高压变频器原理与应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压变频器原理及应用

1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。

目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和围也越来越为广,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。

2、几种常用高压变频器的主电路分析

(1)单元串联多重化电压源型高压变频器。单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点:

a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题;

b)所需高压电缆太多,系统的阻无形中增大,接线太多,故障点相应的增多;

c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏;

d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;

e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出;

f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的部环流,必将引起阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。

(2)中性点钳位三电平PWM变频器。该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地

产生比较大的谐波分量,这是三电平逆变方式所固有的。因此在变频器的输出侧必须配置输出LC滤波器才能用于普通的鼠笼型电机。同样由于谐波的原因,电动机的功率因数和效率、甚至寿命都会受到一定的影响,只有在额定工况点才能达到最佳的工作状态,但随着转速的下降,功率因数和效率都会相应降低。

多电平+多重化高压变频器。多电平+多重化高压变频器的本意是想解决高压IGBT的耐压有限的问题,但此种方式,不仅增加了系统的复杂性,而且降低了多重化冗余性能好和三电平结构简单的优点。因此此类变频器实际上并不可取。

此类型变频器的性能价格优势并不大,与其同时采用多电平和多重化两种技术,还不如采用前面提到的高压IGBT的多重化变频器或者三电平变频器。

(3)电流源型高压变频器。

功率器件直接串联的电流源型高压变频器是在线路中串联大电感,再将SCR(或GTO、SGCT等)开关速度较慢的功率器件直接串联而构成的。

这种方式虽然使用功率器件少、易于控制电流,但是没有真正解决高压功率器件的串联问题。因为即使功率器件出现故障,由于大电感的限流作用,di/dt受到限制,功率器件虽不易损坏,但带来的问题是对电网污染严重、功率因数低。并且电流源型高压变频器对电网电压及电机负载的变化敏感,无法做成真正的通用型产品。

电流源型高压变频器是最早的产品,但凡是电压型变频器到达的地方,它都被迫退出,因为在经济上、技术上,它都明显处于劣势。

3 、IGBT直接串联的直接高压变频器

3.1 主电路简介

图1 IGBT直接串联高压变频

如图1所示,图中系统由电网高压直接经高压断路器进入变频器,经过高压二极管全桥整流、直流平波电抗器和电容滤波,再通过逆变器进行逆变,加上正弦波滤波器,简单

易行地实现高压变频输出,直接供给高压电动机。

功率器件IGBT直接串联的二电平电压型高压变频器是采用变频器已有的成熟技术,应用独特而简单的控制技术成功设计出的一种无输入输出变压器、IGBT直接串联逆变、输出效率达98%的高压调速系统。

对于需要快速制动的场合,采用直流放电制动装置,如图2所示:

图2 具有直流放电制动装置的IGBT直接串联高压变频器主电路图如果需要四象限运行,以及需要能量回馈的场合,或输入电源侧短路容量较小时,也可采用如图3所示的PWM整流电路,使输入电流也真正实现完美正弦波。

图3 具备能量回馈和四象限运行的IGBT直接串联高压变频器主电路图

3.2 IGBT直接串联高压变频器25Hz、30Hz、40Hz、50Hz电压、电流输出波形及谐波图:

3.3 核心关键技术

(1)高速功率器件的串联技术。根据查新,世界各国均未生产出IGBT直接串联的高压变频器。原因正如一些权威人士所言:“IGBT是不能串联的。因为开关时间短,微秒级,很难保证所有管子串联同时开关。否则有的早开,所有的电压都来加在晚开的管子上,那么这个1200V的管子加上6000V,只能烧掉,一烧一串,不可能串联。”

(2)正弦波技术。高压电机对变频器的输出电压波形有严格的要求,是业人士都知道的常识。解决变频器输出电压波形,从两方面着手:一是优化PWM波形;二是研制出特种滤波器。

过去一些人认为:“三电平的电压波形一定优于二电平,今后就是低压变频器也应采用三电平。”,这种说法可能不太全面。三电平的总谐波含量可能低于二电平,但由于三电平的11次、13次谐波含量特别高,处理起来特别困难,而二电平只要波形优化得好,60次以下的谐波皆可大大降低。而对60次以上的谐波滤波自然容易得多。人们使用三电平是为避免器件串联的困难,不得已而为之。

(3)抗共模电压技术。仅解决IGBT的串联,并不能甩掉输入变压器。原因在于共模电压的存在。在低压变频器领域,近年来发现的电机轴承损坏,共模电压就是影响之一,在高压变频器的领域中,共模电压更是必须解决的关键问题之一。共模电压(也叫零序电压),是指电动机定子绕组的中心点和地之间的电压。

共模电压也是对外产生干扰的原因,特别是长线传输设备。无论是电流源还是电压源变频器产生共模电压是必然的。技术人员根据共模电压产生的机理,采取了“堵和疏”的办法将共模电压消灭在变频器部。

由于采用了上述三项核心关键技术,使IGBT直接高压变频器的效率达到98%以上。输出电压正弦化、共模电压最小化。适用于任何异步电机、同步电机,无需降容使用,几km 的长线传输也无问题。对于传输距离太长时应考虑线路电压补偿。如提高电压或增大导线截

相关文档
最新文档