包括与企业相关的管理方面的数据和信息;C. 基本元数据包括日志文件和简历执行处理的时序调度信息;D. 基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息.30. 下面关于数据粒度的描述不正确的是: (C)A. 粒度是指数据仓库小数据单元的详细程度和级别;B. 数据越详细,粒度就越小,级别也就越高;C. 数据综合度越高,粒度也就越大,级别也就越高;D. 粒度的具体划分将直接影响数据仓库中的数据量以及查询质量.33. OLAP技术的核心是: (D)A. 在线性;B. 对用户的快速响应;C. 互操作性.D. 多维分析;34. 关于OLAP的特性,下面正确的是: (D)(1)快速性(2)可分析性(3)多维性(4)信息性(5)共享性A. (1) (2) (3)B. (2) (3) (4)C. (1) (2) (3) (4)D. (1) (2) (3) (4) (5)35. 关于OLAP和OLTP的区别描述,不正确的是: (C)A. OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同.B. 与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务.C. OLAP的特点在于事务量大,但事务内容比较简单且重复率高.D. OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的.37. 关于OLAP和OLTP的说法,下列不正确的是: (A)A. OLAP事务量大,但事务内容比较简单且重复率高.B. OLAP的最终数据来源与OLTP不一样.C. OLTP面对的是决策人员和高层管理人员.D. OLTP以应用为核心,是应用驱动的.38. 设X={1,2,3}是频繁项集,则可由X产生__(C)__个关联规则。

A、4B、5C、6D、740. 概念分层图是__(B)__图。

A、无向无环B、有向无环C、有向有环D、无向有环41. 频繁项集、频繁闭项集、最大频繁项集之间的关系是:(C)A、频繁项集频繁闭项集=最大频繁项集B、频繁项集= 频繁闭项集最大频繁项集C、频繁项集频繁闭项集最大频繁项集D、频繁项集= 频繁闭项集= 最大频繁项集44. 在图集合中发现一组公共子结构,这样的任务称为( B )A、频繁子集挖掘B、频繁子图挖掘C、频繁数据项挖掘D、频繁模式挖掘48. 以下哪些算法是分类算法,A,DBSCAN B,C4.5 C,K-Mean D,EM (B)50. 决策树中不包含一下哪种结点,A,根结点(root node) B,内部结点(internal node)C,外部结点(external node)D,叶结点(leaf node)(C)53. 以下哪项关于决策树的说法是错误的(C)A. 冗余属性不会对决策树的准确率造成不利的影响B. 子树可能在决策树中重复多次C. 决策树算法对于噪声的干扰非常敏感D. 寻找最佳决策树是NP完全问题54. 在基于规则分类器的中,依据规则质量的某种度量对规则排序,保证每一个测试记录都是由覆盖它的“最好的”规格来分类,这种方案称为(B)A. 基于类的排序方案B. 基于规则的排序方案C. 基于度量的排序方案D. 基于规格的排序方案。

57. 如果对属性值的任一组合,R中都存在一条规则加以覆盖,则称规则集R中的规则为(B) A, 无序规则B,穷举规则C,互斥规则D,有序规则58. 如果规则集中的规则按照优先级降序排列,则称规则集是(D)A, 无序规则B,穷举规则C,互斥规则D,有序规则61. 以下关于人工神经网络(ANN)的描述错误的有(A)A,神经网络对训练数据中的噪声非常鲁棒B,可以处理冗余特征C,训练ANN是一个很耗时的过程D,至少含有一个隐藏层的多层神经网络二、多选题1. 通过数据挖掘过程所推倒出的关系和摘要经常被称为:(A B)A. 模型B. 模式C. 模范D. 模具2 寻找数据集中的关系是为了寻找精确、方便并且有价值地总结了数据的某一特征的表示,这个过程包括了以下哪些步骤?(A B C D)A. 决定要使用的表示的特征和结构B. 决定如何量化和比较不同表示拟合数据的好坏C. 选择一个算法过程使评分函数最优D. 决定用什么样的数据管理原则以高效地实现算法。

