向量在物理中的应用
向量的应用
向量的应用
向量是几何中重要的概念,也是数学中常常用到的工具,广泛应用于物理、工程、计
算机科学等各个领域。
下面将介绍一些向量的常见应用。
1. 平面几何中的向量应用:
在平面几何中,向量可以表示平面上的点、线段、三角形等。
我们可以用两个向量表
示平面上的一条直线,可以用三个向量表示一个平面,可以用向量的线段来表示一个位移
和距离等。
向量的叉积可以用来判断两个向量是否平行、垂直,以及求解平面上的面积
等。
2. 物理学中的向量应用:
在物理学中,向量被广泛应用于描述力、速度、加速度等物理量的大小和方向。
位移
向量可以用来表示物体的位置变化,速度向量可以用来表示物体的运动速度和方向,加速
度向量可以用来表示物体的速度变化率等。
通过向量的运算,可以方便地计算物体之间的
相对速度、加速度,以及其他相关的物理量。
4. 计算机科学中的向量应用:
在计算机科学中,向量被广泛应用于描述二维和三维图形的坐标和方向。
我们可以用
二维向量表示平面上的一个点的坐标,用三维向量表示空间中的一个点的坐标,用向量的
加法和减法进行坐标的变换和计算。
向量的点乘和叉乘可以用来计算向量之间的夹角、距
离和面积等。
向量是数学中非常重要的概念和工具,被广泛应用于物理、工程、计算机科学等各个
领域。
通过对向量的运算和应用,我们可以更方便地描述和计算各种物理量、几何关系和
图形形状等。
向量的应用不仅仅局限于上述几个领域,还有很多其他的应用,如信号处理、优化问题等,具有非常广泛的应用前景。
向量在物理中的应用举例 课件
知识点归纳
向量在物理中的应用 (1)物理中的力、速度、位移都是向量,它们的分解与合成 与向量的加法与减法相类似,可以用向量来解决. (2)物理中的功是一个标量,它是力f与位移s的数量积,即 W=f·s=|f|·|s|cos θ.
用向量方法解决力学问题
如图,在重300 N的物体 上系两根绳子,这两根绳子在铅垂线的 两侧,与铅垂线的夹角为30°和60°, 求重物平衡时,两根绳子拉力的大小.
【思路分析】力的合成与分解,可用向量的平行四边形法 则解决.
【规范解答】如右图,作平行四边形 OACB, 使∠AOC=30°,∠BOC=60°.在△OAC 中,∠ ACO=∠BOC=60°,∠OAC=90°,|O→A|=|O→C |cos 30°= 150 3 (N) , | A→C | = | O→C |sin 30°= 150(N),|O→B|=|A→C|=150 N.
力所做的功
已知力F与水平方向的夹角为30°(斜向上),F 的大小为50 N,F拉着80 N的木块在摩擦系数为μ=0.02的水平 面上运动了20 m,问F和摩擦力f所做的功分别是多少?
【思路分析】利用向量数量积的物理意义求解.
【规范解答】设木块的位移为 s,则 F·s=|F||s|·cos 30°=
【规范解答】设船速为 v1,水速为 v2, 船的实际速度为 v3.建立如图所示坐标系, 则|v1|=5 m/s,|v3|=250 m/s=4 m/s.
由 v3=v1+v2,得 v2=v3-v1=(0,4)-(-3,4)=(3,0), ∴|v2|=3,即 v2=3 m/s.
用向量解决相关的物理问题,要将相关的 物理量用几何图形正确地表示出来;根据物理意义,将物理问 题转化为数学问题求解.最后将数学结论还原为物理问题.
向量在物理中的关键应用作文
向量在物理中的关键应用作文向量在物理中的关键应用在物理学中,向量是一种重要的数学工具,它被广泛地应用于各个领域,从机械力学到电磁学,从热力学到光学。
向量的运算和表示方法可以帮助我们更好地理解和描述物理现象。
本文将探讨向量在物理中的关键应用。
一、力学在力学中,向量的应用尤为突出。
我们可以使用向量来描述物体的运动和作用力。
例如,当我们想要描述一个物体受到的作用力以及它的运动状态时,我们可以使用位移向量、力向量和加速度向量。
位移向量表示物体从一个位置到另一个位置的移动,力向量表示作用在物体上的力,而加速度向量则表示物体在单位时间内的速度变化。
通过对这些向量的运算和研究,我们可以得出关于物体运动和力的有关性质和规律。
例如,根据牛顿第二定律,我们可以得出力等于物体质量乘以加速度的公式,即F = m*a。
这个公式便是基于向量的概念和运算得出的。
二、电磁学向量在电磁学中也扮演着重要的角色。
对于电磁力和电场、磁场的研究和描述,向量起到了至关重要的作用。
在电磁学中,我们可以使用电场强度向量和磁感应强度向量来描述电场和磁场的性质。
电场强度向量表示电场的强度和方向,磁感应强度向量则表示磁场的强度和方向。
通过对电场和磁场的向量运算,我们可以计算出电荷之间的作用力,以及电流在导线上产生的磁场等。
同时,远距离电磁相互作用的描述和计算也离不开向量的运算。
例如,在电磁波的传播过程中,我们可以通过电场和磁场的向量叠加得到电磁波的传播方向和强度。
这些都是基于向量的运算和分析得出的。
三、热力学在热力学中,向量也有着广泛的应用。
温度梯度、热流等热学量的计算和描述都需要运用向量的概念和方法。
例如,当我们想要计算物体内的温度分布时,我们可以使用温度梯度向量来表示温度在空间的变化率。
这样,我们就可以通过对温度梯度向量的运算和分析来得出物体内部的温度分布规律。
另外,热流的描述和计算也依赖于向量的应用。
热流向量表示单位时间内单位面积内热量的流动方向和强度。
向量的应用
向量的应用向量是数学中的重要概念,它在很多领域中都有着广泛的应用。
在物理学、工程学、计算机科学等领域中,向量被用来描述和求解各种问题。
一、物理学中的向量应用在物理学中,向量被用来描述物体的位置、速度、加速度等物理量。
一个物体在二维平面上的位置可以用一个二维向量表示,其中向量的两个分量分别表示物体在 x 方向和y 方向上的位置,这样可以方便地描述物体的位置关系和运动轨迹。
速度和加速度也是向量,它们的方向和大小可以通过向量的几何性质进行分析和计算。
二、工程学中的向量应用工程学中的向量应用主要集中在力学、电路分析和信号处理等方面。
在力学中,向量被用来描述力的大小和方向,可以方便地求解物体的平衡和运动问题。
在电路分析中,向量被用来描述电压和电流的相位关系,可以通过向量运算方便地分析电路中的功率和效率。
在信号处理中,向量被用来描述信号的幅度和相位,可以方便地进行滤波和频谱分析等操作。
三、计算机科学中的向量应用在计算机科学中,向量被广泛应用于图像处理、机器学习等领域中。
在图像处理中,向量被用来表示图像的像素值,在图像的压缩、增强和分析等操作中起到关键作用。
在机器学习中,向量被用来表示样本的特征向量,通过向量的相似性和距离度量可以进行分类和聚类等操作。
四、其他领域中的向量应用除了上述领域外,向量还在金融学、经济学、生物学等领域中有着广泛的应用。
在金融学中,向量被用来描述资产的收益和风险,可以通过向量运算进行资产组合和风险管理等操作。
在经济学中,向量被用来描述经济指标和变量之间的关系,可以进行经济模型和政策分析等操作。
在生物学中,向量被用来描述基因组的序列,可以进行基因组测序和突变检测等操作。
向量在各个科学和工程领域中都有着广泛的应用。
通过向量的几何性质和运算规律,可以方便地描述和求解各种问题,扩展了数学在实际问题中的应用范围,提高了问题的求解效率和精度。
