遥感的物理基础 (2)

合集下载

第03讲 遥感物理基础之二_太阳辐射

第03讲 遥感物理基础之二_太阳辐射

19/22
20/22
地球大气对太阳辐射传输特性的遥感应用:
1.选择大气窗口。 2.认识大气传输对遥感图像判读的影响: ①大气散射使短波波段(如0.5-0.6μm)的地物 影像增加亮度,使景物反差减小; ②大气的吸收使长波波段(如0.8-1.1μ m)减低 亮度。 3.为图像恢复或辐射校正提供依据。
返 回
22/22
思考题
1、大气的散射现象有几种类型?根据不同散射类 型的特点分析可见光遥感与微波遥感的区别,说 明为什么微波具有穿云透雾能力而可见光不能? 2、综合论述太阳辐射传播到地球表面又返回到遥 感器这一整个过程中所发生的物理现象。
3、什么是大气窗口?大气窗口有哪些波段区间?
1/22
河北工程大学 资源学院
遥感地质学
Remote Sensing Geology 遥感物理基础(2) -地球大气对太阳辐射传输的影响
2/22
遥感地质学章节内容
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 绪论 遥感物理基础(电磁波谱与电磁辐射) 遥感成像原理与图像特征 遥感图像处理 遥感图像地质解译标志 遥感图像地貌解译 遥感图像的岩性解译 遥感图像构造解译 遥感应用
3)中红外波段3.0-5.0μm,3.5-4.2μm和4.6-5.0μm; •( 地球大气对太阳辐射的传输影响有吸收作用、散 1、选择大气窗口。 电磁波通过地球大气层时较少被反射、吸收或散射,透 2 、认识大气传输对遥感图像判读的影响:①大气散射使短 射作用、反射作用和折射作用。 ( 4 )远红外波段8.0-14.0μm; 过率较高的波段,称为大气窗口。
折射角度大。
返回
18/22
大气窗口
• 大气窗口 • 主要大气窗口和遥感波谱通道(波段):P13表2-4 电磁波通过地球大气层时较少被反射、吸收或散射,透过率 ( 1) 0.3-1.3μm:紫外波段、可见光波段、近红外波段 较高的波段,称为大气窗口。 微波波段:其常用的波段为0.8cm,3cm,5cm,10cm等等, (2) 1.5-2.5μm:近红外波段 包括部分紫外( 电磁波信息来自地面目标物的反射光谱;可以用摄影方式来获 0.3-0.38μm )、全部可见光( 0.38-0.76μm) 有时也可将该窗口扩展为 0.05cm 至300cm波段。 (3) 3.0-5.0μm:中红外波段 及近红外波段( 得和记录地物的电磁波信息 0.76-1.3μm ;电磁波的透射率在 ),是摄影成像的最佳波段,也 90%以上。 近红外窗口,在白天日照条件好的时候扫描成像常用这些波段, 电磁波信息仍来自地面目标物的反射光谱,但不能用胶片摄影, 其特点是:微波穿云透雾的能力强,这一区间可以全天候工作; 是许多卫星传感器扫描成像的常用波段,比如, Landsat 卫星 比如 TM 的 5 、 7 波段等用以探测植物含水量以及云、雪或用于 只能用扫描仪和光谱仪以及射线测试仪来测量和记录;由于水 ( 4 ) 814μm:远红外波段 中红外波段电磁波信息由地面物体反射太阳辐射和地面物体自 主要用于主动遥感,如侧视雷达。 中红外波段,物体的热辐射较强。如NOAA卫星的AVHRR传 的 TM 的1-4 波段,SPOT 卫星的 HRV 波段等。 地质制图等。 汽、二氧化碳等的作用, 1.8μm 附近有一个吸收带,因此使此 身的发射辐射混合而成,用扫描仪和光谱仪探测和记录;也分 ( 5 ) 0.8-100cm :微波波段 感器用 3.553.93μm 探测海面温度,获得昼夜云图。 远红外波段:主要来自物体热辐射的能量,适于夜间成像,测 远红外波段:探测或记录目标物的发射光谱,利用扫描仪和热 窗口又分为两个小窗口 1.5-透过率为 1.75μm和 2.1 -2.4μm 。 透过率 为两个小窗口: 3.5 - 4.2μm 95 %, 4.6 - 5μm 量探测目标的地物温度。 辐射计、光谱计;是地表物体在常温下辐射能量最强的波段; 约为 60- 70%。 在9.6μm 附近处,分为两个小窗口,透射率约在 60-80%。

