小学五年级奥数 容斥原理(二)_PDF压缩
2容斥相关
![2容斥相关](https://img.taocdn.com/s3/m/04687d6b561252d380eb6e86.png)
容斥原理(1)容斥原理(2)知识点-并集:A 和B 并集是有所有A 的元素和所有B 的元素,而没有其他元素的集合。
A 和B 的并集通常写作"A ∪B"。
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理是公务员考试行政职业能力测验数量关系中较难的一类题,一般的解题思路有两种:1、公式法,适用于“条件与问题”都可直接代入公式的题目;2、文氏图示意法,即当条件与问题不能直接代入公式时,需要利用该方法解决。
一般而言,能够直接代入公式的题较容易,而需要利用文氏图的题目相对灵活,容易给考生解题带来不便。
如果考生能够对公式中的各个要素以及文氏图上的各个部分所代表的含义有深入了解,则可以快速抓住解题关键。
例:某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的—个课外活动小组。
现已知参加英语小组的有17人。
参加语文小组的有30人,参加数学小组的有13人。
如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?A.15B.16C.17D.18对于这道题,一般思路为:将题目条件带入三集合文氏图,假设只参加两个小组的人数分别为x,y,z人,由加减关系可以得到只参加一个小组的人数的表示形式,根据总人数可以列出方程:(13-5-x-y)+(17-5-x-y)+(30-5-x-y)+x+y+z+5=35,从而得到x+y+z=15,即为所求。
该方法是利用文氏图和列方程的方法进行解题,方法简单易懂,但是实际操作起来消耗时间较多,下文将给出本题的另外两种解法:解法1:文氏图与三集合标准型公式相结合。
三集合标准型的公式如下:AUBUC=A+B+C-(AB+AC+BC)+ABC。
将语文小组的人数视为A,数学小组人数视为B,英语小组人数视为C,分别代入公式可以得到AB+AC+BC=30。
五年级奥数:用例题讲解【容斥问题】的解题方法
![五年级奥数:用例题讲解【容斥问题】的解题方法](https://img.taocdn.com/s3/m/15b1cf20cd7931b765ce0508763231126edb77a8.png)
五年级奥数:用例题讲解【容斥问题】的解题方法
容斥问题是指在计数时,必须注意没有重复,没有遗漏。
例题
五年级(2)班有45人,其中有35人参加了美术兴趣小组,有21人参加了体育兴趣小组,并且每个人至少参加了一个兴趣小组。
那么,两个兴趣小组都参加的有多少人?
解题方法一
分析
因为:
两个兴趣小组的总人数是:35+21=56(人),五年级(2)班只有45人,就出现了(多出了):56-45=11(人)。
所以:
这个多出的11人就是35和21重叠(重复)的部分。
我们在计算时既不能重复,也不能遗漏。
这个题目里重复的部分(11人)就是两个兴趣小组都参加的人数。
列式
(1)35+21=56(人)
(2)56-45=11(人)
答:两个兴趣小组都参加的有11人
解题方法二
1、我们来看下面的图解法:
2、根据题意以及图解,可以得出:
(1)35+21=56(人)
(2)56-45=11(人)
3、答:两个兴趣小组都参加的人数是11人。
练习题
1、五年级(1)班有46人,参加音乐兴趣小组的有30人,参加舞蹈兴趣小组的有25人,并且每个人至少参加了一个兴趣小组。
你知
道两个小组都参加的有多少人吗?
2、1-500这500个数字中,能被5或7整除的数一共有多少个?