深入理解和掌握向量的概念和应用是学习数学和科学的重要基础。
数学(2.5.2向量在物理中的应用举例)
向量的表示方法
总结词
向量可以用箭头表示,箭头的长度代 表大小,箭头的指向代表方向。
详细描述
在数学和物理中,向量通常用箭头表 示,箭头的长度代表向量的模长,箭 头的指向代表向量的方向。在坐标系 中,向量也可以用坐标表示。
向量的运算规则
总结词
向量具有加法、减法、数乘等基本运算规则,这些运算规则遵循平行四边形法 则或三角形法则。
04
向量在物理中的重要性
描述物理现象的数学工具
向量是描述物理现象的重要数 学工具,如力、速度、加速度 等物理量都可以用向量表示。
向量具有大小和方向两个要素, 能够准确地描述物理量的变化 和方向。
向量运算(加法、数乘、向量 的模等)能够描述物理量的合 成与分解。
解决物理问题的有效方法
向量在解决物理问题中具有高效性和准确性,通过向量的运算和变换可以简化问题。
向量在解决力学、电磁学、振动与波动等问题中具有广泛的应用,能够提供简洁明 了的解决方案。
向量方法可以避免复杂的解析过程,提高解题效率。
连接数学与物理的桥梁
向量作为数学和物理之间的桥梁,能 够将数学理论应用于实际物理问题。
向量的引入和发展推动了数学和物理 学的发展,促进了科学技术的进步。
通过向量的应用,能够将抽象的数学 概念与具体的物理现象联系起来,促 进数学与物理的相互理解和应用。
详细描述
在物理中,力的合成与分解是常见的运算。例如,当一个物体受到两个力的作用时,可 以通过向量的合成求出这两个力的合力;同样地,当需要将一个力分解为若干个分力时, 也可以通过向量的分解来实现。力的合成与分解在工程、力学等领域有着广泛的应用。
速度与加速度的实例
总结词
速度和加速度是描述物体运动状态的重要物理量,通 过向量运算可以方便地描述它们的方向和大小。
向量在物理中的应用举例
一、教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念;向量是既有大小、又有方向的量;它与物理学中的力学、运动学等有着天然的联系;将向量这一工具应用到物理中;可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具;而且用数学的思想方法去审视相关物理现象;研究相关物理问题;可使我们对物理问题的认识更深刻.物理中有许多量;比如力、速度、加速度、位移等都是向量;这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.1力、速度、加速度、位移等既然都是向量;那么它们的合成与分解就是向量的加、减法;运动的叠加亦用到向量的合成;2动量是数乘向量;3功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.①通过抽象、概括;把物理现象转化为与之相关的向量问题;②认真分析物理现象;深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题;并获得这个向量的解;④利用这个结果;对原物理现象作出合理解释;即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较;得出抽象的数学模型.例如;物理中力的合成与分解是向量的加法运算与向量分解的原型.同时;注重向量模型的运用;引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.二、教学目标1.知识与技能:通过力的合成与分解的物理模型;速度的合成与分解的物理模型;掌握利用向量方法研究物理中相关问题的步骤..2.过程与方法:明了向量在物理中应用的基本题型;进一步加深对所学向量的概念和向量运算的认识.3.情感态度与价值观:通过对具体问题的探究解决;进一步培养学生的数学应用意识;提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学;善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.三、重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.四、教学设想一导入新课思路1.章头图引入章头图中;道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢它就像章头图中的高速公路一样;是一条解决物理问题的高速公路.在学生渴望了解的企盼中;教师展示物理模型;由此展开新课.思路2.问题引入你能举出物理中的哪些向量比如力、位移、速度、加速度等;既有大小又有方向;都是向量;学生很容易就举出来.进一步;你能举出应用向量来分析和解决物理问题的例子吗你是怎样解决的教师由此引导:向量是有广泛应用的数学工具;对向量在物理中的研究;有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究;体会向量在物理中的重要作用.由此自然地引入新课.二应用示例例1在日常生活中;你是否有这样的经验:两个人共提一个旅行包;夹角越大越费力;在单杠上做引体向上运动;两臂的夹角越小越省力.你能从数学的角度解释这种现象吗活动:这个日常生活问题可以抽象为如图1所示的数学模型;引导学生由向量的平行四边形法则;力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系其中F为F 1、F 2的合力;就得到了问题的数学解释.图1在教学中要尽可能地采用多媒体;在信息技术的帮助下让学生来动态地观察|F |、|G |、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后;与学生共同探究归纳出向量在物理中的应用的解题步骤;也可以由学生自己完成;还可以用信息技术来验证. 用向量解决物理问题的一般步骤是:①问题的转化;即把物理问题转化为数学问题;②模型的建立;即建立以向量为主体的数学模型;③参数的获得;即求出数学模型的有关解——理论参数值;④问题的答案;即回到问题的初始状态;解释相关的物理现象.解:不妨设|F 1|=|F 2|;由向量的平行四边形法则、力的平衡以及直角三角形的知识;可以知道通过上面的式子;我们发现:当θ由0°到180°逐渐变大时;2θ由0°到90°逐渐变大;cos 2θ的值由大逐渐变小;因此|F 1|由小逐渐变大;即F 1;F 2之间的夹角越大越费力;夹角越小越省力.点评:本例是日常生活中经常遇到的问题;学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图;启发学生将物理现象转化成模型;从数学角度进行解释;这就是本例活动中所完成的事情.教学中要充分利用好这个模型;为解决其他物理问题打下基础.得到模型后就可以发现;这是一个很简单的向量问题;这也是向量工具优越性的具体体现.变式训练某人骑摩托车以20km/h 的速度向西行驶;感到风从正南方向吹来;而当其速度变为40km/h 时;他又感到风从西南方向吹来;求实际的风向和风速.