八年级数学下 填空选择专项训练

合集下载

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。

八年级数学下册填空选择专题复习

八年级数学下册填空选择专题复习

填空选择专题复习 (编号:复14)1、样本2-,0,1-,2,1的标准差是( ).A. 0B. 2C. 2D. 2±2、在x 1、21、212+x 、π13xy 、y x +3、ma 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个3、要使分式112-+x x 有意义,x 必须满足条件( )A.x=1B.x=-1C.x ≠±1D.x ≠1 4、.若分式112--xx 的值为零,则x 的值为( )(A) 1 (B)-1 (C)1或-1 (D)0 5、把分式xy y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A.不变 B.扩大为原来的3倍 C.缩小为原来的31 D.扩大为原来的9倍6、下列两个图形,①两个等腰三角形,②两个直角三角形,③两个正方形,④两个矩形,⑤两个菱形,⑥两个正五边形,其中一定相似的有( ) A 、2组 B 、3组 C 、4组 D 、5组7、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( ) A .10 m B .12 m .13 m D .15 m8. 如右图,当0<y 时,自变量 x 的范围是( ) A 、2-<x B 、2->x C 、2<x D 、2>x9、在平面直角坐标系内,点P (3-m ,5-m )在第四象限,则m 的取值范围是( ) A 、35<<-m B 、53<<-m C 、53<<m D 、35-<<-m 10..下列不等式一定成立的是( )A.5a >4aB.x+2<x+3C.-a >-2aD.a a 24>12.不等式-3x+6>0的正整数有( )A.1个 B.2个 C.3个D.无数多个13、“x 的2倍与3的差不大于8”列出的不等式是( ) A .2x -3≤8;B .2x -3≥8;C .2x -3<8;D .2x -3>814、若a >b ,则下列不等式中正确的是:( )A 、a -b <0B 、b a 55-<-C 、a -8< b -8D 、44b a <15.不等式组⎩⎨⎧>≤35x x 的解集在数轴上表示,正确的是( ).16.从2万多名参加中考学生抽取500名学生的数学成绩进行统计分析。

人教版 八年级数学下册 18.1 ---18.2复习题(含答案)

人教版  八年级数学下册 18.1 ---18.2复习题(含答案)

人教版八年级数学18.1 平行四边形一、选择题1. 已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A. OE=12DC B. OA=OCC. ∠BOE=∠OBAD. ∠OBE=∠OCE2. 如图,在平行四边形ABCD中,5AD=,3AB=,AE平分BAD∠交BC边于点E,则线段BE,EC的长度分别为()A.2和3B.3和2C.4和1D.1和4如图DCEBA3. 如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B为()A. 66°B. 104°C. 114°4. 如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.215. 如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A . 10B . 14C . 20D . 226. 点A 、B 、C 、D 在同一平面内,从①AB CD ∥,②AB CD =,③BC AD ∥,④BC AD =.这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )种A .3B .4C .5D .67. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .158. 如图,D 是△ABC内一点,BD ⊥CD ,AD=7,BD=4,CD=3,E 、F 、G 、H分别是AB 、BD 、CD 、AC 的中点,则四边形EFGH 的周长为A .12B .14C .24D .219.已知四边形的四条边长分别a b c d ,,,其a b ,对边,并且满足222222a b c d ab cd +++=+)A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形10.(2020·P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S,PBC∆的面积为2S,则()A.122SS S+> B.122SS S+<C.212SS S+= D.21S S+的大小与P点位置有关二、填空题11. 如图,在平行四边ABCD中,120A∠=︒,则D∠=︒.EAB C图图1DCBA如图,在平行四边形ABCD中,DB DC=,65A∠=︒,CE BD⊥于E,则BCE∠=︒.EEAB C图AB CD图2D13. 如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件________(写一个即可),使四边形ABCD是平行四边形.14. (2020·凉山州)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E.若OA=1,△AOE的周长等于5,则平行四边形ABCD的周长等于.OE DCBA15. 如图,已知等边三角形的边长为10,P是ABC∆内一点,PD AC∥,PE AB PF BC∥,∥,点D E F,,分别在AB BC AC,,上,则PD PE PF++=P FEDCBA16. 如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的大小为________.三、解答题17. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.18. (2020·淮安)如图,在□ABCD中,点E、F分别在BC、AD上,AC与EF 相交于点O,且AO=CO.(1)求证∶△AOF≌△COE;(2)连接AE、CF,则四边形AECF_______________(填"是"或"不是")平行四边形.19. 如图,在等腰ABC∆中,延长边AB 到点D ,延长边CA 到点E ,连接DE ,恰有AD BC CE DE ===.求证:100BAC ∠=︒.EDCB A20. 如图,在ABC ∆中,AB AC AD BC =⊥,于D ,点P 在BC 上, PE BC ⊥交BA 的延长线于E ,交AC KHF FABCD EPPE D C BA21. 如图所示,在平行四边形ABCD 中,求证222222AC BD AB BC CD DA +=+++.DCBA人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题1. 【答案】D 【解析】A 、B 、C 均正确,因为OB 不一定等于OC ,所以∠OBE 不一定等于∠OCE .2. 【答案】B3. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.4. 【答案】C【解析】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°, 又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6, 由折叠可得,∠E=∠D=∠B=60°, ∴∠DAE=60°,∴△ADE 是等边三角形, ∴△ADE 的周长为6×3=18, 故选C .5. 【答案】B【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .由AC +BD =16可得OA +OB =8,又∵AB =CD =6,∴△ABO 的周长为OA +OB +AB =8+6=14.6. 【答案】B7. 【答案】C8. 【答案】A【解析】∵BD ⊥CD ,BD=4,CD=3, ∴BC=2222=43BD CD ++=5,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点, ∴EH=FG=12BC ,EF=GH=12AD , ∴四边形EFGH 的周长=EH+GH+FG+EF=AD+BC , 又∵AD=7,∴四边形EFGH 的周长=7+5=12.故选A .9. 【答案】B10. 【答案】C然后使分割后的图形与PAD∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.11. 【答案】60︒12. 【答案】25︒【解析】∵四边形ABCD 是平行四边形 ∴65A DCB ∠=∠=︒ 又∵DB DC =∴65DBC DCB ∠=∠=︒,∴50CDB ∠=︒ 又∵CE BD ⊥,∴40ECD ∠=︒ ∴654025BCE ∠=︒-︒=︒.13. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.14. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE,OE.∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +8ABCD 的周长=16.故答案为16.15.16. 【答案】36° 【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.三、解答题17. 【答案】解:(1)证明:∵四边形ABCD 是矩形, ∴AB ∥CD ,∴∠F AE=∠CDE , ∵E 是AD 的中点,∴AE=DE ,又∵∠FEA=∠CED ,∴△F AE ≌△CDE ,∴CD=F A , 又∵CD ∥AF ,∴四边形ACDF 是平行四边形. (2)BC=2CD.理由:∵CF 平分∠BCD ,∴∠DCE=45°, ∵∠CDE=90°,∴△CDE 是等腰直角三角形, ∴CD=DE ,∵E 是AD 的中点,∴AD=2CD , ∵AD=BC ,∴BC=2CD.18. 【答案】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAO=∠ECO , 中∴△AOF和△COE(ASA).(2)由(1)△AOF和△COE,∴OF=OE,又∵OA=OC,∴四边形AEOF为平行四边形.19.20. 【答案】分析:加倍中线构造平行四边形,然后再通过等量线段证明原式成立。

【每课一测卷】苏科版数学八年级下册 9

【每课一测卷】苏科版数学八年级下册 9

9.2 中心对称与中心对称图形一.选择题(共7小题)1.如图将①②③④中的一块涂成阴影能与图中原有阴影部分组成中心对称图形的是()A.④B.③C.②D.①2.下列说法正确的是()A.关于某个点成中心对称的两个三角形全等B.两个全等三角形一定关于某个点成中心对称C.中心对称图形也是轴对称图形D.轴对称图形也是中心对称图形3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是中心对称图形的是()A.中B.国C.富D.强4.如果图示中六边形ABCDEF是正六边形,那么这个图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形5.下面是“湖南新田”四个汉字的声母的大写,不是中心对称图形的是()A.H B.N C.X D.T6.用两条直线四等分正方形的面积,不同的画法有()A.一种B.两种C.三种D.无数种7.下列图形中,是中心对称图形的是()A.B.C.D.二.填空题(共5小题)8.如图,△ADE是由△ABC绕A点旋转180度后得到的.那么,△ABC与△ADE关于A 点对称,A点叫做.9.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB 的延长线的H点处,且BH=4,则∠BAG=度,△ABG的面积是.10.把下列图形的序号填在相应的横线上:①线段;②角;③等边三角形;④等腰三角形(底边和腰不等);⑤平行四边形;⑥矩形;⑦菱形;⑧正方形.(1)轴对称图形:.(2)中心对称图形:.(3)既是轴对称图形,又是中心对称图形:.(4)是轴对称图形,而不是中心对称图形:.(5)不是轴对称图形,而是中心对称图形:.11.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认为被倒过来的那张扑克牌是.12.填空:(1)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心,这个点叫做中心,这两个图形中的对应点叫做关于中心的点.(2)中心对称的性质有:中心对称的两个图形是图形;中心对称的两个图形,对称点所连线段都对称中心,而且被对称中心所.三.解答题(共3小题)13.如图,在四边形ABCD中,AD∥BC,E是CD的中点.(1)画图:连接AE并延长,交BC的延长线于点F,连接BE;(2)填空:点A与点F关于点成中心对称,若AB=AD+BC,则△ABF是三角形,此时点A与点F关于直线成轴对称;(3)图中△的面积等于四边形ABCD的面积.14.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标为(写出所有可能的点的坐标);(2)顺次连接(1)中的所有点,得到的图形是图形(填“中心对称”、“旋转对称”或“轴对称”);(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?15.(1)能把平行四边形分成面积相等的两部分的直线有条,它们的共同特点是.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.9.2 中心对称与中心对称图形参考答案与试题解析一.选择题(共7小题)1.如图将①②③④中的一块涂成阴影能与图中原有阴影部分组成中心对称图形的是()A.④B.③C.②D.①【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合中心对称图形的概念进行求解.【解答】解:由图可得,应该将②涂成阴影,可与图中原有阴影部分组成中心对称图形.故选:C.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列说法正确的是()A.关于某个点成中心对称的两个三角形全等B.两个全等三角形一定关于某个点成中心对称C.中心对称图形也是轴对称图形D.轴对称图形也是中心对称图形【分析】直接利用中心对称图形以及轴对称图形的定义、关于点对称图形的性质分析得出答案.【解答】解:A、关于某个点成中心对称的两个三角形全等,正确;B、两个全等三角形不一定关于某个点成中心对称,故此选项不合题意;C、中心对称图形不一定是轴对称图形,故此选项不合题意;D、轴对称图形不一定是中心对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了中心对称图形以及轴对称图形的定义、关于点对称图形的性质,正确把握相关定义是解题关键.3.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是中心对称图形的是()A.中B.国C.富D.强【分析】利用中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】此题考查了中心对称图形,熟练掌握中心对称图形的定义是解本题的关键.4.如果图示中六边形ABCDEF是正六边形,那么这个图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形【分析】直接利用轴对称图形以及中心对称图形的性质进而分析得出答案.【解答】解:如图所示:是轴对称图形但并不是中心对称图形.故选:B.【点评】此题主要考查了轴对称图形以及中心对称图形的性质,正确把握相关定义是解题关键.5.下面是“湖南新田”四个汉字的声母的大写,不是中心对称图形的是()A.H B.N C.X D.T【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、H是中心对称图形,故此选项不符合题意;B、N是中心对称图形,故此选项不符合题意;C、X是中心对称图形,故此选项不符合题意;D、T不是中心对称图形,故此选项符合题意;故选:D.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形概念.6.用两条直线四等分正方形的面积,不同的画法有()A.一种B.两种C.三种D.无数种【分析】根据正方形是中心对称图形解答即可.【解答】解:用两条直线四等分正方形的面积,不同的画法有无数种,故选:D.【点评】此题考查中心对称,关键是根据正方形是中心对称图形解答.7.下列图形中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二.填空题(共5小题)8.如图,△ADE是由△ABC绕A点旋转180度后得到的.那么,△ABC与△ADE关于A点中心对称,A点叫做对称中心.【分析】把一个图形绕一点旋转180度,能够与另一个图形重合,则这个点就叫做对称中心,这两个图形就是中心对称,依据定义即可解决.【解答】解:△ABC与△ADE关于A点中心对称,A点叫做对称中心.【点评】本题主要考查了中心对称的定义,是一个基础题.9.如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB 的延长线的H点处,且BH=4,则∠BAG=80度,△ABG的面积是14.【分析】根据中心对称的性质和折叠的性质计算即可,同时运用了三角形的面积公式.【解答】解:依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°﹣50°×2=80°;作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.【点评】此题能够根据中心对称的性质和折叠的性质发现相等的线段,解题的关键是熟练运用等腰三角形的三线合一的性质进行证明HB=CG.10.把下列图形的序号填在相应的横线上:①线段;②角;③等边三角形;④等腰三角形(底边和腰不等);⑤平行四边形;⑥矩形;⑦菱形;⑧正方形.(1)轴对称图形:①②③④⑥⑦⑧.(2)中心对称图形:①⑤⑥⑦⑧.(3)既是轴对称图形,又是中心对称图形:①⑥⑦⑧.(4)是轴对称图形,而不是中心对称图形:②③④.(5)不是轴对称图形,而是中心对称图形:⑤.【分析】把一个图形绕一点旋转180度,能够与原来的图形重合,则这个点就叫做对称点,这个图形就是中心对称图形;一个图形的一部分绕一条直线旋转180度,能够和另一个部分重合,这个图形就是轴对称图形,依据定义即可进行分类.【解答】解:(1)轴对称图形:①②③④⑤⑥⑦⑧;(2)中心对称图形:①⑤⑥⑦⑧;(3)既是轴对称图形,又是中心对称图形:①⑥⑦⑧;(4)是轴对称图形,而不是中心对称图形:②③④;(5)不是轴对称图形,而是中心对称图形:⑤.故答案为:①②③④⑤⑥⑦⑧;①⑤⑥⑦⑧;①⑥⑦⑧;②③④;⑤.【点评】本题主要考查了图形的对称,综合性很强,综合了我们在七、八、九年级所学的平面图形,关于对称的知识要全面掌握.11.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认为被倒过来的那张扑克牌是方块5.【分析】根据每张扑克的特征,前三张如果发生颠倒都可辨认,如果前三张都未发生颠倒,那么就一定是第四张发生了颠倒.【解答】解;∵前三张扑克都可根据他们的特征看出是否发生了颠倒,只要方块5不能看出,而颠倒后,我们可看出前三张都未发生颠倒∴发生颠倒的扑克一定是:方块5.【点评】本题考查了图形的旋转,做题时根据图形的特征仔细分析.12.填空:(1)把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质有:中心对称的两个图形是全等图形;中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.【分析】根据中心对称的定义及性质即可完成填空.【解答】解:(1)中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.(2)中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.故答案为:重合、对称、对称、对称;全等、经过、平分.【点评】本题考查中心对称的定义与性质的内容,属于基础题,掌握基本的概念与性质是解答此题的关键.三.解答题(共3小题)13.如图,在四边形ABCD中,AD∥BC,E是CD的中点.(1)画图:连接AE并延长,交BC的延长线于点F,连接BE;(2)填空:点A与点F关于点E成中心对称,若AB=AD+BC,则△ABF是等腰三角形,此时点A与点F关于直线BE成轴对称;(3)图中△ABF的面积等于四边形ABCD的面积.【分析】(1)根据要求直接作出图形即可;(2)利用中心对称的定义回答即可,然后证得AB=BF,利用等腰三角形的性质判定等腰三角形即可;(3)得到三角形ADE的面积等于三角形ECF的面积,从而得到答案;【解答】解:(1)如图:(2)∵AD∥BC,∴∠D=∠DCF,∵DE=CE,∠AED=∠FEC在△ADE与△FCE中,∴△ADE≌△FCE(ASA),∴AE=FE,AD=CF,∴点A与点F关于点E成中心对称,∵若AB=AD+BC,∴AB=BF,则△ABF是等腰三角形,此时点A与点F关于直线BE成轴对称;(3)图中△ABF的面积等于四边形ABCD的面积.故答案为:E,等腰,BE,ABF.【点评】本题考查了中心对称的知识,解题的关键是了解中心对称的定义,利用中心对称的定义判定两点关于某点成中心对称.14.如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标为(0,0),(0,2),(1,3),(3,3),(4,2),(4,0)(写出所有可能的点的坐标);(2)顺次连接(1)中的所有点,得到的图形是轴对称图形(填“中心对称”、“旋转对称”或“轴对称”);(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,请在平面直角坐标系中画出变化后的图形,并与原图形比较,形状和大小有怎样的变化?【分析】(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形;(3)画出图形解答即可.【解答】解:(1)下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;(3)将(2)中得到的图形的各顶点的坐标都乘以1.5,如图所示,与原图形比较,形状不变,图形变大了.故答案为:(1)(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)轴对称.【点评】本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.15.(1)能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.【分析】(1)根据平行四边形的性质可知能把平行四边形分成面积相等的两部分的直线有无数条,它们的共同特点是均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,P、Q 分别为四边形ABMF、四边形CDEM的对称中心,直线PQ即为所求.(3)根据题意先作出图形,分别找到两个图形的对称中心,连接即可.【解答】解:(1)无数.均经过两条对角线的交点.(2)延长BC交EF于点M,连接AM、BF交于点P,连接CE、DM交于点Q,过P、Q的直线将这个图形分成面积相等的两部分,因为PQ既将平行四边形ABMF的面积平分,又将平行四边形CDEM的面积平分,所以直线PQ即为所求.(3)如图所示:【点评】本题考查了中心对称图形的性质:经过对称中心的直线将中心对称图形分成面积相等的两部分.。

八年级数学三角形填空选择专题练习(word版(1)

八年级数学三角形填空选择专题练习(word版(1)

八年级数学三角形填空选择专题练习(word版(1)一、八年级数学三角形填空题(难)1.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.2.如图,△AEF是直角三角形,∠AEF=900,B为AE上一点,BG⊥AE于点B,GF∥BE,且AD=BD=BF,∠BFG=600,则∠AFG的度数是___________。