(附练习题答案:第1题9人;第2题157个)。
五年级奥数五年级奥数培训资料(容斥原理)
![五年级奥数五年级奥数培训资料(容斥原理)](https://img.taocdn.com/s3/m/1805e414a7c30c22590102020740be1e650ecc7c.png)
五年级奥数培训资料—容斥原理班级:姓名:策略思想:在生活中我们经常会碰到有些数量会出现重复、包含的情况,那么在解题时就要考虑排除由于重复、相互包含而引起的多加的情况,这就是包含与排除问题,也称容斥原理。
解题要点:解答重叠问题时首先要确定采用哪种分类标准,然后根据题意画出图示,找出哪些是重复的,重复了几次,仔细审题,明确求的哪部分,再根据包含与排除原理进行解题。
例题1:五(3)班每个人都订阅了学习报(数学报、语文报),订阅《小学生数学报》的有30人,订阅《小学生语文报》的有26人。
两种都订阅的有14人,这个班有学生多少人?练习1:五(3)班每人都参加了课外兴趣小组(舞蹈、合唱),参加舞蹈队的有21人,参加合唱团的有32人,既参加舞蹈队的又参加合唱团的有9人,全班共有多少人?练习2:一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有多少人?例题2:47名学生参加数学和语文考试,其中语文得100分的有12人,数学得100分的有17人,两门都没得100分的26人,两门都得100分的有多少人?练习1:六(1)班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有多少人?练习2:音乐班有40名学生,25名学生会作曲,20人会指挥,有10人作曲和指挥都不会,既会作曲、又会指挥的学生有多少人?例题3:在一个炎热的夏日,有一群小朋友去冷饮店每人都买了冷饮。
其中6人买了汽水,6人买了可乐,4人买了果汁,有3人既买了汽水又买了可乐,1人既买了汽水又买了果汁,2人既买了可乐又买了果汁,三种冷饮都买了的有1人,一共有几个小朋友?练习1:一批教师,每人至少都会一门外语,会英语的有65人,会俄语的有58人,会日语的有51人,既会英语又会俄语的有21人,既会英语又会日语的有19人,既会俄语又会日语的有17人,三种都会的有5人。
五年级奥数竞赛试题-容斥原理
![五年级奥数竞赛试题-容斥原理](https://img.taocdn.com/s3/m/2381161bb52acfc789ebc967.png)
五年级奥数竞赛试题第十二讲容斥原埋在很多计数问题中常用到数学上的一个包含与排除原理,也称为容斥原理.为了说明这个原理,我们先介绍一些集合的初步知识。
在讨论问题时,常常需要把具有某种性质的同类事物放在一起考虑.如:A={五(1)班全体同学}.我们称一些事物的全体为一个集合.A={五(1)班全体同学}就是一个集合。
例1 B={全体自然数}={1,2,3,4,…}是一个具体有无限多个元素的集合。
例2 C={在1,2,3,…,100中能被3整除的数}=(3,6,9,12,…,99}是一个具有有限多个元素的集合。
集合通常用大写的英文字母A、B、C、…表示.构成这个集合的事物称为这个集合的元素.如上面例子中五(1)班的每一位同学均是集合A的一个元素.又如在例1中任何一个自然数都是集合B的元素.像集合B这种含有无限多个元素的集合称为无限集.像集合C这样含有有限多个元素的集合称为有限集.有限集合所含元素的个数常用符号|A|、|B|、|C|、…表示。
记号A∪B表示所有属于集合A或属于集合B的元素所组成的集合.就是右边示意图中两个圆所覆盖的部分.集合A∪B叫做集合A与集合B 的并集.“∪”读作“并”,“A∪B”读作“A并B”。
例3 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={1,2,3,4,6,8}.元素2、4在集合A、B中都有,在并集中只写一个。
记号A∩B表示所有既属于集合A也属于集合B中的元素的全体.就是上页图中阴影部分所表示的集合.即是由集合A、B的公共元素所组成的集合.它称为集合A、B的交集.符号“∩”读作“交”,“A∩B”读作“A交B”.如例3中的集合A、B,则A∩B={2,4}。
下面再举例介绍补集的概念。
例4 设集合I={1,3,5,7,9},集合A={3,5,7}。
补集(或余集),如图中阴影部分表示的集合(整个长方形表示集合I).对于两个没有公共元素的集合A和B,显然有|A∪B|=|A|+|B|。
奥数训练专题——容斥原理2
![奥数训练专题——容斥原理2](https://img.taocdn.com/s3/m/da541c9eaa00b52acfc7caf0.png)
容斥原理1、某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人2、某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人3、四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.(6级)4、五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.(6级)5、光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人(6级)6、新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有多少人7、五年级三班有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.8、六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项只爱好体育的有多少人9、在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:三种都带了的有几人只带了一种的有几个9、盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.10、全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,数学成绩优秀的有几个学生有几个人既会游泳,又会滑冰11、在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?