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析遥感原理与应用习题第一章遥感物理基础一、名词解释1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。

2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。

3电磁波:电磁波(又称电磁辐射)就是由同相震荡且互相横向的电场与磁场在空间中以波的形式移动,其传播方向旋转轴电场与磁场形成的平面,有效率的传达能量和动量。

电磁辐射可以按照频率分类,从高频率至高频率,包含存有无线电波、微波、红外线、红外线、紫外光、4电磁波五音:把各种电磁波按照波长或频率的大小依次排序,就构成了电磁波五音5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。

7绝对温度:热力学温度,又叫做热力学温标,符号t,单位k(开尔文,缩写上开)8色温:在实际测量物体的光谱电磁辐射通量密度曲线时,常常用一个最吻合灰体电磁辐射曲线的黑体电磁辐射曲线做为参考这时的黑体电磁辐射温度就叫做色温。

9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。

10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。

11光谱反射率:物体的散射电磁辐射通量与入射光电磁辐射通量之比。

12波粒二象性:电磁波具备波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。

问答题1黑体电磁辐射遵从哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度w随温度t的增加而迅速增加。

(2绝对黑体表面上,单位面积升空的总辐射能与绝对温度的四次方成正比。

(3黑体的绝对温度增高时,它的电磁辐射峰值向短波方向移动。

(4不好的辐射体一定就是不好的吸收体。

(5在微波段黑体的微波辐射亮度与温度的一次方成正比。

2电磁波五音由哪些相同特性的电磁波段共同组成?遥感技术中所用的电磁波段主要存有哪些?a.包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b.微波、红外波、可见光3物体的电磁辐射通量密度与短萼有关?常温下黑体的电磁辐射峰值波长就是多少?(1与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。

遥感导论复习重点

遥感导论复习重点

遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。

有广义和狭义之分。

1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。

遥测:对目标的某些运动参数和性质进行远距离册测量的技术。

分接触和非接触测量。

遥控:远距离控制目标的运动状态和过程的技术。

二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。

2.时效性:获取信息速度快,更新周期短,具有动态监测特点。

3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。

4.经济性:用途广,效益高的特点。

5.局限性:利用的电磁波段有限。

§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。

由于环境不同,物体的反射、辐射电磁波是不同的。

数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。

二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。

由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。

3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础

遥感原理与应用_第2章_2遥感物理基础-辐射传输基础
a小于入射电磁波波长的十分 之一;(气体分子)
• 米氏散射:如果介质中不均匀
颗粒的直径a与入射波长同数 量级;(气溶胶)
• 非选择性散射(均匀散射):
当不均匀颗粒的直径a>>λ时
发生。(大粒子尘埃)
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
遥感影像判读
遥感平台特点
遥感
影像识别分类
遥感物理基础
遥感技术应用
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
遥 1 2感 3物 4 5理 6基 7 础
遥感电磁辐射基础 辐射传输基础
地物波谱特性与遥感光学基础
C o p y r i g h t © 2 0 1 5, G u o l i n C a i & L i S h e n
SWJTU
大 大气成分 气 不变成分:氮、氧、氩、二氧化碳、甲烷、氧化氮、氢; 对 这些气体在80km以上的相对比例保持不变,称为不变气体。 1 2 电 可变成分:臭氧、水蒸气、液态和固态水(雨、雾、雪、 3磁 4 冰等)、盐粒、尘烟;这些气体的含量随高度、温度、位置 5辐 6 射 而变,称为可变成分。 7 的 气溶胶:固体或液体分散在气体中的分散体系叫做气溶胶。 影 比如,烟、尘、雾、云等都是气溶胶 。气溶胶是气体和在重 响 力场中具有一定稳定性和较小沉降速度的物质颗粒组成的混
散射影响:使原传播方向的辐射强度减弱,而增加向其他各方向
的辐射。尽管强度不大,但太阳辐射在照到地面又反射到传感器的 过程中,二次通过大气,在照射地面时,由于增加了漫入射的成分, 使地物反射的成分有所改变。 对遥感图像来说,增加了信号中的噪声成分,降低了传感器接收 数据的质量,造成图像模糊不清。 不同于吸收作用,只改变传播方向,不能转变为内能。 大气的散射是太阳辐射衰减的主要原因。