【答案】20°【解析】根据平行线的性质,可知∠A=∠AFG,∠EBF=∠BFG=600,然后根据等腰三角形的性质,可知∠BDF=2∠A ,∠A+∠AFB=3∠A=∠EBF ,因此可得∠AFG=20°. 故答案为:20°.3.如图,有一块直角三角板XYZ 放置在△ABC 上,三角板XYZ 的两条直角边XY 、XZ 改变位置,但始终满足经过B 、C 两点.如果△ABC 中,∠A=52°,则∠ABX+∠ACX=_________________.【答案】38°【解析】∠A =52°,∴∠ABC +∠ACB =128°,∠XBC +∠XCB =90°,∴∠ABX +∠ACX =128°-90°=38°.4.如图,在∆ABC 中, ∠A =80︒, ∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;……; ∠A 7BC 与∠A 7CD 的平分线相交于点A 8,得∠A 8,则∠A 8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得: ∠ACD=∠A+∠ABC. 又∵∠ABC 与∠ACD 的平分线交于点A 1,∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2= 212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..5.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.6.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,S △ACE =3cm 2,则S △ABC =_____cm 2.【答案】12cm 2.【解析】【分析】根据三角形的面积公式,得△ACE 的面积是△ACD 的面积的一半,△ACD 的面积是△ABC 的面积的一半.【详解】解:∵CE 是△ACD 的中线,∴S △ACD =2S △ACE =6cm 2.∵AD 是△ABC 的中线,∴S △ABC =2S △ACD =12cm 2.故答案为12cm 2.【点睛】此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.7.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.【答案】100°【解析】【分析】根据线段垂直平分线的性质,得BE BA =,根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.【详解】∵BD 垂直平分AE ,∴BE BA =,∴50E A ∠=∠=︒,∴100EBC E A ∠=∠+∠=︒,故答案为100°.【点睛】考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.8.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A =50°,∠ABO =28°,∠ACO =32°,根据三角形外角的性质可得∠BDC =∠A +∠ABO =78°,∠BOC =∠BDC +∠ACO =110°.9.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD ,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.【详解】解:∵△B′CD 时由△BCD 翻折得到的,∴∠BCD=∠B′CD ,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)11.若△ABC 内有一个点P 1,当P 1、A 、B 、C 没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC 内有两个点P 1、P 2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC 内有n 个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A .n·180°B .(n+2)·180°C .(2n-1)·180°D .(2n+1)·180°【答案】D【解析】【分析】 当△ABC 内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC 内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC 内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A .14B .14.4C .13.6D .13.2【答案】B【解析】【分析】 连结BF ,设S △BDF =x ,则S △BEF =6-x ,由CD 是中线可以得到S △ADF =S △BDF ,S △BDC =S △ADC ,由BE =2CE 可以得到S △CEF =12S △BEF ,S △ABE =23S △ABC ,进而可用两种方法表示△ABC 的面积,由此可得方程,进而得解.【详解】解:如图,连接BF ,设S △BDF =x ,则S △BEF =6-x ,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S△ABE=23S△ABC,∴S△ABC=32S△ABE=32[2x+ (6-x)]=1.5x+9,∴18-x =1.5x+9,解得:x=3.6,∴S△ABC=18-x,=18-3.6=14.4,故选:B.【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.13.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.14.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm【答案】D【解析】试题分析:①当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B之间两种情况讨论;②当A,B,C三点不在一条直线上时,根据三角形三边关系讨论.解:当点A、B、C在同一条直线上时,①点B在A、C之间时:AC=AB+BC=3+1=4;②点C 在A、B之间时:AC=AB-BC=3-1=2,当点A、B、C不在同一条直线上时,A、B、C三点组成三角形,根据三角形的三边关系AB-BC<AC<AB+BC,即2<AC<4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,15.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333=S △ABC =1111••••2222BC AH AB PD BC PE AC PF ==+∴11113?3?3?3?2222AH PD PE PF ⨯=⨯+⨯+⨯∴PD+PE+PF=AH=33即点P 到三角形三边距离之和为33.故选B.16.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是()A .30B .40︒C .50︒D .60︒【答案】C【解析】【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.如图,∵∠BEF是△AEF的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB∥CD,∴∠2=∠BEF=50︒,故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.17.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.18.以下列各组线段为边,能组成三角形的是().A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm【答案】B【解析】【分析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A .∵2+3=5,∴不能组成三角形,故本选项错误;B .∵5+6=11>10,∴能组成三角形,故本选项正确;C .∵1+1=2<3,∴不能组成三角形,故本选项错误;D .∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B .【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.19.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ) A .7B .8C .9D .10【答案】A【解析】设这个多边形的边数为x ,根据题意可得: 180(2)2360180x -=⨯+,解得:7x =.故选A.20.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【解析】【分析】根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B.【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.。

期中选择填空必刷(压轴18考点53题)—2023-2024学年八年级数学下册(人教版)(解析版)

期中选择填空必刷(压轴18考点53题)—2023-2024学年八年级数学下册(人教版)(解析版)