① 有 人摘了山莓; ② 有 人同时摘了三种水果;③ 有 人只摘了山莓; ④ 有 人摘了李子和草莓,而没有摘山莓; ⑤ 有 人只摘了草莓.12、五年级一班共有36人,每人参加一个兴趣小组,共有A 、B 、C 、D 、E 五个小组,若参加A 组的有15人,参加B 组的人数仅次于A 组,参加C 组、D 组的人数相同,参加E 组的人数最少,只有4人.那么,参加B 组的有多少人13、五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人14、某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛图形中的重叠问题1、 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长2、把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长3、两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米图32厘米4厘米4、 如图,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.5、一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.6、三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少7、如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米8、如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少容斥原理在数论问题中的应用1、 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个2、 在自然数1100~中,能被3或5中任一个整除的数有多少个图3CBA103、在前100个自然数中,能被2或3整除的数有多少个4、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个5、求在1至100的自然数中能被3或7整除的数的个数.5、以105为分母的最简真分数共有多少个它们的和为多少7、分母是385的最简真分数有多少个并求这些真分数的和.8、在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.9、在从1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个10、50名同学面向老师站成一行.老师先让大家从左至右按1,2,3,…,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名11、有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3, (2000)然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏12、写有1到100编号的灯100盏,亮着排成一排,每一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏13、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支14、在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成________段.15、一根101厘米长的木棒,从同一端开始,第一次每隔2厘米画一个刻度,第二次每隔3厘米画一个刻度,第三次每隔5厘米画一个刻度,如果按刻度把木棒截断,那么可以截出段.16、一根1.8米长的木棍,从左端开始每隔2厘米画一个刻度,涂完后再从左端开始每隔3厘米画一个刻度,再从左端每隔5厘米画一个刻度,再从左端每隔7厘米画一个刻度,涂过按刻度把木棍截断,一共可以截成多少段小木棍容斥原理中的最值问题1、将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少2、如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个3、某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会4、某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.5、60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人6、图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过7、甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个8、在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆恰好被1个人浇过的花最多有多少盆9、甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆。
