统计学知识点汇总情况
统计学知识点全归纳__全面准确

统计学知识点全归纳__全面准确统计学是一门研究和应用统计原理和方法的学科。
统计学的目的是通过收集、整理、分析和解释数据来描述和推断人类活动中的规律性和不确定性。
下面将全面准确地归纳统计学的基本知识点。
1.数据收集和整理-数据的收集方法:可以通过抽样或完全普查进行数据收集。
抽样是从总体中选择一部分样本进行调查或实验,以此来推断总体的特征。
2.描述统计-数据的概括性度量:包括测量中心趋势的平均数(如算术平均值、中位数和众数)、测量离散程度的方差和标准差、测量数据分散程度的四分位数等。
-数据的可视化表示:可以使用直方图、箱线图、散点图、饼图等图表来展示数据的分布和关系。
3.概率与随机变量-概率的概念:概率是描述事件发生可能性的数值,范围从0到1、事件的概率可以通过频率或基于概率模型推断得到。
-随机变量:随机变量是随机试验结果的数值表示。
可以分为离散随机变量和连续随机变量。
4.概率分布-离散分布:包括二项分布、泊松分布等。
二项分布描述了一次试验中两个可能结果的概率分布,泊松分布描述了随机事件在固定时间或空间区域内发生的次数的概率分布。
-连续分布:包括正态分布、指数分布等。
正态分布是最常见的连续概率分布,它以钟形曲线显示数据的分布情况。
-概率密度函数和累积分布函数:概率密度函数描述了随机变量落在一些区间内的概率密度,累积分布函数描述了随机变量小于或等于一些值的概率。
5.抽样分布和统计推断-抽样分布:根据中心极限定理,当样本容量足够大时,样本均值的抽样分布会近似服从正态分布。
-参数估计:通过样本统计量(如样本均值、样本方差)来推断总体参数的数值。
-假设检验:用来检验一个关于总体参数的假设是否成立。
根据样本数据和给定的显著性水平,对假设进行接受或拒绝的判断。
6.相关分析和回归分析-相关分析:用来研究两个变量之间的关系。
可以通过计算相关系数(如皮尔逊相关系数)来衡量两个变量之间的线性相关程度。
-回归分析:用来研究一个或多个自变量与因变量之间的关系。
统计学知识点汇总

统计学知识点汇总第一章:统计学是收集、处理、分析、解析数据并从数据中得出结论的科学。
分类:描述统计、推断统计。
描述统计是研究数据收集、处理和描述的统计学方法. 推断统计是研究如何利用样本数据来推断总体特征的统计学方法(内容包括参数估计和假设检验)。
变量:每次观察都会得到不同结果的某种特征。
分类变量:又称无序分类变量,观测结果表现为某种类别的变量。
顺序变量:又称有序分类变量,观测结果表现为某种有序类别的变量。
数值变量:又称定量变量,观测结果表现为数字的变量.数据:1、分类数据2、顺序数据3、数值型数据总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合.样本量:构成样本元素的数目。
抽样方法:1、简单随机抽样2、分层抽样3、系统抽样4、整群抽样简单随机抽样:从含有N个元素的总体中,抽取n个元素组成一个样本,使得总体中的每一个元素都有相同的机会(概率)被抽中。
分层抽样:也称分类抽样,在抽样之前先将总体的元素划分为若干层(类),然后从各个层中抽取一定数量的元素组成一个样本。
软件应用:用Excel抽取简单随机样本。
第二章:一、定性数据的图示:1、条形图2、帕累托图3、饼图4、环形图条形图:是用宽度相同的条形来表示数据多少的图形,用于观察不同类别的多少或分布状况。
帕累托图:是按各类别出现的频数多少排序后绘制的条形图。
通过对条形的排序,容易看出哪类频数出现的多,哪类出现的少。
饼图:主要用于表示一个样本(或总体)中各类别的频数占全部频数的比例。
用图表展示定量数据:生成定量数据的频数分布表时,需要先将原始数据按照某种标准分成不同的组别,然后统计出各组别的数据频数即可。
一组数据所分的组数K应不少于5组且不多于15组。
组距=(最大值-最小值)/组数组数=全距 /组距每组组距均相等称为等距数列,反之则为异距数列在比较等距数列与异距数列的次数分布时常用:次数密度=本组次数/本组组距2.组中值 class midpoint组中值=(本组上限+本组下限)/2或组中值=(本组假定上限+本组假定下限)/2二、定量数据的图示:1、分组数据看分布:直方图2、未分组数据看分布:茎叶图和箱线图、垂线图和误差图最小值 25%四分位数中位数 75%四分位数最大值箱线图的示意图: Array3、两个变量间的关系:散点图是用二维坐标展示两个变量之间关系的一种图形。
统计学基础知识点总结