图2解:如图2所示.设v 1表示20km/h 的速度;在无风时;此人感到的风速为-v 1;实际的风速为v ;那么此人所感到的风速为v +-v 1=v -v 1. 令AB =-v 1;AC =-2v 1;实际风速为v .∵DA +AB =DB ; ∴DB =v -v 1;这就是骑车人感受到的从正南方向吹来的风的速度.∵DA +AC =DC ;∴DC =v -2v 1;这就是当车的速度为40km/h 时;骑车人感受到的风速.由题意得∠DCA=45°;DB ⊥AB;AB=BC;∴△DCA 为等腰三角形;DA=DC;∠DAC=∠DCA=45°.∴DA=DC=2BC=202.∴|v |=202km/h. 答:实际的风速v 的大小是202km/h;方向是东南方向.例2如图3所示;利用这个装置冲击摆可测定子弹的速度;设有一砂箱悬挂在两线下端;子弹击中砂箱后;陷入箱内;使砂箱摆至某一高度h.设子弹和砂箱的质量分别为m 和M;求子弹的速度v 的大小.图3解:设v 0为子弹和砂箱相对静止后开始一起运动的速度;由于水平方向上动量守恒;所以m|v |=M+m|v 0|.①由于机械能守恒;所以21M+m v 02=M+mgh.②联立①②解得|v |=.2gh m m M 又因为m 相对于M 很小;所以|v |≈gh m M 2;即子弹的速度大小约为gh m M 2. 三知能训练 1.一艘船以4km/h 的速度沿着与水流方向成120°的方向航行;已知河水流速为2km/h;则经过3小时;该船实际航程为A.215kmB.6kmC.84kmD.8km图4 2.如图4;已知两个力的大小和方向;则合力的大小为N;若在图示坐标系中;用坐标表示合力F ;则F =___________. 3.一艘船以5km/h 的速度向垂直于对岸的方向行驶;而该船实际航行的方向与水流方向成30°角;求水流速度与船的实际速度.解答: 1.B点评:由于学生还没有学习正弦定理和余弦定理;所以要通过作高来求.2.415;4图53.如图5所示;设OA 表示水流速度;OB 表示船垂直于对岸的速度;OC 表示船的实际速度;∠AOC=30°;|OB |=5km/h.因为OACB 为矩形;所以|OA |=|AC |·cot30°=|OB |·cot30°=53≈8.66km/h;|OC |= 30cos ||OA =2335=10km/h. 答:水流速度为8.66km/h;船的实际速度为10km/h.点评:转化为数学模型;画出向量图;在直角三角形中解出.四课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.①问题的转化;即把物理问题转化为数学问题;②模型的建立;即建立以向量为主体的数学模型;③参数的获得;即求出数学模型的有关解——理论参数值;④问题的答案;即回到问题的初始状态;解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.①力、速度、加速度、位移都是向量;②力、速度、加速度、位移的合成与分解对应相应向量的加减;③动量mv是数乘向量;冲量Δt F也是数乘向量;④功是力F与位移s的数量积;即W=F·s.五作业。
数学-向量在物理中的应用举例
向量在物理中的应用举例高中数学 会用向量方法解决简单的力学问题及其他实际问题,体会向量在解决物理和实际问题中的作用.导语 向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.一、向量与力2例1 如图,用两根分别长5m和10 m的绳子,将100 N的物体吊在水平屋顶AB上,平衡后,G点距屋顶距离恰好为5 m,求A处所受力的大小(绳子的重量忽略不计).解 如图,由已知条件可知AG与铅垂方向成45°角,BG与铅垂方向成60°角.设A处所受力为F a,B处所受力为F b,物体的重力为G.因为∠EGC=60°,∠EGD=45°,则有|F a|cos 45°+|F b|cos 60°=|G|=100,①且|F a|sin 45°=|F b|sin 60°,②26由①②得|F a|=150-50,26所以A处所受力的大小为(150-50)N.反思感悟 用向量解决物理问题的一般步骤(1)问题的转化,即把物理问题转化为数学问题.(2)模型的建立,即建立以向量为主体的数学模型.(3)参数的获得,即求出数学模型的有关解——理论参数值.(4)问题的答案,即回到问题的初始状态,解释相关的物理现象.跟踪训练1 用两条成120°角的等长的绳子悬挂一个灯具,如图所示,已知灯具重10 N,则每根绳子的拉力大小为________ N.答案 10解析 设重力为G ,每根绳的拉力分别为F 1,F 2,则由题意得F 1,F 2与-G 都成60°角,且|F 1|=|F 2|,F 1+F 2+G =0.∴|F 1|=|F 2|=|G |=10 N ,∴每根绳子的拉力都为10 N.二、向量与速度、加速度、位移例2 (教材P41例4改编)一条宽为 km 的河,水流速度为2 km/h ,在河两岸有两个码头3A ,B ,已知AB = km ,船在水中的最大航速为4 km/h ,问该船怎样安排航行速度可使它3从A 码头最快到达彼岸B 码头?用时多少?解 如图所示,设为水流速度,为航行速度,以AC 和AD 为邻边作▱ACED ,且当AE 与AB 重合时能AC → AD → 最快到达彼岸,根据题意知AC ⊥AE ,在Rt △ADE 和▱ACED 中,||=||=2,||=4,∠AED =90°,∴||==2,又AB =,∴用时DE → AC → AD → AE → |AD →|2-|DE → |2330.5 h ,易知sin ∠EAD =, ∴∠EAD =30°.12∴该船航行速度大小为4 km/h ,与水流方向成120°角时能最快到达B 码头,用时0.5 h.反思感悟 速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.跟踪训练2 某人从点O 向正东走30 m 到达点A ,再向正北走30 m 到达点B ,则此人的3位移的大小是______ m ,方向是北偏东________.答案 60 30°解析 如图所示,此人的位移是=+,且⊥,OB → OA → AB → OA → AB →则||==60(m),OB → |OA →|2+|AB → |2tan ∠BOA ==,|AB →||OA → |3所以∠BOA =60°.所以的方向为北偏东30°.OB → 三、向量与功例3 已知力F (斜向上)与水平方向的夹角为30°,大小为50 N ,一个质量为8 kg 的木块受力F 的作用在动摩擦因数μ=0.02的水平面上运动了20 m .问力F 和摩擦力f 所做的功分别为多少?(g =10 m/s 2)解 如图所示,设木块的位移为s ,则W F =F·s =|F||s|cos 30°=50×20×=500(J).323将力F 分解,它在铅垂方向上的分力F 1的大小为|F 1|=|F|sin 30°=50×=25(N),12所以摩擦力f 的大小为|f |=|μ(G -F 1)|=(80-25)×0.02=1.1(N),因此W f =f·s =|f||s|cos 180°=1.1×20×(-1)=-22(J).