2021-2022学年五年级上册奥数培训专题——容斥原理(附答案)
![2021-2022学年五年级上册奥数培训专题——容斥原理(附答案)](https://img.taocdn.com/s3/m/3cb8bed8647d27284a735121.png)
2021-2022学年五年级上册奥数培训专题——容斥原理姓名:___________班级:___________考号:___________一、解答题1.一个班有小学生55人,订阅小学生数学报的有12人,订阅少年报的有9人,两种报纸都订的有5人,(1)订阅报纸的总人数是多少?(2)两种报纸都不订的有多少人?2.一个旅行社有36人,其中会英语的有24人,会法语的有18人,这两种语言都不会的有4人,这两种语言都会的有多少人?3.求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?4.艺术节那天,学校画廊里展出了每个年级学生的图画作品,其中有23幅不是五年级的,有21幅不是六年级的,五六年级参展的共有8幅,其他年级参展的有多少幅?5.将边长为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上,已知重叠的部分为9平方厘米,两块正方形纸片盖住桌面的总面积是多少?6.二(2)班有50人,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人,两种作业都做完的有多少人?7.某艺术中心有62名学生,其中会弹钢琴的有11名,会吹长笛的有56名,两样都不会的有4名。
两样都会的有多少名?8.某校选出50名学生参加作文比赛和数学比赛,作文比赛获奖的有14人,数学比赛获奖的有12人,有3人两项比赛都获奖,两项比赛都没获奖的有多少人?9.四(1)班有40个学生,其中25人参加数学小组,23人参加航模小组,有19个人两个小组都参加了,那么有多少人两个小组都没参加?10.在一次数学测验中,所有同学都答了第1、2题,其中答对第一题的有35人,答对第2题的有28人,这两题都答对的有20人,没有人两题都打错。
问参加这次测验的有多少人?11.一个俱乐部里,会下中国象棋的有69人,会下国际象棋的有52人,两种都不会下的有12人,都会下的有30人这个俱乐部里有多少人?12.某班上体育课,全班排成4列(每列人数相等),从前往后数小芳第6个,从后往前数在第7个,这个班共有多少人?13.在1到200之间的全部自然数中,既不是8的倍数也不是5的倍数的数有几个?14.科技节那天,学校的科技室例展出了每个年级学生的作品,其中有114件不是一年级的,有96件不是二年级的,一二年级参展的作品共32件,其他年级参展的作品有多少件?试题答案1.16人;39人【分析】可将这55人分成4类,即只订阅小学生数学报,只订阅少年报,两种报纸都订阅,两种报纸都没有订阅,分别求出每一类的人数,再求出题目所求。
实用的计数原理之容斥原理(内含大量实例和详细分析)
![实用的计数原理之容斥原理(内含大量实例和详细分析)](https://img.taocdn.com/s3/m/65b52156f01dc281e53af071.png)
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。
例1 、一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。
我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。
小学五年级奥数 容斥原理(二)
![小学五年级奥数 容斥原理(二)](https://img.taocdn.com/s3/m/0b210b4731b765ce0508146b.png)
一、本讲重点知识回顾 1.基本原理 ⑴二者容斥
⑵三者容斥 A B
A B A B
CA
A BC
BC A BC A B BC AC A BC
2.口诀:奇层加,偶层减 3.解题技巧:画图——文氏图,线段图
方程 列表 高斯记号应用——取整运算 二、本讲经典例题 容斥原理㈠:例1,例2,例5,例6 容斥原理㈡:例1,例3,例6,例7
1
【例6】(★★★★★) 在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲 浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人 浇过的花最少有多少盆?
【例7】 (★★★) 中国田径队的40名运动员在训练基地进行封闭训练,其中男运动员有 20名,训练长跑的运动员有15名,训练竞走的女运动员有8名,那么训 练长跑的男运动员有多少名?
【例4】(★★★) 六年级⑴班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语 文竞赛,其中参加了数学和英语的有12人,参加了英语和语文的有14 人,参加了数学和语文的有10人,那么六年级⑴班全班至少有多少人?
【例5】(★★★) 甲、乙、丙三人都在读同一本故事书,书中有100个故事。已知甲读了 85个故事,乙读了70个故事,丙读了62个故事。请问:甲、乙、丙三人 共同读过的故事最少有多少个?
【例1】59难 【例2】 ⑴9人 【例3】 21人 【例4】 47人 【例5】 17个 【例6】 15盆 【例7】 3名
答案 ⑵29人
⑶31人
2
【例2】(★★★★) 某班人数60人,在一次抽考英语、数学、化学的考试中,英语及格的 有41人,数学及格的有39人,化学及格的有42人;英语、数学两科不及 格的有14人,数学、化学两科不及格的有13人,英语、化学两科不及 格的有11人,有两科或两科以上不及格的人数为20人,则: ⑴三科都不及格的有几人? ⑵至少有一科不及格的有几人? ⑶三科都及格的人数有几人?