统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。
描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。
2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。
推论统计包括了参数估计和假设检验两个主要方法。
在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。
推论统计方法在科学研究和决策制定中具有重要的应用价值。
3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。
概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。
4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。
它包括了简单线性回归、多元线性回归、非线性回归等。
回归分析的方法对于预测和决策具有重要的应用价值。
5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。
它包括了单因素方差分析、双因素方差分析、多因素方差分析等。
方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。
6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。
它包括了生存函数、风险集与危险比、生存曲线、生存比较等。
生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。
以上是统计学的一些基本知识点总结。
统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。
统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。
统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。
统计学期末知识点总结

1.多重共线性:当回归模型中存在两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。
2.相关关系:变量之间存在的不确定的数量关系,称为相关关系。
3.五个相关关系:正线性相关,负线性相关,完全正线性相关,完全负线性相关,非线性相关,不相关。
若 0<r≤1,表明 x 与 y 之间存在正线性相关关系;若-1≤r <0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与 y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。
|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
4.回归直线的拟合优度:回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。
判定系数 R2测度了回归直线对观测数据的拟合程度。
5.最小二乘估计法:通过使因变量的观测值 yi 与估计值yi ∧之间的离差平方和,即残差平方和,达到最小来估计β0和β1的方法。
6. F 检验和 t 检验各有什么作用:F 检验是检验自变量 x 和因变量 y 之间的线性关系是否显著;t 检验是检验自变量对因变量的影响是否显著,也就是回归系数的检验。
7.8.正态分布—Z分布:大样本或小样本总体标准差σ已知。
9.N-1的T分布:小样本σ未知。
10.参数估计:点估计与区间估计11.置信区间:由样本统计量所构造的总体参数的估计区间。
12.置信水平:置信区间中包含总体参数真值的次数所占的比例。
置信水平越大,所需的样本量也就越大,置信区间越宽。
13.评价估计量的标准:无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数有效性:是指对同一参数的两个无偏估计量,有更小方差的估计量越有效。
一致性:是指随着样本量n的增大,估计量的值越来越接近总体参数的真值。
14.样本量越大,样本均值的抽样标准差就越小。
15.总体数据的方差越大,估计时所需的样本量越大。
16.数据概括性度量:(数据分布特征的测量)集中趋势,离散程度,分布形态(偏态与峰态)17.三个分布:对称分布—众数=中位数=平均数左偏分布—平均数<中位数<众数右偏分布—众数<中位数<平均数18.标准分数的用途:①变量值与其平均数的离差除以标准差后的值称为标准分数,用Z表示。
根据统计学知识点总结

根据统计学知识点总结
统计学是一门研究收集、整理、分析和解释数据的学科。
以下是统计学的一些重要知识点总结:
1. 数据类型:
- 定性数据:描述性数据,例如性别、民族等。
- 定量数据:数值型数据,可以进行数学运算,例如年龄、身高等。
2. 描述统计:
- 集中趋势:用于描述数据分布的中心位置,包括均值、中位数和众数。
- 变异程度:用于描述数据分布的离散程度,包括方差、标准差和极差。
- 分布形态:用于描述数据分布的形状,包括偏度和峰度。
3. 概率:
- 概率基本原理:用于计算事件发生的可能性,包括事件的互斥性和独立性。
- 概率分布:描述随机变量的可能取值及其发生的概率,包括离散分布和连续分布。
4. 抽样与估计:
- 简单随机抽样:随机选择样本的抽样方法。
- 参数估计:使用样本数据估计总体参数的方法,包括点估计和区间估计。
5. 假设检验:
- 假设与备择假设:对总体参数进行猜测的两个假设。
- 显著性水平:用于判断拒绝或接受原假设的标准。
- 检验统计量:用于比较样本和总体的差异。
6. 相关与回归:
- 相关分析:分析两个变量之间的相关关系。
- 简单线性回归:用于建立两个变量之间的线性回归模型。
以上是根据统计学知识点的总结,这些知识点将帮助您理解和应用统计学于实际问题。
统计学各章节期末复习知识点

统计学各章节期末复习知识点统计学是一门研究数据收集、分析和解释的学科。
作为一门广泛应用于各个领域的学科,统计学的知识点非常丰富。
以下是统计学各章节的期末复习知识点汇总:1.数据收集与描述-数据类型:定量数据和定性数据-数据收集方式:问卷调查、观察、实验-描述统计:中心趋势(均值、中位数、众数)、离散程度(范围、方差、标准差)、数据分布(直方图、条形图、饼图)2.概率论基础-随机试验与样本空间-事件与事件概率-古典概型、几何概型和统计概型-条件概率与独立性-伯努利试验与二项分布3.随机变量及其分布-随机变量与分布函数-离散型随机变量与其分布律-连续型随机变量与其概率密度函数-均匀分布、正态分布、指数分布等常见分布4.多个随机变量的分布-边缘分布与条件分布-两个离散型随机变量的联合分布律-两个连续型随机变量的联合概率密度函数-相互独立的随机变量的分布5.随机变量的数字特征-数学期望与其性质-方差与标准差-协方差与相关系数-矩、协方差矩阵与相关系数矩阵6.大数定律与中心极限定理-辛钦大数定律-中心极限定理-切比雪夫不等式与伯努利不等式7.统计推断基础-参数估计:点估计、区间估计-置信区间与置信水平-假设检验:原假设与备择假设、显著性水平、拒绝域-类型Ⅰ错误和类型Ⅱ错误-样本容量与统计检验的效应大小8.单样本与双样本推断-单个总体均值的推断:正态总体与非正态总体-单个总体比例的推断-两个总体均值的推断:独立样本与配对样本-两个总体比例的推断9.方差分析与回归分析-单因素方差分析-两因素方差分析-简单线性回归分析:最小二乘法-多元线性回归分析:拟合优度、剩余平方和、变量选择10.非参数统计方法-指标:秩和检验、秩和相关检验、符号检验- 分布:符号检验、秩和检验、秩和相关检验、Kolmogorov-Smirnov检验这些是统计学各个章节的期末复习知识点的一个概述。
每个章节都拥有更加详细和复杂的内容,需要学生在复习中深入理解并进行练习。
统计学知识点

