概率统计知识点全面总结

合集下载

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结

(完整版)(最全)高中数学概率统计知识点总结-CAL-FENGHAI.-(YICAI)-Company One1概率与统计一、普通的众数、平均数、中位数及方差1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+-二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

高考复习概率与统计知识点归纳总结

高考复习概率与统计知识点归纳总结

概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。

2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。

4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。

3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。

分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

概率 统计知识点总结

概率 统计知识点总结

概率统计知识点总结一、概率统计基本概念1. 随机事件和样本空间在概率统计中,随机事件是指在一次试验中可能发生的结果,例如抛硬币的结果可以是正面或反面。

样本空间是指所有可能的结果的集合,例如抛硬币的样本空间为{正面,反面}。

2. 概率和基本概率公式概率是指某一事件在所有可能事件中发生的频率,通常用P(A)表示。

基本概率公式是P(A)=n(A)/n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间的大小。

3. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,通常表示为P(A|B)。

4. 独立事件两个事件A和B称为独立事件,意味着事件A的发生不受事件B的影响,其概率关系为P(A∩B)=P(A)×P(B)。

二、概率统计的数据分析方法1. 描述性统计描述性统计是对数据进行总结和描述的方法,包括平均数、中位数、众数、标准差、极差等指标,用来描述数据的集中趋势、离散程度和分布形状。

2. 探索性数据分析探索性数据分析是一种用图表和统计分析方法探索数据背后的规律和结构的方法,通过绘制图表和计算相关指标,发现数据之间的关系、趋势和异常值。

3. 统计推断统计推断是根据样本数据对总体参数进行推断的方法,包括点估计和区间估计,以及假设检验。

三、概率统计的应用1. 随机过程随机过程是研究随机事件随时间或空间变化的规律性的数学模型,包括马尔可夫过程、布朗运动、泊松过程等,广泛应用于金融、电信、生物等领域。

2. 统计建模统计建模是根据数据建立数学模型,预测未来的趋势和规律,包括线性回归模型、时间序列模型、机器学习模型等。

3. 贝叶斯统计贝叶斯统计是一种基于贝叶斯定理的概率统计方法,它将先验信息和样本数据结合起来,进行参数估计和模型推断,常用于医学、生态学、市场营销等领域。

四、概率统计的挑战和发展1. 大数据与统计随着大数据时代的到来,传统的统计方法和模型已经无法满足大规模、高维度、非结构化数据的分析需求,需要发展新的统计方法和算法。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

概率统计知识点总结

概率统计知识点总结

概率统计知识点总结基本概念:随机事件:在一次试验中可能发生的结果。

例如,抛硬币的结果可以是正面或反面。

样本空间:所有可能的结果的集合。

例如,抛硬币的样本空间为{正面,反面}。

概率:描述随机事件发生可能性的数学工具。

当重复试验的次数n逐渐增大,频率值会趋于某一稳定值,这个值就是概率。

事件之间的运算律:包括交换律、结合律、分配律和摩根定理。

频率与概率:频数:事件A发生的次数。

频率:频数除以总数。

概率的性质包括:P(空集)=0,有限可加性,加法公式P(A+B)=P(A)+P(B)-P(AB),以及古典概型中利用排列组合求解简单问题的概率。

条件概率:指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B)。

相关的有乘法公式P(AB)=P(B|A)P(A),以及全概率公式与贝叶斯公式。

独立性检验:如果两个事件A和B满足等式P(AB)=P(A)P(B),则称事件A、B相互独立。

概率分布:描述了随机变量可能取值的概率情况。

分为离散分布(如伯努利分布、二项分布、泊松分布等)和连续分布(如均匀分布、正态分布、指数分布等)。

总体、单位和样本:总体:待认识的客观事物的全体。

单位:组成总体的各个个体。

样本:总体的部分单位组成的集合。

标志、指标、参数和统计量:标志:分为品质标志(如性别)和数量标志(如收入)。

指标:反映现象总规模、总水平的统计指标称为数量指标;反映现象相对水平和工作质量的统计指标称为质量指标。

参数:用来描述总体的特征。

这些知识点构成了概率统计的核心内容,广泛应用于各个领域,从科学研究到日常生活决策,都起着重要的作用。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