期中选择填空必刷(压轴18考点53题)一.二次根式有意义的条件(共2小题)1.已知a、b满足,则=( )A.4B.8C.2024D.4048【答案】A【解答】解:∵a、b满足,∴,∴c=2025,∴|2023﹣a|+(2024﹣b)=0,∴2023﹣a=0,2024﹣b=0,∴a=2023,b=2024,则===4,故选:A.2.若|2017﹣m|+=m,则m﹣20172= .【答案】见试题解答内容z【解答】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.二.二次根式的性质与化简(共6小题)3.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)( )A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.z4.实数a,b表示的点在数轴上的位置如图,则将化简的结果是( )A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.z故选:A . 5.已知T 1===,T 2===,T 3===,…T n =,其中n 为正整数.设S n =T 1+T 2+T 3+…+T n ,则S 2021值是( ) A .2021 B .2022 C .2021D .2022【答案】A【解答】解:由T 1、T 2、T 3…的规律可得, T 1==1+(1﹣), T 2==1+(﹣), T 3==1+(﹣),…… T 2021==1+(﹣),所以S 2021=T 1+T 2+T 3+…+T 2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+ =2021,故选:A . 6.化简﹣a 的结果是( ) A .﹣2aB .﹣2aC .0D .2a【答案】Cz【解答】解:﹣a=﹣a ﹣a 2•=﹣a +a=0. 故选:C .7.已知实数a ,b 在数轴上的位置如图所示,则=( )A .2b ﹣2aB .﹣2aC .﹣2b ﹣2aD .2a【答案】D【解答】解:观察数轴可知:a <0,b >0,|b |>|a |, ∴a +b >0,a ﹣b <0, ∴=a +b ﹣(b ﹣a ) =a +b ﹣b +a =2a , 故选:D .8.实数a 在数轴上的位置如图所示,化简:|a ﹣2|+= 1 .【答案】1.【解答】解:由数轴可知:a ﹣2<0,a ﹣1>0, 原式=|a ﹣2|+=|a ﹣2|+|a ﹣1|=﹣(a ﹣2)+(a ﹣1) =﹣a +2+a ﹣1 =1,故答案为:1.9.已知a为实数,且与都是整数,则a的值是 .【答案】见试题解答内容【解答】解:∵是正整数,∴a是含有﹣2的代数式;∵是整数,∴化简后为含有2的代数式,∴a=或.故答案为:或.10.利用平方与开平方互为逆运算的关系,可以将某些无理数进行如下操作:当a=+1时,移项得a﹣1=,两边平方得,所以a2﹣2a+1=3,即得到整系数方程:a2﹣2a﹣2=0.仿照上述操作方法,完成下面的问题:当a=时,(1)得到的整系数方程为;(2)计算:a3﹣2a+2024= .【答案】(1)a2+a﹣1=0;z(2)2023.【解答】解:(1)∵a=,∴2a+1=,∴(2a+1)2=5,即4a2+4a+1=5,∴a2+a﹣1=0;故答案为:a2+a﹣1=0;(2)∵a2+a﹣1=0,∴a2=﹣a+1,∴a3=a(﹣a+1)=﹣a2+a=﹣(﹣a+1)+a=2a﹣1,∴a3﹣2a+2024=2a﹣1﹣2a+2024=2023.故答案为:2023.11.因为,所以,的整数部分为2,小数部分为;设的小数部分为x,的整数部分为y,则= .【答案】6.【解答】解:∵,∴得小数部分为,∴的小数部分为,即∵,∴的整数部分为3,即:y=3,∴,故答案为:6.五.二次根式的应用(共1小题)12.已知三角形的三边长分别为a、b、c,求其面积.对此问题,中外数学家曾经进行过深入研究.古希腊几何学家海伦(Heron,约公元50年),给出了求其面积的海伦公式:S=,其中p=.①我国南宋时期数学家秦九韶(约1202~1261),给出了著名的秦九韶公式:zS=.②若一个三角形的三边长依次为,,,请选用适当的公式求出这个三角形的面积为( )A.B.C.D.【答案】B【解答】解:S==,故选:B.六.勾股定理(共8小题)13.如图,网格中的每个小正方形的边长为1,△ABC的顶点A、B、C均在网格的格点上,BD⊥AC于点D,则BD的长为( )zA .B .C .D .【答案】C【解答】解:如图所示:S △ABC =×BC ×AE =×BD ×AC , ∵AE =2,AC =,BC =2,即×2×2=××BD ,解得:BD =.故选:C .14.如图,Rt △ABC 中,∠ACB =90°,AC =3,BC =4.分别以AB 、AC 、BC 为边在AB的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1+S 2+S 3+S 4等于( )A .16B .18C .20D .22【答案】B【解答】解:连接PF ,过点F 作FD ⊥AM 于点D ,z∵AB =EB ,∠ACB =∠ENB =90°, 而∠CBA +∠CBE =∠EBN +∠CBE =90°, ∴∠CBA =∠EBN , ∴△CBA ≌△NBE (AAS ), 故S 4=S △ABC ;又∵F A =AB ,∠FDA =∠ACB =90°, 而∠F AD +∠CAB =∠CAB +∠ABC =90°, ∴∠F AD =∠ABC , ∴△F AD ≌△ABC (AAS ), 同理可证△ACT ≌△FDK , ∴S 2=S △FDA =S △ABC ,同理可证△TPF ≌△KME ,△AQF ≌△ABC ,∴S 1+S 3=S △ADF =S △ABC ,综上所证:S 1+S 2+S 3+S 4=3S △ABC =3×=18.故选:B .15.如图,已知Rt △ABC 中,∠ACB =90°.AC =3,BC =4.以AB 、BC 、AC 为直径作半圆围成两月形,则阴影部分的面积为( )A .5B .6C .7D .8【答案】B【解答】解:∵∠ACB =90°, ∴AB 2=AC 2+CB 2,zS阴影=直径为AC 的半圆的面积+直径为BC 的半圆的面积+S △ABC ﹣直径为AB 的半圆的面积, =π×+π×+AC ×CB ﹣π×()2=π(AC 2+BC 2﹣AB 2)+AC ×BC =×3×4 =6. 故选:B .16.如图,在△ABC 中,∠ABC =90°,BC =4,AB =8,P 为AC 边上的一个动点,D 为PB 上的一个动点,连接AD ,当∠CBP =∠BAD 时,线段CD 的最小值是( )A .B .2C .D .【答案】D【解答】解:∵∠ABC =90°, ∴∠ABP +∠CBP =90°, ∵∠CBP =∠BAD , ∴∠ABD +∠BAD =90°, ∴∠ADB =90°,取AB 的中点E ,连接DE ,CE ,z∴DE =AB =4, ∴EC =EB =4,∵CD ≥CE ﹣DE , ∴CD 的最小值为4﹣4,故选:D .17.图1叫做一个基本的“勾股树”,也叫做第一代勾股树.让图1中两个小正方形各自长出一个新的勾股树(如图2),叫做第二代勾股树.从第二代勾股树出发,又可以长出第三代勾股树(如图3).这样一生二、二生四、四生八,继续生长下去,则第四代勾股树图形中正方形的个数为 .【答案】31.【解答】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),∴第四代勾股树图形中正方形的个数有1+2+22+23+24=31(个). 故答案为:31.18.如图,在△ABC 中,∠ACB =90°,AC =9,BC =5,点P 为△ABC 内一动点.过点P 作PD ⊥AC 于点D ,交AB 于点E .若△BCP 为等腰三角形,且S △PBC =,则PD 的长为 .【答案】1或.【解答】解:∵S,∴CD=3,∴AD=AC﹣CD=6,∵∠ACB=90°,PD⊥AC,∴DE∥BC,∴△ADE∽△ACB,∴,∴,∴DE=,过点P作PF⊥BC于点F,①当PB=BC时,如图,z∴PF=CD=3,PB=BC=5,在Rt△PBF中,BF==4,∴DP=CF=BC﹣BF=1,∵DP<DE,∴点P在线段DE上,符合题意;②当PC=PB时,如图,∴DP=CF=,∵DP<DE,∴点P在线段DE上,符合题意;③当PC=BC时,如图,∴PF=CD=3,PC=BC=5,在Rt△CDP中,DP==4,∵DP>DE,∴点P不在线段DE上,舍去,综上,PD的长为1或,故答案为:1或.19.如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方z形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是.【答案】.【解答】解:如图,∵四边形ABGF是正方形,∴∠F AB=∠AFG=∠ACB=90°,∴∠F AC+∠BAC=∠F AC+∠ABC=90°,∴∠F AC=∠ABC,∴△F AH≌△ABN(ASA),∴S△F AH=S△ABN,∴S△ABC=S四边形FNCH,在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=7,∴(AC+BC)2=AC2+BC2+2AC•BC=49,∴AB2+2AC•BC=49,z∵AB2﹣S△ABC=16,∴AB2﹣AC•BC=16,∴BC•AC=,AB2=,∴AC2+BC2=,∴阴影部分的面积和=AC2+BC2+2S△ABC﹣S白=+2××﹣16=.故答案为:.20.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4= .z【答案】2.5.【解答】解:∵△ABD 、△ACE 、△BCF 均是等腰直角三角形, ∴AB =BD ,AC =CE ,BC =CF ,设AB =BD =a ,AC =CE =b ,BC =CF =c ,S △ABG =m ,S △ACH =n , ∵a 2+b 2=c 2,∴S △ABD +S △ACE =S △BCF , ∴S 1+m +n +S 4=S 2+S 3+m +n , ∴S 4=3.5+5.5﹣6.5=2.5 故答案为:2.5.七.勾股定理的证明(共6小题)21.如图,四个全等的直角三角形拼成“赵爽弦图”,其中四边形ABCD 与四边形EFGH 都是正方形.连结DG 并延长,交BC 于点P ,点P 为BC 的中点.若EF =2,则AE 的长为( )A .4B .C .D .【答案】C【解答】解:由题意,EF =HG =FG =2,AD ∥BC ,BG ⊥HC ,DH ⊥HG ,∠ADE =∠GBP ,z∴∠ADG =∠GPC . ∵点P 为BC 的中点, ∴PB =PG =PC .∴∠BGP =∠GBP ,∠GPC =2∠GBP .∴∠GPC ﹣∠ADE =2∠GBP ﹣∠ADE ,即∠GDH =∠GBP . ∴△GDH ∽△CBG . ∴=,即=.设AE =BF =HD =x , ∴=.∴x =1+或x =1﹣(舍去).故选:C .22.如图,在四边形ABDE 中,AB ∥DE ,AB ⊥BD ,点C 是边BD 上一点,BC =DE =a ,CD =AB =b ,AC =CE =c .下列结论:①△ABC ≌△CDE ;②∠ACE =90°;③ab ;④该图可以验证勾股定理.其中正确的结论个数是( )A .4B .3C .2D .1【答案】A【解答】解:在△ABC 和△CDE 中,,∴△ABC ≌△CDE (SSS ), 故①正确; ∵△ABC ≌△CDE , ∴∠BAC =∠DCE , ∵AB ⊥BD , ∴∠B =90°,∴∠BAC +∠ACB =90°,z∴∠ACB +∠DCE =90°, ∴∠ACE =90°, 故②正确;∵AB ∥DE ,AB ⊥BD ,∠ACE =90°, ∴S 四边形ABDE =(a +b )(a +b )=(a +b )2, S △ACE =c 2, S △ABC =S △CDE =ab , ∴ab ,故③正确; ∵ab ,整理,得a 2+b 2=c 2, 故④正确.正确的结论①②③④. 故选:A .23.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S 1,右图中空白部分的面积为S 2,则下列表示S 1,S 2的等式成立的是( )A .S 1=a 2+b 2+2abB .S 1=a 2+b 2+abC .S 2=c 2D .S 2=c 2+ab【答案】B【解答】解:观察图象可知:S 1=S 2=a 2+b 2+ab =c 2+ab , 故选:B .z24.如图,图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图(2)所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是( )A .76B .57C .38D .19【答案】A【解答】解:设AC =AD =x ,则BD =30﹣5﹣2x =25﹣2x , ∵BD 2=BC 2+CD 2,∴52+(2x )2=(25﹣2x )2, ∴x =6,∴BD =25﹣2x =13,AD =6,∴这个风车的外围周长是:(13+6)×4=76. 故选:A .25.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图(1)是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图(2)是由图(1)放入矩形内得到的,∠BAC =90°,AB =3,AC =4,点D 、E 、F 、G 、H 、I 都在矩形KLMJ 的边上,则矩形的边LM 的长为( )A .10B .11C .110D .121【答案】B【解答】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P , 则四边形OALP 是矩形.z∵∠CBF =90°, ∴∠ABC +∠OBF =90°,又∵直角△ABC 中,∠ABC +∠ACB =90°, ∴∠OBF =∠ACB , 在△OBF 和△ACB 中,,∴△OBF ≌△ACB (AAS ), ∴AC =OB ,同理:△ACB ≌△PGC , ∴PC =AB , ∴OA =AP ,∴矩形AOLP 是正方形, 边长AO =AB +AC =3+4=7, ∴LM =4+7=11, 故选:B .26.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为25,小正方形的面积为4,若x ,y 表示直角三角形的两直角边长(x >y ),给出下列四个结论:①x 2+y 2=25;②x ﹣y =2;③2xy =21;④x +y =7.其中正确的结论有 .【答案】①②③.z【解答】解:给图形注上字母如下:①∵△ABC 为直角三角形, ∴根据勾股定理:x 2+y 2=AB 2=25, 故选项①正确; ②由图可知,x ﹣y =CE ==2,故选项②正确;③由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为4××xy +4=25, 即2xy =21; 故选项③正确; ④由2xy =21①, 又∵x 2+y 2=25②,∴①+②得,x 2+2xy +y 2=25+21, 整理得,(x +y )2=46, x +y =≠7,故选项④错误. ∴正确结论有①②③. 故答案为:①②③.八.勾股定理的应用(共3小题)27.如图,高速公路上有A 、B 两点相距10km ,C 、D 为两村庄,已知DA =4km ,CB =6km .DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个服务站E ,使得C 、D 两村庄到E 站的距离相等,则EA 的长是( )km .zA .4B .5C .6D .【答案】C【解答】解:设BE =x ,则AE =(10﹣x )km , 由勾股定理得: 在Rt △ADE 中,DE 2=AD 2+AE 2=42+(10﹣x )2, 在Rt △BCE 中, CE 2=BC 2+BE 2=62+x 2, 由题意可知:DE =CE , 所以:62+x 2=42+(10﹣x )2, 解得:x =4km . 所以,EB 的长是4km . 所以,EA =10﹣4=6(km ). 故选:C .28.如图,Rt △ABC 中,∠ABC =90°,AB =8,D 在BC 边上,且BD =2,P 为三角形内一点,满足AP ⊥BP ,直线DP 交AC 于点E ,当AE 最大时,AP 的长是( )A .B .C .D .6z【答案】C【解答】解:∵P 为三角形内一点,满足AP ⊥BP , ∴P 为动点,∠APB 始终为直角,∴点P 在以AB 为直径的圆上,取AB 的中点O ,连接OP 和OD , 当AE 最大时,线段DP 与⊙O 相切, ∵∠ABC =90°,OP =OD ,∴BD =PD ,∠BDP =∠BOP =180°, ∵∠AOP +∠BOP =180°, ∴∠BDP =∠AOP , ∵BD =2,AB =8,∴BD =PD =2,OA =OP =4, ∴△DBP ~△OAP ,∴PD :OP =BP :AP =2:4, ∴AP =2BP ,在Rt △ABP 中,BP 2+AP 2=AB 2, ∴BP 2+(2BP )2=AB 2, 解得:BP =, ∴AP =2BP =.故选:C .29.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),可以计算出两图孔中心B 和C 的距离为( )mm .zA .120B .135C .30D .150【答案】D【解答】解:如图,在Rt △ABC 中,AC =180﹣60=120(mm ),AB =150﹣60=90(mm ), ∴BC ==150(mm ), ∴两圆孔中心B 和C 的距离为150mm . 故选:D .九.平面展开-最短路径问题(共1小题)30.如图,长方体的高为9dm ,底面是边长为6dm 的正方形.一只蚂蚁从顶点A 开始爬向顶点B ,那么它爬行的最短路程为( )A .10dmB .12dmC .15dmD .20dm【答案】C【解答】解:①如图,将长方体的正面和上面展开在同一平面内,AD =6,BD =6+9=15, AB ==(dm );z②如图,将长方体的正面和右面展开在同一平面内,AC =6+6=12,BC =9, AB ==15(dm ),③将长方体的正面和左面展开在同一平面内,同理可得AB ==15(dm ),由于15<3,所以蚂蚁爬行的最短路程为15dm . 故选:C .十.三角形中位线定理(共1小题)31.如图,△ABC 中,∠A =60°,AC >AB >6,点D ,E 分别在边AB ,AC 上,且BD =CE =6,连接DE ,点M 是DE 的中点,点N 是BC 的中点,线段MN 的长为 .【答案】3.【解答】解:如图,作CH ∥AB ,连接DN ,延长DN 交CH 于H ,连接EH ,作CJ ⊥EH 于J .∵BD ∥CH , ∴∠B =∠NCH ,∵BN =CN ,∠DNB =∠KNC , ∵△DNB ≌△HNC (ASA ), ∴BD =CH ,DN =NH ,z∴EC =CH =6,∵∠A +∠ACH =180°,∠A =60°, ∴∠ECH =120°, ∵CJ ⊥EH ,∴EJ =JH =EC •cos30°=3,∴EH =2EJ =6,∵DM =ME ,DN =NH , ∴MN =EH =3.故答案为:3.十一.平行四边形的性质(共2小题)32.如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交BC 于点E ,且∠ADC =60°,,连接OE ,下列结论:①∠CAD =30°;②S ▱ABCD =AB •AC ;③OB =AB ;④;⑤∠AEO =60°.其中成立的个数是( )A .1个B .2个C .3个D .4个【答案】D【解答】解:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠DAE =∠BEA , ∵AE 平分∠BAD , ∴∠DAE =∠BAE , ∴∠BEA =∠BAE , ∴AB =EB ,∵∠ABE =∠ADC =60°, ∴△ABE 是等边三角形,∵AB=BC,∴BE=BC,∴BE=CE=AE,∴∠EAC=∠ECA,∴∠AEB=∠EAC+∠ECA=2∠ECA=60°,∴∠ECA=30°,∴∠CAD=∠ECA=30°,故①正确;∵∠EAC=∠ECA=30°,∠BAE=60°,∴∠BAC=∠EAC+∠BAE=30°+60°=90°,∴AC⊥AB,∴S▱ABCD=AB•AC,故②正确;AB⊥OA,∴OB>AB,∴OB≠AB,z故③错误;∵∠CAD=30°,∠AEB=60°,AD//BC,∴∠EAC=∠ACE=30°,∴AE=CE,∴BE=CE,∵OA=OC,∴OE=AB=BC,故④正确;∵△ABE是等边三角形,∴∠AEB=60°,∴∠AEC=120°,∵CE=AE,OA=OC,z∴∠AEO =∠CEO =∠AEC =60°, 故⑤正确. 故选:D .33.如图,▱ABCD 中,AB =22cm ,BC =8cm ,∠A =45°,动点E 从A 出发,以2cm /s的速度沿AB 向点B 运动,动点F 从点C 出发,以1cm /s 的速度沿着CD 向D 运动,当点E 到达点B 时,两个点同时停止.则EF 的长为10cm 时点E 的运动时间是( )A .6sB .6s 或10sC .8sD .8s 或12s【答案】C【解答】解:在▱ABCD 中,CD =AB =22cm ,AD =BC =8cm ,如图,过点D 作DG ⊥AB 于点G , ∵∠A =45°,∴△ADG 是等腰直角三角形, ∴AG =DG =AD =8,过点F 作FH ⊥AB 于点H , 得矩形DGHF ,∴DG =FH =8cm ,DF =GH , ∵EF =10cm , ∴EH ==6cm ,由题意可知:AE =2t cm ,CF =t cm ,∴GE =AE =AG =(2t ﹣8)cm ,DF =CD ﹣CF =(22﹣t )cm , ∴GH =GE +EH =(2t ﹣8)+6=(2t ﹣2)cm , ∴2t ﹣2=22﹣t , 解得t =8,当F 点在E 点左侧时,z由题意可知:AE =2t cm ,CF =t cm ,∴GE =AE ﹣AG =(2t ﹣8)cm ,DF =CD ﹣CF =(22﹣t )cm , ∴GH =GE ﹣EH =(2t ﹣8)﹣6=(2t ﹣14)cm , ∴2t ﹣14=22﹣t , 解得t =12,∵点E 到达点B 时,两点同时停止运动, ∴2t ≤22,解得t ≤11. ∴t =12不符合题意,舍去,∴EF 的长为10cm 时点E 的运动时间是8s , 故选:C .十二.平行四边形的判定与性质(共1小题)34.如图,已知△ABC 是边长为3的等边三角形,点D 是边BC 上的一点,且BD =1,以AD 为边作等边△ADE ,过点E 作EF ∥BC ,交AC 于点F ,连接BF ,则下列结论中①△ABD ≌△BCF ;②四边形BDEF 是平行四边形;③S 四边形BDEF =;④S △AEF =.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解答】解:连接EC ,作CH ⊥EF 于H . ∵△ABC ,△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠ABC =∠ACB =60°, ∴∠BAD =∠CAE , ∴△BAD ≌△CAE ,z∴BD =EC =1,∠ACE =∠ABD =60°, ∵EF ∥BC ,∴∠EFC =∠ACB =60°, ∴△EFC 是等边三角形,CH =,∴EF =EC =BD ,∵EF ∥BD ,∴四边形BDEF 是平行四边形,故②正确, ∵BD =CF =1,BA =BC ,∠ABD =∠BCF , ∴△ABD ≌△BCF ,故①正确, ∵S 平行四边形BDEF =BD •CH =,故③正确,∵CD =2BD ,AF =2CF . ∴S △AEF =S △AEC =•S △ABD =, 故④错误, 故选:C .十三.菱形的性质(共2小题)35.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,OH =4,若菱形ABCD 的面积为32,则CD 的长为( )A .4B .4C .8D .8【答案】Cz【解答】解:∵DH ⊥AB , ∴∠BHD =90°, ∵四边形ABCD 是菱形, ∴OB =OD ,OC =OA =,AC ⊥BD ,∴OH =OB =OD =(直角三角形斜边上中线等于斜边的一半),∴OD =4,BD =8, 由得:=32,∴AC =8, ∴OC ==4, ∴CD ==8, 故选C .36.如图,已知菱形ABCD 的边长为6,点M 是对角线AC 上的一动点,且∠ABC =120°,则MA +MB +MD 的最小值是( )A .B .3+3C .6+D .【答案】D【解答】解:如图,过点D 作DE ⊥AB 于点E ,连接BD ,∵菱形ABCD 中,∠ABC =120°, ∴∠DAB =60°,AD =AB =DC =BC , ∴△ADB 是等边三角形, ∴∠MAE =30°, ∴AM =2ME ,z∵MD =MB ,∴MA +MB +MD =2ME +2DM =2DE ,根据垂线段最短,此时DE 最短,即MA +MB +MD 最小, ∵菱形ABCD 的边长为6, ∴DE ===3,∴2DE =6.∴MA +MB +MD 的最小值是6.故选:D .十四.矩形的性质(共4小题)37.如图,∠MON =90°,矩形ABCD 在∠MON 的内部,顶点A ,B 分别在射线OM ,ON 上,AB =4,BC =2,则点D 到点O 的最大距离是( )A .B .C .D .【答案】A【解答】解:如图,取AB 中点E ,连接OE 、DE 、OD ,∵∠MON =90°, ∴OE =AB =2. ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC =2,z∵点E 是AB 的中点, ∴AE =AB =2, 在Rt △DAE 中,DE ===2,在△ODE 中,根据三角形三边关系可知DE +OE >OD , ∴当O 、E 、D 三点共线时,OD 最大为OE +DE =2+2.故选:A .38.如图,在矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,若AB =6,BC =10,则GH 的长度为( )A .B .C .D .2【答案】C【解答】解:连接CH 并延长交AD 于P ,连接PE , ∵四边形ABCD 是矩形, ∴∠A =90°,AD ∥BC ,∵E ,F 分别是边AB ,BC 的中点,AB =6,BC =10, ∴AE =AB =×6=3,CF =BC =10=5,∵AD ∥BC , ∴∠DHP =∠FHC , 在△PDH 与△CFH 中,,∴△PDH ≌△CFH (AAS ), ∴PD =CF =5,CH =PH , ∴AP =AD ﹣PD =5, ∴PE ===, ∵点G 是EC 的中点,z∴GH =EP =,故选:C .39.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(30,0)(0,12),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为15的等腰三角形时,点P 的坐标为 .【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP 是腰长为15的等腰三角形时,有三种情况: (1)如答图①所示,PD =OD =15,点P 在点D 的左侧.过点P 作PE ⊥x 轴于点E ,则PE =12. 在Rt △PDE 中,由勾股定理得:DE ===9,∴OE =OD ﹣DE =15﹣9=6, ∴此时点P 坐标为(6,12);z(2)如答图②所示,OP =OD =15.过点P 作PE ⊥x 轴于点E ,则PE =4. 在Rt △POE 中,由勾股定理得:OE ===9,∴此时点P 坐标为(9,12);(3)如答图③所示,PD =OD =5,点P 在点D 的右侧.过点P 作PE ⊥x 轴于点E ,则PE =4.在Rt △PDE 中,由勾股定理得:DE ===9,∴OE =OD +DE =15+9=24, ∴此时点P 坐标为(24,12).综上所述,点P 的坐标为:(9,12)或(6,12)或(24,12); 故答案为:(9,12)或(6,12)或(24,12).40.如图,在矩形ABCD 中,AB =2,AD =4,E 为AD 的中点,F 为线段EC 上一动点,P 为BF 中点,连接PD ,则线段PD 长的取值范围是 .【答案】2≤PD ≤.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,z∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2,CE=2,∴P1P2=,∴DP2==,故答案为:2≤PD≤.十五.矩形的判定与性质(共1小题)41.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为( )zA .5B .4C .D .3【答案】C【解答】解:连接AP ,∵AB =6,AC =8,BC =10,∴AB 2+AC 2=62+82=100,BC 2=102=100, ∴AB 2+AC 2=BC 2, ∴△ABC 是直角三角形, ∴∠BAC =90°, ∵PE ⊥AB ,PF ⊥AC , ∴∠PEA =∠PF A =90°, ∴四边形AEPF 是矩形, ∴AP =EF ,∴当AP ⊥BC 时,AP 有最小值,即EF 有最小值, ∵△ABC 的面积=BC •AP =AB •AC , ∴BC •AP =AB •AC , ∴10AP =6×8, ∴AP =,∴AP =EF =,∴EF 的最小值为,故选:C .z十六.正方形的性质(共10小题)42.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了( )A .方程思想B .分类讨论思想C .模型思想D .数形结合思想【答案】D【解答】解:将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了数形结合思想, 故选:D .43.如图所示,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 的长为( )A .3B .4C .5D .6【答案】C【解答】解:∵四边形ABCD 是正方形, ∴OB =OC ,∠OBE =∠OCF =45°,AC ⊥BD ,z又∵OE ⊥OF ,∴∠EOB +∠BOF =90°=∠BOF +∠COF , ∴∠EOB =∠COF , ∴△BEO ≌△CFO (ASA ), ∴BE =CF =3, 又∵AB =BC , ∴AE =BF =4, ∴Rt △BEF 中,EF ===5.故选:C .44.如图,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点,CE 交DF 于点G ,连接AG .下列结论:①CE =DF ;②CE ⊥DF ;③∠EAG =30°;④∠AGE =∠CDF .其中正确的是( )A .①②B .①③C .①②④D .①②③【答案】C【解答】解:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =90°, ∵E ,F 分别是AB ,BC 的中点, ∴BE =AB ,CF =BC , ∴BE =CF ,在△CBE 与△DCF 中,,∴△CBE ≌△DCF (SAS ),∴∠ECB =∠CDF ,CE =DF ,故①正确; ∵∠BCE +∠ECD =90°, ∴∠ECD +∠CDF =90°,z∴∠CGD =90°, ∴CE ⊥DF ,故②正确; ∵CF =BC =CD , ∴∠CDF ≠30°, ∴∠ADG ≠60°, ∵AD =AG ,∴△ADG 不是等边三角形, ∴∠EAG ≠30°,故③错误; ∵CE ⊥DF , ∴∠EGD =90°,延长CE 交DA 的延长线于H ,如图,∵点E 是AB 的中点, ∴AE =BE ,∵∠AHE =∠BCE ,∠AEH =∠CEB ,AE =BE , ∴△AEH ≌△BEC (AAS ), ∴BC =AH =AD , ∵AG 是斜边的中线, ∴AG =DH =AD , ∴∠ADG =∠AGD ,∵∠AGE +∠AGD =90°,∠CDF +∠ADG =90°, ∴∠AGE =∠CDF .故④正确; 故选:C .45.如图.正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是4,则AB 的长为( )zA .4B .2C .D .【答案】A【解答】解:过点O 作OE ⊥AD 于点E ,OF ⊥CD 于点F , 则:∠OEM =∠OFN =∠OFD =90°,∵正方形ABCD ,∴OA =OD =OC ,∠ADC =90°, ∴,四边形OEDF 为矩形,∴四边形OEDF 为正方形, ∴OE =OF ,∠EOF =90°, ∵ON ⊥OM ,∴∠MON =90°=∠EOF , ∴∠EOM =∠FON , ∴△OEM ≌△OFN (ASA ),∴正方形OFDE 的面积等于四边形MOND 的面积, ∴DE 2=4,∴DE =2(负值已舍掉); ∴AB =AD =2DE =4; 故选:A .46.如图,正方形ABCD 的边长为2,点O 是对角线BD 的中点,点E 、F 分别在AB 、AD 边上运动,且保持BE =AF ,连接OE ,OF ,EF 在此运动过程中,下列结论: ①OE =OF ;z②∠EOF =90°;③四边形AEOF 的面积保持不变; ④当EF ∥BD 时,EF =,其中正确的结论是( )A .①②B .②③C .①②④D .①②③④【答案】D【解答】解:过O 作OG ⊥AB 于G ,OH ⊥AD 于H , ∵四边形ABCD 是正方形, ∴∠A =∠OHA =∠OGA =90°, OH ∥AB ,OG ∥AD , ∵点O 是对角线BD 的中点, ∴AH =DH ,AG =BG , ∴OH =AB ,OG =AD , ∵AD =BA ,∴OG =OH ,BG =AH , ∴四边形AGOH 是正方形, ∴∠GOH =90°, ∵BE =AF , ∴GE =FH ,在△OFH 与△OEG 中,,∴△OFH ≌△OEG (SAS ),∴OE =OF ,故①正确;∠EOG =∠FOH , ∴∠EOG +∠GOF =∠GOF +∠FOH =90°, ∴∠EOF =90°,故②正确; ∵△OFH ≌△OEG ,z∴四边形AEOF 的面积=正方形AOGH 的面积=1×1=2, ∴四边形AEOF 的面积保持不变;故③正确; ∵EF ∥BD ,∴∠AFE =∠ADB =45°,∠AEF =∠ABD =45°, ∴AE =AF , ∵BE =AF , ∴AE =BE ,∴AE =AF =AB =1, ∴EF =,故④正确;故选:D .47.如图,正方形ABCD 边长为1,点E ,F 分别是边BC ,CD 上的两个动点,且BE =CF ,连接BF ,DE ,则BF +DE 的最小值为( )A .B .C .D .【答案】C【解答】解:连接AE ,如图1, ∵四边形ABCD 是正方形, ∴AB =BC ,∠ABE =∠BCF =90°. 又BE =CF ,∴△ABE ≌△BCF (SAS ). ∴AE =BF .z所以BF+DE 最小值等于AE+DE 最小值. 作点A 关于BC 的对称点H 点,如图2, 连接BH ,则A 、B 、H 三点共线,连接DH ,DH 与BC 的交点即为所求的E 点. 根据对称性可知AE =HE , 所以AE+DE =DH .在Rt △ADH 中,AD =1,AH =2, ∴DH ==,∴BF+DE 最小值为.故选:C .48.如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中: ①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF .其中正确的是( )A.②③④B.①②③C.①②④D.①③④【答案】B【解答】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,∴NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,z在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,故①正确;②∵矩形DEFG为正方形;∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),故②正确;z③根据②得AE =CG ,∠DAE =∠DCG =45°, ∴∠ACG =90°, ∴AC ⊥CG ,故③正确;④当DE ⊥AC 时,点C 与点F 重合, ∴CE 不一定等于CF ,故④错误, 综上所述:①②③正确. 故选:B .49.如图,正方形ABCD 边长为12,里面有2个小正方形,各边的顶点都在大正方形的边上的对角线或边上,它们的面积分别是S 1,S 2,则S 1+S 2=( )A .68B .72C .64D .70【答案】A【解答】解:如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,z所以,四个角所在的三角形都是等腰直角三角形, ∵正方形的边长为12, ∴AC =12,∴两个小正方形的边长分别为×12=4,×12=6,∴S 1+S 2=(4)2+62=32+36=68.故选:A .50.如图,在正方形ABCD 中,O 为对角线AC 、BD 的交点,E 、F 分别为边BC 、CD 上一点,且OE ⊥OF ,连接EF .若,则EF 的长为( )A .2B .2+C .+1 D .3【答案】A【解答】解:在正方形ABCD 中,AC 和BD 为对角线, ∴∠AOB =∠BOC =90°,∠OBC =∠OCD =45°,OB =OC , ∵∠AOE =150°, ∴∠BOE =60°; ∵OE ⊥OF ,∴∠EOF =∠BOC =90°, ∴∠BOE =∠COF =60°, ∴△BOE ≌△COF (ASA ), ∴OE =OF ,∴△OEF 是等腰直角三角形;过点F作FG⊥OD,如图,∴∠OGF=∠DGF=90°,∵∠ODC=45°,∴△DGF是等腰直角三角形,∴GF=DG=DF=,∵∠AOE=150°,∴∠BOE=60°,∴∠DOF=30°,∴OF=2GF=,∴EF=OF=2.故选:A.51.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CEz上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是 .【答案】见试题解答内容【解答】解:过E点作EH⊥BC于H点,根据正方形的性质可知△BEH是等腰直角三角形,BE=BC=2,∴EH=2.∴△BEC的面积为×BC×EH=.连接BP,则△BPE面积+△BPC面积=2,z即×BE ×PR +×BC ×PQ =2, ∴×(PR +PQ )=2,解得PR +PQ =2. 故答案为2.十七.正方形的判定与性质(共1小题)52.如图,在正方形ABCD 中,点O 是对角线AC 、BD 的交点,过点O 作射线OM 、ON 分别交BC 、CD 于点E 、F ,且∠EOF =90°,OC 、EF 交于点G ,连接AF ,DE .给出下列结论: ①△AOF ≌△DOE ; ②△OBE ≌△OCF ;③四边形CEOF 的面积为正方形ABCD 面积的; ④DF 2+BE 2=EF 2; ⑤AF ⊥DE ,其中正确的为( )A .①②④⑤B .①②③④⑤C .①②③④D .①②③⑤【答案】B【解答】解:①在正方形ABCD中,OC=OD,∠COD=90°,∠ODC=∠OCB=45°,∵∠EOF=90°,∴∠COE=∠EOF﹣∠COF=90°﹣∠COF,∴∠COE=∠DOF,∴△COE≌△DOF(ASA),∴∠DOF=∠COE,OF=OE,∴∠AOF=∠DOE,∵OA=OD,∴△AOF≌△DOE(SAS),故①正确;②在正方形ABCD中,OC=OB,∠COB=90°,∠OBC=∠OCB=45°,∵∠EOF=90°,∴∠BOE=∠COF,∴△OBE≌△OCF(ASA);故②正确;③由①全等可得四边形CEOF的面积与△OCD面积相等,∴四边形CEOF的面积为正方形ABCD面积的,故③正确;④∵△COE≌△DOF,∴CE=DF,∵四边形ABCD为正方形,∴BC=CD,∴BE=CF,在Rt△ECF中,CE2+CF2=EF2,∴DF2+BE2=EF2,故④正确;∵AD=DC,∠ADF=∠DCE,DF=CE,∴△ADF≌△DCE,(SAS),∴∠DAF=∠CDE,z∵∠ADF +∠CDE =90°, ∴∠ADF +∠DAF =90°, ∴AF ⊥DE , 故⑤正确;综上所述,正确的是①②③④⑤, 故选:B .十八.翻折变换(折叠问题)(共1小题)53.如图,将▱ABCD 纸片折叠(折痕为BE ),使点A 落在BC 上,记作①;展平后再将▱ABCD 折叠(折痕为CF ),使点D 落在BC 上,记作②;展平后继续折叠▱ABCD ,使AD 落在直线BC 上,记作③;重新展平,记作④.若AB =4,BC =7,则图④中线段GH 的长度为( )A .B .C .3D .4【答案】C【解答】解:如图④中,连接EH ,延长EH 交BC 于M .由题意易知:AB=AE=4,CD=DF=4,GH是△EBM的中位线,∵AD=BC=7,∴AF=DE=3,EF=1,∵EH=HM,∠EFH=∠MCH,∠EHF=∠CHM,∴△EFH≌△MCH(AAS),∵EF=CM=1,BM=BC﹣CM=6,∵GH是△EBM的中位线,∴GH=BM=3,故选:C.z。

八年级数学下册 期中选择填空必刷(压轴15考点51题)(原卷版)

八年级数学下册  期中选择填空必刷(压轴15考点51题)(原卷版)