统计学知识点关键信息项:1、统计学的定义与范围统计学的基本概念涵盖的主要领域2、数据收集方法普查与抽样调查观察法与实验法问卷设计要点3、数据整理与描述数据分类与分组集中趋势的度量(均值、中位数、众数)离散程度的度量(方差、标准差、极差)4、概率与概率分布随机事件与概率的定义常见概率分布(正态分布、二项分布等)概率计算方法5、抽样分布样本均值与样本比例的分布中心极限定理6、参数估计点估计与区间估计置信区间的构建与解释7、假设检验原假设与备择假设的设定检验统计量的选择与计算显著水平与决策规则8、方差分析单因素方差分析原理多重比较方法9、相关与回归分析相关系数的计算与解读简单线性回归模型回归系数的估计与检验11 统计学的定义与范围111 统计学是一门研究数据收集、整理、分析和解释的学科,它通过运用数学、概率论和数理统计等方法,从数据中提取有价值的信息,以帮助人们做出决策、解决问题和发现规律。
112 统计学涵盖了多个领域,包括社会科学、自然科学、工程技术、医学、商业等。
在社会科学中,统计学可用于研究人口趋势、经济发展、社会现象等;在自然科学中,可用于实验数据分析、模型验证等;在工程技术中,可用于质量控制、可靠性分析等;在医学中,可用于临床试验、疾病监测等;在商业中,可用于市场调研、销售预测等。
12 数据收集方法121 普查是对研究对象的全体进行调查,其优点是能够获得全面、准确的信息,但成本高、耗时长,且在实际操作中往往难以实现。
抽样调查则是从研究对象的总体中抽取一部分样本进行调查,通过对样本的分析来推断总体的特征。
抽样调查可以分为概率抽样和非概率抽样,概率抽样包括简单随机抽样、分层抽样、系统抽样和整群抽样等,非概率抽样包括方便抽样、判断抽样、配额抽样等。
122 观察法是通过观察研究对象的行为、现象等来收集数据,适用于无法直接询问或干预的情况。
实验法是通过控制实验条件来研究因果关系,其优点是能够更有效地确定变量之间的因果关系,但实验设计和实施较为复杂。
统计学知识点汇总情况

统计指标体系是各种互相联系的指标群构成的整体,用以说明所研究的社会经济现象各方面互相依从和互相制约的关系。
八、相对指标
相对指标又称统计相对数。它是两个有联系的现象数值的比率,用以反映现象的开展程度、结构、强度、普遍程度或比例关系。
〔1〕结构相对指标
结构相对指标是在对总体分组的根底上,以总体总量作为比拟标准,求出各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。
统计学知识点汇总
一、统计学
统计学是一门关于数据资料的收集、整理、分析和推断的科学。
三、统计的特点
〔1〕数量性:
社会经济统计的认识对象是社会经济现象的数量方面,包含现象的数量表现、现象之间的数量关系和质量互变的数量界限。
〔2〕总体性:
社会经济统计的认识对象是社会经济现象的总体的数量方面。例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。
标志一般不具备时间、地点等条件;但完整的统计指标肯定要讲明时间、地点、范围。
■联系:
有些数量标志值汇总可以得到指标的数值。既可指总体各单位标志量的总和,也可指总体单位数的总和。
数量标志与指标之间存在变换关系。随着统计目的的改变,如果原来的总体单位变成了统计总体,则与之相对应的数量标志就成了统计指标。
〔3〕具体性:
社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。这是统计与数学的区别。
〔4〕社会性:
社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。
四、统计工作过程
〔1〕统计设计
根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。同时提出收集、整理和分析数据的方案和工作进度等。
统计学基础知识点总结