高中数学概率统计知识点总结

高中数学概率统计知识点总结

高中数学概率统计知识点总结一、基本概念随机事件:在条件S下可能发生也可能不发生的事件,称为相对于条件S的随机事件。

必然事件:在条件S下,一定会发生的事件,称为相对于条件S的必然事件。

不可能事件:在条件S下,一定不会发生的事件,称为相对于条件S的不可能事件。

确定事件:必然事件和不可能事件统称为相对于条件S的确定事件。

频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数。

对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,则把这个常数记作P(A),称为事件A的概率。

二、概率的计算互斥事件的概率加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)。

独立事件的概率乘法公式:如果事件A与事件B独立,则P(AB)=P(A)P(B)。

古典概型及其概率计算公式:如果试验的样本空间S只包含有限个样本点,且每个样本点发生的可能性相同,则称这种概率模型为古典概型。

在古典概型中,事件A的概率P(A)等于事件A包含的样本点个数除以样本空间S中样本点的总数。

三、随机变量及其分布随机变量:在随机试验中可能出现的各种结果所对应的变量称为随机变量。

随机变量可以是离散型或连续型。

离散型随机变量的分布列:对于离散型随机变量X,其所有可能取值的概率组成的列表称为X的分布列。

期望与方差:随机变量的期望值表示随机变量取值的平均水平,方差表示随机变量取值与其期望值的离散程度。

四、几何概型几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。

几何概型的概率计算:在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)等于区域d的测度与区域D的测度的比值。

以上是高中数学概率统计的主要知识点。

掌握这些知识点并灵活应用于解题中,是学好数学概率统计的关键。

概率统计中考知识点总结

概率统计中考知识点总结

概率统计中考知识点总结1. 概率的基本概念概率是描述随机事件发生可能性大小的数值。

在概率统计中,我们通常用P(A)表示事件A发生的概率,该概率的取值范围是0≤P(A)≤1。

当P(A)=1时,表示事件A一定发生;当P(A)=0时,表示事件A一定不会发生;当0<P(A)<1时,表示事件A可能发生,但也可能不发生。

2. 概率的加法公式当事件A和事件B互斥时,它们的概率之和等于它们发生的并集的概率,即P(A∪B)=P(A)+P(B)。

当事件A和事件B不互斥,即存在交集时,加法公式可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。

3. 概率的条件概率条件概率表示在已知事件B发生的条件下,事件A发生的概率。

它的计算公式为P(A|B)=P(A∩B)/P(B)。

条件概率的计算在很多实际问题中都有着重要的应用,比如医学诊断、金融风险管理等领域。

4. 概率的独立性两个事件A和B称为相互独立,如果它们的发生不会相互影响,即P(A|B)=P(A)或者P(B|A)=P(B)。

在概率统计中,独立事件的性质给予我们便利的计算条件,简化了问题的复杂性。

5. 随机变量和概率分布随机变量是取值不确定的变量,它可以是离散型的也可以是连续型的。

在概率统计中,我们通常用概率分布来描述随机变量的分布规律。

常见的概率分布包括二项分布、正态分布、泊松分布等,它们在实际问题中有着广泛的应用。

6. 统计推断统计推断是利用样本数据对总体特征进行推断和估计的过程。

在统计学中,我们通常使用点估计和区间估计来估计总体参数的值,同时利用假设检验来对统计推断进行检验。

7. 相关性和因果关系在概率统计中,我们也经常研究变量之间的相关性和因果关系。

相关性研究变量之间是如何随着变化而变化的规律,而因果关系则研究变量之间的因果关系。

这些研究成果在科学研究和实际问题中都有着重要的应用价值。

以上是概率统计中的一些重要知识点总结,概率统计在现代社会中有着广泛的应用,我们需要认真学习和掌握这些知识,以便更好地理解和应用在实际问题中。

概率统计每章知识点总结

概率统计每章知识点总结

概率统计每章知识点总结第一章:基本概念1.1 概率的概念1.2 随机变量及其分布1.3 大数定律和中心极限定理第一章主要介绍了概率统计的基本概念,包括概率的定义、随机变量的概念以及大数定律和中心极限定律。

概率是描述事物发生可能性的数学工具,是对随机事件发生规律的度量和描述。

随机变量是描述随机现象的数学模型,可以用来描述随机现象的特征和规律。

大数定律和中心极限定律则是概率统计中重要的两个定律,它们描述了大量独立随机变量的和的分布规律。

第二章:随机事件的概率计算2.1 古典概型2.2 几何概型2.3 等可能概型2.4 条件概率2.5 独立性第二章主要介绍了随机事件的概率计算方法,包括古典概型、几何概型、等可能概型、条件概率和独立性。