专题09期中选择填空必刷(压轴15考点51题)一.分式的基本性质(共1小题)1.若=2,则=.二.分式的加减法(共1小题)2.自然数a,b,c,d满足=1,则等于()A.B.C.D.三.分式的化简求值(共1小题)3.若==,则=或.四.分式方程的解(共5小题)4.已知关于x的分式方程的解为正数,关于y的不等式组,恰好有三个整数解,则所有满足条件的整数a的和是()A.1B.3C.4D.65.已知关于x的分式方程的解是非负数,则m的取值范围是()A.m≤5且m≠﹣3B.m≥5且m≠﹣3C.m≤5且m≠3D.m≥5且m≠3 6.若关于x的分式方程无解,则m的值为()A.﹣3或﹣B.﹣或﹣C.﹣3或﹣或﹣D.﹣3或﹣7.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为.五.分式方程的增根(共1小题)9.若关于x的分式方程=有增根,则实数m的值是.六.三角形中位线定理(共2小题)10.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.99911.如图,△ABC中,∠A=60°,AC>AB>6,点D,E分别在边AB,AC上,且BD=CE=6,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为.七.平行四边形的性质(共2小题)12.如图,将一个平行四边形(如图①)作如下操作:第一次,连接对边的中点(如图②),此时共有9个平行四边形;第二次,将图②中左上角的平行四边形连接对边的中点(如图③),此时共有17个平行四边形;第三次,将图③中左上角的平行四边形连接对边的中点(如图④),此时共有25个平行四边形……此后每一次部将左上角的平行四边形进行如上操作,第()次操作后,共有4041个平行四边形.A.1010B.505C.705D.80513.如图,在▱ABCD中,∠C=120°,AD=2AB=8,点H,G分别是边CD,BC上的动点,连接AH,HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为.八.矩形的性质(共6小题)14.如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F.则PE+PF的值为()A.2.5B.3C.2.4D.4.815.如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s 的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2B.4C.4或D.2或16.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.B.C.D.17.在矩形ABCD中,过AC的中点O作EF⊥AC,交BC于E,交AD于F,连接AE、CF.若AB=°,则EF的长为()A.2B.3C.D.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.19.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P 为BF中点,连接PD,则线段PD长的取值范围是.九.矩形的判定与性质(共1小题)20.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5B.4C.D.3一十.正方形的性质(共14小题)21.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了()A.方程思想B.分类讨论思想C.模型思想D.数形结合思想22.如图,有六根长度相同的木条,小明先用四根木条制作了能够活动的菱形学具,他先将该活动学具调成图1所示菱形,测得∠B=60°,对角线AC=10cm,接着将该活动学具调成图2所示正方形,最后用剩下的两根木条搭成了如图3所示的图形,连接BE,则图3中△BCE的面积为()A.cm2B.50cm2C.cm2D.25cm223.如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.B.C.1D.24.如图,P是边长为1的正方形ABCD内的一个动点,且满足∠PBC+∠PDC=45°,则CP的最小值是()A.B.C.D.25.在正方形ABCD中,对角线AC、BD交于点O,∠ADB的平分线交AB于点E,交AC 于点G.过点E作EF⊥BD于点F,∠EDM交AC于点M.下列结论:①AD=(+1)AE;②四边形AEFG是菱形;③BE=2OG;④若∠EDM=45°,则GF=CM.其中正确的个数有()A.4个B.3个C.2个D.1个26.如图,在正方形ABCD中,AB=6,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于点H,过H作GH⊥BD于G,连结AH.以下四个结论中:①AF=HE;②∠HAE=45°;③;④△CEH的周长为12.正确的结论有()A.1个B.2个C.3个D.4个27.如图,在正方形ABCD外取一点E,连接AE、BE、DF.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③点B+S△APB=1+.其中正确结论的序号是()到直线AE的距离为;④S△APDA.①②③B.①②④C.②③①D.①③④28.如图.正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是4,则AB的长为()A.4B.2C.D.29.如图,已知正方形ABCD的边长为4,点P是对角线BD上一点,PE⊥BC于点E,PF ⊥CD于点F,连接AP,EF.给出下列结论:①PD=2EC;②四边形PECF的周长为8;③AP⊥EF;④AP=EF;⑤EF的最小值为2.其中正确结论的序号为()A.①②③⑤B.②③④C.②③④⑤D.②③⑤30.如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A.B.C.D.31.如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②∠BFG=∠ADE;③DE⊥FG;④FG的最小值为2.其中正确结论的有.(填序号)32.如图,四边形ABCD和四边形CEFG都是正方形,E是DC延长线上一个动点,点G 在射线CB上(不与点C重合),H是DF的中点,连接GH.若AD=4,则GH的最小值为.33.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都等于2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积都不变,则这两个正方形重叠部分的面积为.34.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是.一十一.旋转的性质(共7小题)35.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再将较小的两个正方形分别绕直角三角线斜边上的两顶点旋转得到图2,则图2中阴影部分面积等于()A.直角三角形的面积B.最小正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和36.如图,在边长为的等边△ABC中,D为BC边的中点,E为直线AD上一动点,连接CE,将线段CE绕点C逆时针旋转60°,得到线段CF,连接DF,则线段DF长的最小值为()A.2B.C.D.337.如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为()A.2B.2C.3D.38.如图,点P是在正△ABC内一点.PA=3,PB=4,PC=5,将线段AP绕点A逆时针旋转60°得到线段AP',连结.P'P,P'C,下列结论中正确的是()①△AP'C可以由△APB绕点A逆时针旋转60°得到;②线段PP'=3;③四边形APCP'的面积为6+3;④S△APB+S△BPC=6+4.A.①②③B.①②④C.①③④D.②③④39.如图,在△ABC中,BC=1,AB=3,以AC为边向上作等边△ACD,连接DB,当∠ABC=时,BD最大,最大值为.40.如图,在矩形ABCD中、AB=5,BC=5,点P在线段BC上运动(含B、C两点),连接AP,以点A为旋转中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为.41.如图,在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分面积为.一十二.中心对称(共1小题)42.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形一十三.频数(率)分布表(共1小题)43.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981 A.12B.24C.1188D.1176一十四.扇形统计图(共2小题)44.某学校准备为七年级学生开设A,B,C,D,E,F共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).选修课A B C D E F人数4060100下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80°C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少45.如图所示是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2.5小时,那么他的阅读时间需增加()A.48分钟B.60分钟C.90分钟D.105分钟一十五.利用频率估计概率(共6小题)46.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼.通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为()A.600条B.1200条C.2200条D.3000条47.下列说法正确的是()A.事件“在一张纸上随意画两个直角三角形,这两个直角三角形相似”是确定事件B.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为C.事件“若△ABC的面积是12,则它的一边长a与这边上的高h 的函数关系式为”是随机事件D.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球符合如图所示的“用频率估计概率”的实验得出的频率分布折线图(如图)48.在一个不透明的塑料袋中装有红色球、白色球共40个,除颜色外其他都相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在20%左右,则塑料袋中红色球可能有()A.6个B.7个C.8个D.9个49.某学习小组做抛掷一枚纪念币的实验,整理的实验数据如下表:累计抛掷的次数501002003005001000200030005000正面朝上的次数2854106158264527105615872650正面朝上的频率0.56000.54000.53000.52670.5280.52700.52800.52900.5300下面有三个推断:①通过上述实验的结果,可以推断这枚纪念币有很大可能性不是质地均匀的;②如果再做此实验,仍按上表抛掷的次数统计,那么数据表中,“正面朝上”的频率有更大的可能仍会在0.53左右摆动;③根据表格中的信息,估计抛掷这样一枚纪念币,落地后正面朝上的概率约为0.53.其中正确的推断有()A .0个B .1个C .2个D .3个50.某种麦粒在相同条件下进行发芽试验,结果如下表所示:试验的麦粒数n 100200500100020005000发芽的粒数m 9318847395419064748发芽的频率0.930.940.9460.9540.9530.9496则任取一粒麦粒,估计它能发芽的概率约为()(结果精确到0.01)A .0.93B .0.94C .0.95D .0.9651.一个不透明的口袋中装有n 个白球,为了估计白球的个数,向口袋中加入3个红球,它们除颜色外其它完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在10%附近,则n 的值为()A .27B .30C .33D .36。

八年级下学期数学试题及答案

八年级下学期数学试题及答案

八年级下学期数学试题班级:_______姓名:________考号:_________成绩________第I卷(选择题)一、单选题A. C. D.,由下列条件不能判断它是直角三角形的是(A. B. -+15.)6.则等于()A. B. C. D.7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C. 4-2D. 3-48.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(?)A. 6B. 10C. 8D. 129.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(???? )A. 2B.C.D. 210.平行四边形四个内角的角平分线所围成的四边形是()的卷(非选择题)最简二次根式与-+16.如图,正方形ABCD的边长为5,点E在边AB上,且BE=2.若点P在对角线BD上移动,则PA+PE的最小值是__________.17.将五个边长都为2的正方形按如图所示摆放,点A1、A2、A3、A4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.18.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE其中正确的结论有?______ (填正确的序号)三、解答题19.计算下列各题(1)(2)20.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.AB = BC,D、E、F分别是BC23.交于=,求24.CP,求25.满足=0,C上一26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.参考答案与解析1.C【解析】分析:根据二次根式有意义的条件,被开方数为非负数,可直接列不等式求解.详解:∵式子有意义详解:根据二次根式的加减,可由与不是同类二次根式,因此不能计算,=,故不正确;故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.3.A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得c=x5.B【解析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB=3,从而求出C=BC-BE=5-3=2.故选:A.点睛:本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.6.C【解析】试题解析:∵四边形MBND是菱形,∴MD=MB.x=yMD=MB=2x-y=y∴.故选C.∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD-DE=4-4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,BE=4=4-2解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=?AF?BC=10.故选:B.点睛:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.9.C【解析】试题分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCPCP=1=∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,ABE=∠BAD+∠【解析】试题分析:在△ABC和△CDE中,EC=AC∠ECD=∠CAB∠ACB=∠CED∴△ABC≌△CDE,∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,222∴三角形(2017)是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形(2017)的直角顶点的坐标是(8064,0).故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.13.-1【解析】分析:根据同类二次根式的性质,化为最简二次根式后,被开方数相同,可得关于a的方程即可求解.详解:(2-)(2+)=22-()2=4-5=-1故答案为:-1.点睛:此题主要考查了二次根式的运算,关键是观察式子的特点—利用平方差公式计算即可,比较简单.16.【解析】分析:作出点E关于BD的对称点E′交BC于E′,连接AE′与BDAE′=故答案为:.点睛:此题考查了轴对称-最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.17.4【解析】分析:连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.详解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,,而正方形的面积为故答案为:4.点睛:本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.①②【解析】分析:?先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.再根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形.在△ADE和△CDE中,∴△ADE≌△CDE,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∵AH=HE,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,点睛:此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.19.(1) 4;(2)+2【解析】分析:(1)根据二次根式的化简、分母有理化、零次幂的性质可求解;(2)根据二次根式的化简、零次幂的性质,绝对值的性质,负整指数幂的性质可求解.详解:(1)=2×+3-1)-1-=+2要熟练掌握,21.-【解析】分析:先算除法,后算减法,分式除以分式,把这个分式的分子分母颠倒,再和这个分式相乘.解析:当时,原式=22.(1)证明见解析;(2)24cm.【解析】试题分析:(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEFAB【解析】分析:(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,AC=2BC=2点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.24.135°【解析】试题分析:根据同角的余角相等求出∠ACP=∠BCD,再利用“边角边”证明△ACP和△BCD全等,判断出△PCD是等腰直角三角形,再根据全等三角形对应边相等可得AP=BD,然后利用勾股定理逆定理判断出△BPD是直角三角形,∠BPD=90°,再根据∠BPC=∠BPD+∠CPD代入数据计算即可得解.试题解析:解:连接BD.【解析】分析:(1)根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;(2)根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;(3)利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D的坐标.详解:(1)根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OBPOC≌△DPE. ∴OC=PEOC=AB=3,PDO=∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°∴∠PDA=∠BPO∴在△POB和△DPA中,∴△POB≌△DPA(AAS)PA=OB= 3,,DA=PB= 6-3∴ OD=OA-DA=3-(6-3)=6-6∴ D(6-6,0)点睛:此题属于一次函数的综合题,涉及的知识有:全等三角形的判定与性质,中,∴△BAD ≌ △CA∵BD+CD=BC,∴CF+CD=BC;(3)、①CD-CF =BC.②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,。

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)

八年级数学(下)第十九章《一次函数——选择方案》同步练习题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若等腰△ABC的周长是50 cm,底边长为x cm,一腰长为y cm,则y与x的函数关系式及自变量x的取值范围是A.y=50-2x(0<x<50)B.y=50-2x(0<x<25)C.y=12(50-2x)(0<x<50)D.y=12(50-x)(0<x<25)【答案】D【解析】由题意得2y+x=50,所以y=12(50-x),且025x<<,故选D.2.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是A.820元B.840元C.860元D.880元【答案】C【解析】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b,由题意,得1000800 2000700k bk b=+⎧⎨=+⎩,解得109000kb=-⎧⎨=⎩,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,860x=,故选C.3.春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具A.当运输货物重量为60吨,选择汽车B.当运输货物重量大于50吨,选择汽车C .当运输货物重量小于50吨,选择火车D .当运输货物重量大于50吨,选择火车 【答案】D【解析】(1)y 1=2×120x +5×(120÷60)x +200=250x +200, y 2=1.8×120x +5×(120÷100)x +1600=222x +1600; (2)若y 1=y 2,则x =50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,故选D .4.学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是A .270B .255C .260D .265【答案】D【解析】由题中的表格知,y 是x 的一次函数,可设y 与x 的关系为y =kx +b , 由题意得22535k 24539b k b =+⎧⎨=+⎩,解得550k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为y =5x +50,当x =43时,y =265,故选D .5.如图,小明从A 地前往B 地,到达后立刻返回,他与A 地的距离(y 千米)和所用时间(x 小时)之间的函数关系如图所示,则小明出发6小时后距A 地A .120千米B .160千米C .180千米D .200千米【答案】B【解析】设当46x ≤≤时,y 与x 的函数关系式为y kx b =+,4240100k b k b +=⎧⎨+=⎩,得40400k b =-⎧⎨=⎩, 即当46x ≤≤时,y 与x 的函数关系式为40400y x =-+, 当6x =时,406400160y =-⨯+=, 即小明出发6小时后距A 地160千米,故选B . 二、填空题:请将答案填在题中横线上.6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400 m ,先到终点的人原地休息.已知甲先出发4 min ,在整个步行过程中,甲、乙两人的距离y (m )与甲出发的时间t (min )之间的关系如图所示,以下结论:①甲步行的速度为60 m /min ;②乙走完全程用了32 min ;③乙用16 min 追上甲;④乙到达终点时,甲离终点还有300 m ,其中正确的结论有___________(填序号).【答案】①【解析】由图可得,甲步行的速度为:240÷4=60米/分,故①正确; 乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误; 乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①. 7.某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:则P 与x 的函数关系式为___________,当卖出价格为60元时,销售量为___________件. 【答案】P =-10x +1000;400件【解析】(1)P 与x 成一次函数关系,设函数关系式为P =kx +b , 则5005049051k b k b=+⎧⎨=+⎩,解得101000k b =-=⎧⎨⎩ , ∴P =−10x +1000,经检验可知:当x =52,P =480,当x =53,P =470时也适合这一关系式, ∴所求的函数关系为P =−10x +1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.三、解答题:解答应写出文字说明、证明过程或演算步骤.8.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1 min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300 min,应选择哪种移动通讯业务合算些?【解析】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.所以通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,所以选择全球通合算.9.甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【解析】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.10.为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y (元)与骑行时间x (时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算. 【解析】(1)由题意和图象可设:手机支付金额y (元)与骑行时间x (时)的函数解析式为:1y kx b =+,由图可得:0.500.5k b k b +=⎧⎨+=⎩,解得10.5k b =⎧⎨=-⎩,∴手机支付金额y (元)与骑行时间x (时)的函数解析式为:10.5y x =-.(2)由题意和图象可设会员支付y (元)与骑行时间x (时)的函数解析式为:2y ax =, 由图可得:0.75a =,由0.750.5y x y x =⎧⎨=-⎩,可得21.5x y =⎧⎨=⎩, ∴图中两函数图象的交点坐标为(2,1.5), 又∵0x >,结合图象可得:当02x <<时,李老师用“手机支付”更合算; 当0x =时,李老师选择两种支付分式花费一样多; 当2x >时,李老师选择“会员支付”更合算.11.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费. (1)设工厂每月生产x 件产品.用方案一处理废渣时,每月利润为__________元;用方案二处理废渣时,每月利润为__________元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元? (3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【解析】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.12.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

