《理论力学》第四章 空间力系

合集下载

理论力学 第四章 空间力系

理论力学  第四章 空间力系

r FR = 0
∑F = 0
x
∑F = 0
y
称为空间汇交力系的平衡方程. 称为空间汇交力系的平衡方程. 空间汇交力系平衡的充要条件:该力系中所有 空间汇交力系平衡的充要条件: 充要条件 各力在三个坐标轴上的投影的代数和分别为零. 各力在三个坐标轴上的投影的代数和分别为零.
例 题 1
求: 绳的拉力和墙体的约束反力 。
=
=
F = F′ = F2 1 1
= F2′ = F3 = F3′
= =
定位矢量 滑移矢量 自由矢量 力偶矩矢是自由矢量 力偶矩相等的力偶等效 (5)力偶没有合力,力偶只能由力偶来平衡. 力偶没有合力,力偶只能由力偶来平衡.
3.空间力偶系的合成与平衡条件
=
=
r r r r r r r r r M 1 = r1 × F1 , M 2 = r2 × F2 ,......, M n = rn × Fn
A
P
c a y
i
j k
O
MO ( P ) = r × P = 0 b 0 0 0 P = Pbi
(2)利用力矩关系
x
α
b
M OA ( P ) = M O ( P ) cos α = Pab a 2 + b2 + c 2
MO(P)
例 题 4
已知:OA=OB=OC =b, OA⊥OB⊥OC. 已知: 求: F 对OA边的中点 之矩在 方向的投影。 边的中点D之矩在 方向的投影。 力 边的中点 之矩在AC方向的投影
3、力对点的矩与力对过该点的轴的矩的关系 r r r r M x ( F ) = M x ( Fx ) + M x ( Fy ) + M x ( Fz ) = Fz ⋅ y − Fy ⋅ z

空间力系(理论力学电子教程)

空间力系(理论力学电子教程)

力矩关系定理:力对于任一点之矩矢在通过该点的任一轴上 的投影等于力对于该轴之矩。
M o ( F ) cos M z ( F ) [M o ( F )]Z
应用上述定理可以求出力对于坐标轴之矩的解析表达式。
M0 ( F ) r F (yz zy) i (yz xz) j (zy yz) k
该力系的多边形2选择题1空间力偶矩是a代数量b滑动矢量c定位矢量d自由矢量讨论与分析理论力学电子教程第四章空间力系2一空间力系中各力的作用线均平行于某一固定平面而且该力系又为平衡力系则可列独立平衡方程的个数是3如果一空间力系中各力的作用线分别汇交于两个固定点则当力系平衡时可列独立平衡方程的个数是4如图所示矩形板重p用球铰链c以及柔绳bd支承在水平面上则力理论力学电子教程第四章空间力系理论力学电子教程第四章空间力系3如图所示曲杆abcdabbcbcdc
理论力学电子教程
第四章 空间力系
由于 z1 轴垂直于y 轴,所以根据合力投影定理可得
Fz F xcos 2 Fz cos 1
1
a a c c F 2 2 F 2 2 2 2 2 2 2 a b c a c a b c a c2
a2 c2 F 2 64 N 2 2 2 2 a b c a c
F1
A2
x
FR F' F F' R
x
Mo M M0 ( F ) M0
空间任意力系向任一点简化的结果。一般可得到一力和一力偶, 该力作用于简化中心,其力矢等于力系的主矢,该 力偶 的力偶矩矢等于力系对于简化中心的主矩。
理论力学电子教程
第四章 空间力系
与平面力系一样,空间力系的主矢与简化中心的位置无关, 而矩的一般将随着简化中心的位置不同而改变。

理论力学 第4章 空间力系的简化和平衡

理论力学 第4章 空间力系的简化和平衡

28
3
FR 0


M 0 FR M
FR
Mo

MO
FR
FR
FR
O’
oo M M
FR
FR
合力 o
如果一个力与一个力系等效,称该力是这个 力系的合力!
29

4 FR 0

5 FR 0
M 0
M 0
R // M
力螺旋 o
FR
垂直于z轴,圆盘面O2垂直于x轴,两盘面上作用有力偶,
F1=3N, F2=5N,构件自重不计,求A,B两处的约束反力。
解:取整体为研究对象。
Mx 0 Mz 0
20
§4-4 空间一般力系的合成与平衡
一,空间力系向一点的简化 把研究平面一般力系的简化方法拿来研究空间一般力系的
简化问题,但须把平面坐标系扩充为空间坐标系。 设作用在刚体上有
解:各杆均为二力杆,取球铰O为研究对象
Fix 0