即F 和f 所做的功分别为500 J 和-22 J.3反思感悟 力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F·s =|F||s|cos θ(θ为F 和s 的夹角).跟踪训练3 一物体在力F 1=(3,-4),F 2=(2,-5),F 3=(3,1)的共同作用下从点A (1,1)移动到点B (0,5).则在这个过程中三个力的合力所做的功为________.答案 -40解析 ∵F 1=(3,-4),F 2=(2,-5),F 3=(3,1),∴合力F =F 1+F 2+F 3=(8,-8).又∵=(-1,4),AB → ∴F ·=8×(-1)+(-8)×4=-40,AB → 即三个力的合力做的功等于-40.1.知识清单:(1)利用向量的加、减、数乘运算解决力、位移、速度、加速度的合成与分解.(2)利用向量的数量积解决力所做的功的问题.2.方法归纳:转化法.3.常见误区:不能将物理问题转化为向量问题.1.人骑自行车的速度是v 1,风速为v 2,则逆风行驶的速度大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2|D.|v 1v 2|答案 C 解析 由向量的加法法则可得逆风行驶的速度为v 1+v 2.人的速度和风速方向相反,故选C.2.一物体受到相互垂直的两个力F 1,F 2的作用,两力大小都为5 N ,则两个力的合力的3大小为( )A .5 NB .5 N 2C .5 ND .5 N36答案 D解析 两个力的合力的大小为|F 1+F 2|==5(N).F 21+F 2+2F 1·F 263.已知力F 的大小|F |=10,在F 的作用下产生的位移s 的大小为|s |=14,F 与s 的夹角为60°,则F 做的功为( )A .7B .10C .14D .70答案 D 解析 F 做的功为F·s =|F ||s |cos 60°=10×14×=70.124.当两人提起重量为|G |的旅行包时,两人用力方向的夹角为θ,用力大小都为|F |,若|F |=|G |,则θ的值为( )A .30°B .60°C .90°D .120°答案 D解析 作=F 1,=F 2,=-G (图略),OA → OB → OC → 则=+,OC → OA → OB → 当|F 1|=|F 2|=|G |时,△OAC 为正三角形,所以∠AOC =60°,从而∠AOB =120°.课时对点练1.如果一架飞机向东飞行200 km ,再向南飞行300 km ,记飞机飞行的路程为s ,位移为a ,那么( )A .s >|a |B .s <|a |C .s =|a |D .s 与|a |不能比较大小答案 A解析 在△ABC 中,两边之和大于第三边,即s =||+||>||=|a |,故选A.AB → BC → AC → 2.共点力F 1=(lg 2,lg 2),F 2=(lg 5,lg 2)作用在物体M 上,产生位移s =(2lg 5,1),则共点力对物体做的功W 为( )A .lg 2B .lg 5C .1D .2答案 D解析 因为F 1+F 2=(1,2lg 2),所以W =(F 1+F 2)·s=(1,2lg 2)·(2lg 5,1)=2lg 5+2lg 2=2.3.已知三个力F 1=(-2,-1),F 2=(-3,2),F 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力F 4,则F 4等于( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)答案 D解析 为使物体平衡,则合力为0,即F 4=(0-(-2)-(-3)-4,0-(-1)-2-(-3))=(1,2).4.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .2 m/s 26C .4 m/sD .12 m/s 6答案 B解析 由题意知|v 水|=2m/s ,|v 船|=10 m/s ,作出示意图如图.∴|v |===2(m/s).102+22104265.一个物体受到同一平面内三个力F 1,F 2,F 3的作用,沿北偏东45°方向移动了8 m ,已知|F 1|=2 N ,方向为北偏东30°,|F 2|=4 N ,方向为北偏东60°,|F 3|=6 N ,方向为北偏西30°,则这三个力的合力所做的功为( )A .24 JB .24 J 2C .24 JD .24 J 36答案 D解析 如图,建立直角坐标系,则F 1=(1,),F 2=(2,2),F 3=(-3,3),则合力F =F 1+F 2+F 3=(2-2,2+4).33333又位移s =(4,4),所以合力F 所做的功W =F ·s =(2-2)×4+(2+4)×4=24223232 J.66.(多选)关于船从两平行河岸的一岸驶向另一岸所用的时间,正确的是( )A .船垂直到达对岸所用时间最少B .当船速v 的方向与河岸垂直时用时最少C .沿任意直线运动到达对岸的时间都一样D .船垂直到达对岸时航行的距离最短答案 BD解析 根据向量将船速v 分解,当v 垂直河岸时,用时最少.船垂直到达对岸时航行的距离最短.7.一个物体在大小为10 N 的力F 的作用下产生的位移s 的大小为50 m ,且力F 所做的功W =250 J ,则F 与s 的夹角等于________.2答案 π4解析 设F 与s 的夹角为θ,由W =F·s ,得250=10×50×cosθ,∴cos θ=.又222θ∈[0,π],∴θ=.π48.一条河宽为8 000 m ,一船从A 处出发垂直航行到达河正对岸的B 处,船速为20 km/h ,水速为12 km/h ,则船到达B 处所需时间为________ h.答案 0.5解析 如图,v 实际=v 船+v 水=v 1+v 2,|v 1|=20,|v 2|=12,∴|v 实际|=|v 1|2-|v 2|2==16(km/h).202-122∴所需时间t ==0.5(h).816∴该船到达B 处所需的时间为0.5 h.9.已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0).(1)求F 1,F 2分别对质点所做的功;(2)求F 1,F 2的合力F 对质点所做的功.解 (1)=(7,0)-(20,15)=(-13,-15),AB → W 1=F 1·=(3,4)·(-13,-15)AB → =3×(-13)+4×(-15)=-99(J),W 2=F 2·=(6,-5)·(-13,-15)AB → =6×(-13)+(-5)×(-15)=-3(J).∴力F 1,F 2对质点所做的功分别为-99 J 和-3 J.(2)W =F ·=(F 1+F 2)·AB → AB →=[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)=9×(-13)+(-1)×(-15)=-117+15=-102(J).∴合力F 对质点所做的功为-102 J.10.在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船在静水中的速度为25 km/h.