上海市沪教版八年级数学(下)填空题压轴小题专项练习 含解析

上海市沪教版八年级数学(下)填空题压轴小题专项练习 含解析

八年级数学(下)填空题压轴小题练习题一.填空题1.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 . 2.如图,在ABC ∆中,4AC AB ==,AH BC ⊥垂足为H ,15AH =,BD 是中线,将CBD ∆沿直线BD 翻折后,点C 落在点E ,那么AE 为 .3.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线AC 的长为 .4.如图,在Rt ABC ∆中,90C ∠=︒,1BC =,2AB =,将ABC ∆绕点A 顺时针旋转后得到ABC '∆(点B 、C 分别与点B C '对应).当BA BB '=时,B C '= .5.已知四边形ABCD 是矩形,点E 是边AD 的中点,以直线BE 为对称轴将ABE ∆翻折至FBE ∆,联结DF ,那么图中与AEB ∠相等的角的个数为 .6.如图,正方形ABCD 的边长为1,把这个正方形绕点A 旋转,得到正方形AB C D ''';且点C '在直线AD 上,那么△C D D ''的面积是 .7.已知P 是正方形ABCD 内一点,将ABP ∆绕点B 旋转,使得边BA 与边BC 重合,点P 落在点P '的位置上.如果2PB =,那么PP '的长等于 .8.如图,点E 、F 分别在矩形ABCD 的边BC 和CD 上,如果ABE ∆、ECF ∆、FDA ∆的面积分别刚好为6、2、5,那么矩形ABCD 的面积为 .9.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点(3,8)C 、(5,8)G -,联结线段CG ,如果在线段CG 上存在两点P ,Q 互为反等点,那么点P 的横坐标P x 的取值范围是 . 10.如图,在边长为6的正方形ABCD 中,点M 、N 分别是边AD 、BC 的中点,Q 是边CD 上的一点.联结MN 、BQ ,将BCQ ∆沿着直线BQ 翻折,若点C 恰好与线段MN 上的点P 重合,则PQ 的长等于 .11.我们把对角线与一条底边相等的等腰梯形叫做“完美等腰梯形”,若一个“完美等腰梯形”的对角线长为10,且该梯形的一个内角为75︒,则这个梯形的高等于 . 12.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为()b a b >,M 是BC 边上一个动点,联结AM ,MF ,MF 交CG 于点P ,将ABM ∆绕点A 旋转至ADN ∆,将MEF ∆绕点F 旋转恰好至NGF ∆.给出以下三个结论:①AND MPC ∠=∠; ②ABM NGF ∆≅∆;③22AMFN S a b =+四边形.其中正确的结论是 (请填写序号).13.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =.D ,E 分别为边BC ,AC 上一点,将ADE ∆沿着直线AD 翻折,点E 落在点F 处,如果DF BC ⊥,AEF ∆是等边三角形,那么AE = .14.已知在平面直角坐标系xOy 中,直线142y x =-+与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分CAO ∠,那么点C 的坐标为 .15.如图,在平行四边形ABCD 中,AC 与BD 相交于点60O AOB ∠=︒,4BD =,将ABC ∆沿直线AC 翻折后,点B 落在点E 处,那么AED S ∆= .16.如图,矩形ABCD 中,5AD =,3AB =,把矩形ABCD 绕点A 顺时针旋转,当点D 落在射线CB 上的点P 处时,那么线段DP 的长度等于 .17.如图,已知矩形ABCD 的边3AB =,9BC =,将其折叠,使得点D 与点B 重合,折叠后折痕EF 的长是 .18.已知直角梯形的一条底边长为8,一条腰长为32,且它与底边的夹角是45︒,那么另一条底边的长为 .19.如图,在直角坐标平面内,ABC ∆的顶点(1,0)A -,点B 与点A 关于原点对称,AB BC =,30CAB ∠=︒,将ABC ∆绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,那么BE 所在直线的解析式为 .20.如图,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任一点,过点P 作PG BE ⊥、PH BC ⊥,垂足分别为G 、H ,如果8AD =,3CF =,那么PG PH +的值为 .21.在梯形ABCD 中,//AD BC ,AB BC ⊥,2AD =,3AB =,6BC =,如果CE 平分BCD ∠交边AB 于点E ,那么DE 的长为 .22.在ABCD Y 中,5AB =,7BC =,对角线AC 和BD 相交于点O ,如果将点A 绕着点O 顺时针旋转90︒后,点A 恰好落在平行四边形ABCD 的边AD 上,那么AC 的长是 . 23.如图,在直角梯形ABCD 中,//AD BC ,90B ∠=︒,60BCD ∠=︒,5CD =.将梯形ABCD 绕点A 旋转后得到梯形111AB C D ,其中B 、C 、D 的对应点分别是1B 、1C 、1D ,当点1B 落在边CD 上时,点1D 恰好落在CD 的延长线上,那么1DD 的长为 .24.已知边长为4的正方形ABCD ,点E 、F 分别在CA 、AC 的延长线上,且45BED BFD ∠=∠=︒,那么四边形EBFD 的面积是 .25.如图,在矩形ABCD 中,6BC cm =,3CD cm =,将BCD ∆沿BD 翻折,点C 落在点C '处,BC '交AD 于点E ,则AE 的长为 cm .26.如图,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P .若四边形ABCD 的面积是18,则DP 的长是 .27.如图,在ABC ∆中,90ABC ∠=︒,点D 在AB 边上,将ACD ∆沿直线CD 翻折后,点A 落在点E 处,如果四边形BCDE 是平行四边形,那么ADC ∠= .28.如图,在ABC ∆中,AB AC =,点M 、N 分别在边AB 、AC 上,且MN AC ⊥.将四边形BCNM 沿直线MN 翻折,点B 、C 的对应点分别是点B '、C ',如果四边形ABB C ''是平行四边形,那么BAC ∠=度.29.如图,现有一张矩形纸片ABCD ,其中4AB cm =,6BC cm =,点E 是BC 的中点.将纸片沿直线AE 折叠,使点B 落在梯形AECD 内,记为点B ',那么B '、C 两点之间的距离是 cm .30.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于 .31.如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE 、BE ,若ABE ∆是等边三角形,则DCEABES S ∆∆= .32.如图,在矩形ABCD 中,点M 、N 分别在边AD 、BC 上,将四边形CDMN 沿直线MN 翻折后,点D 落在边BC 上的点P ,如果3AB =,9BC =,那么PMN ∆的面积S 的取值范围是 .33.已知矩形ABCD ,3AB =,33BC =,将其绕点A 旋转,使点B 落在线段AC 上与点B '重合,得到矩形AB C D ''',B C ''交AD 于点E ,则:C ED C B C S S '''=V V .34.一次函数13y x b =+的图象与x 轴交于点(6,0)A ,与y 轴交于点B ,点C 在y 轴的正半轴上,5BC =,如果四边形ABCD 是等腰梯形,那么点D 的坐标是 .35.如图,在ABCD Y 中,//AB CD ,//BC AD ,CE AB ⊥,垂足是E ,3AB =,4BC =,60B ∠=︒,把四边形ABCD 沿直线CE 翻折,那么重叠部分的面积为 .36.如图,已知E 是ABCD Y 的边AB 上一点,将ADE ∆沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,如果BEF ∆的周长为7,CDF ∆的周长为15,那么CF 的长等于 .37.如图,已知菱形ABCD 中,60B ∠=︒,E 为BC 上一点,且15BAE ∠=︒,将点E 绕着点A 旋转(0180)αα<<度,使得E 点落在边CD 上,则α= 度.38.平行四边形ABCD 中,两条邻边长分别为3和5,BAD ∠与ABC ∠的平分线交于点E ,点F 是CD 的中点,联结EF ,则EF = .39.如图.已知正方形ABCD ,点E 在边DC 上,3DE =,1EC =.连接AE ,点F 在射线AB 上,且满足CF AE =,则A 、F 两点的距离为 .40.已知点A 、B 到直线l 的距离分别为4与6,O 是线段AB 的中点,那么点O 到直线l 的距离是 .参考答案一.填空题(共40小题)1.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为 8或10 .【解答】解:如图所示:①当1AE =,2DE =时, Q 四边形ABCD 是平行四边形, 3BC AD ∴==,AB CD =,//AD BC , AEB CBE ∴∠=∠,BE Q 平分ABC ∠, ABE CBE ∴∠=∠,ABE AEB ∴∠=∠, 1AB AE ∴==,∴平行四边形ABCD 的周长2()8AB AD =+=;②当2AE =,1DE =时, 同理得:2AB AE ==,∴平行四边形ABCD 的周长2()10AB AD =+=;故答案为:8或10.2.如图,在ABC ∆中,4AC AB ==,AH BC ⊥垂足为H ,15AH =,BD 是中线,将CBD ∆沿直线BD 翻折后,点C 落在点E ,那么AE 为6 .【解答】解:作AM AH ⊥交BD 的延长线于M ,BN MA ⊥于N ,如图所示: 则四边形ANBH 是矩形. 15AH NB ∴==, 4AB AC ==Q ,221BH CH AB AH ∴==-=,2BC ∴=, //AM BC Q , M DBC ∴∠=∠,在ADM ∆和CDB ∆中,M DBC ADM BDCAD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADM CDB AAS ∴∆≅∆, 2AM BC ∴==,DM BD =,在Rt BMN ∆中,15BN =Q ,3MN =,226BM MN BN ∴=+=,6BD DM ∴== 2BC CD BE DE ====Q , ∴四边形EBCD 是菱形,EC BD ∴⊥,6BO OD ==EO OC =, AD DC =Q ,//AE OD ∴,26AE OD ==.6.3.如图,菱形ABCD 由6个腰长为2,且全等的等腰梯形镶嵌而成,则菱形的对角线AC 的长为 63 .【解答】解:根据图形可知2ADC A ∠=∠,又180ADC A ∠+∠=︒, 60A ∴∠=︒,AB AD =Q ,∴梯形的上底边长=腰长2=,∴梯形的下底边长4=(可以利用过上底顶点作腰的平行线得出), 246AB ∴=+=,32sin 6026632AC AB ∴=︒=⨯⨯=. 故答案为:63.4.如图,在Rt ABC ∆中,90C ∠=︒,1BC =,2AB =,将ABC ∆绕点A 顺时针旋转后得到'AB C '∆(点B 、C 分别与点'B C '、对应).当BA BB '=时,B C '= 7或1 .【解答】解:90C ∠=︒Q ,1BC =,2AB =,22413AC AB BC ∴=-=-=1sin 2BC BAC AB ∠==Q 30BAC ∴∠=︒60B ∴∠=︒Q 将ABC ∆绕点A 顺时针旋转后得到ABC '∆AB AB '∴=,且AB BB '=ABB '∴∆是等边三角形,2AB A B BB ''∴===如图,当点B 在AC 下方时,ABB '∆Q 是等边三角形,60ABB '∴∠=︒,且60ABC ∠=︒∴点B ,点C ,点B '三点共线211B C BB BC ''∴=-=-=如图,当点B 在AC 上方时,ABB '∆Q 是等边三角形,60B AB '∴∠=︒,且30BAC ∠=︒90B AC '∴∠=︒22347B C AC B A ''∴=+=+=715.已知四边形ABCD 是矩形,点E 是边AD 的中点,以直线BE 为对称轴将ABE ∆翻折至FBE ∆,联结DF ,那么图中与AEB ∠相等的角的个数为 4 .【解答】解:由折叠知,BEF AEB ∠=∠,AE FE =,Q 点E 是AD 中点,AE DE ∴=,ED FE ∴=,FDE EFD ∴∠=∠,AEF EDF DFE AEB BEF ∠=∠+∠=∠=∠QAEB EDF ∴∠=∠,//AD BC Q ,AEB CBE ∴∠=∠,EDF EFD BEF AEB CBE ∴∠=∠=∠=∠=∠,故答案为:46.如图,正方形ABCD 的边长为1,把这个正方形绕点A 旋转,得到正方形AB C D ''';且点C '在直线AD 上,那么△C D D ''的面积是 224+或224- .【解答】解:如图,过点D '作D E AD '⊥,Q 把这个正方形绕点A 旋转,得到正方形AB C D ''';1AD AD CD C D '''∴==== 222AC D A C D ''''∴=+=22D E '∴= 当点C '在AD 延长线上时,1222(21)224C D D S ''-=⨯-⨯=V 当点C '在DA 延长线上时,1222(21)224C D D S ''+=⨯+⨯=V 故答案为:224+或224- 7.已知P 是正方形ABCD 内一点,将ABP ∆绕点B 旋转,使得边BA 与边BC 重合,点P 落在点P '的位置上.如果2PB =,那么PP '的长等于 22 .【解答】解:如图,Q 四边形ABCD 为正方形,BA BC ∴=,90ABC ∠=︒,ABP ∆Q 绕点B 旋转,使得边BA 与边BC 重合,点P 落在点P '的位置上.2BP BP ∴='=,90PBP ABC ∠'=∠=︒,PBP ∴∆'为等腰直角三角形,222PP PB ∴'==.故答案为22.8.如图,点E 、F 分别在矩形ABCD 的边BC 和CD 上,如果ABE ∆、ECF ∆、FDA ∆的面积分别刚好为6、2、5,那么矩形ABCD 的面积为 20 .【解答】解:设AB CD a ==,AD BC b ==6ABE S ∆=Q ∴162AB BE ⨯= 12BE a∴= 12EC b a ∴=-2EFC S ∆=Q ∴122EC CF ⨯= 412a CF ab ∴=- 412a DF a ab ∴=-- 5ADF S ∆=Q ∴152AD DF ⨯= 4()1012a b a ab ∴-=- 2()261200ab ab ∴-+=20ab ∴=或6ab =(不合题意舍去)∴矩形ABCD 的面积为20故答案为209.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点(3,8)C 、(5,8)G -,联结线段CG ,如果在线段CG 上存在两点P ,Q 互为反等点,那么点P 的横坐标P x 的取值范围是33P x -剟,且0p x ≠ .【解答】解:如图,设C 关于y 轴的对称点(3,8)C '-.由于点P 与点Q 互为反等点.又因为点P ,Q 是线段CG 上的反等点,所以点P 只能在线段CC '上,所点P 的横坐标P x 的取值范围为:33P x -剟,且0p x ≠.故答案为:33P x -剟,且0p x ≠.10.如图,在边长为6的正方形ABCD 中,点M 、N 分别是边AD 、BC 的中点,Q 是边CD 上的一点.联结MN 、BQ ,将BCQ ∆沿着直线BQ 翻折,若点C 恰好与线段MN 上的点P 重合,则PQ 的长等于 23 .【解答】解:12CBQ PBQ PBC ∠=∠=∠Q ,26BC PB BN ===,3BN =,90BPQ C ∠=∠=︒, cos :1:2PBN BN PB ∴∠==,60PBN ∴∠=︒,30PBQ ∠=︒,3tan 306233PQ PB ∴=︒=⨯=. 故答案为:23.11.我们把对角线与一条底边相等的等腰梯形叫做“完美等腰梯形”,若一个“完美等腰梯形”的对角线长为10,且该梯形的一个内角为75︒,则这个梯形的高等于 5 .【解答】解:如图,AB CD =,//AD BC ,10BD BC ==,75C ∠=︒.作DH BC ⊥于H .BD BC =Q ,75BDC C ∴∠=∠=︒,180757530DBC ∴∠=︒-︒-︒=︒, 152DH BD ∴==. 故答案为512.如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为()b a b >,M 是BC 边上一个动点,联结AM ,MF ,MF 交CG 于点P ,将ABM ∆绕点A 旋转至ADN ∆,将MEF ∆绕点F 旋转恰好至NGF ∆.给出以下三个结论:①AND MPC ∠=∠; ②ABM NGF ∆≅∆;③22AMFN S a b =+四边形.其中正确的结论是 ①②③ (请填写序号).【解答】解:如图,连接MN .Q 将ABM ∆绕点A 旋转至ADN ∆,将MEF ∆绕点F 旋转恰好至NGF ∆,AMN ∴∆,MNF ∆都是等腰直角三角形,45ANM AMN FNM FMN ∴∠=∠=∠=∠=︒,90ANF AMF MAN MFN ∴∠=∠=∠=∠=︒,∴四边形AMFN 是矩形,AN AM =Q ,∴四边形AMFN 是正方形,//AN MF ∴,AND MPC ∴∠=∠,故①正确,//AB NG Q ,//AM NF ,BAM GNF ∴∠=∠,AM FN =Q ,B NGF ∠=∠,()ABM NGF AAS ∴∆≅∆,故②正确,Q 四边形AMFN 是正方形,Q 在Rt ABM ∆中,222a b AM +=,222AMFN S AM a b ∴==+四边形;故③正确;故答案为①②③.13.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =.D ,E 分别为边BC ,AC 上一点,将ADE ∆沿着直线AD 翻折,点E 落在点F 处,如果DF BC ⊥,AEF ∆是等边三角形,那么AE = 4 .【解答】解:如图:Q 折叠,EAD FAD ∴∠=∠,DE DF =,DFE DEF ∴∠=∠;AEF ∆Q 是等边三角形,60EAF AEF ∴∠=∠=︒,30EAD FAD ∴∠=∠=︒;在Rt ACD ∆中,6AC =,30CAD ∠=︒,CD ∴=FD BC ⊥Q ,AC BC ⊥,//AC DF ∴,60AEF EFD ∴∠=∠=︒,60FED ∴∠=︒;180AEF DEC DEF ∠+∠+∠=︒Q ,60DEC ∴∠=︒;Q 在Rt DEC ∆中,60DEC ∠=︒,CD =,2EC ∴=;AE AC EC =-Q ,624AE ∴=-=;故答案为:4.14.已知在平面直角坐标系xOy 中,直线142y x =-+与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分CAO ∠,那么点C 的坐标为 (5,4) .【解答】解:142y x =-+Q , 0y ∴=时,1402x -+=,解得8x =,(8,0)A ∴, 0x =时,4y =,(0,4)B ∴.如图,四边形AOBC 是梯形,且对角线AB 平分CAO ∠,//BC OA ∴,OAB CAB ∠=∠,ABC OAB ∴∠=∠,ABC CAB ∴∠=∠,AC BC ∴=.设点C 的坐标为(,4)x ,则222(8)4x x -+=,解得5x =,∴点C 的坐标为(5,4).故答案为(5,4).15.如图,在平行四边形ABCD 中,AC 与BD 相交于点60O AOB ∠=︒,4BD =,将ABC ∆沿直线AC 翻折后,点B 落在点E 处,那么AED S ∆= 3【解答】解:如图连接EO .60AOB EOA ∠=∠=︒Q ,60EOD ∴∠=︒,OB OE OD ==Q ,EOD ∴∆是等边三角形,60EDO AOB ∴∠=∠=︒, //DE AC ∴,2323ADE EOD S S ∆∆∴=== 316.如图,矩形ABCD 中,5AD =,3AB =,把矩形ABCD 绕点A 顺时针旋转,当点D 落在射线CB 上的点P 处时,那么线段DP 的长度等于 10,310 .【解答】解:如图,当矩形ABCD 绕点A 顺时针旋转,当点D 落在射线CB 上的点P 处时,则5AP AD ==, 在Rt ABP ∆中,22534BP =-=, 541PC ∴=-=,在Rt PCD ∆中,221310DP =+=;当矩形ABCD 绕点A 顺时针旋转,当点D 落在射线CB 上的点P '处时,则5AP AD '==, 在Rt ABP ∆'中,22534BP '=-=,549P C ∴'=+=,在Rt △P CD '中,2239310DP '=+=;综上所述,线段DP 的长度为10或310.故答案为10或310.17.如图,已知矩形ABCD 的边3AB =,9BC =,将其折叠,使得点D 与点B 重合,折叠后折痕EF 的长是 10 .【解答】解:设BD 于EF 交于点O ,则O 是BD 的中点.在直角ABD ∆中,2222933BD AB AD =+=+=10cm ;则3102OD = B Q 、D 关于EF 对称,90EOD ∴∠=︒,又Q 矩形ABCD 中,90A ∠=︒,90A EOD ∴∠=∠=︒.在ABD ∆于OED ∆中,90A EOD ∠=∠=︒,ADB ODE ∠=∠,ABD OED ∴∆∆∽. ∴OE OD AB AD =, 102OD OE AB cm AD ∴==g . 210EF OE cm ∴==.18.已知直角梯形的一条底边长为8,一条腰长为32,且它与底边的夹角是45︒,那么另一条底边的长为 5或11 .【解答】解:①当AB 与下底的夹角为45︒时(上图),作AM BC ⊥于M .则四边形AMCD 是矩形,32AB =Q ,易知3AM BM ==,5AD CM BC BM ∴==-=.②下图中,当45A ∠=︒,32AB =,8BC =时,同法可得3811AD AM DM =+=+=, ③如图3,当45D ∠=︒,32AB =8AD =,同法可得,832BC =-④如图3,当45C ∠=︒,32AB =8AD =,同法可得,832BC =+故答案为5或11或832-832+19.如图,在直角坐标平面内,ABC ∆的顶点(1,0)A -,点B 与点A 关于原点对称,AB BC =,30CAB ∠=︒,将ABC ∆绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处,那么BE 所在直线的解析式为 3333y x =- .【解答】解:如图,过点C 作CF x ⊥轴于点F ,ABC ∆Q 的顶点(1,0)A -,点B 与点A 关于原点对称,(1,0)B ∴,2AB ∴=.AB BC =Q ,30CAB ∠=︒,2BC AB ∴==,3sin 6023CF BC ∴=︒==g ,1cos30212BF BC =︒=⨯=g , 3)C ∴.Q 将ABC ∆绕点C 旋转,使点A 落在x 轴上的点D 处,点B 落在点E 处, 2AB CE ∴==,(4,3)E∴.设直线BE的解析式为(0)y kx b k=+≠,∴43k bk b+=⎧⎪⎨+=⎪⎩,解得3333kb⎧=⎪⎪⎨⎪=-⎪⎩,BE∴所在直线的解析式为:3333y x=-.故答案为:3333y x=-.20.如图,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C'处,点P为折痕EF 上的任一点,过点P作PG BE⊥、PH BC⊥,垂足分别为G、H,如果8AD=,3CF=,那么PG PH+的值为4.【解答】解:过点E作EQ BC⊥,垂足为Q,如图,Q四边形ABCD是矩形,AD BC∴=,90C ADC∠=∠=︒.8AD=Q,3CF=,5BF BC CF AD CF∴=-=-=.由折叠可得:DF BF=,BEF DEF∠=∠.5DF∴=.90C∠=︒Q,2222534DC DF CF∴=-=-=.EQ BC ⊥Q ,90C ADC ∠=∠=︒,90EQC C ADC ∴∠=︒=∠=∠,∴四边形EQCD 是矩形,4EQ DC ∴==.//AD BC Q ,DEF EFB ∴∠=∠.BEF DEF ∠=∠Q ,BEF EFB ∴∠=∠,BE BF ∴=.由问题情境中的结论可得:PG PH EQ +=,4PG PH ∴+=,PG PH ∴+的值为4.故答案是:4.21.在梯形ABCD 中,//AD BC ,AB BC ⊥,2AD =,3AB =,6BC =,如果CE 平分BCD ∠交边AB 于点E ,那么DE 的长为 5 .【解答】解:方法一:作DH BC ⊥于点H ,延长CE 交DA 的延长线于点F , 2AD =Q ,3AB =,6BC =,624CH ∴=-=,3DH =,5CD ∴=,CE Q 平分BCD ∠交边AB 于点E ,//AD BC ,AB BC ⊥,DCF BDF DFC ∴∠=∠=∠,5DF DC ∴==,3AF∴=,FAE CBE∴∆∆∽,∴AF AE BC BE=,即36AEBE =,3 AE BE+=Q,解得,1AE=,2222125DE AE AD∴=+=+=,故答案为:5.方法二:作DF BC⊥于点F,作EG CD⊥交CD的延长线于点G,如右图所示,由已知可得,2AD BF==,3AB DF==,5CD∴=,CEQ平分BCD∠交边AB于点E,EG EB∴=,设AE a=,则3EB a=-,3EG a∴=-,∴()2222AD BC AB AD AE BC EB CD EG +=++g g g g,即(26)326(3)5(3)2222a a a+⨯--=++,解得,1a=,即1AE=,2222125 DE AE AD∴=+=+=,故答案为:5.22.在ABCD Y 中,5AB =,7BC =,对角线AC 和BD 相交于点O ,如果将点A 绕着点O 顺时针旋转90︒后,点A 恰好落在平行四边形ABCD 的边AD 上,那么AC 的长是 42或32 .【解答】解:如图,过O 点作OE AD ⊥于E ,过C 点作CF AD ⊥于F , Q 将点A 绕着点O 顺时针旋转90︒后,点A 恰好落在平行四边形ABCD 的边AD 上, AOA ∴∆'是等腰直角三角形,∴△AA C '是等腰直角三角形,设AA x '=,则CF x =,7DF x =-,在Rt CDF ∆中,222(7)5x x +-=,解得14x =,23x =,在Rt CFA ∆中,42AC =或32.故答案为:42或32.23.如图,在直角梯形ABCD 中,//AD BC ,90B ∠=︒,60BCD ∠=︒,5CD =.将梯形ABCD 绕点A 旋转后得到梯形111AB C D ,其中B 、C 、D 的对应点分别是1B 、1C 、1D ,当点1B 落在边CD 上时,点1D 恰好落在CD 的延长线上,那么1DD 的长为 52.【解答】解:如图,将梯形ABCD 绕点A 旋转后得到梯形111AB C D ,连接BD , 由旋转得:1AD AD =,1AB AB =,11DAD BAB ∠=∠,11DAB D AB ∴∠=∠,且13∠=∠,在DAB ∆和△11D AB 中,1111AD AD DAB D AB AB AB =⎧⎪∠=∠⎨⎪=⎩, DAB ∴∆≅△11()D AB SAS ,12∴∠=∠,23∴∠=∠,//AD BC Q ,24∴∠=∠,设1234α∠=∠=∠=∠=,则51804120C α∠=︒-∠-∠=︒-, 235180∠+∠+∠=︒Q ,120180ααα∴++︒-=︒,解得60α=︒,123460∴∠=∠=∠=∠=︒,1ADD ∴∆、BCD ∆都是等边三角形,5BD CD ∴==,30ABD ∠=︒,Rt ABD ∴∆中,1522AD BD ==, 152DD AD ∴==. 故答案为:5224.已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且45BED BFD∠=∠=︒,那么四边形EBFD的面积是16162+.【解答】解:如图连接BD交AC于O.Q四边形ABCD是正方形,4AB BC CD AD∴====,45CAD CAB∠=∠=︒,135EAD EAB∴∠=∠=︒,在EAB∆和EAD∆中,EA EAEAB EADAB AD=⎧⎪∠=∠⎨⎪=⎩,EAB EAD∴∆≅∆,22.5AEB AED∴∠=∠=︒,EB ED=,18022.5ADE EAD AED∴∠=︒-∠-∠=︒,22.5AED ADE∴∠=∠=︒,4AE AD∴==,同理证明22.5DFC∠=︒,FD FB=,DEF DFE∴∠=∠,DE DF∴=,ED EB FB FD∴===,∴四边形EBFD的面积1142(428)16222BD EF==⨯+=+g g.故答案为16162+. 25.如图,在矩形ABCD 中,6BC cm =,3CD cm =,将BCD ∆沿BD 翻折,点C 落在点C '处,BC '交AD 于点E ,则AE 的长为 94cm .【解答】解:BCD ∆Q 沿BD 翻折,点C 落在点C '处,BCD EBD ∴∠=∠,Q 矩形的对边//AD BC ,BCD ADB ∴∠=∠,EBD ADB ∴∠=∠,BE DE ∴=,在矩形ABCD 中,3AB CD cm ==,6AD BC cm ==,设AE xcm =,则6BE DE AD AE x ==-=-,在Rt ABE ∆中,由勾股定理得,222AB AE BE +=,即2223(6)x x +=-,解得94x =, 即94AE cm =. 故答案为:94. 26.如图,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P .若四边形ABCD 的面积是18,则DP 的长是 32 .【解答】解:如图,过点D 作DE DP ⊥交BC 的延长线于E ,90ADC ABC ∠=∠=︒Q ,∴四边形DPBE 是矩形,90CDE CDP ∠+∠=︒Q ,90ADC ∠=︒,90ADP CDP ∴∠+∠=︒,ADP CDE ∴∠=∠,DP AB ⊥Q ,90APD ∴∠=︒,90APD E ∴∠=∠=︒,在ADP ∆和CDE ∆中,ADP CDE APD EAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADP CDE AAS ∴∆≅∆,DE DP ∴=,四边形ABCD 的面积=四边形DPBE 的面积18=, ∴矩形DPBE 是正方形,1832DP∴==.故答案为:32.27.如图,在ABC ∆中,90ABC ∠=︒,点D 在AB 边上,将ACD ∆沿直线CD 翻折后,点A 落在点E 处,如果四边形BCDE 是平行四边形,那么ADC ∠= 135︒ .【解答】解:延长CD 到点F ,如图所示.Q 四边形BCDE 是平行四边形,//BC DE ∴,90BDE ∴∠=︒,90ADE ∴∠=︒.Q 将ACD ∆沿直线CD 翻折后,点A 落在点E 处, 1452ADF EDF ADE ∴∠=∠=∠=︒, 45BDC ADF ∴∠=∠=︒,180135ADC BDC ∴∠=︒-∠=︒.故答案为:135︒.28.如图,在ABC ∆中,AB AC =,点M 、N 分别在边AB 、AC 上,且MN AC ⊥.将四边形BCNM 沿直线MN 翻折,点B 、C 的对应点分别是点B '、C ',如果四边形ABB C ''是平行四边形,那么BAC ∠= 60 度.【解答】解:如图,Q 四边形MNC B ''是由四边形MNCB 翻折得到,C C ∴∠=∠',//AB B C ''Q ,C BAC ∴∠=∠,AB BC ∴=,AB AC =Q ,AB AC BC ∴==,60BAC ∴∠=︒,故答案为60.29.如图,现有一张矩形纸片ABCD ,其中4AB cm =,6BC cm =,点E 是BC 的中点.将纸片沿直线AE 折叠,使点B 落在梯形AECD 内,记为点B ',那么B '、C 两点之间的距离是 185cm .【解答】解:如图所示:过点B '作B F BC '⊥,垂足为F ,连接B C '.Q 点E 是BC 的中点,116322BE BC ∴==⨯=. 在Rt ABE ∆中,2222345AE AB BE =+=+=.由射影定理可知;2OE AE BE =g ,95OE ∴=. 由翻折的性质可知;BO AE ⊥.∴1122AB BE AE OB =g g . 125OB ∴=. 245BB ∴'=. OBE FBB ∠=∠'Q ,BOE BFB ∠=∠',BOE BFB ∴∆∆'∽. ∴OE BE OB B F BB BF =='',即912355245B F BF =='. 解得:7225B F '=,9625BF =. 5425FC ∴=. 在Rt △B FC '中,2222725418()()25255B C B F FC '='+=+=. 故答案为:185. 30.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若6CD =,则AF 等于 43 .【解答】解:由折叠的性质得BF EF =,AE AB =,因为6CD =,E 为CD 中点,故3ED =,又因为6AE AB CD ===,90D ∠=︒,所以30EAD ∠=︒,则1(9030)302FAE ∠=︒-︒=︒, 设FE x =,则2AF x =,在AEF ∆中,根据勾股定理,222(2)6x x =+,212x =,13x =,23x =-.323AF ==.故答案为:43.31.如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE 、BE ,若ABE ∆是等边三角形,则DCE ABE S S ∆∆= 13.【解答】解:过E 作EM AB ⊥于M ,交DC 于N ,Q 四边形ABCD 是矩形,DC AB ∴=,//DC AB ,90ABC ∠=︒,MN BC ∴=,EN DC ⊥,Q 延AC 折叠B 和E 重合,AEB ∆是等边三角形,30EAC BAC ∴∠=∠=︒,设2AB AE BE a ===,则2333BC a ==, 即233MN a =, ABE ∆Q 是等边三角形,EM AB ⊥,AM a ∴=,由勾股定理得:22(2)3EM a a a =-=,DCE ∴∆的面积是211232(33)223DC EN a a a ⨯⨯=⨯⨯=, ABE ∆的面积是21123322AB EM a a a ⨯=⨯=,∴2231333DCEABEaSS a∆∆==,故答案为:13.32.如图,在矩形ABCD中,点M、N分别在边AD、BC上,将四边形CDMN沿直线MN 翻折后,点D落在边BC上的点P,如果3AB=,9BC=,那么PMN∆的面积S的取值范围是91522S剟.【解答】解:如图1中,当点N与点C重合时,四边形PCDM是正方形,此时PMN∆的面积最小,最小值为92.如图2中,当点P与B重合时,三角形PMN的面积最大,设BM DM x==,在Rt ABM∆中,2223(9)x x=+-,3x∴=,152PMNS∆∴=,∴91522S剟.故答案为91522S剟.33.已知矩形ABCD,3AB=,33BC=将其绕点A旋转,使点B落在线段AC上与点B'重合,得到矩形AB C D''',B C''交AD于点E,则:C ED C B CS S'''=V V1:3.【解答】解:如图,Q 四边形ABCD 是矩形,90ABC ∴∠=︒,3tan AB ACB BC ∴∠== 30ACB ∴∠=︒,60BAC ∴∠=︒,2AC AB =,AB AB ='Q ,B ∴'是AC 与BD 的交点,易证ABB ∆',CDB ∆'都是等边三角形,C 、D 、C '共线,2AE EC EB ='=',设DEB S ∆'的面积S =,则2EDC S S ∆'=,6CBC S S ∆'=,:1:3C ED C B C S S '''∴=V V ,故答案为1:3.34.一次函数13y x b =+的图象与x 轴交于点(6,0)A ,与y 轴交于点B ,点C 在y 轴的正半轴上,5BC =,如果四边形ABCD 是等腰梯形,那么点D 的坐标是 (6,1)或(3,4) .【解答】解:把(6,0)A 代入13y x b =+得:20b +=,解得:2b =-, 则一次函数的解析式是:123y x =-. 在123y x =-中,令0x =,则2y =-.则B 的坐标是:(0,2)-; 5BC =Q ,523OC BC OB ∴=-=-=,C ∴的坐标是:(0,3),①当//AD BC 时,作DE BC ⊥于点E .Q 四边形ABCD 是等腰梯形,2CE OB ∴==,51AD OE CE OB ∴==--=.则D 的坐标是:(6,1).②当//CD AB '时,直线CD '的解析式为133y x =+,设1(,3)3D m m +, 5BC AD ='=Q ,2221(6)(3)53m m ∴-++=, 解得3m =或6(舍弃),(3,4)D ∴',故答案为(6,1)或(3,4).35.如图,在ABCD Y 中,//AB CD ,//BC AD ,CE AB ⊥,垂足是E ,3AB =,4BC =,60B ∠=︒,把四边形ABCD 沿直线CE 翻折,那么重叠部分的面积为 533.【解答】解:将BCE ∆沿CE 翻折得到ECF ∆,重叠部分就是四边形AECH .作HN BF ⊥于N .在RT BCE ∆中,90BEC ∠=︒Q ,4BC =,60B ∠=︒,30BCE ∴∠=︒,122BE BC ==,23EC =, 2BE EF ∴==,1AF AE ==,//CD AF Q ,::1:2FH HC AF CD ∴==//NH CE Q , ∴14NH FH EC FC ==, 32NH ∴=, 3731122312224ECF AHF AECH S S S ∆∆∴=-=⋅⋅-⋅⋅=四边形. 故答案为734.36.如图,已知E 是ABCD Y 的边AB 上一点,将ADE ∆沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,如果BEF ∆的周长为7,CDF ∆的周长为15,那么CF 的长等于 4 .【解答】解:由折叠性得AB EF =,DF AD =,BEF ∆Q 的周长为7,CDF ∆的周长为15,BEF ∴∆的周长7EF BE BF AB BF =++=+=,CDF ∆的周长15DC DF FC DC AD FC =++=++=,BEF ∴∆的周长CDF +∆的周长ABCD =Y 的周长22=,11AD DC ∴+=,CF CDF ∴=∆的周长()15114AD DC -+=-=.故答案为:4.37.如图,已知菱形ABCD 中,60B ∠=︒,E 为BC 上一点,且15BAE ∠=︒,将点E 绕着点A 旋转(0180)αα<<度,使得E 点落在边CD 上,则α= 60度或70 度.【解答】解:连接AC .Q 菱形ABCD 中,60ABC ∠=︒,ABC ∴∆是等边三角形,60BAC ACB ∴∠=∠=︒,60ACD ∴∠=︒.本题有两种情况:①如图,将ABE ∆绕点A 逆时针旋转,使点B 与点C 重合,点E 与点1E 重合,此时1ABE ABE ∆≅∆,1AE AE =,旋转角60BAC α=∠=︒;②60BAC ∠=︒Q ,25BAE ∠=︒,35EAC ∴∠=︒.如图,将线段AE 绕点A 逆时针旋转70︒,使点E 到点2E 的位置, 此时AEC ∆≅△2AE C ,2AE AE =,旋转角270EAE α=∠=︒.综上可知,符合条件的旋转角α的度数为60︒或70︒. 故答案是:60度或70.38.平行四边形ABCD 中,两条邻边长分别为3和5,BAD ∠与ABC ∠的平分线交于点E ,点F 是CD 的中点,联结EF ,则EF = 3.5或0.5 .【解答】解:①如图1中,当3AB =,5BC =时,延长AE 交BC 于M .//AD BC Q ,DAM AMB ∴∠=∠,DAM BAM ∠=∠Q ,BAM AMB ∴∠=∠,3AB BM ∴==,2CM BC BM ∴=-=,180DAB ABC ∠+∠=︒Q , 119022EAB EBA DAB ABC ∴∠+∠=∠+∠=︒, 90AEB ∴∠=︒, BE AM ∴⊥,BA BM =Q ,AE EM ∴=,DF CF =Q ,3.52AD CM EF +∴==②如图2中,当5AB =,3BC =时,同法可证,AE EM =,2CM BM BC AB BC =-=-=,可得1()0.52EF AD CM =-=, 综上所述,EF 的长为3.5或0.5.39.如图.已知正方形ABCD ,点E 在边DC 上,3DE =,1EC =.连接AE ,点F 在射线AB 上,且满足CF AE =,则A 、F 两点的距离为 1或7 .【解答】解:如图:3DE =Q ,1EC =,∴正方形ABCD 的边长为4,CF AE =Q ,ADE CBF ∴∆≅∆,3BF DE ∴==,Q 点F 在射线AB 上,所以分两种情况:431AF AB BF ∴=-=-=,或437AF AB BF =+=+=.故答案为:1或7.40.已知点A 、B 到直线l 的距离分别为4与6,O 是线段AB 的中点,那么点O 到直线l 的距离是 5或1 .【解答】解:如图一,作AD l ⊥于D ,BC l ⊥于C ,OF l ⊥于F .AD l ⊥Q 于D ,BC l ⊥,OF l ⊥于F ,////AD OF BC ∴,ABCD ∴是直角梯形,O Q 是AB 的中点,4AD =,6BC =,DF CF ∴=,11()(46)522OF AD BC ∴=+=+=.如图二,作AD l ⊥于D ,BC l ⊥于C ,OF l ⊥于F . AD l ⊥Q 于D ,BC l ⊥,OF l ⊥于F ,////AD OF BC ∴,连接DO 并延长,交BC 于G ,则易得AOD BOG ∆≅∆,4BG AD ∴==,DO GO =, 又6BC =Q , 642CG ∴=-=, //OF CG Q , DF CF ∴=, 112OF CG ∴==, 故答案为:5或1.。