Fiy 0


Fiz 0
10
§4-2 力对点的矩与力对轴的矩
一、力对点的矩的矢量表示 在平面中:力对点的矩是代数量。 在空间中:力对点的矩是矢量。
mO (F ) Fd 2AOB面积
如果r 表示A点的矢径,则:
T1 546(kN)
36
由B点:
X 0, T2cos cos45T3cos cos450
Y 0, T1sin60T2cos cos45T3cos cos450
Z 0, N2 T1cos60T2sin T3sin 0
cos 4 4, sin 3
力螺旋 o

第四章 空间力系

第四章 空间力系

9
4.3.2 空间力偶系的合成与平衡条件
空间力偶系可以合成,得到一个合力偶, 空间力偶系可以合成,得到一个合力偶,合力偶的矩矢 等于各分力偶矩矢的矢量和。 等于各分力偶矩矢的矢量和。
M R = M1 + M 2 + L + M n = ∑ M i
i=1 n
M2
MR
写成投影形式
M Rx = M x1 + M x 2 + L + M xn = ∑ M xi
M z ( F ) = M O ( Fxy ) = ± Fxy ⋅ d
z F
b
z Fz
B
a
Fx A
F
Fy F xy
O
O
y
z y a
x
y Fy Fxy
6
d
x
b'
a'
F xy x
Fx
b
其正负号按右手螺旋法则确定, 其正负号按右手螺旋法则确定,即以右手四指的绕向表 示 力使物体绕轴转动的方向,大姆指指向与z轴一致时为 力使物体绕轴转动的方向, 正,反之为负。 反之为负。 通过分析得到力对轴之矩等于零的两种情况: 通过分析得到力对轴之矩等于零的两种情况: 力与轴相交, (1) 力与轴相交,即 d=0 ; 力与轴平行, (2) 力与轴平行,即
Fxy=0 。两种情况综合起来,即当力与轴在同一平面时,力 两种情况综合起来,即当力与轴在同一平面时,
对该轴之矩等于零。 对该轴之矩等于零。
7
4.3 空间力偶
4.3.1 力偶矩以矢量表示——力偶矩矢 力偶矩以矢量表示——力偶矩矢 ——
如图所示的空间力偶 (F,F' ) 对于任一点的矩可表示为 ,