古典概型是指实验的样本空间是有限的且每个样本点的概率相等的情形,可以直接计算出随机事件的概率。

几何概型是指随机事件的概率与其所在的几何形状有关,需要通过几何方法来计算。

等可能概型是指实验的样本空间是有限的,但不同样本点的概率不一定相等,需要通过计算总体概率来计算随机事件的概率。

第三章:随机变量及其分布3.1 随机变量及其分布3.2 数学期望3.3 方差3.4 常用离散型随机变量的分布3.5 常用连续型随机变量的分布第三章主要介绍了随机变量及其分布的知识,包括随机变量的概念、数学期望、方差以及常用的离散型和连续型随机变量的分布。

随机变量是描述随机现象的数学模型,可以是离散型的也可以是连续性的。

数学期望和方差是描述随机变量分布特征的重要指标,它们能够描述随机变量的集中程度和离散程度。

离散型随机变量常用的分布包括伯努利分布、二项分布、泊松分布;连续型随机变量常用的分布包括均匀分布、正态分布、指数分布等。

第四章:多维随机变量及其分布4.1 二维随机变量4.2 多维随机变量4.3 边际分布4.4 条件分布4.5 独立性第四章主要介绍了多维随机变量及其分布的知识,包括二维随机变量、多维随机变量、边际分布、条件分布和独立性。

大学概率统计知识点总结

大学概率统计知识点总结

大学概率统计知识点总结一、概率论1. 随机事件和样本空间随机事件是指在一次试验中不能确定具体结果的事件,样本空间是指实验的所有可能结果组成的集合。

在概率论中,我们经常需要描述随机事件发生的可能性,这就会引出概率的概念。

2. 概率的公理化定义在概率论中,概率的公理化定义是基础,它包括三个主要公理:非负性、规范性和可列可加性。

非负性要求概率是非负的,规范性要求样本空间的概率为1,可列可加性要求对于任意可数个两两互斥事件的概率等于这些事件的概率之和。

3. 条件概率和事件的独立性条件概率是指在另一事件已发生的条件下,某事件发生的概率。

事件的独立性是指两个事件的发生互相不影响。

条件概率和独立性是概率论中的两个重要概念,也是很多概率分布和概率模型的基础。

4. 随机变量及其分布随机变量是指随机试验结果的数值表示,它可以是离散的也可以是连续的。

在概率论中,我们经常需要讨论随机变量的分布,包括离散分布和连续分布。

常见的离散分布有伯努利分布、二项分布、泊松分布等,常见的连续分布有正态分布、指数分布、均匀分布等。

5. 随机变量的函数随机变量的函数也是一个随机变量,它的分布可以通过原随机变量的分布来推导。

比如,两个随机变量的和或积也是一个随机变量,它的分布可以通过原随机变量的分布来求得。

6. 大数定律和中心极限定理大数定律指的是当重复独立试验次数趋于无穷时,样本均值趋近于总体均值。

中心极限定理则说明了当随机变量独立同分布,并且总体分布非常靠近正态分布时,它们的和的分布近似于正态分布。

二、数理统计1. 统计量和抽样分布统计量是用来对总体参数进行估计或检验的量,它是样本的函数。

在数理统计中,我们经常需要推导统计量的分布,这就引出了抽样分布的概念。

比如,样本均值的分布可以用中心极限定理来近似,样本方差的分布可以用t分布来近似。

2. 参数估计参数估计是统计学中的一个重要问题,它分为点估计和区间估计。

点估计是指用统计量估计总体参数的值,比如使用样本均值来估计总体均值。

统计和概率知识点总结

统计和概率知识点总结

第一章数据的收集、整理与描述1、全面调查:考察全体对象的调查方式叫做全面调查。

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3、总体:要考察的全体对象称为总体。

4、个体:组成总体的每一个考察对象称为个体。

5、样本:被抽取的所有个体组成一个样本。

6、样本容量:样本中个体的数目称为样本容量。

7、样本平均数:样本中所有个体的平均数叫做样本平均数。

8、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。

9、频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

10、频率:频数与数据总数的比为频率。

11、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

第二章 数据的分析1、平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++= 叫做这n 个数的平均数,x 读作“x 拔”。