小学五年级奥数课件 容斥原理
![小学五年级奥数课件 容斥原理](https://img.taocdn.com/s3/m/f71aa698f021dd36a32d7375a417866fb84ac034.png)
1、掌握两个容斥原理 2、一道经典的拉灯问题
本讲主线
在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重 复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先 不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来, 然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏
又无重复,这种计数的方法称为容斥原理
本讲主线
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总 和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元 素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既 是A类又是B类而且是C类的元素个数。 (A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)
例题【四】(★ ★ ★ ★ ★ )
在2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号 为1,2,…,2006,将编号为2的倍数的灯的拉线各拉一下;再 将编号为3的倍数的灯拉线各拉一下,最后将编号为5的倍数 的灯的拉线各拉一下,拉完后亮着的灯数为多少盏?
2倍 3倍
5倍
例题【四】(★ ★ ★ ★ ★ )
数学参加人数:40-25=15人 15-10+18-10 =5+8 =13(人)
例题【二】(★ ★ ★ )
1~209这209个自然数中,与209互质的自然是有几个?
互质,没有公约数 分解,209=11×19 11:209÷11=19(个) 19:209÷19=11(个) 11/19:1(个) 大饼:19+11-1=29(个) 答:209-19=180(个)
有编号为1~2010的2010个气球,有一个神枪手,他第一次把 所有编号是3的倍数气球打破;第二次把编号是5的倍数的 气球打破;最后把编号是7的倍数的气球打破。那么,最后 还剩几个是没有被打破的气球?
小学五年级奥数 容斥原理(二)
![小学五年级奥数 容斥原理(二)](https://img.taocdn.com/s3/m/e7039dbf02d276a200292e6b.png)
容斥原理(二)【例2】(★★★★)【例1】(★★★)唐僧西天取经共经历了81难,其中单独度过了3难,与孙悟空一起度过了77难,与猪八戒一起度过了65难,与沙和尚一起度过了62难,同时与孙悟空和猪八戒一起度过了64难,同时与孙悟空和沙和尚一起度过了61难,同时与猪八戒和沙和尚一起度过了60难。
请问:师徒四人共同度过的有多少难?某班人数60人,在一次抽考英语、数学、化学的考试中,英语及格的有41人,数学及格的有39人,化学及格的有42人;英语、数学两科不及格的有14人,数学、化学两科不及格的有13人,英语、化学两科不及格的有11人,有两科或两科以上不及格的人数为20人,则:⑴三科都不及格的有几人?⑵至少有一科不及格的有几人?⑶三科都及格的人数有几人?【例3】(★★★★)五年级一班有46名学生参加数学、语文、文艺三项课外小组。
其中有24人参加了数学小组,20人参加了语文小组,既参加数学小组又参加语文小组的有10人.参加文艺小组的人数是既参加数学小组又参加文艺.,,也参加语文小组的人数等于三项小组都参加的人数的2倍,求参加文艺小组的人数。
【例4】(★★★)六年级⑴班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加了数学和英语的有12人,参加了英语和语文的有14 人,参加了数学和语文的有10人,那么六年级⑴班全班至少有多少人?【例5】(★★★)甲、乙、丙三人都在读同一本故事书,书中有100个故事。
已知甲读了85个故事,乙读了70个故事,丙读了62个故事。