理论,力学,答案,理论力学习题答案

理论,力学,答案,理论力学习题答案

·36·第4章 空间力系一、是非题(正确的在括号内打“√”、错误的打“×”)1.力在坐标轴上的投影是代数量,而在坐标面上的投影为矢量。

( √ )2.力对轴之矩是力使刚体绕轴转动效应的度量,它等于力在垂直于该轴的平面上的分力对轴与平面的交点之矩。

( √ )3.在平面问题中,力对点之矩为代数量;在空间问题中,力对点之矩也是代数量。

( × )4.合力对任一轴之矩,等于各分力对同一轴之矩的代数和。

( √ )5.空间任意力系平衡的必要与充分条件是力系的主矢和对任一点的主矩都等于零。

( √ ) 6.物体重力的合力所通过的点称为重心,物体几何形状的中心称为形心,重心与形心一定重合。

( × ) 7.计算一物体的重心,选择不同的坐标系,计算结果不同,因而说明物体的重心位置是变化的。

( × ) 8.物体的重心一定在物体上。

( × )二、填空题1.空间汇交力系共有三个独立的平衡方程,它们分别表示为0=∑xF、0=∑yF和0=∑zF 。

空间力偶系共有三个独立的平衡方程,它们分别表示为0=∑xM、0=∑yM和0=∑zM。

而空间任意力系共有六个独立的平衡方程,一般可表示为0=∑xF、0=∑yF、0=∑zF 、0)(=∑F xM 、 0)(=∑F yM 和0)(=∑F zM 。

2.由n 个力组成的空间平衡力系,如果其中的(n -1)个力相交于A 点,那么另一个力也必定通过点A 。

3.作用在同一刚体上的两个空间力偶彼此等效的条件是力偶矩矢相等。

4.空间力对一点的矩是一个矢量,而空间力对某轴的矩是一个代数量。

5.空间力F 对任一点O 之矩)(F M O 可用矢量积来表示,即F r F M ⨯=)(O 。

写成解析表达式为k j i F M )()()()(x y z x y z O yF xF xF zF zF yF -+-+-=。

6.当空间力与轴相交时,力对该轴的矩等于零。

理论力学 第四章 空间力系

理论力学 第四章  空间力系
方向:右手螺旋法则,与Z轴正方向一致时为正,反之为负。
12
单位:N·m
2.力对轴的矩
力对轴之矩合力矩定理:各力对任一轴之矩等于各分力对同一轴之矩的 代数和。
例:将Fxy再分解为Fx、Fy,根据合力矩定理则有:
Mz( F ) MO( Fxy ) MO( Fx ) MO( Fy ) xFy yFx
即:FR Fi 0
FR
Fx2 Fy2 Fz2
空间汇交力系的平衡方程
Fx 0 Fy 0
Fz 0
6
例题
如图所起重机,已知CE=EB=DE,角α=30o ,CDB平面与水平面 间的夹角∠EBF= 30o ,重物G=10 kN。如不计起重杆的重量,试求起 重杆所受的力和绳子的拉力。
XYZ
mO (F) (yZ zY ) i (zX xZ) j (xY yX) k
11
§4.3力对轴的矩
1.当力作用面 Z轴时: MZ(F ) M0 F F h

2.当力作用面 Z轴时: M z (F) Mo (Fxy ) Fxy h

力与轴相交或与轴平行(力与轴在同一平面内),力对该轴的矩为零.
7
例题
解: 1. 取杆AB与重物为研究对象,受力分析如图。
zD
F2
E
C F 30o
B
F1
α
FA G
A
y
x
其侧视图为
z
E F1
F 30o
B
α
FA G
A
y
8
例 题 4-3
2. 列平衡方程。
zD
F2
E
C F 30o
B
F1
Fx 0,
F1 sin 45 F2 sin 45 0

理论力学——第4章 空间力系

理论力学——第4章 空间力系

MO (F )z
M z (F)
例题2 解:
已知:F、 a、b、、
求: MO(F)
i jk
MO(F) r F x y z
xa
Fx Fy Fz
yb
z0
Fx F cos sin Fy F cos cos Fz F sin
MO (F ) Fbsin i Fasin j (Fbsin sin Fasin cos ) k
MO (F )z
M z (F)
MO (F) 2OAB
Mz(F) = MO(Fxy) = ±2 △Oab
OAB cos Oab
MO (F) cos M z (F)
MO (F )z M z (F )
Mz(F)
(x,y,z))
Fxy
M O M O
(F (F
)x )y
M x(F) M y (F)
cos(M , j) M y
M
cos(M , k) M z M
平衡条件
n
Mi 0
i 1
平衡方程
M ix M iy
0 0
M iz
0
4-5 空间任意力系向一点简化
z
F2
BA O C
M3
F1
F2
M2
y
z
M1
F1
O
y
z
MO
O
FR
y
x
F3
x
F3
x
F1 F1 , F2 F2 , , Fn Fn
M1
A
解:取曲杆为研究对象
a
FA
z
FA
y
z
Fx 0,
FDx 0
B
M y (F ) 0, FAz a M 2 0