《遥感导论》考试重点【复习版】

《遥感导论》考试重点【复习版】

第一章绪论第一节遥感概述一、遥感的概念及特点1、概念2、特点①感测范围大②信息量大③获取信息快④其他特点:用途广、效益高、全天候、全方位、资料性二、遥感的分类1、根据遥感平台的高度和类型分类①地面遥感:1.5~300m,车、船、塔,主要用于究地物光谱特征②航空遥感:9~50km,飞机、气球,较微观地面资源调查③航天遥感:100~36000km,卫星、飞船、火箭、天飞机、空间站2、根据传感器的工作方式分类①主动遥感:雷达②被动遥感:被动接受地物反射、发射的电磁波:摄影机、扫描仪3、根据遥感信息的记录方式分类①成像遥感:以图象方式记录:航空性片、卫星图象②非成像遥感:图形、电子数据:数字磁带、光盘4、根据遥感使用的探测波段分类①紫外遥遥:0.3~0.4μm②可见光遥感:0.4~0.76μm③红外遥感:0.76~14μm④微波遥感:1000μm ~30cm⑤多波段遥感:0.5-0.6,0.6-0.7,0.7-0.8,0.8-0.95、根据遥感的应用领域分类:气象、海洋、地质、军事三、遥感过程及其技术系统1、遥感实验:前期工作,主要获得地物的光谱特性。

2、遥感信息的获取:中心工作。

传感器3、遥感信息的接受和处理:利用各种技术手段4、遥感信息的应用:最终目的。

遥感信息的认识(判读、解译)第二节遥感的发展与应用一、遥感的发展1、国外遥感的发展概况“遥感”:①无记录的地面遥感阶段(1608-1838)望远镜的产生:②有记录的地面遥感阶段(1839-1857)摄影技术的发明:③空中摄影的遥感阶段(1858-1956)系留气球、飞机、彩色摄影技术产生④航天遥感阶段(1957-)人造地球卫星产生、计算机技术的应用、GIS⑤遥感的发展趋势:platform:气球-飞机-卫星-飞船-航天飞机-空间站传感器:分辨率变高、稳定性变好、手段变多遥感信息的接收和处理:自动解译、自动分类遥感的应用:广、深入2、我国遥感的发展概况起步晚、发展快①20世纪60年代末设立遥感学科②20世纪70年代,航空测量应用③20世纪70年代末,引进美国卫星技术和卫星资料、设备仪器,促进我国遥感技术与国际领先水平接近。

2遥感物理基础

2遥感物理基础

遥感的基本出发点
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
2、地物的发射光谱特性 黑体 普朗克公式 斯蒂芬-玻尔兹曼定律(Stephen Boltzmann Law) 维恩位移定律(Wien’s Displacement Law) 基尔霍夫定律 地物的发射光谱
100-106cm >106cm
用于无线电通讯,分超短波、短波、中波、长波
冯新伟
常用的遥感波段有:紫外线、可见光、红外线、微波
紫外线:波长范围0.1---0.38μm,太阳辐射只有0.3--0.4μm到达地面,能量较少;可探测的高度在2000m以 下,目前多用于探测碳酸岩分布,油污染的监测,能提 供土壤水份和作物病类信息。 可见光:波长范围0.38---0.76μm,人眼对该波段具有 敏锐的分辨能力,是鉴别物质的主要波段。遥感技术中 主要用摄影和扫描方式接收和纪录地物对可见光的反射 特征,是现在遥感中最常用的波段。