统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
《统计学原理》知识点概括总结

《统计学原理》知识点概括总结第一部分:概率论基础《统计学原理》的第一部分主要介绍了概率论的基本概念和原理。
概率论是统计学的基础,它研究的是事件发生的可能性。
本部分包括事件与概率、条件概率与独立性、贝叶斯定理等内容。
概率的性质、计算方法和基本公式也是本部分的重点。
第二部分:随机变量和概率分布第二部分以随机变量和概率分布为核心,介绍了离散型和连续型随机变量的定义和性质。
离散型随机变量的概率质量函数和分布函数、连续型随机变量的概率密度函数和分布函数都在本部分进行了详细讨论。
同时,本部分还介绍了常见的离散型分布(如伯努利分布、二项分布、泊松分布)和连续型分布(如均匀分布、正态分布)。
第三部分:多维随机变量及其分布第三部分讨论了多维随机变量和其分布。
多维随机变量是指由多个随机变量组成的向量,它的概率分布可以通过联合分布、边缘分布和条件分布来描述。
本部分介绍了多维随机变量的分布函数和密度函数,并给出了常见的两个随机变量的联合分布和边缘分布。
此外,还介绍了常见的多维分布,如多项分布和多元正态分布。
第四部分:参数估计参数估计是统计学中重要的一环,它研究如何从样本中推断总体的未知参数。
本部分介绍了点估计和区间估计两种常见的参数估计方法。
点估计方法根据样本数据直接估计出总体参数的值,例如最大似然估计和矩估计。
区间估计是通过样本数据得到参数的一个范围估计,例如置信区间的构造和解释。
第五部分:假设检验假设检验是统计学中用于验证关于总体的其中一种假设的方法。
本部分详细介绍了假设检验的基本思想和步骤,包括建立原假设和备择假设、选择合适的检验统计量和确定显著性水平等。
此外,还介绍了单总体、两总体和多总体的假设检验方法,并给出了具体的应用实例。
通过对《统计学原理》的知识点进行总结,我们可以发现统计学是一门基于概率论的科学,它研究数据的收集、整理、分析和解释的方法。
本书详细介绍了统计学的基本原理和方法,涵盖了概率论、概率分布、参数估计和假设检验等内容。
统计学知识点梳理

统计学第一章导论1.1.1什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所用的方法分为描述统计方法和推断统计方法。
1.2统计数据的类型1.2.1分类数据、顺序数据、数值型数据按照所采用的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表示。
例如:支付方式、性别、企业类型等。
顺序数据:只能归于某一有序类别的非数字型数据。
例如:员工对改革措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、工资、产量等。
统计数据大体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2观测数据和实验数据按照统计数据的收集方法,可以分为观测数据和实验数据。
观测数据:通过调查或观测而收集的数据。
例如:降雨量、GDP、家庭收入等。
实验数据:在实验中控制实验对象而收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3截面数据和时间序列数据按照被描述的现象与时间的关系,可分类截面数据和时间序列数据。
截面数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同一现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的一部分元素的集合。
1.3.2参数和统计量参数:用来描述总体特征的概括性数字度量。
统计量:用类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭用于推断该乡镇所有农村居民家庭的年人均纯收入。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的人均纯收入;统计量是1000个家庭的人均纯收入。
第二章数据的搜集2.1数据的来源2.1.1数据的间接来源间接来源的数据:如果与研究内容有关的原信息已经存在,我们只是对这些原信息重新加工、整理,使之成为我们进行统计分析可以使用的数据。
统计学知识点总结

统计学知识点总结统计学是一门研究数据收集、分析、解释和预测的学科,广泛应用于各个领域。
本文将对统计学的一些重要知识点进行总结,帮助读者更好地理解和应用统计学。
一、数据类型在统计学中,数据可以分为两种类型:定量数据和定性数据。
定量数据是用数值表示的,可以进行数学运算,例如身高、体重等。
而定性数据是用描述性词语表示的,不能进行数学运算,例如性别、颜色等。
二、数据收集数据收集是统计学中非常重要的一步,常用的数据收集方法包括观察、实验和调查。
观察是通过观察现象来收集数据,实验是通过控制变量来观察因果关系,调查是通过问卷或访谈来收集数据。
三、描述统计描述统计是对数据进行整理、总结和描述的方法。
常用的描述统计方法包括中心趋势和离散程度的度量。
中心趋势包括均值、中位数和众数,用于描述数据的集中程度;离散程度包括标准差、方差和极差,用于描述数据的分散程度。
四、概率概率是统计学中的重要概念,用于描述事件发生的可能性。
概率的计算可以通过频率法和几何法进行。
频率法基于实际观察数据计算概率,几何法基于几何模型计算概率。
五、概率分布概率分布是用来描述随机变量可能取值和其对应概率的函数。
常见的概率分布包括正态分布、二项分布和泊松分布。
正态分布是一种对称的连续概率分布,广泛应用于自然和社会科学领域。
六、假设检验假设检验是统计学中用于推断总体参数的方法。
它包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出决策等步骤。
假设检验可以帮助研究者判断样本数据是否支持原假设。
七、回归分析回归分析是用来研究变量之间关系的统计方法。
它可以通过建立回归模型来预测因变量的取值。
常见的回归方法包括线性回归、多项式回归和逻辑回归等。
八、抽样与估计抽样与估计是统计学中用于从总体中推断样本特征的方法。
常用的抽样方法包括简单随机抽样、分层抽样和系统抽样等。
估计方法包括点估计和区间估计,用于估计总体参数的取值范围。
九、相关分析相关分析是用来研究变量之间关系的统计方法。
统计学知识点总结