理论力学课件空间力系

理论力学课件空间力系

12
上页 解析平衡条件
下页
退出
z Fn
F2
FR
A
y
x
F1
结论:满足平衡方程
空间力系
FRx Fix 0
FRy Fiy 0
FRz
Fiz
0
有三个独立的平衡方程
F R F R i xF Rj yF R k z 0 平面力系
F RF R 2 xF R 2 yF R 2 z0
FRx Fix 0
下页 退出
力F 沿坐标轴的投影分别为:
Fx F sin Fy 0 Fz F cos
由于力与轴平行或相交 时力对该轴的矩为零,则有
M xFM xF ZFzA B CD Flacos M yFM yF ZFzB CFclos M zFM zFxFxA B CD Flasin
9
上页 §5-3、空间力的分类及其平衡条件
空间力系
§5-1、力在空间坐标上的投影 §5-2、力对轴之矩 §5-3、空间力的分类及其平衡条件
1
§5-1、力在空间坐标上的投影
上页
下页
退出 直接投影法
间接投影法
z
Fx Fcos
Fy Fcos
Fz Fcos
x
Fxy Fsin
F
y
F xy
FxFsincos
Fy Fsinsin
Fz Fcos
2
例1设力作用于长方体的顶点,其作用线沿长方体对角线。
上页 下页
若长方体三个棱边长 ABa
, BC b
, BE c ,试求力
退出 在图示直角坐标轴上的投影。
z
解: 1、F在 z 轴上的投影
Fz
O

理论力学空间力系

理论力学空间力系

3
第三章
空间力系
§3-1 空间汇交力系
4
§3-1 空间汇交力系
一、力在直角坐标轴上的投影
1、直接投影法
F , i , F , j , F , k . 已知:F,
Fx F cos
F
Fy F cos Fz F cos
同理
Fz
F
Fxy
M x ( F ) yFz zFy M y (F ) zFx xFz
力对轴的矩是代数量,方向满足右手螺旋法则。
15
§3-2 力对点的矩和力对轴的矩
3、 力对点之矩与力对通过该点的轴的矩的关系
比对
M ( F ) yF zF z y x O MO (F ) y zFx xFz M O ( F ) xFy yFx z
在空间中:
力矩矢
MO (F ) r F
MO F

O
z
B F
大小:2SΔOAB
方向:满足右手螺旋法则
k
r
A(x,y,z)
y
i
在空间中,力对点的矩是矢量。 —与大小和作用方位均相关 x
j
12
§3-2 力对点的矩和力对轴的矩
力矩矢的投影表达式
MO (F ) r F ( xi yj zk ) ( Fx i Fy j Fz k )
合力矩定理
M x ( F ) i + M y ( F ) j + M z ( F )k
M x ( Fx ) + M x ( Fy ) + M x ( Fz ) i + M y ( Fx ) + M y ( Fy ) + M y ( Fz ) j + M z ( Fx ) + M z ( Fy ) + M z ( Fz ) k

黄安基--第4章 空间力系的简化和平衡

黄安基--第4章 空间力系的简化和平衡
P64
理论力学电子教程
第四章 空间力系
2、空间力偶系的合成与平衡.
M M1 M2 Mn M
空间力偶系可合成为一合力偶, 该合力偶矩矢等于力 偶系中所有各力偶矩矢的矢量和。
空间力偶系平衡的必要与充分条件是:该力偶系中所 有的各力偶矩矢的矢量和为零 。
M 0
投影形式有
M x 0, M y 0, M z 0,
影)P58 Fxy F sin
Fx Fxy cos F sin cos
Fy Fxy sin F sin sin
Fz F cos
x
反之 F Fx2 Fy2 Fz2
cos Fx / F, cos Fy / F, cos Fz / F
这里注意力向坐标轴投影是代数量
而力向某平面投影是矢量。
第四章 空间力系
作业: 今天交上次:全部 布置本次:课后习题 4-2、4-6、补充:电子教案4-4
理论力学电子教程
第四章 空间力系
§4-4 空间任意力系的简化
1、空间任意力系向已知点的简化
简化理论依据是: 力线平移定理。
力线平移定理:
作用于刚体上的任一力,可平移 至刚体的任意一点,欲不改变该 力对于刚体的作用,则必须在该 力与指定点所决定的平面(力 矩面)内加一力偶,其力偶矩矢
理论力学电子教程
第四章 空间力系
(5)FR 0, M 0 0, M 0 // FR
(最后形成力+力偶(称其为力螺旋))
理论力学电子教程
(6)FR 0, M 0 0,
(成任意角)
(最后也形成力螺旋)
第四章 空间力系
空间任意力系的合力矩定理
若空间任意力系可以合成为一个合力时,则其合力对于任 一点之矩(或任一轴之矩)等于力系中各力对于同一点之矩的矢 量和(或同一轴之矩的代数和),这即为空间力系合力矩定理。