河南农业大学资源与环境学院 冯新伟 河南农业大学资源与环境学院
冯新伟
太阳
太阳是太阳系唯一的恒星,它集中了太阳系99.865%的质量。 太阳是一个炽热的气体星球,没有固体的星体或核心。太阳从 中心到边缘可分为核反应区、辐射区、对流区和大气层。其能 量的99%是由中心的核反应区的热核反应产生的。太阳中心的 密度和温度极高。太阳大气的主要成分是氢(质量约占71%) 与氦(质量约占27%)。

4-2遥感——遥感的物理基础+光的三原色

4-2遥感——遥感的物理基础+光的三原色
∴显示器有2563个色值(或颜色级别),但小于自然界的
颜色库。
2014-6-26
• 2、三种光的颜色可以设置成: 1)R=200,G=30,B=15——偏红色(显示器) 2)R=40,G=220,B=15——偏绿色 3)R=0,G=0,B=0——得到“黑色”(没有光) 4)R=255,G=255,B=255——得到“白色”(最强光,均 等) 5)0<R=G=B<255——得到“灰色”

黎明和黄昏时(此时地球与太阳之间距离很远),可见光要通过 较厚的大气层,波长小的紫光、蓝光在传播这么长的路程后几乎全被 大气吸收了,只剩下波长大的红光、橙光,直射光中红光成分大于蓝 光成分,∴太阳呈现红色。

大气中的瑞利散射对可见光影响较大,而对红外的影响很小,对
微波基本没有多大影响。
2014-6-26
决定。

如果气溶胶粒径与入射波长同数量级,发生米
氏散射;例如冬季燃煤产生的固体气溶胶浓度大,
发生米氏散射,常常一整天天空都是淡黄色、灰
蒙蒙的。
2014-6-26
• 3)粗粒散射(又叫非选择性散射或均匀散射)(r>>λ):大气
中的液、固态水滴和固态杂质(比如粒度较大的沙尘暴)——
“颗粒物”的半径>1μm,都远大于可见光的波长,当天空有云层 或雨层时,满足均匀反射的条件,各个波长的可见光散射强度相 同,因而云呈现白色,此时散射较大,可见光难以通过云层,这 就是阴天时候不利于用可见光进行遥感探测地物的原因。夏季暴 雨来之前,天空呈现暗黑色,就是大气中的小水滴这些颗粒物将 所有波长的光全部进行散射。 • 而太阳的电磁波辐射几乎包括电磁辐射的各个波段,因此,
2014-6-26
• 【反射≠散射≠漫反射≠镜面反射】 • 镜面反射:发生在光滑物体表面的一种反射,入射角=反射角。 • 漫反射:发生在粗糙物体表面的一种反射,入射角=反射角。而且漫反 射向四面八方的反射是相等的。 • 散射:是指电磁辐射与结构不均匀的物体作用后,产生的次级辐射无干 涉抵消,而是向各个方向传播的现象,它实质是反射、折射和衍射的综 合反映。散射主要发生在可见光波段。 • 电磁波在传播过程中遇到小微粒而使传播方向发生改变,并向各个 方向散开,称散射。尽管强度不大,但是从遥感数据角度分析,太阳辐 照到地面又反射到传感器的过程中,二次通过大气,传感器所接收到的

遥感的物理基础

遥感的物理基础


反射现象:电磁波在传播过程中,通过两种介 质的交界面时会出现反射现象,反射现象出要 出现在云顶(云造成噪声)。
遥感基础与应用
大气窗口

不同波段的电磁波受到大气的衰减作用轻重不 同。

电磁波通过大气层时较少被反射,吸收和 散射的,透射率较高的波段称为大气窗口。
遥感传感器选择的探测波段应包含在大气窗口 之内。
(2) 地物的发射光谱特性

同一地物,其表面粗糙或颜色较深的,发射率 往往较高,反之,发射率则较小。

比热大,热惯量大,以及具有保温作用的地物, 一般发射率大,反之发射率就小。
例如水体,在白天水面光滑明亮,表面反射强 而温度较低,发射率亦较低;而夜间,水的比 热大,热惯量也高,故而发射率较高。