2014年八年级下数学选择、填空题训练提升(1)人教版一

2014年八年级下数学选择、填空题训练提升(1)人教版一

A 第4题 D第一讲:选择、填空题的训练提升 ---2014年八年级下学期期末复习训 练 提 升 一一、选择题1、下列二次根式中,属于最简二次根式的是( )A . 21B . 8.0C . 4D . 52、有意义的条件是二次根式3+x ( )A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、下列命题中,正确的个数是( )①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形; ③对角线互相平分且相等的四边形是矩形;④两个邻角相等的平行四边形是矩形;A 、1个B 、2个C 、3个D 、4个4、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm5、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的 面积为( ).A .6B .8C .10D .126.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c ===二、填空7、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。

8、矩形的两条对角线的夹角为600,较短的边长为12cm,则对角线的长为__________cm.9.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不 包括树根)长度是 .A B C D F D第_______。

AB 的中点,则线段CD 的长为 ;的坐标分别是(0,0),(5,0)(2,3), 则顶点C 的坐标是( )A .(3,7) B.(5,3) C.(7,3) D.(8,2)13、===请你找出 其中规律,并将第n(n ≥1)个等式写出来 .训 练 提 升 二一、选择题1、下列二次根式中,属于最简二次根式的是( )A . 21B . 8.0C . 4D . 52、有意义的条件是二次根式3+x ( )A .x>3 B. x>-3 C. x ≥-3 D.x ≥33.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形4.下列说法中正确的是( )A.已知c b a ,,是三角形的三边长,则222c b a =+B.在直角三角形中,两边长的平方和等于第三边长的平方C.在Rt△ABC 中,若∠A=90°,则222c b a =+D.在Rt△ABC 中,若∠C=90°,则222c b a =+ 5、下列命题中,正确的个数是( )①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相平分且相等的四边形是矩形;④两个邻角相等的平行四边形是矩形;A 、1个B 、2个C 、3个D 、4个A D 6、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm8.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )A . 1.5,2,3a b c ===B . 7,24,25a b c ===C . 6,8,10a b c === D. 3,4,5a b c ===9.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6 cm 、8 cm ,AE ⊥B C 于点E ,则AE 的长是( )A.cmB.cm C.485cm D.245cm 10.下列条件中,能判定四边形是平行四边形的是( )A.一组对角相等 B.对角线互相平分C.一组对边相等 D.对角线互相垂直二、填空题11、22)3()5(--= 。

人教版数学八年级下《19.3课题学习--选择方案》课时练习含答案

人教版数学八年级下《19.3课题学习--选择方案》课时练习含答案

八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时; 两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h .故选D .分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b .根据题意得⎩⎨⎧+=+=b k b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.答案:B知识点:一次函数的性质一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选B.分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x 之间的函数关系式为____(x 为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h .(2012答案:4知识点:一次函数的性质 一次函数的图像 解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∵甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20-16=4(千米/时); 故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x≤2时,y 关于x 的函数解析式为____.答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答. 20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3), 则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S 1、S 2.S 1与t 之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S 2与t 之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象; (3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表:A (件) 20 21 22B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∵20≤m≤22,∵m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元. (1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ; 当x >200时,y 与x 的函数表达式是 y=0.55×200+0.7(x-200), 即y=0.7x-30;(2)因为小明家5月份的电费超过110元, 所以把y=117代入y=0.7x-30中,得x=210. 答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y 就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x件,则B种商品销售(100-x)件.依题意,得10x+15(100-x)=1350解得x=30.∵100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∵w随a的增大而减小.∵当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∵把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。

北师大版数学八年级下册第1章【三角形的证明】专项能力拓展训练

北师大版数学八年级下册第1章【三角形的证明】专项能力拓展训练

【三角形的证明】专项能力拓展训练一.选择题1.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.42.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为()A.6B.12C.16D.323.如图,已知等边△AEB和等边△BDC在线段AC同侧,则下面错误的是()A.△ABD≌△EBC B.△NBC≌△MBD C.DM=DC D.∠ABD=∠EBC4.等边三角形的两条角平分线所夹的锐角的度数为()度.A.30B.45C.60D.905.如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连接AD,CB的延长线交AD于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形6.在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个7.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC 的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④8.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是()A.①③④B.①②③C.①③D.①②③④9.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.50°10.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF.正确结论有()A.1个B.2个C.3个D.4个二.填空题11.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为.12.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为.13.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.14.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.15.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A =°.三.解答题16.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.(1)请你写出图中所有的等腰三角形;(2)请你判断AD与BE垂直吗?并说明理由.(3)如果BC=10,求AB+AE的长.17.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.(1)M、N同时运动几秒后,M、N两点重合?(2)M、N同时运动几秒后,可得等边三角形△AMN?(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?18.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.19.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.20.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.。

八年级数学三角形填空选择检测题(WORD版含答案)

八年级数学三角形填空选择检测题(WORD版含答案)

八年级数学三角形填空选择检测题(WORD 版含答案)一、八年级数学三角形填空题(难)1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】 【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.3.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.4.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.5.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,∴∠BEF=12(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠EBC,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C.故③正确;④∠ABD=90°-∠BAC,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,∵∠CBD=90°-∠C,∴∠DBE=∠BAC-∠C-∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC-∠C-∠DBE,∴∠F=12(∠BAC-∠C);故④正确,故答案为①②③④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键6.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

专题03 勾股定理选填题压轴训练(原卷版)八年级数学下学期期中考试压轴题专练(人教版)

专题03 勾股定理选填题压轴训练(原卷版)八年级数学下学期期中考试压轴题专练(人教版)