理论力学 第四章空间力系习题

理论力学  第四章空间力系习题

例4-11 已知:F、P及各尺寸
求: 杆内力 解:研究对象,长方板,列平衡方程
M AB F 0

F6

a

a 2

P

0
F6


P 2
M AE F 0
F5 0
M AC F 0
F4 0
M EF
M FG M BC
F1 cos 30 200 F2 cos 60 200 F 200 FBx 400 0
M y
F2

F1


0
M z F 0 (F1 sin 30 F2 sin 60 ) 200 FBx 400 0
Mz1(F) 0 M x1(F) 0
FDx 1200 FAx 900 Ft 80 0
FD
1200

又: Fr 0.36Ft ,
Ft 10.2kN FBx 1.19kN
Fr 3.67kN FBy 6.8kN
FAx 15.64kN FBz 11.2kN
研究对象2:工件受力图如图,列平衡方程
Fx 0
Fy 0
Fz 0
FOx Fx 0
FOy Fy 0 FOz Fz 0
x 1 15mm y 1 45mm A 1 300mm2
x 2 5mm y 2 30mm A 2 400mm2
x 3 15mm y 3 5mm A 3 300mm2

xC

Ai x i A

A1x1 A2 x 2 A3x 3 A1 A2 A3

哈工大理论力学第四章

哈工大理论力学第四章

∑F =0
z
FOA sin 45 −P = 0
(拉) F = −1414N F = F = 707N OA OB OC
例4-4 已知: F, l, a,θ 求: x ( F ) , My ( F ) , Mz ( F ) M 解:把力 F 分解如图
Mx F = −F ( l + a) cosθ My F = −Fl cosθ
∑F = 0
FA = 8.66kN
例4-3 已知:P=1000N ,各杆重不计. 求:三根杆所受力. 解:各杆均为二力杆,取球铰O, 画受力图。
∑F =0 ∑F =0
x
y
FOB sin 45 − FOC sin 45 = 0
− FOB cos 45 − FOC cos 45 − FOA cos 45 = 0
空间平行力系的平衡方程
∑F = 0 ∑M
z
x
=0
பைடு நூலகம்
∑M
y
=0
2.空间约束类型举例 2.空间约束类型举例 3.空间力系平衡问题举例 3.空间力系平衡问题举例
§4–6 重 心 6
1.计算重心坐标的公式
P ⋅ xC = P ⋅ x1 + P2 ⋅ x2 + .... + Pn ⋅ xn 1 = ∑ Pi ⋅ xi
M = rBA × F
2、力偶的性质 (1) (1)力偶中两力在任意坐标轴上投影的代数和为零 . (2)力偶对任意点取矩都等于力偶矩,不因矩心的改 力偶对任意点取矩都等于力偶矩, 变而改变。 变而改变。
M O ( F , F ′) = M O ( F ) + M O ( F ′) = rA × F + rB × F ′

理论力学 第4章-空间力系

理论力学 第4章-空间力系

mx (P) m y (P) mz (P)
6. 空间力矩的平衡:
M
o
(R) 0 m m m
x

0 0 0
空间力矩的平衡方程
y
z
§4-4 空间一般力系的简化和合成
1. 空间一般力系向一点O简化:
1) O点的空间汇交力系: ( P , P , P , P ); 2) 空间附加力偶系: ( m ( P ), m ( P ), m ( P ), m
2. 力偶系的合成:
1) 合力偶矩定理:空间上力偶系的合力偶矩等于各 (几何法) 个分力偶矩的矢量和 I l
2) 合力偶矩投影定理: 空间上力偶系的合力偶矩在 (解析法) 一根轴上的投影等于各个合力偶矩在同 一 轴上的投影的代数和
Lx Ly Lz

l l l
x
y
z
3. 力偶系的平衡

x0 y0 z0 N A B c o s c o s T1 0 N A B c o s sin T 2 0 N A B sin Q 0
3. 求解 :
cos s in cos 80
2
60
2
145 105 145 80 100 4 5 ;
方向余弦; 方向余弦;
Lx Ly Lz
3. 空间一般力系的再生成:
合成为合力:
当 R 0 , L 0 或 R L 时 大 小: 方向: 作 用 线 : 由 空 间 作 用 线 函 数 方 程 确 定 ; 或 简 单 地 在 L 作 用 面 内 , 以 d=| L R | 及 L 转 向 来 确 定 作 用 线 位 于 R 左 侧 或 右 侧 的 位 置 . R=R 可合为一合力