统计学知识点总结统计学是一门应用广泛的学科,它涉及到数据的收集、处理、分析和解释。
以下是统计学的一些关键知识点:1. 数据收集:统计学的基础是数据。
数据可以通过实验、调查、观察等方式收集。
数据收集的准确性直接影响到后续分析的有效性。
2. 数据分类:数据可以分为定性数据和定量数据。
定性数据包括分类和顺序数据,而定量数据则包括间隔和比率数据。
3. 数据描述:描述性统计学用于描述和总结数据集的特征。
这包括使用平均数、中位数、众数、方差、标准差等统计量来描述数据的中心趋势和离散程度。
4. 概率论:概率是统计学的核心概念之一,它提供了一个框架来量化不确定性。
概率论包括随机事件的基本概念、概率分布、期望值和方差等。
5. 概率分布:数据的分布可以通过概率分布来描述。
常见的概率分布包括二项分布、正态分布、泊松分布等。
6. 抽样分布:当从总体中抽取样本时,样本统计量(如样本均值)的分布称为抽样分布。
抽样分布对于推断统计学至关重要。
7. 推断统计:推断统计学使用样本数据来推断总体的特征。
这包括点估计、区间估计和假设检验。
8. 假设检验:假设检验是一种统计方法,用于确定样本数据是否足以支持或反对某个假设。
常见的假设检验包括t检验、卡方检验、ANOVA 等。
9. 回归分析:回归分析是一种预测和解释变量之间关系的方法。
线性回归是最基本的回归分析形式,它研究一个因变量和一个或多个自变量之间的关系。
10. 非参数统计:非参数统计不依赖于数据的分布假设,适用于样本量较小或数据分布未知的情况。
常见的非参数方法包括Wilcoxon符号秩检验、Kruskal-Wallis检验等。
11. 多变量分析:多变量分析涉及多个变量的分析,包括多元回归、主成分分析、因子分析等。
12. 数据可视化:数据可视化是将数据以图形或图表的形式展示出来,以帮助理解和解释数据。
常见的数据可视化工具包括条形图、折线图、散点图、箱线图等。
13. 统计软件:统计分析通常需要使用统计软件,如SPSS、R、Stata、SAS等,这些软件提供了强大的数据处理和分析功能。
统计学知识点情况

统计学知识点情况统计学是一门关于数据收集、分析、解释和作出推断的学科。
它涵盖各种统计概念、方法和技术,以揭示数据背后的模式和规律,并为决策提供依据。
下面是对统计学中一些重要的知识点的概述。
1.数据收集与描述性统计:数据的准确收集是进行统计分析的第一步。
统计学家通过各种方法(如调查问卷、观察和实验)收集数据,并使用描述性统计方法总结和描述数据。
描述性统计包括测量中心趋势(如平均数、中位数和众数)和测量变异程度(如方差和标准差)的方法。
2.概率:概率是描述事件发生可能性的量度。
统计学家使用概率分布来模拟和预测事件的发生概率。
常见的概率分布包括均匀分布、正态分布和泊松分布。
概率理论也是建立统计推断的基础。
3.统计推断:统计推断是根据样本数据对总体进行推断的过程。
统计学家使用抽样方法从总体中选择样本,并利用样本数据来进行参数估计和假设检验。
参数估计包括点估计和区间估计,它们用于估计总体参数的值和其不确定性。
假设检验用于验证关于总体参数的假设。
4. 参数与非参数统计:参数统计假设总体参数的值是已知的或可以被估计的,而非参数统计则不依赖具体的参数值。
参数统计包括t检验、F检验和回归分析等方法,而非参数统计包括Wilcoxon符号秩检验和Mann-Whitney U检验等方法。
非参数方法在数据分布或样本容量较小的情况下更为可靠。
5.回归分析:回归分析是一种用于解释自变量与因变量之间关系的统计方法。
简单线性回归分析用于研究一个自变量与一个因变量之间的关系,而多元回归分析考虑多个自变量对一个因变量的影响。
回归分析可以用于预测、解释和控制因变量的变化。
6.方差分析:方差分析用于比较两个或多个总体均值是否存在显著差异。
它通过计算变异部分的均方和误差部分的均方来进行推断。
方差分析广泛应用于实验设计和数据的比较。
7.抽样与抽样分布:抽样是从总体中选择部分个体的过程。
抽样分布是指其中一统计量在不同样本中变化的分布。
中心极限定理表明,当样本容量足够大时,抽样分布会趋向于正态分布,这使得对总体参数进行推断成为可能。
统计学自考本科知识点总结