渡船要垂直地渡过长江,其航向应如何确定?解 如图所示,设表示水流的速度,表示渡船在静水中的速度,表示渡船实际垂直AB → AD → AC →过江的速度.因为+=,AB →AD →AC →所以四边形ABCD 为平行四边形.在Rt △ACD 中,∠ACD =90°,||=||=12.5,DC →AB →||=25,所以∠CAD =30°,AD →即渡船要垂直地渡过长江,其航向应为北偏西30°.11.两个大小相等的共点力F 1,F 2,当它们的夹角为90°时,合力的大小为20 N ,则当它们的夹角为120°时,合力的大小为( )A .40 NB .10 N2C .20 N D. N210答案 B解析 对于两个大小相等的共点力F 1,F 2,当它们的夹角为90°,合力的大小为20 N 时,可知这两个力的大小都是10 N ;当它们的夹角为120°时,可知力的合成构成一个等边三2角形,因此合力的大小为10 N.212.长江某地南北两岸平行,一艘游船从南岸码头A 出发航行到北岸.假设游船在静水中的航行速度v 1的大小为|v 1|=10 km/h ,水流的速度v 2的大小为|v 2|=4 km/h.设v 1和v 2的夹角为θ(0°<θ<180°),北岸的点A ′在A 的正北方向,则游船正好到达A ′处时,cos θ等于( )A. B .- C. D .-2152152525答案 D解析 设船的实际速度为v ,v 1与南岸上游的夹角为α,如图所示.要使得游船正好到达A ′处,则|v 1|cos α=|v 2|,即cos α==,|v 2||v 1|25又θ=π-α,所以cos θ=cos(π-α)=-cos α=-.2513.一个物体受到平面上的三个力F 1,F 2,F 3的作用处于平衡状态,已知F 1,F 2成60°角,且|F 1|=3 N ,|F 2|=4 N ,则F 1与F 3夹角的余弦值是________.答案 -53737解析 因为物体处于平衡状态,所以F 1+F 2+F 3=0.因此F 3=-(F 1+F 2),于是|F 3|=(F 1+F 2)2=|F 1|2+|F 2|2+2F 1·F 2==,32+42+2×3×4·cos 60°37设F 1与F 3的夹角是θ.又F 2=-(F 1+F 3),所以|F 2|=(F 1+F 3)2=|F 1|2+|F 3|2+2F 1·F 3==4,32+37+2×3×37·cos θ解得cos θ=-.5373714.如图所示,在倾斜角为37°(sin 37°=0.6),高为2 m 的斜面上,质量为5 kg 的物体m 沿斜面下滑,物体m 受到的摩擦力是它对斜面压力的0.5倍,则斜面对物体m 的支持力所做的功为________J ,重力所做的功为________J(g =9.8 m/s 2).答案 0 98解析 物体m 的位移大小为|s |==(m),则支持力对物体m 所做的功为2sin 37°103W 1=F·s =|F||s|cos90°=0(J);重力对物体m 所做的功为W 2=G·s =|G||s|cos 53°=5×9.8××0.6=98(J). 10315.(多选)如图所示,小船被绳索拉向岸边,船在水中运动时设水的阻力大小不变,那么小船匀速靠岸过程中,下列四个选项中,其中正确的是( )A .绳子的拉力不断增大B .绳子的拉力不断变小C .船的浮力不断变小D .船的浮力保持不变答案 AC 解析 设水的阻力为f ,绳的拉力为F ,绳AB 与水平方向的夹角为θ,(0<θ<π2)则|F |cos θ=|f |,∴|F |=.|f |cos θ∵θ增大,cos θ减小,∴|F |增大.∵|F |sin θ增大,∴船的浮力减小.16.如图所示,在某海滨城市O 附近海面有一台风,据监测,当前台风中心位于城市O 的东偏南θ 方向,距点O 300 km 的海面P 处,并以20 km/h 的速度向西(cos θ=210,θ∈(0,π2))偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km/h 的速度不断增大.问几小时后该城市开始受到台风的侵袭?参考数据:cos(θ-45°)=.45解 设t h 后,台风中心移动到Q 处,此时城市开始受到台风的侵袭,∠OPQ =θ-45°.∵=+,OQ → OP → PQ → ∴2=(+)2OQ → OP → PQ → =2+2+2·OP → PQ → OP → PQ →=2+2-2||||cos(θ-45°)OP → PQ → OP → PQ → =3002+(20t )2-2×300×20t ×45=100(4t 2-96t +900).依题意得2≤(60+10t )2,OQ → 解得12≤t ≤24.从而12 h 后该城市开始受到台风的侵袭.。
向量在物理中的应用举例教案
向量在物理中的应用举例教案一、教学目标1. 让学生理解向量的概念及其表示方法。
2. 培养学生掌握向量的加法、减法、数乘和点乘运算。
3. 引导学生了解向量在物理中的应用,提高解决实际问题的能力。
二、教学内容1. 向量的概念及其表示方法。
2. 向量的加法、减法、数乘和点乘运算。
3. 向量在物理中的应用举例。
三、教学重点与难点1. 教学重点:向量的概念、表示方法以及向量的运算。
2. 教学难点:向量在物理中的应用。
四、教学方法1. 采用讲授法讲解向量的概念、表示方法和运算。
2. 采用案例分析法讲解向量在物理中的应用。
3. 引导学生通过小组讨论,探讨向量在实际问题中的运用。
五、教学过程1. 引入新课:讲解向量的概念及其表示方法。
2. 讲解向量的加法、减法、数乘和点乘运算。
3. 应用举例:分析向量在物理中的应用,如速度、加速度、力等。
4. 小组讨论:让学生结合生活实际,探讨向量在其他领域中的应用。
5. 总结与反馈:对本次课程的内容进行总结,收集学生的反馈意见。
6. 布置作业:让学生运用所学的向量知识解决实际问题。
六、教学评估1. 课堂讲解评估:观察学生对向量概念、表示方法和运算的理解程度,以及能否熟练运用向量解决物理问题。
2. 小组讨论评估:评估学生在小组讨论中的参与程度,以及他们的创新思维和问题解决能力。
3. 作业评估:检查学生作业中向量知识的应用情况,以及解题的准确性和完整性。
七、教学拓展1. 引入其他物理概念:如动量、角动量等,进一步展示向量在物理中的应用。
2. 探讨向量在其他学科的应用:如数学、工程、计算机科学等。
3. 组织学生进行小研究:深入研究向量在某一领域的应用,如流体力学、电磁学等。
八、教学资源1. 教材:提供相关教材,如《线性代数》、《物理学》等。
2. 多媒体课件:制作并向学生提供包含图像、动画和示例的课件。
3. 网络资源:提供在线学习资源,如学术文章、视频教程等。
九、教学反馈与改进1. 课堂反馈:在每节课结束后,收集学生的反馈意见,了解他们的学习需求和困难。
向量在物理中的应用举例 课件
1.力与向量 力与前面学过的自由向量有区别. (1)相同点:力和向量都既要考虑 大小 又要考虑 方向 . (2)不同点:向量与 始点 无关,力和 作用点 有关,大小和方 向相同的两个力,如果作用点不同,那么它们是不相等的.