理论力学 第四章 空间力系

理论力学  第四章 空间力系

第四章空间力系本章将研究空间力系的简化和平衡条件。

工程中常见物体所受各力的作用线并不都在同一平面内,而是空司分布的,例如车床主轴、起重设备、高压输电线塔和飞机的起落架等结构。

设计这些结构时,需用空间力系的平衡条件进行计算。

与平面力系一样,空间力系可以分为空间汇交力系、空司力偶系和空间任意力系来研究。

§4-1 空间汇交力系1.力在直角坐标轴上的投影和力沿直角坐标轴的分解若已知力F与正交坐标系Oxyz三轴间的夹角分别为α、β、γ,如图4-1所示,则力在三个轴上的投影等于力F的大小乘以与各轴夹角的余弦,即X=cosαY=cosβ (4-1)Z=cosγ当力与坐标轴Ox、Oy间的夹角不易确定时,可把力先投影到坐标平面Oxy上,得到力,然后再把这个力投影到x、y轴上。

在图4-2中,已知角γ和,则力在三个坐标轴上的投影分别为X=sinγcosY=sinγsin (4-2)Z=cosγ若以、、表示力F沿直角坐标轴x、y、z的正交分量,以i、j、k分别表示沿x、y、z坐标轴方向的单位矢量,如图4-3所示,则图4-2=++=X i+Y j+Z k (4-3)由此,力在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为:=X i,=Y j,=Z k (4-4)如果己知力F在正交轴系Oxyz的三个投影,则力F的大小和方向余弦为=cos(,i)=cos(,j)= (4-5)cos(,k)=例4-1图4-4所示的圆柱斜齿轮,其上受啮合力的作用。

已知斜齿轮的齿倾角(螺旋角) β和压力角α,试求力沿x、y和z轴的分力。

解:先将力向z轴和Oxy平面投影,得Z=-sinα=cosα再将力向x、y轴投影,得X=-sinβ=-cosαsinβY=-cosβ=-cosαcosβ则沿各轴的分力为=-cosαsinβi,=-cosαcosβj,=-sinαk式中i、j、k为沿x、y、z轴的单位矢量,负号表明各分力与轴的正向相反。

理论力学第四章空间力系

理论力学第四章空间力系


→ →






AB × F ')

力偶矩矢与矩心无关 力偶矩矢无须确定矢的初端位置,故为自由矢量。 力偶矩矢无须确定矢的初端位置,故为自由矢量。 自由矢量
21
结论: 结论:
空间力偶对刚体的作用效果决定于下列三个因素: 空间力偶对刚体的作用效果决定于下列三个因素: ①力偶矩的大小 M = Fd = 2 A∆ABC ②力偶矩的方位——与力偶作用面法线方向相同 力偶矩的方位——与力偶作用面法线方向相同 转向——遵循右手螺旋规则 ③转向——遵循右手螺旋规则
xi
yi
——空间汇交力系的平衡方程 ——空间汇交力系的平衡方程
8
已知: CE=EB=DE; [例1] 已知: 物重P=10kN,CE=EB=DE;θ = 30 ,
0
求:杆受力及绳拉力 解:画受力图如图, 画受力图如图, 列平衡方程
∑F
x
=0
F sin 45o − F sin 45o = 0 1 2
→ → → → → → → →
= [ m O ( F )] x i + [ m O ( F )] y i + [ m O ( F )] z k
[mO (F )]x = yFZ − zFy [mO (F )]y = zFx − xFZ [mO (F )]z = xFy − yFx
→ → → → → →
[mO (F )]x = yFZ − zFy [mO (F )]y = zFx − xFZ [mO (F )]z = xFy − yFx
→ →
→ → → → → →
M x ( F ) = yFz − zF y M y ( F ) = zF x − xFz M Z ( F ) = xF y − yFx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