统计学自考本科知识点总结一、统计学概论1.1 统计学的基本概念统计学是研究数据的收集、整理、分析和解释的一门科学。
它是一门研究数据收集、整理、分析、解释的科学,它是一门运用概率论、数理逻辑、数学统计原理和方法等,对大量的数据进行分析和研究的一门科学。
1.2 统计学的发展历程统计学的发展历程主要包括古典统计学、现代统计学和统计学在应用中的发展。
1.3 统计学的基本原理统计学的基本原理有:1.数据的收集,整理和分析;2.对数据的基本描述;3.推断和判断数据的特征;4.推断和判断数据的规律性;5.推断和判断数据的相关性。
二、统计学的基本概念与方法2.1 数据的搜集数据的收集是统计学的第一步。
数据的搜集可以通过实验观察、调查和问卷调查等方式进行。
2.2 数据的整理和分类数据的整理是统计学的第二步。
数据的整理包括数据的描述、变换、排序、排列和分组。
2.3 数据的分析方法数据的分析方法主要包括描述统计学和推断统计学。
描述统计学是通过图表、频数分布、总体分布等方法对数据进行描述和分析。
推断统计学是通过推断和判断对数据进行推断和判断。
2.4 数据的可视化数据的可视化是统计学的重要方法。
数据的可视化主要包括散点图、柱状图、折线图、饼状图、雷达图等。
2.5 统计学的模型统计学的模型是对数据的描述和分析的方法。
统计学的模型主要包括概率模型、数理模型、统计模型、贝叶斯模型、机器学习模型等。
三、统计学的基本概念与方法3.1 统计学的基本概念统计学的基本概念包括总体、样本、频数、频率、比率、中心趋势、稳定性、方差等。
3.2 统计学的基本指标统计学的基本指标包括均值、中位数、众数、标准差、相关系数、回归系数、协方差等。
3.3 统计学的推断方法统计学的推断方法主要包括置信区间估计、假设检验、方差分析、卡方检验、t检验、相关分析、回归分析等。
3.4 统计学的应用方法统计学的应用方法主要包括数理统计、贝叶斯统计、时间序列分析、生存分析、图像识别等。
统计学知识点总结

1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。
其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。
通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结.2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。
3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系。
其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势.4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性—定量—定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。
统计学复习总结