2.向量方法在物理中的应用 (1)力、速度、加速度、位移都是 向量 . (2)力、速度、加速度、位移的合成与分解就是向量的 加、减 运算,运动的叠加亦用到向量的合成. (3)动量 mν 是 数乘向量 . (4)功即是力 F 与所产生位移 s 的 数量积 .
为
v
和
v2
的夹角,α
为锐角),
所以 α=30°.
所以帆船向北偏东 60°的方向行驶,速度为 20 3 km/h.
跟踪训练 1 某人在静水中游泳,速度为 4 3 km/h,水的流速
为 4 km/h,他必须朝哪个方向游才能沿与水流垂直的方向前
进?实际前进的速度大小为多少? 解 如图所示,设此人的实际速度为O→B,水流速度为O→A. ∵实际速度=游速+水速,故游速为O→B-O→A=A→B,
答 如右图所示,设木块的位移为 s, 则 F·s=|F||s|cos 30°=50×20× 23=500 3(J). 将力 F 分解,它在竖直方向上的分力 F1 的大小为 |F1|=|F|sin 30°=50×12=25(N), 所以,摩擦力 f 的大小为 |f|=|μ(G-F1)|=(80-25)×0.02=1.1(N), 因此,f·s=|f||s|cos 180°=1.1×20×(-1)=-22(J).
解 (1)由力的平衡及向量加法的平行四边形法则,
得-G=F1+F2,|F1|=co|Gs|θ,|F2|=|G|tan θ, 当 θ 从 0°趋向于 90°时,|F1|,|F2|都逐渐增大.
向量在物理中的应用
向量在物理中的应用1.向量是既有大小又有方向的量,物理中有许多量:力、速度、加速度等都是向量.2.用向量研究物理问题的相关知识:(1)力、速度、加速度、位移都是向量;(2)力、速度、加速度、位移的合成与分解就是向量的加减法、运动的叠加亦用到向量的合成;(3)动量m 是数乘向量;(4)功定义即力与产生位移的内积. 典型例题例1 A、B两人同拎着有绳相缚的某一货物,当A、B所拉着的绳子与铅垂线分别成30°、45°角时,试求A、B手上所承受的力的比.解:取绳与货物的交叉位置为O,这时作用在货物上的力有三个:重力G,A、B的手对货物的拉力、,因为作用于平衡物体上的合力为0,∴=0,设、的相反向量为,,则按照向量加法的意义可知四边形OPGQ是一个平行四边形.由正弦定理得:= ∴||∶||= = ∶1即A、B 两人手上所承受的拉力之比为∶1例2 如图,一条河的两岸平行,河的宽度d=500m,一艘船从A处出发航行到河的正对岸B处,船航行的速度|v1|=10km/h,水流速度|v2|=4km/h,那么v1与v2的夹角多大时,船才能垂直到达对岸B处?船行驶多少时间? 分析:若水是静止的,则船只要取垂直于河岸的方向行驶就行了.由于水流动的作用,船要被水冲向下游,因此要使船垂直到达对岸,就要使v1与v2的合速度的方向正好垂直于河岸方向.解:设表示水流速度,表示船向对岸行驶速度,以AE、AB分别为平行四边形的一条边和一条对角线作平行四边形,根据向量的平行四边形法则和解直角三角形知识得:v= = =2 (km/h)由于sin∠FAB= = 所以v1与v2的夹角为arcsin ∵2 km/h= m/min= m/min.∴船行驶时间t= = (min)答:v1与v2的夹角为arcsin 时,船才能垂直到达对岸B处,船行驶时间是min.向量是代数的对象。
运算及其规律是代数学的基本研究对象。
向量可以进行多种运算,如,向量的加法、减法,数与向量的乘法(数乘),向量与向量的数量积(也称点乘),向量与向量的向量积(也称叉乘)等。
向量在物理中的应用举例
3.质量 m=2.0 kg 的木块,在平行于斜面向上的拉力 F=10 N 的作用下,沿倾斜角 θ=30°的光滑斜面向上滑行|s|=2.0 m 的距离.(g=9.8 N/kg) (1)分别求物体所受各力对物体所做的功; (2)在这个过程中,物体所受各力对物体做功的代数和是多 少?
解:(1)木块受三个力的作用,重力 G,拉力 F 和 支持力 FN,如图所示, 拉力 F 与位移 s 方向相同,所以拉力对木块所做的功为 WF= F·s=|F||s|cos 0°=20(J); 支持力 FN 与位移方向垂直,不做功,所以 WN=FN·s=0; 重力 G 对物体所做的功为 WG=G·s=|G||s|cos(90°+θ)= -19.6(J). (2)物体所受各力对物体做功的代数和为 W=WF+WN+WG= 0.4(J).
[典例 2] 已知两恒力 F1=(3,4),F2=(6,-5)作用于同一 质点,使之由点 A(20,15)移动到点 B(7,0),求 F1,F2 分别对质 点所做的功.
[解] 设物体在力 F 作用下的位移为 s,则所做的功为 W =F·s.∵―AB→=(7,0)-(20,15)=(-13,-15).
+F22+2F1·F2=4+16=20,∴|F3|=2 5. 答案:C
3.一条河宽为 800 m,一船从 A 处出发想要垂直到达河正对岸 的 B 处,若船速为 20 km/h,水速为 12 km/h,则船到达 B 处所需时间为________min. 解析:由题意作出示意图,如图, ∵v 实际=v 船+v 水=v1+v2, |v1|=20 km/h, |v2|=12 km/h,
二、创新应用题 5.一艘船从南岸出发,向北岸横渡.根据测量,这一天水流速
度为 3 km/h,方向正东,风吹向北偏西 30°,受风力影响, 静水中船的漂行速度为 3 km/h,若要使该船由南向北沿垂 直于河岸的方向以 2 3 km/h 的速度横渡,求船本身的速 度大小及方向.