请问:甲、乙、丙三人共同读过的故事最少有多少个?1【例6】(★★★★★)在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?一、本讲重点知识回顾1.基本原理⑴二者容斥⑵三者容斥【例7】(★★★)中国田径队的40名运动员在训练基地进行封闭训练,其中男运动员有20名,训练长跑的运动员有15名,训练竞走的女运动员有8名,那么训练长跑的男运动员有多少名?C A BCA B C A B B C A CA B C2.口诀:奇层加,偶层减3.解题技巧:画图——文氏图,线段图方程列表高斯记号应用——取整运算答案【例1】59难【例3】21人【例2】⑴9人⑵29人⑶31人【例4】47人二、本讲经典例题容斥原理㈠:例1,例2,例5,例6 【例5】17个【例6】15盆容斥原理㈡:例1,例3,例6,例7【例7】3名2。
五年级奥数容斥问
![五年级奥数容斥问](https://img.taocdn.com/s3/m/689e718d6529647d27285299.png)
五年级奥数容斥问题:容斥原理(1)如果被计数的事物有a、b两类,那么,a类或b类元素个数= a类元素个数+b类元素个数—既是a类又是b类的元素个数。
容斥原理(2)如果被计数的事物有a、b、c三类,那么,a类或b类或c类元素个数= a类元素个数+b类元素个数+c类元素个数—既是a类又是b类的元素个数—既是a类又是c类的元素个数—既是b类又是c类的元素个数+既是a类又是b类而且是c类的元素个数1、艺术小学举行学生画展,其中18幅画不是六年级的,20幅画不是五年级的,现在知道五、六年级共展出22幅画。
问其他年级展出多少幅?分析:18幅不是六年级,那就是五年级和其他年级的,20幅不是五年级,就是六年级和其他年级,已知五六年级展出22幅,所以其他年级展出就是八幅。
(18+20-22)/2=8(幅)2、某地区100个外语教师中,每人至少懂英语和日语中的一种语言。
已知懂英语的75人,懂日语的有45人。
问只懂英语的有几人?分析;两种语言都懂的人为;懂英语的和懂日语和减外语教师总数。
只懂英语的就是75减两种都懂得了。
75+45-100=20(人)75-20=55(人)3、在1至100的整数中,能被2整除或能被3整除的数共有几个?分析:100中,能被2整除的有100/2=50个,能被3整除的有100/3=33个,同时能被2和3整除的100/6=16个,注意这16个包括在能被2和3整除的,要去掉。
就是100内能被或3整除的。
50+33-16=67个4、全班50人,不会骑自行车的有23人,不会滑旱冰的有35人,两样都会的有4人,两样都不会的有多少人?分析:骑自行车:27人会滑旱冰:15人都会:4人都不会的:50-(27+15-4)=12人画个图就可以看出来了,4个人是多加的,所以要减去。
5、六年级有52人,其中喜欢绘画的36人,喜欢书法的有42人,喜欢唱歌的有48人,喜欢跳舞的有34人,这个班最少有多少学生对这四项活动都喜欢?分析:52-36=16个人不喜欢绘画,52-42=10个人不喜欢书法,52-48=4个人不喜欢唱歌,52-34=18个人不喜欢跳舞。
五年级下册奥数较复杂的容斥原理(人教版)
![五年级下册奥数较复杂的容斥原理(人教版)](https://img.taocdn.com/s3/m/3daef477178884868762caaedd3383c4bb4cb497.png)
小结
七、教学过程: 实际问题与方程
容斥原理(一)
重点:归纳和整理本单元解方程和用方程解决问题等知识点的方法。
方程的意义
游戏三:智辨异同
如果被计数的事物有A、B两类,那么: ④秒针从12走到数字9
(2)乐乐和悠悠同时从南门出发去北门,经过5分钟后,乐乐在悠悠前面100米处。乐乐平均每分钟行走90米,悠悠平均每分钟走多少米? ①10-6.8=3.2(元) 2.5+0.6=3.1(元)3.2元>3.1元
A或B或C=A+B+C-AB-AC-BC+ABC
44 25 22 34 12 18 14 ?
25+22+34-12-18-14=37(人) 44-37=7(人) 答:三项都参加的有7人。
即学即练
某年级的课外兴趣小组共有54人,分数学、语文、外语三个 小组,参加数学兴趣小组的有23人,参加语文兴趣小组的有27人, 参加外语兴趣小组的有18人;其中同时参加数学、外语两个兴趣 小组的有7人;同时参加语文、数学兴趣小组的有4人;同时参加 语文、外语兴趣小组的有5人。其中三个小组都参加的有多少人?