专题03 勾股定理选填题压轴训练(原卷版)一.选择题(共25小题)1.如图,正方形ABCD的面积为100cm2,△ABP为直角三角形,∠P=90°,且PB=6cm,则AP的长为()A.10cm B.6cm C.8cm D.无法确定2.如图,在四边形ABCD中,AB=3,BC=4,CD=10,∠ABC=90°,AC⊥CD,则BD=()A.12B.10C.11D.23.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.a=,b=,c=C.(b+a)(b﹣a)=c2D.∠A:∠B:∠C=5:3:24.如图,四个全等的直角三角形拼成“赵爽弦图”得到正方形ABCD与正方形EFGH.连接EG,BD相交于点O,BD与HC相交于点P.若GO=GP,下列结论:①∠GOP=∠BCP,②BC=BP,③BG:PG=+1,④DP =PO.正确的是()A.②③④B.①③④C.①②④D.①②③5.《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB的长是()A.104寸B.101寸C.52寸D.50.5寸6.已知点P(3m,4﹣4m)为平面直角坐标系中一点,若O为原点,则线段PO的最小值为()A.2B.2.4C.2.5D.37.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:58.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.9.在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在y轴上确定一点P,使△AOP为等腰三角形,则所有符合题意的点P的坐标有()A.3个B.4个C.5个D.6个10.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形11.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,则△ABC一定是()A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形12.如图,OC平分∠AOB,点P是OC上一点,PM⊥OB于点M,点N是射线OA上的一个动点若OM=4,OP =5,则PN的最小值为()A.2B.3C.4D.513.如图,四边形ABCD中,∠ABC=∠CDA=90°,以它的四条边为斜边分别向外作等腰直角三角形,其中3个三角形的面积分别为2,5,9,则第4个三角形的面积为()A.6B.9C.11D.1214.如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF2的值是()A.169B.196C.392D.58815.如图所示的是一种“羊头”形图案,全部由正方形与等腰直角三角形构成,其作法是从正方形①开始,以它的一条边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,再分别以正方形②和②的一条边为斜边,向外作等腰直角三角形,…,若正方形⑤的面积为2cm2,则正方形①的面积为()A.8cm2B.16cm2C.32cm2D.64ccm216.如图,在Rt△ABC中,∠ACB=90°,AD是△ABC的BC边的中线.若AB=,BC=2AC,则AD的长是()A.1B.2C.D.417.如图,一棵高5米的树AB被强台风吹斜,与地面BC形成60°夹角,之后又被超强台风在点D处吹断,点A 恰好落在BC边上的点E处,若BE=2米,则BD的长是()米A.2B.3C.D.18.已知Rt△ABC中,∠C=90°.若a+b=14cm,c=12cm,则Rt△ABC的面积是()A.13cm2B.26cm2C.48cm2D.52cm219.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上,AD=AC,AE⊥CD,垂足为F,与BC 交于点E,则BE的长是()A.3B.5C.D.620.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=1;再以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,那么点P表示的数是()A.2.2B.C.D.21.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m﹣1,﹣m﹣)(其中m为实数),当PM的长最小时,m的值为()A.﹣B.﹣C.3D.422.如图,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.当△ABP是直角三角形时,t的值为()A.B.C.1或D.1或23.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠BAC的平分线交BC于点D,过点D作DE⊥AB,垂足为E,连接CE交AD于点F,则以下结论:①AB=2CE;②AC=4CD;③CE⊥AD;④△DBE与△ABC的面积比是:1:(7+4)其中正确结论是()A.①②B.②③C.③④D.①④24.如图,长方体ABCD﹣A′B′C′D′中,AB′=2,AD'=,则AC的取值范围为()A.﹣2<AC<5B.3<AC<+2C.3<AC<5D.﹣2<AC<+225.如图,P是等边△ABC形内一点,连接P A、PB、PC,P A:PB:PC=3:4:5,以AC为边在形外作△AP′C ≌△APB,连接PP′,则以下结论错误的是()A.△APP'是正三角形B.△PCP'是直角三角形C.∠APB=150°D.∠APC=135°二.填空题(共20小题)26.将一副三角尺如图所示叠放在一起,若AB=2,则阴影部分的面积是.27.如图,有一直立旗杆,它的上部被风从点A处吹折,旗杆顶点B落地,离杆脚6米,修好后又被风吹折,因新断处点D比上一次高1米,故杆顶E着地点比上次近2米,则原旗杆的高度为米.28.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,以点A为圆心、AC长为半径画弧,交AB于点D,再分别以B、D为圆心,大于BD的长为半径画弧,两弧交于M,N,作直线MN,分别交AB、BC于点E、F,则线段EF的长为.29.如图,在四边形ABCD中,∠C=90°,∠A=∠B=60°,若AD=a,BC=b,则AB的长为(用含a,b的式子表示).30.如图,在Rt△ABC中,∠C=90°,BE,AF分别是∠ABC,∠CAB平分线,BE,AF交于点O,OM⊥AB,AB =10,AC=8,则OM=.31.如图,已知正方形ABCD的面积为4,正方形FHIJ的面积为3,点D、C、G、J、I在同一水平面上,则正方形BEFG的面积为.32.如图,在四边形ABCD中,AD=2,AB=2,BC=10,CD=8,∠BAD=90°,那么四边形ABCD的面积是.33.将一副直角三角板按如图所示方式放置.∠ACB=∠CDE=90°,∠CAB=60°,∠ECD=45°,AB边交直线DE于点M,设∠BMD=α,∠BCE=β,将直角三角板ABC绕点C旋转,在旋转过程中,点B始终位于直线DE 下方,则在变化过程中α与β的数量关系是.34.如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.35.在△ABC中,AD是BC边上的高线,CE是AB边上的中线,CD=AE,且CE<AC.若AD=6,AB=10,则CE=.36.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部B恰好碰到岸边的B',则这根芦苇的长度是尺.37.如图,△ABC中,∠ABC=2∠C,点D在AC上连接BD,BD=CD,BE为△DBC的角平分线,过AD的中点F作BE的垂线,点G为垂足,若∠BDC=100°,EG=2,则BC的长为.38.如图,四边形ABCD中,对角线AC⊥BD,点F为CD上一点,连接AF交BD于点E,AF⊥AB,DE=DF,∠BAG=∠ABC=45°,BC+AG=20,AE=2EF,则AF=.39.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=.40.如图,在Rt△ACB中,∠C=90°,∠ABC=30°,AC=4,N是斜边AB上方一点,连接BN,点D是BC的中点,DM垂直平分BN,交AB于点E,连接DN,交AB于点F,当△ANF为直角三角形时,线段AE的长为.41.如图,在正方形ABCD的对角线AC上取一点E,使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=,有下列四个论:①∠CBE=15°;②AE=+1;③S△DEC=;④CE+DE =EF.则其中正确的结论有.(填序号)42.如图,在△ABC中,AB=6,AC=,∠A=30°,作△ABC关于直线l的轴对称图形△EBD,点F是BE的中点,若点A,C,F在同一直线上,则CD的长为.43.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD=6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.44.如图,在直角坐标系中,点B(﹣8,8),点C(﹣2,0),若动点P从坐标原点出发,沿y轴正方向匀速运动,运动速度为1cm/s,设点P运动时间为t秒,当△BCP是以BC为腰的等腰三角形时,直接写出t的所有值.45.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B 两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,则甲巡逻艇的航向为北偏东度.。

八年级下期末数学试卷(解析版)

八年级下期末数学试卷(解析版)

八年级(下)期末数学试卷姓名成绩一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=53.函数y=kx+b的图象如图所示.则()(4题)A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<04.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120°D.130°5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣39.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.二、填空题:每题4分.共36分.11.在函数y=中.自变量x的取值范围是.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=.13.正比例函数y=kx的图象经过点(﹣2.4).则k=.14.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为.15.一次函数y=2x﹣3的图象不经过第象限.16.一个凸多边形共有35条对角线.它是边形.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为度.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是.19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=.(19题)三、解答题:共54分.20(10分).解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.21(8分).如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.22(9分).如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.23(13分).如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?24(14分).利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10个小题.每小题3分.共30分)1.在4(x﹣1)(x+2)=5.x2+y2=1.5x2﹣10=0.2x2+8x=0.=x2+3中.是一元二次方程的个数为()A.2个 B.3个 C.4个 D.5个【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数.并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:4(x﹣1)(x+2)=5.5x2﹣10=0.2x2+8x=0.是一元二次方程.共3个.故选:B.2.下列四组线段中.能组成直角三角形的是()A.a=1.b=2.c=3 B.a=2.b=3.c=4 C.a=2.b=4.c=5 D.a=3.b=4.c=5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵12+22=5≠32.∴不能构成直角三角形.故本选项错误;B、∵22+32=13≠42.∴不能构成直角三角形.故本选项错误;C、∵22+42=20≠52.∴不能构成直角三角形.故本选项错误;D、∵32+42=25=52.∴能构成直角三角形.故本选项正确.故选D.3.函数y=kx+b的图象如图所示.则()A.k>0.b>0 B.k>0.b<0 C.k<0.b>0 D.k<0.b<0【考点】一次函数图象与系数的关系.【分析】根据函数y=kx+b的图象所经过的象限与单调性回答.【解答】解:根据图象知.函数y=kx+b的图象经过第一、二、四象限.∴k<0.b>0.故选C.4.如图.把矩形ABCD沿EF对折后使两部分重合.若∠1=50°.则∠AEF=()A.110°B.115°C.120° D.130°【考点】翻折变换(折叠问题).【分析】根据折叠的性质.对折前后角相等.【解答】解:根据题意得:∠2=∠3.∵∠1+∠2+∠3=180°.∴∠2=÷2=65°.∵四边形ABCD是矩形.∴AD∥BC.∴∠AEF+∠2=180°.∴∠AEF=180°﹣65°=115°.故选B.5.下列命题中.真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个 B.2个 C.1个 D.0个【考点】命题与定理.【分析】利用矩形的判定方法、菱形的判定方法及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:①对角线相等且平分的四边形是矩形.故错误.错误.是假命题;②三条边相等的四边形是菱形.错误.是假命题;③一组对边平行且相等的四边形是平行四边形.正确.是真命题.故选C.6.三角形的三边长为a.b.c.且满足(a+b)2=c2+2ab.则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理.再判断其形状.【解答】解:化简(a+b)2=c2+2ab.得.a2+b2=c2所以三角形是直角三角形.故选:C.7.关于x的一元二次方程x2﹣2x+2k=0有实数根.则k的取值范围是()A.B.k≤C.D.k≥【考点】根的判别式.【分析】判断上述方程的根的情况.只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1.b=﹣2.c=2k.∴△=b2﹣4ac=22﹣4×1×(2k)=4﹣8k.关于x的一元二次方程x2﹣2x+2k=0有实数根.∴4﹣8k≥0.解得k≤.故选B.8.若把一次函数y=2x﹣3的图象向上平移3个单位长度.得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6 C.y=4x﹣3 D.y=﹣x﹣3【考点】一次函数图象与几何变换.【分析】根据上下平移k不变.b值加减即可得出答案.【解答】解:将直线y=2x﹣3向上平移3个单位后的直线解析式y=2x﹣3+3=2x.故选A9.如图.在正方形ABCD外侧.作等边三角形ADE.AC.BE相交于点F.则∠BFC为()A.75°B.60°C.55°D.45°【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°.AB=AE.由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°.再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形.∴∠BAD=90°.AB=AD.∠BAF=45°.∵△ADE是等边三角形.∴∠DAE=60°.AD=AE.∴∠BAE=90°+60°=150°.AB=AE.∴∠ABE=∠AEB==15°.∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.10.小明的爸爸早晨出去散步.从家走了20分到达距离家800米的公园.他在公园休息了10分.然后用30分原路返回家中.那么小明的爸爸离家的距离S(单位:米)与离家的时间t(单位:分)之间的函数关系图象大致是()A.B.C.D.【考点】函数的图象.【分析】本题是分段函数的图象问题.要根据行走.休息.回家三个阶段判断.【解答】解:第10﹣20分.离家的距离随时间的增大而变大;20﹣30分.时间增大.离家的距离不变.函数图象与x轴平行;30﹣60分.时间变大.离家越来越近.故选:D.二、填空题:每题3分.共30分.11.在函数y=中.自变量x的取值范围是x≠﹣2.【考点】函数自变量的取值范围.【分析】根据分式有意义.分母不等于0列式计算即可得解.【解答】解:由题意得.x+2≠0.解得x≠﹣2.故答案为:x≠﹣2.12.若x=2是一元二次方程x2+x+c=0的一个解.则c2=36.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义.把x=2代入方程x2+x+c=0即可求得c的值.进而求得c2的值.【解答】解:依题意.得22+2+c=0.解得.c=﹣6.则c2=(﹣6)2=36.故答案为:36.13.正比例函数y=kx的图象经过点(﹣2.4).则k=﹣2.【考点】一次函数图象上点的坐标特征.【分析】直接把点(﹣2.4)代入y=kx.然后求出k即可.【解答】解:把点(﹣2.4)代入y=kx得解得:k=﹣2.故答案为:﹣214.如图.在▱ABCD中.∠B=60°.∠BCD的平分线交AD点E.若CD=3.四边形ABCE 的周长为13.则BC长为5.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且互相平行.进而得出DE=CD=3.再求出AE+BC=7.BC﹣AE=3.即可求出BC的长.【解答】解:∵CE平分∠BCD交AD边于点E.∴∠ECD=∠ECB.∵在平行四边形ABCD中.AD∥BC.AB=CD=3.AD=BC.∠D=∠B=60°.∴∠DEC=∠ECB.∴∠DEC=∠DCE.∴DE=CD=3.∴△CDE是等边三角形.∴CE=CD=3.∵四边形ABCE的周长为13.∴AE+BC=13﹣3﹣3=7①.∵AD﹣AE═DE=3.即BC﹣AE=3②.由①②得:BC=5;故答案为:5.15.一次函数y=2x﹣3的图象不经过第二象限.【考点】一次函数的性质.【分析】先根据一次函数的性质判断出此函数图象所经过的象限.再进行解答即可.【解答】解:∵一次函数y=2x﹣3中.k=2>0.∴此函数图象经过一、三象限.∵b=﹣3<0.∴此函数图象与y轴负半轴相交.∴此一次函数的图象经过一、三、四象限.不经过第二象限.故答案为:二.16.一个凸多边形共有35条对角线.它是十边形.【考点】一元二次方程的应用;多边形的对角线.【分析】设它是n边形.从任意一个顶点发出的对角线有n﹣3条.则n边形共有对角线条.即可列出方程:.求解即可.【解答】解:设它是n边形.根据题意得:=35.解得n1=10.n2=﹣7(不符题意.舍去).故它是十边形.故答案为:十.17.四边形ABCD为菱形.该菱形的周长为16.面积为8.则∠ABC为30或150度.【考点】菱形的性质.【分析】此题菱形的形状不确定所以要分当∠A为钝角和锐角时分别求出∠ABC的度数即可.【解答】解:如图1所示:当∠A为钝角.过A作AE⊥BC.∵菱形ABCD的周长为l6.∴AB=4.∵面积为8.∴AE=2.∴∠ABE=30°.∴∠ABC=60°.当∠A为锐角是.过D作DE⊥AB.∵菱形ABCD的周长为l6.∴AD=4.∵面积为8.∴DE=2.∴∠A=30°.∴∠ABC=150°.故答案为:30或150.18.某厂前年的产值为50万元.今年上升到72万元.这两年的年平均增长率是20%.【考点】一元二次方程的应用.【分析】由于设每年的增长率为x.那么去年的产值为50(1+x)万元.今年的产值为50(1+x)(1+x)万元.然后根据今年上升到72万元即可列出方程.【解答】解:设每年的增长率为x.依题意得50(1+x)(1+x)=72.即50(1+x)2=72.解得:x=0.2.x=﹣2.2(舍去)故答案为:20%19.如图.BD为矩形ABCD的对角线.点E在BC上.连接AE.AE=5.EC=7.∠C=2∠DAE.则BD=13.【考点】矩形的性质.【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB.BE的长.再利用勾股定理得出BD的长.【解答】解:∵四边形ABCD是矩形.∴∠ABC=∠C=90°.AD∥BC.∵∠C=2∠DAE.∴∠DAE=45°.∴AB=BE.∵AE=5.∴AB=BE=5.∵EC=7.∴AD=BC=12.∴BD==13.故答案为:13.三、解答题:第21题8分.第22题6分.第23-25题每题8分.共60分.20.解下列方程:(1)x(x﹣1)=2(x﹣1)(2)2x2﹣x﹣4=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣公式法.【分析】(1)方程移项后.提取公因式.利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程利用公式法求出解即可.【解答】解:(1)方程移项得:x(x﹣1)﹣2(x﹣1)=0.分解因式得:(x﹣1)(x﹣2)=0.解得:x1=1.x2=2;(2)这里a=2.b=﹣1.c=﹣4.∵△=1+32=33.∴x=.21.如图所示网格是由边长为1的小正方形组成.点A.B.C位置如图所示.在网格中确定点D.使以A.B.C.D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A.B.C.D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.【考点】勾股定理.【分析】(1)根据题意可知以A.B.C.D为顶点的四边形是矩形.作出矩形ABCD即为所求;(2)根据勾股定理可求AB、CD的长度.再根据进行的周长公式和面积公式计算即可求解.【解答】解:(1)如图所示:(2)AB==.BC==2.周长为(2+)×2=6.面积为2×=10.22.如图.点E.F为▱ABCD的对角线BD上的两点.连接AE.CF.∠AEB=∠CFD.求证:AE=CF.【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD.∠BAE=∠CDF.由AAS证明证得△ABE≌△CDF.继而证得结论.【解答】证明:∵四边形ABCD是平行四边形.∴AB=CD.AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中..∴△ABE≌△CDF(AAS).∴AE=CF.23.如图.△ABC中.∠C=90°.BC=5厘米.AB=5厘米.点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动.同时.点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动.P、Q两点运动几秒时.P、Q两点间的距离是2厘米?【考点】一元二次方程的应用.【分析】首先表示出PC和CQ的长.然后利用勾股定理列出有关时间t的方程求解即可.【解答】解:设P、Q两点运动x秒时.P、Q两点间的距离是2厘米.在△ABC中.∠C=90°.BC=5厘米.AB=5厘米.∴AC===10(厘米).∴AP=2x 厘米CQ=x厘米CP=(10﹣2x)厘米.在Rt△CPQ内有PC2+CQ2=PQ2.∴(10﹣2x)2+x2=(2)2.整理得:x2﹣8x+12=0.解得:x=2或x=6.当x=6时CP=10﹣2x=﹣2<0.∴x=6不合题意舍去.∴P、Q两点运动2秒时.P、Q两点间的距离是2厘米.24.利民商店经销某种商品.该种商品的进价为每件80元.该商店销售商品每件售价高于进价但每件售价不超过120元.当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.设该商品的销售单价为x元.每天售出商品的数量为y件.(1)求y与x之间的函数关系式;(不必写出自变量x的取值范围)(2)利民商店在销售该商品时除成本外每天还需支付各种费用1000元.该商店某天销售该商品共获利8000元.求这一天的销售单价为多少元?【考点】一次函数的应用;一元二次方程的应用.【分析】(1)首先利用当售价定为每件120元时每天可售出200件.该商品销售单价在120元的基础上.每降1元.该种商品每天可多售出10件.进而求出每天可表示出销售商品数量;(2)设商场日盈利达到8000元时.每件商品售价为x元.根据每件商品的盈利×销售的件数=商场的日盈利.列方程求解即可.【解答】解:(1)由题意得:y=200+10=﹣10x+1400;(2)由题意可得:(﹣10x+1400)(x﹣80)﹣1000=8000.整理得:x2﹣220x+12100=0.解得:x1=x2=110.答:这一天的销售单价为110元.25.点E在正方形ABCD的边BC上.点F在AE上.连接FB.FD.∠ABF=∠AFB.(1)如图1.求证:∠AFD=∠ADF;(2)如图2.过点F作垂线交AB于G.交DC的延长线于H.求证:DH=2AG;(3)在(2)的条件下.若EF=2.CH=3.求EC的长.【考点】四边形综合题.【分析】(1)利用等腰三角形的性质结合正方形的性质得出AF=AD.则∠AFD=∠ADF;(2)首先得出四边形AGHN为平行四边形.得出FM=MD.进而NF=NH.ND=NH.即可得出答案;(3)首先得出△ADN≌△DCP(ASA).进而PC=DN.再利用在Rt△ABE 中.BE2+AB2=AE2.求出答案.【解答】(1)证明:∵∠ABF=∠AFB.∴AB=AF.∵四边形ABCD为正方形.∴AB=AD.∴AF=AD.∴∠AFD=∠ADF;(2)证明:如图1所示:过点A作DF的垂线分别交DF.DH于M.N两点∵GF⊥DF.∴∠GFD=∠AMD=90°.∴AN∥GH.∵四边形ABCD为正方形.∴AG∥NH.∴四边形AGHN为平行四边形.∴AG=NH.∵AF=AD.AM⊥FD.∴FM=MD.连接NF.则NF=ND.∴∠NFD=∠NDF.∵∠NFD+∠NFH=∠NDF+∠H.∴∠NFH=∠H.∴NF=NH.∴ND=NH.∴DH=2NH=2AG;(3)解:延长DF交BC于点P.如图2所示:∵四边形ABCD为正方形.∴AD∥BC.∴∠ADF=∠FPE.∴∠PFE=∠AFD=∠ADF=∠FPE.∴EF=EP=2.∵∠DAM+∠ADM=∠ADM+∠PDC.∴∠DAM=∠PDC.∵四边形ABCD为正方形.∴AD=DC.∠ADN=∠DCP.在△ADN和△DCP中.∴△ADN≌△DCP(ASA).∴PC=DN.设EC=x.则PC=DN=x+2.DH=2x+4.∵CH=3.∴DC=AB=BC=AF=2x+1∴AE=2x+3.BE=x+1.在Rt△ABE中.BE2+AB2=AE2.∴(x+1)2+(2x+1)=(2x+3)2.整理得:x2﹣6x+7=0.解得:x1=7.x2=﹣1(不合题意.舍去)∴EC=7.26.在平面直角坐标系内.点O为坐标原点.直线y=x+3交x轴于点A.交y轴于点B.点C在x轴正半轴上.△ABC的面积为15.(1)求直线BC的解析式;(2)横坐标为t的点P在直线AB上.设d=OP2.求d与t之间的函数关系式.(不必写出自变量取值范围)(3)在(2)的条件下.当∠BPO=∠BCA时.求t的值.【考点】一次函数综合题.【分析】(1)先求出点A.B坐标.用△ABC的面积为15.求出点C的坐标.用待定系数法求出直线BC解析式;(2)在Rt△OPD中.有OP2=OD2+PD2.代入化简得d=t2+3t+9.(3)先判断出∠EBA=∠OBA.再分两种情况.①点P在第一象限.用PD=OD建立方程求出t.②当点P位于如图2所示P1位置时.用P1O=PO.建立方程求解即可.【解答】解:直线y=x+3交x轴于点A.交y轴于点B.当x=0时y=3.当y=0时.x=﹣6.∴A(﹣6.0)B(0.3).∴OA=6.OB=3.=AC×OB=(OA+OC)×OB.∴S△ABC∴15=(6+OC)×3∴OC=4.∴C(4.0).设直线BC的解析式为y=kx+b.则:∴k=∴直线BC的解析式为y=﹣x+3.(2)横坐标为t的点P在直线AB上.∴P(t.t+3)过点P作x轴的垂线.点D为垂足.如图1.∴D(t.0)在Rt△OPD中.有OP2=OD2+PD2∴d=t2+(t+3)2=t2+3t+9.(3)在在Rt△OBC内有BC2=OB2+OC2∴BC==5过点A作BC的垂线.点E为垂足.如图2S△ABC=BC•AE=15.∴AE=6∴AO=AE.∵∠AEB=∠AOB=90°∴∠EBA=∠OBA当点P位于第一象限时.∠BOP=∠ABO﹣∠APO=∠EBO﹣∠BCO=(∠EBO﹣∠BCO)=∠BOC=45°∴∠POD=∠PDO=45°.∴PD=OD.∴t+3=t.∴t=6当点P位于如图2所示P1位置时.∠BP1O=∠BCA=∠BPO∴P1O=PO.∴P1O2=PO2.∴t2+3t+9=×62+3×6+9.解得:t=﹣或t=6(舍去)综上所述:当∠BPO=∠BCA时t的值为6或﹣.。