2、加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里nf f f k =++ 21)。

那么,根据平均数的定义,这n 个数的平均数可以表示为n f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。

3、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

4、众数:一组数据中出现次数最多的数据就是这组数据的众数(mode )。

5、极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

6、在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。

概率与统计基本知识点总结

概率与统计基本知识点总结

概率与统计基本知识点总结1.概率理论:概率的定义:概率是描述随机事件发生可能性的数值,通常用介于0和1之间的数表示。

概率的基本性质:概率值在0到1之间,且所有可能事件的概率之和为1事件的独立性:两个或多个事件相互独立,意味着一个事件的发生不受其他事件发生与否的影响。

加法法则:若A和B是两个事件,则它们联合发生的概率等于它们各自发生的概率之和减去它们同时发生的概率。

乘法法则:对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率之积。

条件概率:事件A在事件B发生的条件下发生的概率,表示为P(A,B)。

贝叶斯定理:根据已知的条件概率,求解另一个条件概率的计算公式。

2.随机变量与概率分布:随机变量:将随机事件的结果映射到实数上的变量。

离散型随机变量:取有限个或可数个值的随机变量。

连续型随机变量:取任意实数值的随机变量。

概率分布:描述随机变量取各个值的概率的函数。

离散型概率分布:包括离散均匀分布、二项分布、泊松分布等。

连续型概率分布:包括连续均匀分布、正态分布、指数分布等。

期望:随机变量的平均值,反映其分布的中心位置。

方差:随机变量偏离其均值的程度,反映其分布的离散程度。

3.统计推断:总体与样本:总体是指研究对象的全体,样本是从总体中抽取的一部分个体。

参数与统计量:总体的数值特征称为参数,样本的数值特征称为统计量。

抽样分布:样本统计量的概率分布。

中心极限定理:在一定条件下,样本容量足够大时,样本的均值近似服从正态分布。

置信区间:用样本统计量作为总体参数的估计范围。

假设检验:通过对样本数据的分析,判断总体参数是否满足其中一种假设。

概率统计知识点汇总

概率统计知识点汇总

概率统计知识点汇总1.分类加法计数原理完成一件事有n 类不同的方案,在第一类方案中有m 1种不同的方法,在第二类方案中有m 2种不同的方法,……,在第n 类方案中有m n 种不同的方法,则完成这件事情,共有N =m 1+m 2+…+m n 种不同的方法. 2.分步乘法计数原理完成一件事情需要分成n 个不同的步骤,完成第一步有m 1种不同的方法,完成第二步有m 2种不同的方法,……,完成第n 步有m n 种不同的方法,那么完成这件事情共有N =m 1×m 2×…×m n 种不同的方法. 3.两个原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.4.排列与排列数公式 (1)排列与排列数从n 个不同元素中取出m m ≤n 个元素――――――――→按照一定的顺序排成一列排列―――――→所有不同排列的个数排列数(2)排列数公式A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !.(3)排列数的性质 ①A nn =n !; ②0!=1. 5.组合与组合数公式 (1)组合与组合数从n 个不同元素中取出m m ≤n 个元素――――→合成一组组合――――――→所有不同组合的个数组合数(2)组合数公式C m n=A mn A m m=nn -n -n -m +m !=n !m !n -m !.(3)组合数的性质①C 0n =1; ②C mn =C n -mn ; ③C m n +C m -1n =C mn +1.6.排列与组合问题的识别方法7.二项式定理(1)定理: (a +b )n=C 0n a n+C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项:第k +1项为:T k +1=C k n an -k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C kn (k =0,1,2,…,n ). 8.二项式系数的性质9.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率. (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ). 10.事件的关系与运算11.理解事件中常见词语的含义:(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A -B -;(4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A -B -. 12.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (E )=1. (3)不可能事件的概率:P (F )=0.(4)概率的加法公式:如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).13.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 14.基本事件的特点(1)任意两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 15.古典概型(1)定义:具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验中所有可能出现的基本事件只有有限个. ②每个基本事件出现的可能性相等.(2)古典概型的概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.16.几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的概率公式:P (A )=构成事件A 的区域长度面积或体积试验的 所构成的区域长度面积或体积.17.条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P AB P A =n ABn A.(2)条件概率具有的性质: ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 18.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.19.离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X ,Y ,ξ,η,…表示.所有取值可以一一列出的随机变量,称为离散型随机变量. 20.离散型随机变量的分布列及其性质(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表(2)离散型随机变量的分布列的性质:①p i ≥0(i =1,2,…,n ); ②∑ni =1p i =1. 