遥感基础与应用
结果输出(图、表)
接收 预处理
用户处 理应用
遥感基础与应用
太阳辐射曲线
太阳辐射的能量主要集中 在可见光,其中0.38 ~ 0.76 µ m的可见光能量占太阳辐射 总能量的46%,最大辐射强 度位于波长0.47 µ m左右; 到达地面的太阳辐射主要 集中在0.3 ~ 3.0 µ m波段,
包括近紫外、可见光、近

土壤含水量增加,土壤的反射率就会下降,在 水的各个吸收带(1.4um、1.9um、2.7um处附近 区间),反射率的下降尤为明显。
遥感基础与应用
三种不同类型土壤在干燥环境下的光谱曲线
水的吸收带(1.4um、1.9um、2.7um) 干燥土壤的波谱特征主要 与土壤物质组成(成土矿 物和土壤有机质)有关。 土壤含水量增加,土壤的 反射率就会下降,
遥感基础与应用
不同地物的反射波谱特征
遥感基础与应用

电磁波及遥感物理基础

电磁波及遥感物理基础
电磁辐射:这种电磁能量的传递过程(包括辐
射、吸收、反射和透射)称为电磁辐射。
电磁波的特性
1) 电磁波是横波
2) 在真空中以光速传播
3) 电磁波具有波粒二象性:电磁波在传播过
程中,主要表现为波动性;在与物质相互作用时,主 要表现为粒子性,这就是电磁波的波粒二象性。
光的波动性充分表现在光的干涉、衍射、 偏振等现象中;而光在光电效应、黑体 辐射中则显示出粒子性。
• 在遥感中常用近红外波段确定水体的位置和轮廓, 在此波段的黑白正片上,水体的色调很黑,与周 围的植被和土壤有明显反差,很容易识别和判读。
• 在水中含有其他物质时,反射光谱曲线会发生变 化,含泥沙时,由于泥沙的散射,可见光波段发 射率会增加,峰值出现在黄红区。
不同浊度下水体的波谱特性曲线
• 水中含有叶绿素时,近红外波段明显抬升,这些 都是影像分析的重要依据。
植物
• 由于植物均进行光合作用,所以各类绿色植物具有很相似 的反射波谱特征:在可见光波段0.55um(绿光)附近有个波 峰,两侧0.45um(蓝光)和0.67um(红)则有两个吸收带。在 近红外波段0.8-10.um间有一个反射的陡坡,至1.1um附近 有一个峰值,形成植被的独有特征。在近红外波段1.32.5um受到绿色植物含水量的影响,吸收率大增,反射率 大大下降,特别是以1.45、1.95、2.7um为中心是水的吸收 带,形成低谷。
度、速度、测量地形等。
自然辐射源(被动式遥感的辐射源)
➢ 太阳辐射:是可见光和近红外的主要辐射源;
常用5900的黑体辐射来模拟;其辐射波长范围 极大;辐射能量集中-短波辐射,即0.3-2.5um。 大气层对太阳辐射的吸收、反射和散射。
➢ 地球的电磁辐射:小于3 μm的波长主要是太