向量在物理中的应用
向量在物理中的应用数学和物理在很多方面都有着密切的联系。
把数学与物理沟通起来把,既有利于理解数学,也有利于理解物理。
比如说,数学中的向量概念及其运算法则,在物理中就有着广泛的应用。
现举例把二者的联系说明一下。
一、向量即为物理中的矢量数学中的向量,定义如下:向量:把既有大小又有方向的量叫向量。
物理学中的矢量概念:力既有大小,又有方向,象这样的物理量叫做矢量。
二、向量的运算法则同矢量的运算法则相同1.向量的加法—力与运动的合成向量的加法:(1)定义:求两个向量和的运算,叫做向量的加法(2)法则:①三角形法则:②平行四边形法则:力的合成:(1)定义:求几个力的合力叫做力的合成。
(2)平行四边形法则:实验表明,如果用表示两个力F1和F2的线段为邻边作平行四边形,那么合力F的大小和方向就可以用这两个邻边之间的对角线表示出来。
可见,力的合成就是向量的加法。
2.向量的减法—力的分解向量的减法:(1)定义:求两个向量差的运算,叫做向量的减法(2)法则:①三角形法则②平行四边形法则:力的分解:(1)定义:求一个已知力的分力叫做力的分解。
(2)法则:平行四边形法则:把一个已知力F作为平行四边形的对角线,那么,与力F共点的平行四边形的两个邻边,就表示力F的两个分力。
同一个力F可以分解为无数对大小、方向不同的分力。
可见,力的分解其实就是向量的减法三、向量的数量积—力的功向量的数量积定义:已知两个非零向量a和b,它们的夹角为θ,我们把数量|a||b|cosθ叫做a与b的数量积,记作ab,即ab=|a||b|cosθ。
几何意义:数量积ab等于a的长度|a|与b在a上的投影|b|cosθ的乘积。
功定义:一个物体受到力的作用,如果在力的方向上发生一段位移,这个力就对物体做了功。
如,W=Fscosα 。
这就是说,力对物体所做的功,等于力的大小、位移的大小、力和位移的夹角的余弦这三者的乘积。
可见,功就是两向量的数量积。
四、实数与向量的积—安培力实数与向量的积定义:实数λ与向量a的积是一个向量,记作λa,它的长度与方向规定如下:(1)|λ a|=|λ||a|(2)当λ>0时,λ a的方向与a的方向相同;当λ<0时,λ a的方向与a的方向相反;当λ=0时,λ a=0。
向量概念与运算在物理中的应用
向量概念与运算在物理中的应用物理学是一门涉及力学、电磁学、声学、量子物理学等科学领域的自然科学,它在描述和研究物质,物体之间相互作用的过程中,发挥着举足轻重的作用。
物理学中最常见的数学工具是向量,它是一种对物体运动和变化的量化描述。
下面就向量概念和运算在物理中的应用做一个简要介绍。
首先,向量是一种矢量,可以用来表示物体在空间和时间中的运动。
它定义为一个有方向和大小的量,可以用箭头的形式来表示,也可以用向量的三个坐标轴的值来表示。
例如,一个物体运动的向量可以表示为:(x, y, z),它的方向是x, y, z轴的方向,它的大小是x, y, z轴的长度之和。
其次,向量运算是物理学中的基本概念,它包括加减乘除等运算,是解决物理问题的基本方法。
比如,当一个物体受到两个不同力的作用时,可以把这两个力用它们的向量表示出来,利用向量的加减运算,就可以得到这两个力的总和,从而确定物体的运动方向和速度。
此外,向量还被广泛应用在坐标变换方面,比如,从一个坐标系到另一个坐标系,可以用向量乘以某个矩阵,从而实现坐标变换。
还可以用向量运算把复杂的数学表达式,转化为简单的矩阵乘法,从而简化数学运算。
向量的概念和运算在物理学中得到了广泛应用。
它不仅用于描述物体运动以及表示物体受力的情况,还可以用于把复杂的数学表达式转化为更容易理解的形式,甚至可以用来实现坐标变换。
因此,向量概念和运算在物理学中发挥着十分重要的作用,在现代物理学的研究与应用中扮演着不可缺少的角色。
总而言之,向量是一种矢量,可以用来描述物体运动及其受力情况。
它的概念和运算在物理学中的应用也越来越广泛,并且起到至关重要的作用。
只要把握了这些基本概念,就可以更好地理解物理学中物体受力情况以及运动轨迹的变化,从而帮助我们更好地掌握和利用物理学知识,为现代技术发展做出更多的贡献。
向量在物理中的应用
答:船应该逆水而上,且船头与河 岸的夹角 为 6O°时,小船行驶到对岸时位移 最小. 评述:用数学知识解决物理问题, 首先要把 物理问题转化成数学问题,即将物 理量之间 的关系抽象成数学模型.
[例3]一条河的两岸平行,河的宽度d为 5OO m,一艘船从A处出发航行到河的 正对岸B处,船航行的速度|v1|=1O k m/h,水流速度|v2|=4 km/h, 那么v1与v2的夹角θ (精确到1°)多大时, 船才能垂直到达对岸B处?船行驶多少 时间?(精确到O.1 min).
4.利用这个结果,对原物理现象作出解释. 即:用数学知识解决物理问题,首先要把物理问 题转化成数学问题, 也就是说,将物理量之间的关系抽象成数学模型 ,然后再通过对这 个数学模型的研究解释相关物理现象.
.课后作业 课后请同学们画出图形,并分别计算出当BC=BD=2d时 相应的|v|、θ 、t的值,并填写下表:
解:如图所示. 设水流速度为:= OA v2. 以 A 为圆心,以船速 v 1 的大小| v 1 |为半径 作圆,则向量v1的终点在圆上, 由向量加法的三角形法则可知,合速度v的起 点在O点,终点在圆上一点B. 设小船行驶到对岸的位移为s,则在△ABC中, 设∠BOA=α 易得 d d=|s|sinα ,即|s|= sin 故要使|s|最 小,须角α 最大,由平面几何知识可知, v 1 1 当OB与圆相切时,角α 最大,且sinα = v 2 2 , α =3O°,故|s|==2OO
v2 4 2 v1 10 5
(自练) 1.假设BC=BD=5OO m,要使船分别到达C 处和D处,v1与v2的 夹角θ 分别是多少?分别行驶多少时间?(精确 到O.1 min)
①如图所示 根据向量的平行四边形法则和三角形的有关 知识可知: 2 4 由 v1 v2 2 2
向量分析在物理学中的应用
向量分析在物理学中的应用向量分析是现代数学中非常重要的一个分支,其应用范围涵盖了物理学、工程学、计算机科学等众多领域。
在物理学中,向量分析被广泛应用于研究各种物理现象,包括力学、物理光学、电磁学等领域。
本文将从这些方面介绍向量分析在物理学中的应用,探讨向量分析在实际问题中的重要价值。
一、力学中的向量分析在力学中,向量分析理论被广泛用于描述运动物体的运动状态。
力学中的向量分析包括向量场、矢量微积分、张量分析等方面,这些理论在力学中的应用非常广泛。
例如在运动物体的运动分析中,向量场可以被用来表达速度、加速度、力等物理量的分布情况。
同时,矢量微积分可以用于描述运动物体的位置、速度和加速度等物理量之间的关系。