r xi yj zk
F Fx i Fy j Fz k
M O ( F ) (r F ) ( xi yj zk ) ( Fxi Fy j Fz k )
( yFz zFy )i ( zFx xFz ) j ( xFy yFx )k
例 题 3
已知: P 、 a、b、c
求: 力P 对OA轴之矩
z
解 (1)计算 M ( P) o
FB
FE P / cos 2 FA FB P tan 2
x
FA
P
§4–2
力对点的矩和力对轴的矩
1、力对点的矩以矢量表示 ——力矩矢
三要素: (1)大小:力F与力臂的乘积 (2)方向:转动方向 (3)作用面:力矩作用面.
M O (F )
MO ( F ) r F
MO(F) =Fh=2△OAB
例题 2
解: (1)
已知:F、 a、b、、 求: MO(F) 直接计算
i j k
xa M O ( F ) Fb sin i Fa sin j y b ( Fb sin sin Fa sin cos ) k z0 Fx F cos sin Fy F cos cos
( yFz zFy )i ( zFx xFz ) j ( xFy yFx )k
●力对点的矩矢在通过该点的 某轴上的投影,等于力对该轴 的矩。
M O ( F ) x M x ( F ) M O (F ) y M y ( F ) M O ( F ) z M z ( F )
FR
cos( FR , j )
Fy FR
Fz cos( FR , k ) FR
空间汇交力系的合力等于各分力的矢量和,合 力的作用线通过汇交点. 空间汇交力系平衡的充分必要条件是: 该力系的合力等于零,即
FR 0
F
x
0
F
y
0
称为空间汇交力系的平衡方程.
空间汇交力系平衡的充要条件:该力系中所有 各力在三个坐标轴上的投影的代数和分别为零.
(2)
利用力矩关系
M x ( F ) Fz b Fb sin M y ( F ) Fz a Fa sin M z ( F ) Fxb Fy a Fb sin sin Fa sin cos
M O ( F ) M x ( F ) i M y ( F ) j M z ( F )k Fb sin i Fa sin j ( Fb sin sin Fa sin cos ) k
y
M O ( F ) xFy yFx M z ( F ) z
M x ( F ) yFz zFy M y ( F ) zFx xFz M z ( F ) xFy yFx
i MO (F ) r F x Fx j k y z Fy Fz
例 题 1
求: 绳的拉力和墙体的约束反力 。
z
解: 取球体为研究对象
Fz 0, FE cos P 0 Fx 0, FA FE sin cos 45 0 Fy 0, FB FE sin sin 45 0
FE
E

O B
A y
C
解得:
2、空间汇交力系的合力与平衡条件
空间汇交力系的合力 FR F i
合矢量(力)投影定理
FRx Fix Fx
FRy Fiy Fy
FRz Fiz Fz
合力的大小
方向余弦
F cos( F , i )
R x
FR ( Fx )2 ( Fy )2 ( Fz )2
MO (F ) 2OAB
Mz (F ) Mo (Fxy ) 2Oab
Mz(F)
(x,y,z))
OAB cos Oab
Fxy
MO (F ) cos M z (F )
MO (F )z M z (F )
M O (F )x M x (F ) M O (F )y M y (F ) M O (F )z M z (F )
M y ( F ) M y ( Fx ) M y ( Fy ) M y ( Fz ) Fx z Fz x M z ( F ) Fy x Fx y
M O ( F ) yFz zFy M x ( F ) x M O ( F ) zFx xFz M y ( F )
Fxy h 2OAB
★ 力对轴的矩等于力在垂 直于该轴的平面上的投影对 轴与平面交点的矩。
x
Fz
O h A
F
B
b
Fxy
y
力对轴之矩用来表征——力对刚体绕某轴的转动效应。 ☆ 当力与轴在同一平面时,力对该轴的矩等于零。
3、力对点的矩与力对过该点的轴的矩的关系
M x ( F ) M x ( Fx ) M x ( Fy ) M x ( Fz ) Fz y Fy z
力对点O的矩在三个坐标轴上的投影为
M O ( F ) yFz zFy x
M O ( F ) zFx xFz y
M O ( F ) xFy yFx z
MO(F) 定位矢量
z
2.力对轴的矩
Mz(F)
M z (F ) Mo (Fxy )
第 四 章 空 间 力 系
§4–1 空间汇交力系
1、力在直角坐标轴上的投影 直接投影法
Fx F cos
Fy F cos
Fz F cos
间接(二次)投影法
Fxy F sin
Fx F sin cos
Fy F sin sin
Fz F cos
相关文档
最新文档