遥感课程第二章遥感电磁辐射基础

遥感课程第二章遥感电磁辐射基础

b) 衍射(diffraction) 光通过有限大小的障碍物时偏离直线路径的现象称为光的衍射。研 究电磁波的衍射现象对设计遥感仪器和提高遥感图像几何分辨率具有重 要意义。另外在数字影像的处理中也要考虑光的衍射现象。 c) 偏振(Polarization) 偏振是横波中呈现出的一种特殊现象。电磁波作为一种横波,其相 互垂直的电场和磁场的振动方向是与传播方向垂直的。传播方向确定后 其振动方向并不是唯一的,也可以随时间按一定方式变化或按一定规律 旋转,出现偏振现象。纵波则不同,它沿着波的传播方向振动,传播方 向确定后其振动方向便是唯一的,所以不会有偏振现象。 通常把包含电场振动方向的平面称为偏振面。如果振动方向是唯一 的,不随时间而改变,即偏振面方向固定,则为线偏振(线性极化或平 面极化)。沿一个固定方向振动的光为偏振光;太阳光是非偏振光(所有 方向的振幅相等,无一优势方向);一些人造光源(如激光和无线电、雷 达发射)是偏振光源,常有明确的极化状态。介于两者之间的为部分偏 振光——许多散射光、反射光、透射光均属此类(其部分能量有明确的 极化状态)。
(2) 电磁波谱中各谱段的特点
• —射线 波长短、频率高,具很大能量,很高的穿透能力。来自太阳辐射中的全被 大气吸收,因此不能用于遥感。但来自放射性矿物的可被低空遥感所探测,有 遥感前景。 • X—射线 在大气中全部被吸收,不能用于遥感。 • 紫外线(UV) 波长0.001ᵤm~0.38 ᵤm,具较高能量,在大气中散射严重。可再细分为: 超远紫外 远紫外 中紫外 近紫外(摄影紫外) • 可见光(Visible light) 波长0.38~0.76 ,电磁波谱中人眼所唯一能见到的波区。还可分出更窄 的谱段,如红、橙、黄、绿、青、兰、紫,也可粗分为: 蓝0.38~0.50 ᵤm 绿0.50~0.60 ᵤm 红0.60~0.76 ᵤm

定量遥感-第二章遥感物理基础精讲

定量遥感-第二章遥感物理基础精讲
• 上式中太阳常数是对太阳光谱的积分。太阳对地球 的张角很小(<9),因此太阳光可以认为是平行光束。 • 太阳总辐射量和表面辐出度分别是多少?
25
通量密度很多时候简称通量
•太阳常数与太阳辐射亮度
基本物理量
太阳光是平行光入射,即只在Ω0方向存在 亮度,注意到公式:
Lλ =³ Φ / A λ Ω
波长与穿透性的关系?
32
• 地物反射光谱特性
物体反射率随波长而改变的特性称为地物 反射光谱特性。
光谱曲线:
植物? 水体? 土壤? 云?雪?
水体+叶绿素? 水体+泥沙? 新雪、旧雪?
地物波谱(特性)
33
• 电磁波与介质的相互作用总结:
作用类型
散射
反射 透射
吸收(发射)
率:以比例形式表征的反射、透射和吸收强度 与入射辐射强度无关 ρ + τ + α = 1(无自身发射)
Ω0
Fλ =² Φ / A λ
因此,太阳的辐射亮度与Ω0方向上的辐射通量 (即太阳常数)之间的关系为:
L0=δ(Ω,Ω0)F0
26
• 各向同性辐射时亮度与通量的关系 基本物理量
假设地表为各向同性辐射,即辐射亮度L 在各方向分布均一,则其垂直地表向上的辐射
通量为:
F L cosd 2 θ
由于dΩ = dσ/r2 = sinθdθdφ 因此:
这三种反射形式分别在什么情 况下发生?
根据表面光滑或粗糙?
37
二、瑞利判据分析
L.Rayleigh提出表面为光滑或粗糙的标准为:
θi θr
镜面反射
当 h cos 为光滑表面
8
当 h cos 为粗糙表面

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感导论

遥感导论

828遥感导论本大纲适用于石河子大学景观生态学专业的硕士研究生入学考试。

《遥感导论》课程的主要内容包括遥感的物理基础与成像机理、遥感图像处理与分析和遥感应用等。

要求考生对其基本概念有较深入的理解,能够系统地掌握地物电磁波谱和数字图像处理的基本内容,掌握遥感对地观测技术和方法,并具有综合应用遥感信息分析地理现象和特征的能力,了解遥感研究现状、遥感技术发展趋势与应用领域,并具有灵活应用各部分知识综合分析问题和解决问题的能力。