八年级数学分式填空选择易错题(Word版 含答案)

八年级数学分式填空选择易错题(Word版 含答案)
甲前一半的路程使用速度 ,另一半的路程使用速度 ;乙前一半的时间用速度 ,另一半的时间用速度 。
(1)甲、乙二人从A地到达B地的平均速度分别为 ;则 ___________, ____________
(2)通过计算说明甲、乙谁先到达B地?为什么?
【答案】(1) ;(2)乙先到达B地.
【解析】
【分析】
八年级数学分式填空选择易错题(Word版 含答案)
一、八年级数学分式填空题(难)
1.如果 ,则 __________.
【答案】
【解析】
【分析】
由 得a+b=ab,然后再对 变形,最后代入,即可完成解答.
【详解】
解:由 得a+b=ab,
= = = .
【点睛】
本题考查了分式的化简求值,解答的关键在于分式的灵活变形.
【详解】
解:(1)由 ; ; ; ;…,
知它的一般性等式为 ;
(2) ,
原式成立;
(3)
.
【点睛】
解答此题关键是找出规律,再根据规律进行逆向运算.
12.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的 ;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
【答案】0.
【解析】
方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值:
方程两边都乘以(x-2)得,2-x-m=2(x-2).
∵分式方程有增根,∴x-2=0,解得x=2.
∴2-2-m=2(2-2),解得m=0.
【解析】

新人教版八年级数学下册四边形专项训练同步练习(精品试题)

新人教版八年级数学下册四边形专项训练同步练习(精品试题)

四边形专项训练一、选择题1.能够判别一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行2.下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是()A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.88°,92°,88°4.四边形ABCD中,AD∥BC,要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠B=180°D.∠A+∠D=180°5.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()A.1个B.2个C.3个D.4个6.A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种7.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个图1 图28.如图1,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE 相等(不含∠AOE)的角有() A.2个 B.3个C.4个D.5个9.平行四边形的两邻边分别为3、4,那么其对角线必()A.大于1B.小于7C.大于1且小于7D.小于7或大于110.在ABCD中,M为CD的中点,如DC=2AD,则AM、BM夹角度数是()A.90°B.95C.85°D.100°11 .如图2,四边形ABCD是平行四边形,∠D=120°,∠CAD=32°.则∠ABC、∠CAB的度数分别为()A.28°,120°B.120°,28°C.32°,120°D.120°,32°二、填空题1.已知:平行四边形一边AB=12 cm,它的长是周1,则BC=______ cm,CD=______ cm.长的62.,在ABCD中,对角线AC、BD相交于点O,图中全等三角形共有________对.3.如果平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长m的取值范围是________.4. ABCD中,若∠A∶∠B=1∶3,那么∠A=________,∠B=________,∠C=________,∠D=________.5.四边形ABCD中,对角线AC、BD相交于点O,要判别它是平行四边形,从四边形的角的关系看应满足_ _____;从对角线看应满足___ ____.6.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______.7.四边形ABCD中,AD=BC,BD为对角线,∠ADB=∠CBD,则AB与CD的关系是_______.8.□ABCD中,对角线AC、BD相交于点O,E、F分别是OB、OD的中点,四边形AECF是_______.三、解答题1.在□ABCD中,点M、N在对角线AC上,且AM=CN,四边形BMDN 是平行四边形吗?为什么?2.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD是平行四边形吗?为什么?3.如图3,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.图 3图44.如图4,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.(二)一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2D.84 cm24.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到6.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形7.菱形的周长为12 cm,相邻两角之比为5∶1,那么菱形对边间的距离是()A.6 cmB.1.5 cmC.3 cmD.0.75 cm8.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图1)则∠EAF等于()A.75°B.60°C.45°D.30°图1 图29.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为()A.12B.8C.4D.210.菱形的边长是2 cm,一条对角线的长是23cm,则另一条对角线的长是()A.4 cmB.3cmC.2 cmD.23cm11.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()A.一般平行四边形B.菱形C.矩形D.正方形12.四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是()A.OA=OB=OC=OD,AC⊥BDB.AB∥CD,AC=BDC.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=BC13.在矩形ABCD的边AB上有一点E,且CE=DE,若AB=2AD,则∠ADE 等于()A.45°B.30°C.60°D.75°14.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16B.22C.26D.22或2615.在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO 的周长是()A.12+122B.12+62C.12+2D.24+62二、判断正误:(对的打“√”错的打“”)1.两组邻边分别相等的四边形是菱形.…………………………………………………()2.一角为60°的平行四边形是菱形.…………………………………………………()3.对角线互相垂直的四边形是菱形.……………………………………………………()4.菱形的对角线互相垂直平分.…………………………………………………………()三、填空题1AD,则四个内角1.如图3,菱形ABCD中,AC、BD相交于O,若OD=2为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a时,如图4,其他三边长为___ _____;周长为____ ____.3.菱形的周长是8 cm,则菱形的一边长是______.4.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.5.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.6.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.7.菱形的面积为83平方厘米,两条对角线的比为1∶3,那么菱形的边长为_______.8.延长等腰△ABC的腰BA到D,CA到E,分别使AD=AB,AE=AC,则四边形BCDE是________,其判别根据是_____ __.7.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_ __ _ _ __,短边长为___ ____.8.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC的周长少4 cm,则AB=_______,BC=_______.9.正方形的一条边长是3,那么它的对角线长是_______.10.在一正方形的四角各截去全等的等腰直角三角形而得到一个小正方形,若小正方形的边长为1,那么所截的三角形的直角边长是__ ______.四、解答题2.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?3.菱形ABCD的周长为20 cm,两条对角线的比为3∶4,求菱形的面积.4.在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?5.如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH 是矩形吗?说明理由.18.E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD的度数.19.如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?(三)一、选择题1.下列语句正确的是()A.线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B.正三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形C.正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形D.正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形2.下列图形中是中心对称图形,而不是轴对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形3.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为()A.1B.2C.3D.44.菱形、矩形、正方形既是中心对称图形,又是轴对称图形,它们的对称中心只有一个,而对称轴的个数依次是()A.1,1,1B.2,2,2C.2,2,4D.4,2,45.如果一个图形有两条互相垂直的对称轴,那么这个图形()A.只能是轴对称图形B.不可能是中心对称图形C.一定是轴对称图形,也一定是中心对称图形D.一定是轴对称图形,但无法判别是中心对称图形6.下列说法正确的是()A.一组对边平行的四边形是梯形B.有两个角是直角的四边形是直角梯形C.只有相邻的两个角是直角的四边形是直角梯形D.一组对边平行另一组对边相等的四边形是等腰梯形7.四边形的四个内角的度数比是2∶3∶3∶4,则这个四边形是()A.等腰梯形B.直角梯形C.平行四边形D.不能确定8.以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形()A.只能画出一个B.能画出2个C.能画出无数个D.不能画出9.在梯形ABCD中,AD∥BC,AB=AC,若∠D=110°,∠ACD=30°,则∠BAC等于()A.80°B.90°C.100°D.110°10.在等腰梯形ABCD中,AD∥BC,AE⊥BC于E,且AE=AD,BC=3AD,则∠B等于()A.30°B.45°C.60°D.135°二、填空题1.若等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于点O,那么图中全等三角形共有_______对;若梯形ABCD为一般梯形,那么图中面积相等的三角形共有_______对.2.在梯形ABCD中,AD∥BC,∠B=50°,∠C=80°,AD=8,BC=11,则CD=_______.3.等腰梯形的腰长为5 cm,上、下底的长分别为6 cm和12 cm,则它的面积为_______.4.在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,CD=10 cm,BC=2AD,则梯形的面积为_______.5.一个正方形绕着它的中心至少旋转________度,能够和原图形重合.6.中心对称图形的对应点连线经过_______,并且被_______平分.7.中心对称图形中的不在同一直线上的两条对应线段的关系是__________.8.已知六边形ABCDEF是中心对称图形,A B=1,BC=2,CD=3,那么EF=_______.9.如图,线段AB、CD互相平分于点O,过O作EF交AC于E,交BD 于F,则这个图形是中心对称图形,对称中心是O.指出图形中的对应点_______,对应线段_______,对应三角形_______.三、解答题1.如图,在梯形ABCD中,AB∥CD,M、N分别为CD、AB中点,且MN⊥AB.梯形ABCD一定为等腰梯形,请你用两种不同的方法说明理由.2.在梯形ABCD中,AD∥BC,AC⊥BD,若AD=2,BC=8,BD=6,求:(1)对角线AC的长;(2)梯形ABCD的面积.15.如图,欲用一块面积为800 cm2的等腰梯形彩纸作风筝,用竹条作梯形的对角线且对角线恰好互相垂直,那么需要竹条多少厘米?15.如图,四边形ABCD是等腰梯形,其中AD=BC,若AD=5,CD=2,AB=8,求梯形ABCD的面积.。

专题16 数据的分析选填题压轴训练(解析版)八年级数学下学期(人教版)

专题16 数据的分析选填题压轴训练(解析版)八年级数学下学期(人教版)

专题16 数据的分析选填题压轴训练(时间:60分钟总分:120)班级姓名得分一、单项选择题:(本题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为()A.25B.30C.35D.40【答案】C【分析】最大数出现的条件就是前面10个数的和尽可能小,而它们的和是110,中间的是9,则其它的越小,剩下的就越大,但是8的个数要多于其它的,可分8的个数分别是2,3,4,5时,讨论写出符合条件的数据即得答案.【详解】解:∵有11个正整数,平均数是10,∵这11个数的和为110,由于中位数是9,众数只有一个8,如有两个8,则其他数至多1个,符合条件的数据可以是:1,2,3,8,8,9,10,11,12,13,x;如有3个8,9是中位数,则其他数至多2个,符合条件的数据可以是:1,1,8,8,8,9,9,10,10,11,x;如有4个8,则其他数至多3个,符合条件的数据可以是:1,8,8,8,8,9,9,9,10,10,x;如有5个8,则其他数至多4个,符合条件的数据可以是:8,8,8,8,8,9,9,9,9,10,x;再根据其和为110,比较上面各组数据中哪个x更大即可,通过计算x分别为33,35,30,24,故最大的正整数为35.故选:C.【点睛】本题主要考查了众数、平均数以及中位数的运用,解题时注意:一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,则处于中间位置的数(或中间位置的两个数的平均数)就是这组数据的中位数.2.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是5小时、8小时、10小时、4小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.5小时B.8小时C.5或8小时D.5或8或10小时【答案】C【分析】利用众数及中位数的定义解答即可.【详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.【点睛】本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.3.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是()A.13s2B.3s2C.19s2D.9s2【答案】C【解析】【分析】本题主要考查的是方差的求法.解答此类问题,通常用x1,x2,…,x n表示出已知数据的平均数与方差,再根据题意用x1,x2,…,x n表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
P N M
O
E
D C
B
A 艺体5 填空选择专项训练
第一部分
1. 点A (-2,1)关于y 轴的对称点是( )
A .(-1,2)
B .(2,1)
C .(2,-1)
D .(-2,-1) 2.下列运算正确的是( )
A

2=± B
2=-
C .|2|2--=
D . 632222=⨯
3. 下列说法正确的是( )
A .16的算术平方根是4
B .8-的立方根不存在
C .1的平方根是1
D .4-的平方根是2±
4.等腰三角形的一个内角为50°,则另外两个角的度数分别为( ) A . 65°,65° B . 50°,80° C .65°,65°或50°,80° D . 50°,50° 5.比较5.2、3-、7的大小,正确的是( ) A
.3 2.5-<<
B
.2.53<-< C
.3 2.5-<< D
2.53<<-
6.如图OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,P A =2,则PQ 的最小值为( )
A. 1
B.2
C.3
D. 4
(第6题图) (第9题图) (第10题图)
7.下列各组数中互为相反数的是( ) A 、-2与2
)
2(- B 、-2与3
8- C 、-2与2
1-
D 、︱-2︱与2
8.已知:5a =
7=,且a b a b +=+,则a b -的值为( )
A .2或12
B .2或-12
C .-2或12
D .-2或-12
9.如图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC , ∠CED = 35︒, 则∠EAB 的度数是 ( )
A .35︒
B .45︒
C .55︒
D .65︒
10.如图,ABC Rt ∆中,∠=ACB 900,∠A =200,△ABC ≌△A ‘B ’C , 若'B A '恰好经过点B ,C A '交AB 于D ,则BDC ∠的度数为( )
A.500
B.600
C. 620
D.640
C
D
A
B'
B A'
G
F
E C B
A
11.代数式
1
1-x 中x 的取值范围是___________.
12.已知实数x 、y 满足|y -3|+x -2=0, 则y x =________
13.如图,在△ABC 中,∠C =90°,∠A =30°,CD =2cm , AB 的垂直平分线MN 交AC 于D ,连结BD ,则AC 的长是_________cm .
(第13题图) (第19题图) 14.一组按规律排列的式子:2
b
a
-

2
5a
b ,83
b a
-

114
b
a
,…(0ab ≠),其中第7个式子是 ,第n 个
式子是 (n 为正整数). 15.在3438080080008.0273
7223,,,,
π
-
这五个实数中,无理数是______________________.
16.-8的立方根与16的平方根之和为 .
17. 若x ,y 为实数,且y =x 41-+14-x +1.则xy 的值是 .
18.已知一个等腰三角形的顶角为x 度,则其一腰上的高线与底边的夹角___________度(用含x 的式子表
示).
19.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两个动点,且总使AD =BE ,AE 与CD 交于
点F ,AG ⊥CD 于点G ,则
AF
FG = .
20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,
写出所有满足条件的E 点的坐标 . 21.
M D
C
B
A
N
第二部分
1、实数-1.732,
2
π

3
4,0.121121112…,01
.0-

7
11中,无理数的个数有( ).
A 、2个
B 、 3个
C 、4个
D 、5个 2、到三角形三个顶点距离相等的点是( ).
A. 三条高线的交点
B. 三个内角平分线的交点
C. 三条中线的交点
D. 三边垂直平分线的交点 3、下列说法中,正确的是( ).
A .5是25的算术平方根
B .9-的平方根是3-
C .4±是64的立方根
D .9的立方根是3 4、下列说法错误的是 ( )
A .有理数和无理数统称为实数 B.没有最小的实数 C.没有绝对值最小的实数 D .
3是无理数
5、如图,点C 、D 分别在∠AOB 的边OA 、OB 上,若在线段CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ).
A. 线段CD 的中点
B. O A 与OB 的中垂线的交点
C. OA 与CD 的中垂线的交点
D. CD 与∠AOB 的平分线的交点
6、如图,在△AB C 中,D 是B C 边上一点,且A B =A D =DC ,∠BAD =40°,则∠C 为( ).
A .25°
B .35°
C .40°
D .50°
7、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE =3,则点P 到AB 的距离是( )
A .3
B .4
C .5
D .6 9题图
8、 如图, D 是等腰Rt △ABC 内一点, BC 是斜边, 如果将△ABD 绕点A 逆时针方向旋转到△ACD ′的位置, 则∠ADD ′ 的度数( )
A . 25︒
B . 30︒
C . 35︒
D . 45︒
9、已知如图,在△ABC 中,AB =AC ,BF =CD ,BD =CE ,∠FDE =α,则下列结论正确的是( ) A. ︒=∠+1802A α B. ︒=∠+90A α C. ︒=∠+902A α D. ︒=∠+180A α
A B D
D'
C
8题图
A
B
C
D
C A B E D
P
7题图 A
B C
D
O
5题图6题图 α
F
E
D C B A
C
10、如图,△ABC 的三边AB 、BC 、AC 的长分别为20、30、40,其三条角平 分线将△ABC 分成三个三角形,则=∆∆∆OAC OBC OAB S S S ::( )
A .1:1:1
B. 6:4:3
C.2:3:4
D. 4:3:2
11、81的平方根是 ;比大小:
12; 12、如果一个数算术平方根等于本身,那么这个数是___________; 13、点M 在数轴上与1相距是
5
个单位长度,则点M 表示的实数为 ;
14、点P (1,2)关于x 轴对称点的坐标是(_________);
15、如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_________°. 16、如图,正方形ABCD 的边长为2,M 、N 分别为AB 、AD 的中点,在对角线BD 上找一点P ,使△MNP 的周长最小,则此时PM +PN = .
17、如图,△ABC 是等边三角形,D 是BC 边的中点,点 E 在AC 的延长线上,且∠CDE
=30°.若AD ,
则DE =_________.
18、如图,MN 是正方形ABCD 的一条对称轴,点P 是直线MN 上的一个动点,当PC +PD 最小时,
∠PCD =_________°.
19、Rt △ABC 中,∠C =90°,∠B =2∠A ,BC =3cm ,AB =_________cm .
20、已知D 是等边△ABC 外一点,∠BDC =120º则AD 、BD 、DC 三条线段的数量关系
为______________________.
21、计算:92)3(2
3
3
--+
-)( 22
+
D
A
E
B
C D
A
M
N
B
C
P
D
A
M
N B
C
15题图
16题图
17题图
18题图
M。

相关文档
最新文档