21.常见离散型随机变量的分布列 (1)两点分布:若随机变量X 服从两点分布,则其分布列为其中p =P (X =1)称为成功概率. (2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=C kM C n -kN -MC n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称(3①独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.②在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p),并称p 为成功概率.22.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为<1>均值:称E (1122i i n n 它反映了离散型随机变量取值的平均水平.<2>方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D X 为随机变量X 的标准差.<3>均值与方差的性质E aX +b = D aX +b =(a ,b 为常数).<4>两点分布与二项分布的均值、方差23.(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称;(3)曲线在x =μ处达到峰值1σ2π;(4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. (7)正态分布的三个常用数据(不需记忆) ① P (μ-σ<X ≤μ+σ)=0.682 6; ② P (μ-2σ<X ≤μ+2σ)=0.954 4; ③ P (μ-3σ<X ≤μ+3σ)=0.997 4. 24.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样. (2)常用方法:抽签法和随机数表法. 25.系统抽样(1)步骤:①先将总体的N 个个体编号;②根据样本容量n ,当N n 是整数时,取分段间隔k =N n; ③在第1段用简单随机抽样确定第一个个体编号l (l ≤k ); ④按照一定的规则抽取样本.(2)适用范围:适用于总体中的个体数较多时. 26.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)适用范围:适用于总体由差异比较明显的几个部分组成时.27.三种抽样方法的比较(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图. 29.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. (2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 30.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指 的一列数,叶是从茎的旁边生长出来的数. 31.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据叫做这组数据的中位数. (3)平均数:把a 1+a 2+…+a nn称为a 1,a 2,…,a n 这n 个数的平均数.(4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据 标准差为s =1nx 1-x2+x 2-x2+…+x n -x2]方差为s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]32.变量间的相关关系(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.(2)从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. 33.两个变量的线性相关(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2)回归方程为y ^=b ^x +a ^,其中 ,a ^=y -b ^x .(3)通过求Q = (y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法. (4)相关系数:当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |大于0.75时,认为两个变量有很强的线性相关性. 34.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为:K 2=n ad -bc 2a +ba +cb +dc +d(其中n =a +b +c +d 为样本容量).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点总结:统计与概率
I 统计
1.三大抽样 (1)基本定义:
① 总体:在统计中,所有考查对象的全体叫做全体.
② 个体:在所有考查对象中的每一个考查对象都叫做个体. ③ 样本:从总体中抽取的一部分个体叫做总体的样本. ④ 样本容量:样本中个体的数目叫做样本容量. (2)抽样方法:
①简单随机抽样:逐个不放回、等可能性、有限性。

=======★适用于总体较少★
抽签法:整体编号(
1~N )放入不透明的容器中搅拌均匀逐个抽取n 次,即可得样本容量为
n 的样本。

随机数表法:整体编号(等位数,如001、111不能是1、111) 从0~9中随机取一行一列然后初方向随机
(上、下、左、右)重复,超过范围则忽略不计直至取得以n 为样本容量的样本。

②系统抽样:容量大.等距,等可能。

=======★适用于总体多★
用随机方法编号,若N 无法被整除,则剔除后再分组,n
N
k。

再用简单随机抽样法来抽取一个个体,设为l ,则编号为l ,k+l ,2k+l ……(n-1)k ,抽出容量为n 的样本。

(每组编号相同)。

③分层抽样:总体差异明显.按所占比例抽取.等可能.=======★适用于由差异明显的几部分构成的总体★
总体有几个差异明显的部分构成,经总体分成几个部分,然后按照所占比例进行抽样.抽样比为:k =n
N
3.总体分布的估计: (1)一表二图:
①频率分布表——数据详实
②频率分布直方图——分布直观
③频率分布折线图——便于观察总体分布趋势
★注:总体分布的密度曲线与横轴围成的面积为1。

(2)茎叶图:
①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数.众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

4.样本分析
(1)在频率直方图中计算众数.平均数.中位数
众数 在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。

(最多的那个)--忽视其他数据
中位数 在频率分布直方图中,中位数左边和右边的直方图的面积应该相等。

(最中间的,若偶取平均)--对极端值不敏感
平均数 频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和 。