本大纲分为三部分,第一部分为考试内容,第二部分为考试要求,第三部分为相关说明。

一、考试内容(一)遥感的基本概念1、遥感的概念、特点、类型2、遥感系统的组成3、遥感的发展概况及其展望(二)遥感的物理基础1、电磁波谱与电磁辐射2、太阳辐射及大气对辐射的影响3、地球辐射与地物波谱(三)遥感成像原理与图像特征1、摄影成像、扫描成像及微波成像的原理及图像特征2、常用遥感图像(TM、ETM+、SPOT、CBERS、MODIS等)的基本技术参数和各波段的主要应用范围等3、遥感图像的特征(空间、时间、光谱、辐射分辨率)(四)遥感信息提取1、遥感图像(光学图像和数字图像)的基础知识2、遥感图像目视解译原理、解译标志及解译方法3、遥感图像的校正与增强处理方法4、遥感图像计算机分类(五)遥感的应用1、了解遥感在植被、水体、土壤及地质、环境等方面的应用2、3S技术的综合应用二、考试要求(一)遥感的基本概念理解并掌握遥感的基本概念、特点、类型,了解遥感过程及其技术系统;了解遥感的发展与前景。

(二)遥感的物理基础理解并掌握电磁波、电磁波谱及电磁辐射等基本概念与专业术语;理解并掌握太阳辐射及大气对太阳辐射的影响;理解并掌握地球辐射与地物波谱;掌握反射率及反射波谱等基本概念,掌握常见地物反射波谱特征,理解环境对地物光谱特性的影响。

(三)遥感平台与遥感成像了解遥感平台;理解并掌握光学遥感和微波遥感的成像机理和图像特征;了解目前常用的传感器及其主要技术参数和各波段的主要应用范围等;熟悉遥感图像的特征。

第二章遥感的物理基础

第二章遥感的物理基础

28
传感器探测波段的设计,是通过分析
比较地物光谱数据而确定的。
多光谱扫描仪(MSS)的波段设计:

MSS1(0.5-0.6 μm) MSS2(0.6-0.7 μm) MSS3(0.7-0.8 μm) MSS4(0.8-1.1 μm)

TM的波段: TM1 0.45~0.52μm TM2 0.52~0.60μm TM3 0.63~0.69μm TM4 0.76~0.90μm TM5 1.55~1.75μm TM6 10.4~12.5μm TM7 2.08~2.35μm

2 k 4 4 4 W0 T T 2 2 15c h
40
(3)维恩位移定律:Wien's displacement law
随着温度的升高,辐射最大值对应 的峰值波长向短波方向移动。
max T b
温度 波长 300 9.66 500 5.80 1000 2.90 2000 1.45 3000 0.97 4000 0.72 5000 0.58 6000 0.48 7000 0.41
W

W黑
W W黑

4
在给定的温度下,物体的发射率=吸收率(同一波 段);吸收率越大,发射率也越大。
第二章:遥感的物理基础
第一节:电磁波与电磁波谱 第二节:地物的光谱特性 第三节:大气对电磁辐射的影响 第四节:彩色合成原理
1
第一节:电磁波与电磁波谱
一、电磁波:电磁场在空间以一定的 速度由近及远的传播过程。从能量的 角度又称为电磁辐射。
二、电磁波谱
按电磁波波长的长短,依次排列制成 的图表叫电磁波谱。 依次为:
37
1.
2.
3、黑体辐射定律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感原理
教学ppt
12
烟台师范学院地理与资源管理学院
Solar Spectrum = Shortwave spectrum =visible spectrum:
Sun at 6000K; peak emission at 0.5 mm
遥感原理
教学ppt
13
烟台师范学院地理与资源管理学院
Terrestrial Spectrum = Longwave Spectrum = Infrared Spectrum =
❖ 波粒二象性的程度与电磁波的波长有关: 波长愈短,辐射的粒子性愈明显;波长愈 长,辐射的波动特性愈明显。
教学ppt
6
遥感原理
二、电磁波谱
1. 电磁波谱:将各种电磁波在真空中的波长按其长
短,依次排列制成的图表。
在电磁波谱中,波长最长的是无线电波,其按波 长可分为长波、中波、短波和微波。波长最短的是γ
射线
电磁波的波长不同,是因为产生它的波源不同。
2、遥感常用的电磁波波段的特性
教学ppt
7
Th遥感e原理Electromagnetic Spectrum
More than meets the eye!
遥感原理
教学ppt
8
烟台师范学院地理与资源管理学院
遥感原理
遥感原理
Examples from Space
教学ppt
10
烟台师范学院地理与资源管理学院
遥感原理
Wavelength Units
• Meters (like on last slide and in book, p. 613)
• More commonly in nanometers (1 nm = 10-9 meters)
• Angstroms still used
• Named for Swedish Astronomer who first named these wavelengths
• 1 nanometer = 10 Ao
遥感原理
教学ppt
11
烟台师范学院地理与资源管理学院
Language of the Energy Cycle: The Electromagnetic Spectrum
遥感原理
第二章 遥感的物理基础
本章主要内容
➢ 电磁波与电磁波谱 ➢ 地物的光谱特性 ➢ 大气和环境对遥感的影响
教学ppt
1
遥感原理
第一节 电磁波与电磁波谱
❖电磁波及其特性 ❖电磁波谱 ❖电磁辐射源
教学ppt
2
遥感原理
一、电磁波及其特性
1. 波的概念:波是振动在空间的传播。
演 示
2. 机械波:声波、水波和地震波 3. 电磁波(ElectroMagnetic Spectrum )
油污染。
➢ 可见光:0.4-0.76 μm,鉴别物质特征的主要波段;
是遥感最常用的波段。
➢ 红外线(IR) :0.76-1000 μm。近红外0.76-3.0
μm’中红外3.0-6.0 μm;远红外6.0-15.0 μm;超 远红外15-1000 μm。(近红外又称光红外或反射红外; 中红外和远红外又称热红外。 ➢ 微波:1mm-1m。全天候遥感;有主动与被动之分;具 有穿透能力;发展潜力大。
Thermal Spectrum: Sahara Desert on Nimbus 4 Satellite
Theoretical Planck curves: Earth ~300K, peak emission ~15 mm
遥感原理
CO2
O3 H2O
教学ppt
14
烟台师范学院地理与资源管理学院
Earth Spectrum
由振源发出的电磁振荡在空气中传播。
教学ppt
3
遥感原理
4. 电磁波是通过电场和磁场之间相互联系传播的:原

