高二数学立体几何单元测试题

合集下载

高二数学单元测试(立体几何初步)

高二数学单元测试(立体几何初步)

高二数学单元测试 (立体几何初步 )一. 填空题(本大题共 14 小题,每题 5 分,共 70 分)1.设 b 、 c 表示两条直线,α,β表示两个平面,则以下命题是真命题的是____ ④ ____.①若 b α, c ∥α,则 b ∥c ;②若 b α, b ∥c ,则 c ∥α;③若 c ∥α,α⊥β,则 c ⊥β;④若 c ∥α, c ⊥β,则 α⊥β .2.E 、F 分别是正方形 ABCD 的边 AB 和 CD 的中点, EF 交 BD 于 O ,以 EF为棱将正方形折成直二面角如图,则∠BOD=120 03.三棱锥 P — ABC 中, 3 条侧棱两两垂直, PA=a , PB=b , PC=c ,△ ABC 第 2 题的面积为 S ,则 P 到平面 ABC 的距离为abc2S4.正四棱锥的侧棱长为 2 3 ,侧棱与底面所成的角为60°,则该棱锥的体积为 6 .5.平面 外有两条直线 m 和 n ,假如 m 和 n 在平面 内的射影分别是 m 和 n ,给出以下四个命题:① m nm n ;② mn mn ;③ m 与 n 订交m 与 n 订交或重合;④ m 与 n 平行m 与 n 平行或重合.此中不正确的命题是①②③④.6.一个六棱柱的底面是正六边形,其侧棱垂直底面。

已知该六棱柱的极点都在同一个球面 上,且该六棱柱的体积为9,底面周长为3,那么这个球的体积为 __4__837.线段 AB 的端点到平面α 的距离分别为 6cm 和 2cm ,AB 在 α 上的射影 A ’B ’的长为3cm ,则线段 AB 的长为 __5cm 或 73 cm__.8. 已知圆锥的高 h 8 ,它的侧面睁开图的圆心角是 216 ,则这个圆锥的全面积为96.9.正方体 ABCD - AB CD 的棱长为 2 3 ,则四周体 A - B CD 的外接球的体积为 ___ 36 _____.1 1 1 11 110.在长方形 ABCD - A B C D 中,底面是边长为 2 的正方形,高为 4,则点 A 到截面 ABD 的11 1 11 1 1距离是4 .311.我们将四周体中两条无公共端点的棱叫做对棱。

高中数学立体几何测试题(10套)

高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行

∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中

A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线

高中数学单元测试卷集精选---立体几何10

高中数学单元测试卷集精选---立体几何10

立几面测试010一、选择题(本题每小题5分,共60分)1.空间三条直线互相平行,由每两条平行线确定一个平面,则可确定平面的个数为( ) A .3 B .1或2 C .1或3 D .2或32如果a 和b 是异面直线,直线a ∥c ,那么直线b 与c 的位置关系是 A .相交 B .异面 C .平行D .相交或异面3.下列命题中正确的是 ( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交C .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线平行D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直4.在正方体A 1B 1C 1D 1—ABCD 中,AC 与B 1D 所成的角的大小为 ( )A .6πC .3πD .2π5.相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的射影所成的角是 ( )A . 90°B .45°C .60°D .30°6.如图:正四面体S -ABC 中,如果E ,F 分别是SC,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( )A .60°B . 90°C .45°D .30 7.PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°, 那么直线PC 与平面PAB 所成角的余弦值是 ( )SE F CABA .33B .22 C .36D .218.Rt △ABC 中,∠B =90°,∠C =30°,D 是BC 的中点,AC=2,DE ⊥平面ABC ,且DE =1,则点E 到斜边AC 的距离是 ( ) A .25B .211 C .27 D .419 9.如图,PA ⊥矩形ABCD,下列结论中不正确的是( )A . PD ⊥BDB .PD ⊥CDC .PB ⊥BCD .PA ⊥BD10.若a , b 表示两条直线,α表示平面,下面命题中正确的是 ( ) A .若a ⊥α, a ⊥b ,则b //α B .若a //α, a ⊥b ,则b ⊥α C .若a ⊥α,b ⊂α,则a ⊥bD .若a //α, b //α,则a //b10.如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于( )A .45°B .60°C .90°D .120° 12.如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分别为21θθ和,则 ( ) A .1sin sin 2212≥+θθ B .1sin sin 2212≤+θθ C .1sin sin 2212>+θθ D .1sin sin 2212<+θθAP D BCO二、填空题(本题每小题4分,共16分) 13.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .14.已知△ABC ,点P 是平面ABC 外一点,点O 是点P 在平面ABC 上的射影,(1)若点P 到△ABC 的三个顶点的距离相等,那么O 点一定是△ABC 的 ;(2)若点P 到△ABC 的三边所在直线的距离相等且O 点在△ABC 内,那么O 点一定是△ABC 的 .15.如果平面α外的一条直线a 与α内的两条直线垂直,那么a 与α位置关系是16.A ,B 两点到平面α的距离分别是3cm ,5cm ,M 点是AB 的中点,则M 点到平面的距离是 三、解答题:(本大题满分74).18、(12分)如图,在正方体1111ABCD A B C D -中,E是1AA 的中点,求证:1//A C 平面BDE .19.(12分)AB 是⊙O 的直径,C 为圆上一点,AB =2,AC =1,P 为⊙O 所在平面外一点,且PA ⊥⊙O , PB 与平面所成角为45(1)证明:BC ⊥平面PAC ;A 1ED 1C 1B 1DCBAB(2)求点A 到平面PBC 的距离.20。