--可靠性低 在频率分布直方图中,纵轴表示
频率
组距
,数据落在各小组内的频率用各小矩形的面积表示.各小矩形的面积总和等于1. ,此关系式的变形为频数
频率=样本容量,也可变形为样本容量×频率=频数。

(2)
① 算数平均数
方差
★注:特别地,对于连续型的随机变量在分好组后,其i 21 x , ... , x , x 应该取每一组的组中值近似的表示 ★注:方差与标准差越小,说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

5.线性回归方程
①变量之间的两类关系:函数关系(确定性关系)与相关关系(非确定性关系); ②制作散点图,判断线性相关关系;
③线性回归方程: (最小二乘法)
注:当r >0时,表明两个变量正相关当r <0时,表明两个变量负相关.
r 的绝对值越接近于1r 的绝对值越接近于0通常|r |大于0.75时,认为两个变量有很强的线性相关性.相关系数r =
极差(全距) 样本中最大值与最小值的差值
6. 独立性检验
(1)2×2列联表:假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表为:
K2=n(ad-bc)2
(a+b)(a+c)(b+d)(c+d)
(其中n=a+b+c+d为样本容量).
(2)用K2的大小可以决定是否拒绝原来的统计假设H0,若K2值较大,就拒绝H0,即拒绝事件A与B无关.
(3)当K2≥2.706时,则有90%以上的把握说事件A与B有关;
当K2≥3.841时,则有95%以上的把握说事件A与B有关;
当K2≥6.635时,则有99%以上的把握说事件A与B有关.
II概率
1. 事件
必然事件 :在条件S下一定会发生的事件,叫作相对于条件S的必然事件(P=1)
不可能事件:在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件(P=0)
确定事件 :必然事件与不可能事件统称为相对于条件S的确定事件,简称确定事件
随机事件 :在条件S下,可能发生也可能不发生的事件,叫作相对于条件S的随机事件[P∈(0,1)]
2.事件的关系
3.概率模型
(1)古典概型(有限、等可能)的概率公式.
(2)几何概型(无限,等可能)的概率公式.
(3)条件概率. 在A 发生的条件下B
(4)相互独立事件同时发生的概率. 若A ,B 相互独立,则P (AB )=P (A )·P (B ). (5)若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B )

4.独立重复试验与二项分布
若事件A 在一次试验发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率为:
P n (k )=C k n p k (1-p )n -
k
,k =0,1,2,…,n .用X 表示事件A 在n 次独立重复试验中发生的次数,
5.超几何分布
在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,,k =0,1,2,…,m ,
其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *
,此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 6.离散型随机变量的均值、方差
(1)离散型随机变量ξ(读作:可系)的分布列为:
离散型随机变量ξi 12i p n =1(i =1,2,3,…,n).
D (ξ)=(x 1-
E (ξ))2·p 1+(x 2-E (ξ))2·p 2+…+(x i -E (ξ))2·p i +…+(x n -E (ξ))2·p n 叫做随机变量ξ的方差. (3)数学期望、方差的性质.
①E (aξ+b )=aE (ξ)+b ,D (aξ+b )=a 2D (ξ).
②X 服从二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). ③X 服从两点分布,则E (
X )=p ,D (X )=p (1-p ).
7.正态分布
总体密度曲线: 频率分布直方图无限接近于一条光滑曲线(如P1下方)
μ是均值,x=μ对称轴,σ(σ>0)是标准差,σ2是方差。

一般地,如果对于任何实数a b <,随机变量X 满足,
()()b
a
P a X B x dx μσϕ<≤=
⎰,
则称 X 的分布为正态分布.正态分布完全由参数μ和σ(读作:习个么儿)确定, 因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN
正态分布具有:两头低、中间高、左右对称的特点,在X
轴上方且与X 轴不相交,关于x=μ对称,x=μ为最高点。

σ越大,曲线越“矮胖”,总体分布越分散; σ越小.曲线越“瘦高”,总体分布越集中。

σ3原则:
6826.0)(=+≤<-σμσμX P 9544.0)22(=+≤<-σμσμX P 9974)33(=+≤<-σμσμX P
通常认为服从正态分布),(2
σμN 的随机变量X 只取)3,3(σμσμ+-之间的值,并简称之为σ3原则。

相关文档
最新文档