统计学复习总结第一篇:统计学复习总结3.样本:从总体中抽样部分个体的过程称为抽样,所抽得的部分为样本。
(从样本中随机抽取的有代表性的一部分)4.统计量:是统计理论中用来对数据进行分析、检验的变量。
5.频率:是指单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量。
6.概率:是描写某一事件发生的可能性大小的一个量度。
8.系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小。
9.随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂以校正,但是由于各种偶然因素的影响也会造成同一对象多次测定的结果完全不一致。
这种误差往往没有固定的倾向,有时高有时低。
12.标准误:也称标准误差,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度。
13.标准差:是一种表示分散程度的统计观念。
14.指标:指预期中打算达到的指数、规格、标准。
15.相对数:是两个相关的绝对数之比,也可以是两个统计指标之比。
16.率:表示在一定范围内某现象的发生数与可能发生的总数之比,说明某现象出现的强度活频率。
17.构成比:表示某事物内部各组成部分在整体中所占的比重,常以百分比表示。
18.相对比:是A、B两个关联指标之比,用以描述两者的对比水平。
19 统计学是一门用于观察资料的应用科学它具有严密的科学逻辑无限的应用性和以高等数学为基础的计算性它广泛的涉及到自然科学人文科学和管理科学的各个领域20医学统计研究对象及特征同质性大量性变异性平均数是描述一组同质的计量资料集中趋势(平均水平)的指标22 算术均数是描述一组同质的计量资料集中趋势(平均水平)的指标23几何均数是描述一组同质的呈对数整台分布的计量资料变异系数的指标1极差即最大值与最小值之差。
四分位数间距2离均差平方和方差标准差变异系数 3方差4标准差5变异系数 25参数估计包括点估计和区间估计搜集资料一资料来源1统计报表2报告卡如报出生率换染率3日常工作记录如住院病历4专题研究或实验研究5学术专题研究会讨论会经验交流会6图书资料7国际互联网二资料要求(一)三性及时性正确性完整性(二)四原则对照原则均衡原则随机化原则重复原则三整理资料核对 2 分组按质量等级分组3 归纳手工法机械法 4 列表1.什么叫医学统计学?医学统计学与统计学、卫生统计学、生物统计学有何联系与区别?医学统计学:是统计学的重要应用领域,它运用概率论、数理统计的原理和方法,结合医学实践,阐述统计设计的基本原理和步骤,研究资料和信息收集、整理和分析,进行科学推断的一门应用统计学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学知识点汇总一、统计学统计学是一门关于数据资料的收集、整理、分析和推断的科学。
三、统计的特点(1)数量性:社会经济统计的认识对象是社会经济现象的数量方面,包括现象的数量表现、现象之间的数量关系和质量互变的数量界限。
(2)总体性:社会经济统计的认识对象是社会经济现象的总体的数量方面。
例如,国民经济总体的数量方面、社会总体的数量方面、地区国民经济和社会总体的数量方面、各企事业单位总体数量方面等等。
(3)具体性:社会经济统计的认识对象是具体事物的数量方面,而不是抽象的量。
这是统计与数学的区别。
(4)社会性:社会经济现象是人类有意识的社会活动,是人类社会活动的条件、过程和结果,社会经济统计以社会经济现象作为研究对象,自然具有明显的社会性。
四、统计工作过程(1)统计设计根据所要研究问题的性质,在有关学科理论的指导下,制定统计指标、指标体系和统计分类,给出统一的定义、标准。
同时提出收集、整理和分析数据的方案和工作进度等。
(2)收集数据统计数据的收集有两种基本方法,实验法和调查法。
(3)整理与分析描述统计是指对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用的统计信息。
推断统计是在对样本数据进行描述的基础上,利用一定的方法根据样本数据去估计或检验总体的数量特征。
(4)统计资料的积累、开发与应用对于已经公布的统计资料需要加以积累,同时还可以进行进一步的加工,结合相关的实质性学科的理论知识去进行分析和利用。
五、统计总体的特点(1)大量性大量性是指构成总体的总体单位数要足够的多,总体应由大量的总体单位所构成,大量性是对统计总体的基本要求;(2)同质性同质性是指总体中各单位至少有一个或一个以上不变标志,即至少有一个具有某一共同标志表现的标志,使它们可以结合起来构成总体,同质性是构成统计总体的前提条件;(3)变异性变异性就是指总体中各单位至少有一个或一个以上变异标志,即至少有一个不同标志表现的标志,作为所要研究问题的对象。
变异性是统计研究的重点。
六、标志与指标的区别与联系■区别:标志是说明总体单位特征的;指标是说明总体特征的。
标志中的品质标志不能用数量表示;而所有的指标都能用数量表示。
标志(指数量标志)不一定经过汇总,可直接取得;而指标(指数量指标)一定要经过汇总才能取得。
标志一般不具备时间、地点等条件;但完整的统计指标一定要讲明时间、地点、范围。
■联系:有些数量标志值汇总可以得到指标的数值。
既可指总体各单位标志量的总和,也可指总体单位数的总和。
数量标志与指标之间存在变换关系。
随着统计目的的改变,如果原来的总体单位变成了统计总体,则与之相对应的数量标志就成了统计指标。
七、统计指标体系统计指标体系是各种互相联系的指标群构成的整体,用以说明所研究的社会经济现象各方面互相依从和互相制约的关系。
八、相对指标相对指标又称统计相对数。
它是两个有联系的现象数值的比率,用以反映现象的发展程度、结构、强度、普遍程度或比例关系。
(1)结构相对指标结构相对指标是在对总体分组的基础上,以总体总量作为比较标准,求出各组总量占总体总量的比重,来反映总体内部组成情况的综合指标。
(2)比例相对指标比例相对指标是总体中不同部分数量对比的相对指标,用以分析总体范围内各个局部、各个分组之间的比例关系和协调平衡状况。
(3)比较相对指标比较相对指标是不同单位的同类现象数量对比而确定的相对指标,用以说明某一同类现象在同一时间内各单位发展的不平衡程度,以表明同类实物在不同条件下的数量对比关系。
(4)强度相对指标强度相对指标是两个性质不同但有一定联系的总量指标之间的对比,用来表明某一现象在另一现象中发展的强度、密度和普遍程度。
(5)计划完成程度相对指标计划完成程度相对指标是用来检查、监督计划执行情况的相对指标。
它以现象在某一段时间内的实际完成数与计划数对比,来观察计划完成程度。