4. 数据挖掘算法的组件包括:(A B C D)A. 模型或模型结构B. 评分函数C. 优化和搜索方法D. 数据管理策略5. 以下哪些学科和数据挖掘有密切联系?(A D)A. 统计B. 计算机组成原理C. 矿产挖掘D. 人工智能6. 在现实世界的数据中,元组在某些属性上缺少值是常有的。

描述处理该问题的各种方法有:(ABCDE)A忽略元组C使用一个全局常量填充空缺值B使用属性的平均值填充空缺值D使用与给定元组属同一类的所有样本的平均值E使用最可能的值填充空缺值8. 对于数据挖掘中的原始数据,存在的问题有:(ABCDE)A 不一致B重复C不完整 D 含噪声E 维度高12. 下面列出的条目中,哪些是数据仓库的基本特征:(ACD)A. 数据仓库是面向主题的B. 数据仓库的数据是集成的C. 数据仓库的数据是相对稳定的D. 数据仓库的数据是反映历史变化的E. 数据仓库是面向事务的13. 以下各项均是针对数据仓库的不同说法,你认为正确的有(BCDE )。

A.数据仓库就是数据库B.数据仓库是一切商业智能系统的基础C.数据仓库是面向业务的,支持联机事务处理(OLTP)D.数据仓库支持决策而非事务处理E.数据仓库的主要目标就是帮助分析,做长期性的战略制定14. 数据仓库在技术上的工作过程是:(ABCD)A. 数据的抽取B. 存储和管理C. 数据的表现D. 数据仓库设计E. 数据的表现15. 联机分析处理包括以下哪些基本分析功能?(BCD)A. 聚类B. 切片C. 转轴D. 切块E. 分类16. 利用Apriori算法计算频繁项集可以有效降低计算频繁集的时间复杂度。

在以下的购物篮中产生支持度不小于3的候选3-项集,在候选2-项集中需要剪枝的是(BD)ID 项集1 面包、牛奶2 面包、尿布、啤酒、鸡蛋3 牛奶、尿布、啤酒、可乐4 面包、牛奶、尿布、啤酒5 面包、牛奶、尿布、可乐A、啤酒、尿布B、啤酒、面包C、面包、尿布D、啤酒、牛奶18. Apriori算法的计算复杂度受__(ABCD)?__影响。

A、支持度阀值B、项数(维度)C、事务数D、事务平均宽度19. 非频繁模式__(AD)__A、其支持度小于阈值B、都是不让人感兴趣的C、包含负模式和负相关模式D、对异常数据项敏感22. 贝叶斯信念网络(BBN)有如下哪些特点,A,构造网络费时费力B,对模型的过分问题非常鲁棒C,贝叶斯网络不适合处理不完整的数据D,网络结构确定后,添加变量相当麻烦(AB)三、判断题1. 数据挖掘的主要任务是从数据中发现潜在的规则,从而能更好的完成描述数据、预测数据等任务。

(对)2. 数据挖掘的目标不在于数据采集策略,而在于对于已经存在的数据进行模式的发掘。

(对)3. 图挖掘技术在社会网络分析中扮演了重要的角色。

(对)4. 模式为对数据集的全局性总结,它对整个测量空间的每一点做出描述;模型则对变量变化空间的一个有限区域做出描述。

(错)5. 寻找模式和规则主要是对数据进行干扰,使其符合某种规则以及模式。

(错)6. 离群点可以是合法的数据对象或者值。

(对)7. 离散属性总是具有有限个值。

(错)8. 噪声和伪像是数据错误这一相同表述的两种叫法。

(错)9. 用于分类的离散化方法之间的根本区别在于是否使用类信息。

(对)10. 特征提取技术并不依赖于特定的领域。

(错)12. 定量属性可以是整数值或者是连续值。

(对)14. DSS主要是基于数据仓库.联机数据分析和数据挖掘技术的应用。

相关文档
最新文档