5. 电磁辐射:这种电磁能量的传递过程(包括辐射、
吸收、反射和透射)称为电磁辐射。
教学ppt
4
6. 遥感原理 电磁波的特性
1) 电磁波是横波
2) 在真空中以光速传播
3) 电磁波具有波粒二象性:电磁波在传播过
遥感原理
Earth
Sun
High energy
Short wavelength / high frequency
教学ppt
Emitted at h1ig6 h T

遥感原理
2、遥感常用的电磁波波段的特性
➢ 紫外线(UV):0.01-0.4μm,碳酸盐岩分布、水面
程中,主要表现为波动性;在与物质相互作用时,主 要表现为粒子性,这就是电磁波的波粒二象性。
❖ 波动性:电磁波是以波动的形式在空间传播 的,因此具有波动性
❖ 粒子性:它是由密集的光子微粒组成的,电
磁辐射的实质是光子微粒的有规律的运动。
电磁波的粒子性,使得电磁辐射的能量具有 统计性
教学ppt
5
遥感原理
教学ppt
18
遥感原理
三、电磁辐射源
1. 自然辐射源
➢ 太阳辐射:是可见光和近红外的主要辐射源;
常用5900的黑体辐射来模拟;其辐射波长范围 极大;辐射能量集中-短波辐射。大气层对太 阳辐射的吸收、反射和散射。
➢ 地球的电磁辐射:小于3 μm的波长主要是
太阳辐射的能量;大于6 μm的波长,主要是 地物本身的热辐射;3-6 μm之间,太阳和地 球的热辐射都要考虑。
教学ppt
9
烟台师范学院地理与资源管理学院
遥感原理
Wavelength
• The distance from one wave crest to the next
• Radio waves have longest wavelength and Gamma rays have shortest!
遥感原理
Incoming from Sun: High energy,
short wavelength
0.5 mm
Outgoing from Earth Low energy
Long wavelength
遥感原理
20 mm
教学p1p0t m烟m台师范学院地理与资源管理学院
15
Electromagnetic Spectrum
Wavelength l
Energy
• Speed of light = wavelength (l) x frequency = 3 x 108 m/s in vacuum
• Wavenumber = 1/ wavelength ( cm-1) • Frequency in GHz (1 Hz = sec –1)
相关文档
最新文档