九、权数指变量数列中各组标志值出现的次数,是变量值的承担者,反映了各组的标志值对平均数的影响程度十、中位数将总体各单位标志值按大小顺序排列后,指处于数列中间位置的标志值,用 表示十一、众数指总体中出现次数最多的变量值,用 表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。
十二、标志变异指标统计上用来反映总体各单位标志值之间差异程度大小的综合指标,也称做标志变动度。
十三、标准差——标准差是各个数据与其算术平均数的离差平方的算术平均数的开平方根,用 来表示;标准差的平方又叫作方差,用 来表示。
【例A 】某售货小组5个人,某天的销售额分别为440元、480元、520元、600元、750元,求该售货小组销售额的标准差。
解:eM 0Mσ2σ()元558527905750600520480440==++++=X即该售货小组销售额的标准差为109.62元。
十四、变异系数——各种变指标与其算术平均数之比。
一般用V 表示。
【例】某年级一、二两班某门课的平均成绩分别为82分和76分,其成绩的标准差分别为15.6分和14.8分,比较两班平均成绩代表性的大小。
解:一班成绩的标准差系数为:二班成绩的标准差系数为:因为 ,所以一班平均成绩的代表性比二班大。
十五、时间数列——把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的统计数列,又称动态()()()()元62.10956008055587505584402221==-++-=-=∑= N XXNi iσ﹪﹪﹪02.19100826.15100111=⨯=⨯=X V σσ﹪﹪﹪47.19100768.14100222=⨯=⨯=X V σσ21σσV V ≤数列。
※时间数列的研究意义(1)能够描述社会经济现象的发展状况和结果(2)能够研究社会经济现象的发展速度、发展趋势和平均水平,探索社会经济现象发展变化的规律,并据以对未来进行统计预测;(3)能够利用不同的但互相联系的时间数列进行对比分析或相关分析。
十六、统计指数——统计指数是研究社会经济现象数量关系的变动状况和对比关系的一种特有的分析方法。
※指数的作用❑综合反映复杂现象总体变动的方向和程度;❑分析复杂现象总体变动中因素变动的影响。
❑研究事物的长期变动趋势;❑研究平均指标变动及其受水平因素和结构因素变动的影响程度※统计指数的性质❑综合性;反映的不是个体事物的变化,而是综合反映不同性质的各种事物的总体变化。
❑平均性;统计指数所表示的综合变动是多种事物的平均变动,其数值是各个个体事物数量变化的代表值。
❑相对性;统计指数是同类现象不同时间、不同空间的数值之比,一般用相对数或比率形式表示。
❑代表性。
统计指数的编制一般以若干重要项目为代表,反映总体变化程度和变动趋势。
十七、总指数按其采用的指标形式不同分为:综合指数:复杂总体的两个相应的指标对比,采用综合公式计算。
平均指数:复杂总体中个体指数的平均数,一般采用算术平均数和加权平均数的方法计算。
⑴ 加权算术平均指数⑵ 加权调和平均指数【例1】计算甲、乙两种商品的价格总指数【例2】计算甲、乙两种商品的销售量总指数∑∑∑∑==0001010P Q P Q Q Q PQ P Q K Q 110111111/1P Q P P PQ PQ PQ K P ∑==∑∑∑()元﹪解:216082401040012.12682401040067.140025.11000010400111111111=-=-==+==∑∑∑∑P Q k P Q P Q kP Q K ppP )(850580%1163020302.1201.100001000101万元=-=-∑=+⨯+⨯=∑==∑∑∑∑P Q P Q Q Q P Q P Q Q Q PQ P Q K Q合计 — 50 70 ——如何根据上述资料计算两种商品的价格总指数?解:十八、平均指数与综合指数的区别十九、可变构成指数(平均指标指数)——将两个不同时期或不同单位的同一经济内容的平均指标对比,所计算的动态对比关系的相对数,称为平均指标指数,亦称为可变构成指数。
)(125870%1212.1301.12045250001110001110111万元=-=∑-=⨯+⨯+=∑==∑∑∑∑P Q Q Q P Q P Q Q Q PQ PQ P Q K P 1111f f x x ∑∑=00f f x x ∑∑=11100011101f f x f fx f f x f f x x x ∑∑∑∑=∑∑∑∑= 可变构成指数 =【例】已知某公司下属三个商场的职工人数和工资资料如下,分析该公司总平均工资水平的变动情况,并分析各商场工资水平及人数结构因素对其影响的程度和绝对数额。
解:三个商场职工的平均工资:报告期平均工资:基期平均工资:职工平均工资变动额为:计算表明,三个商场职工的平均工资指数为109.84%,即平均工资上升了9.84%,平均工资上升额为40.48元。
()元28.4114701000033.19000=⨯==∑∑ffX X ()元71.4045101000064.201101=⨯==∑∑ff X X ﹪:则总平均工资的变动为可变84.10928.41176.45101===X X K ()元48.4028.41176.45101=-=-X X二十、指数体系——指经济上具有一定联系,并且具有一定的数量对等关系的三个或三个以上的指数所构成的整体。
※简单现象总体总量指标变动的两因素分析※复杂现象总体总量指标变动的两因素分析※复杂现象总体总量指标变动的多因素分析二十一、函数关系——指变量之间存在着确定性依存关系。
即当一个或一组变量每取一个值时,相应的另一个变量必然有一个确定值与之对应。
二十二、相关关系——指变量之间存在着非确定性依存关系。
即当一个或一组变量每取一个值时,相应的另一个变量可能有多个不同值与之对应。
二十三、相关关系的测定定性分析:是依据研究者的理论知识和实践经验,对客观现象之间是否存在相关关系,以及何种关系作出判断定量分析:在定性分析的基础上,通过编制相关表、绘制相关图、计算相关系数与判定系数等方法,来判断现象之间相关的方向、形态及密切程度二十四、相关系数——在直线相关的条件下,用以反映两变量间线性相关密切程度的统计指标,用r 表示()()()()()2222222)(∑∑∑∑∑∑∑∑∑∑---=-⋅---==y y n x x n yx xy n ny y n x x n y y x x S S S r yx xy相关系数r的取值范围:-1≤r≤1※0<|r|<1表示存在不同程度线性相关:|r| < 0.4 为低度线性相关;0.4≤|r| <0.7为显著性线性相关;0.7≤|r| <1.0为高度显著性线性相关。