100+64+16-25-8-8+4=143﹙cm2﹚
答:它们盖住的面积是143平方厘米。
即学即练
在一个边长为90厘米的正方形桌面上,放上两张边长分别为 20厘米和45厘米的正方形纸,如图。桌面上没被纸片盖住的面积 是多少?
45×45+20×20-15×10=2275(平方厘米)
90×90-2275=5825(平方厘米)
3.通过解决具体的问题,逐步培养学生积极思考的习惯,使学生体验学习数学的乐趣,积累活动经验。
A类或B类元素个数= A类元素个数+ B类元素个数— (3)一个同学负责摇匀,一个同学负责摸球,一个同学负责记录。其他同学监督并合计。
小学数学五年级下册奥数思维 — 容斥原理
![小学数学五年级下册奥数思维 — 容斥原理](https://img.taocdn.com/s3/m/c5e5adb9690203d8ce2f0066f5335a8102d26663.png)
小学数学五年级下册奥数思维—容斥原理知识点解析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。
例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?例5:光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?1.分析与解答完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
2.分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、本讲重点知识回顾 1.基本原理 ⑴二者容斥
⑵三者容斥 A B
A B A B
CA
A BC
BC A BC A B BC AC A BC
2.口诀:奇层加,偶层减 3.解题技巧:画图——文氏图,线段图
方程 列表 高斯记号应用——取整运算 二、本讲经典例题 容斥原理㈠:例1,例2,例5,例6 容斥原理㈡:例1,例3,例6,例7
【例1】59难 【例2】 ⑴9人 【例3】 21人 【例4】 47人 【例5】 17个 【例6】 15盆 【例7】 3名
答案 ⑵29人
⑶3பைடு நூலகம்人
2
1
【例6】(★★★★★) 在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲 浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人 浇过的花最少有多少盆?
【例7】 (★★★) 中国田径队的40名运动员在训练基地进行封闭训练,其中男运动员有 20名,训练长跑的运动员有15名,训练竞走的女运动员有8名,那么训 练长跑的男运动员有多少名?
【例4】(★★★) 六年级⑴班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语 文竞赛,其中参加了数学和英语的有12人,参加了英语和语文的有14 人,参加了数学和语文的有10人,那么六年级⑴班全班至少有多少人?
【例5】(★★★) 甲、乙、丙三人都在读同一本故事书,书中有100个故事。已知甲读了 85个故事,乙读了70个故事,丙读了62个故事。请问:甲、乙、丙三人 共同读过的故事最少有多少个?
容斥原理(二)
【例1】(★★★) 唐僧西天取经共经历了81难,其中单独度过了3难,与孙悟空一起度过 了77难,与猪八戒一起度过了65难,与沙和尚一起度过了62难,同时与 孙悟空和猪八戒一起度过了64难,同时与孙悟空和沙和尚一起度过了 61难,同时与猪八戒和沙和尚一起度过了60难。请问:师徒四人共同 度过的有多少难?
【例3】(★★★★) 五年级一班有46名学生参加数学、语文、文艺三项课外小组。其中有 24人参加了数学小组,20人参加了语文小组,既参加数学小组又参加 语文小组的有10人.参加文艺小组的人数是既参加数学小组又参加文艺 小组人数的3.5倍,还是三项小组都参加的人数的7倍,既参加文艺小组 也参加语文小组的人数等于三项小组都参加的人数的2倍,求参加文艺 小组的人数。
【例2】(★★★★) 某班人数60人,在一次抽考英语、数学、化学的考试中,英语及格的 有41人,数学及格的有39人,化学及格的有42人;英语、数学两科不及 格的有14人,数学、化学两科不及格的有13人,英语、化学两科不及 格的有11人,有两科或两科以上不及格的人数为20人,则: ⑴三科都不及格的有几人? ⑵至少有一科不及格的有几人? ⑶三科都及格的人数有几人?