还有一些高级的向量分析技术,比如张量分析可以用于描述运动物体中介质的流动性质,这对流体力学的研究具有重要的意义。
二、物理光学中的向量分析在物理光学中,向量分析被广泛应用于描述光传播的性质和光场的分布情况。
光波是一种横波,它在传播方向和垂直传播方向的平面上都有电场和磁场的振动。
而向量分析理论提供了一种非常方便的描述电场和磁场的方法,这种方法称作麦克斯韦方程组。
通过这种方法,我们可以方便地描述光波在介质中传播的速度、功率和偏振等特性,这对解决光学现象中的许多问题非常有用。
三、电磁学中的向量分析电磁学是物理学中一个非常重要的领域,它研究的是电荷、电场和磁场的相互作用。
在电磁学中,向量分析理论被广泛应用于描述电场和磁场的分布和强度。
例如,通过向量分析理论,我们可以方便地计算和比较不同情况下的电场和磁场的强度、方向和分布情况,这对解决电磁现象中的许多问题非常有用。
总结向量分析是现代数学中非常重要的一个分支,其应用范围涵盖了各种领域。
在物理学中,向量分析被广泛应用于研究各种物理现象,包括力学、物理光学、电磁学等领域。
在力学中,向量分析可以被用来描述运动物体的运动状态;在物理光学中,向量分析可以被用来描述光传播的性质和光场的分布情况;在电磁学中,向量分析可以被用来描述电场和磁场的分布和强度。
向量在高中物理教学中的应用
向量在高中物理教学中的应用
高中物理教学中,向量是一个非常重要的内容,在学习和运用上也具有非常重要的作用。
首先,物理中的向量是指一个有方向的量,由起点和终点组成,表示两个物体间的运动路径。
由于它有一个特定的模型和公式,可以帮助学生了解物体的空间结构,有助于提高学生的空间想象能力,增强对空间关系的理解。
其次,向量在物理运算中占有重要地位。
在解决很多实际问题时,需要用到向量运算,如分析物体的加速度,分析抛体运行的轨迹,求解物体的平衡位置等,均可以使用向量的知识解决,从而帮助学生更好的理解实际问题。
最后,向量也能够深刻反映动量定律,运用它可以计算不同物体及其受到的合外力,运用来计算物体动量及其变化,从而帮助学生巩固和加深对物理定律的理解和应用。
总之,在高中物理教学中,向量是非常重要的一个知识点,它有助于帮助学生理解物体的运动轨迹,更好地理解实际问题,同时也能够深入地反映动量定律,为学习和运用物理提供重要的帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1
v
v2
练习; (1)如图所示,用两条成120º 的等长的绳子悬挂一 个灯具,已知灯具的重量为10N,则每根绳子的拉力是 10N ————。 如图,今有一艘小船位于d = 60m宽的河边 P处,从这里起,在下游 l =80m处河流有一 处瀑布,若河水的流速方向由上游指向下游 (与河岸平行),水速大小为5m/s为了使小 船能安全过河,船的划速不能小于多少?当 划速最小时,划速方向如何? 60m P 120º
例4:如图,一条河流的两岸平行,河的宽度d = 500m,一 艘船从A处出发到河对岸。已知船的速度 v1 =10km/h,水流 的速度 v2 = 2km/h。 问:(1)行驶航程最短时,所用的时间是多少? 500m A 分析:(1)因为两平行线之间的最短距离是它们的公垂线段。所 以只有当小船的实际运动方向(即合运动方向)是垂直于河岸的 方向时,小船的航程最小。 (2)小船过河的问题有一个特点,就是小船在垂直于河 岸的方向上的位移是不变的,我们只要使得在垂直于河岸方向上 的速度最大,小船过河所用的时间就最短,河水的速度是沿河岸 方向的,这个分速度和垂直于河岸的方向没有关系,所以使小船 垂直于河岸方向行驶(小船自身的速度,方向指向河对岸),小 船过河所用时间才最短。
例题 例1:同一平面内,互成120ْ 的三个大小相等的共点 力的合力为零。
a A
120º O
b
B D
c
C
例2:在生活中,你是否有这样的经验:两个人共提 一个旅行包,夹角越大越费力;在单杠上做引体向上 运动,两臂夹角越小越省力!你能从数学的角度解释 F 这个现象吗? F2 θ
F1
G
解:不妨设 F1 = F2 ,由向量的 平行四 边形法则,力的平衡以及直角三角形的知识, 可以知道: G F1 = ( *) θ 2cos 2 F 通过上面的式子,有:当θ由0º 到180º 逐渐变 θ θ cos 大时, 由0º 到90º 逐渐变大, 2 的值由大逐 2 渐变小,因此 : F1 由小逐渐变大,即F1 ,F2之间 的夹角越大越费力,夹角越小越省力! 探究:
Q
θ 瀑 布
l
Q,
分析:用向量来分别表示河流的水流速度、船速 和它们的合速度为 V 、 V 和 V ,由题意, 船 合 船的实际速度为向量 水
θ 瀑 布 P
V合 = V船+ V水 其方向为临界方,如(右)图所示:
l
Q Q
提问:表示划船速度的向量怎样画? 从图上看,哪个速度(向量的模)最小?
(4)、用所得的结果解释物理现象。 作业:课本
P128
B组
第1、2题!
(2)行驶时间最短时,所用的时间是多少?
把物理问题转化为数学模型为:
解(1) v = v1 0.5 96
2
(1)
B v1 A v
-
v2
2
= 96
所以
t= d v
=
60 ~ ~ 3.1(min)
v2
(2)
答:行驶的航程最短时,所用的时间 是3.1min。
(2) t = d = 0.5 60 = 3 (min) 10 v1 答:行驶的时间最短时,所用的时间是3min
解:由题意知:V = V + V V合的方向 合 船 水 V船 其方向为临界方向 PQ ,设 V合 和 V水 夹角为 θ P θ,则最小划速为: v船 = v水 sinθ V水 sinθ =
d
2
d l
2
=
3 602 802 5
60
所以:最小的船速应为: v船 = 5 ×
3 sinθ =5 × 5
=3
总结:向量有关知识在物理学中应用非常广泛,它也是解释某些 物理现象的重要基础知识。通过这节课的学习,我们应掌握什么 内容?
如何解决物理中与向量有关的问题: (1)、弄清物理现象中蕴含的物理量间的关系(数学模型); (2)、灵活运用数学模型研究有关物理问题;
(3)、综合运用有关向量的知识,三角等和物理知识解决实际 问题;
F
F2
1
F2 θ cos θ 2
G
(1)θ为何值时, F1 最小,最小值是多少? G θ 答:在(*)式中,当θ =0º 时, cos 2 最大, F1 最小且等于 2 (2)F1 能等于 G 吗?为什么? 答:在(*)中,当 cos θ = 1 即θ=120º 时,F1 = G 2 2
小结:
(1)、为了能用数学描述这个问题,我们要先把这一物 理问题转化成数学问题。如上题目,只考虑绳子和物体的 受力平衡,画出相关图形! (2)、由物理中的矢量问题化成数学中的向量问题, 用向量的有关法则解决问题! (3)、用数学的结果解决物理问题,回答相关的物理现象。