新人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

新人教版高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

一、选择题1.在四面体S ABC -中,SA ⊥平面ABC ,9021ABC SA AC AB ︒∠====,,,则该四面体的外接球的表面积为( )A .23πB .43πC .4πD .5π2.如图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠= ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD . 给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-的体积为22; ③CD ⊥平面A BD ';④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A .①②B .③④C .①③D .②④ 3.如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A .12πB .32πC .36πD .48π 4.设l 是直线,α,β是两个不同的平面,则正确的结论是( )A .若l ∥α,l ∥β,则α∥βB .若l ∥α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β,l ∥α,则l ⊥β5.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V ,则求O 的表面积为( )A .4πB .8πC .12πD .16π 6.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则他们的表面积之比为( )A .1:1B .2:1C .1:2D .3:17.如图,在长方体1111ABCD A B C D -中,18AA =,3AB =,8AD =,点M 是棱AD 的中点,点N 是棱1AA 的中点,P 是侧面四边形11ADD A 内一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[17,5]B .[4,5]C .[3,5]D .[3,17] 8.点M ,N 分别是棱长为2的正方体1111ABCD A B C D -中棱BC ,1CC 的中点,动点P 在正方形11BCC B (包括边界)内运动.若1//PA 面AMN ,则1PA 的长度范围是( )A .2,5⎡⎤⎣⎦B .32,52⎡⎤⎢⎥⎣⎦C .32,32⎡⎤⎢⎥⎣⎦D .[]2,39.已知平面α,直线m ,n 满足m ⊄a ,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件10.棱长为2的正方体1111ABCD A B C D -中,,E F 分别是棱11C D 和11C B 的中点,则经过点,,B E F 的平面截正方体所得的封闭图形的面积为( )A .92B .310C .32D .10 11.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34B .234C .517D .317 12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm 13.已知m 为一条直线,,αβ为两个不同的平面,则下列说法正确的是( ) A .若//,//m ααβ,则//m βB .若,,m αβα⊥⊥则//m βC .若,//,m ααβ⊥则m β⊥D .若//,,m ααβ⊥则m β⊥14.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或5二、解答题15.如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F .(1)求证:BF AC ⊥;(2)若2AB BC ==,60CBD ∠=︒,求三棱锥B DEF -的体积.16.如图,已知三棱锥A BCD -中,点M 在BD 上,2BAD BDC π∠=∠=,BM MD DC ==,且ACD 为正三角形.(1)证明:CM AD ⊥;(2)求直线CM 与平面ACD 所成角的正弦值.17.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为15,试确定点E 的位置,并求三棱锥C-VDE 的体积. 18.如图所示,在四面体ABCD 中,点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,AB BD ⊥,2AB =,3PR =22CD =.(1)证明://CD 平面PQR ;(2)证明:平面ABD ⊥平面BCD .19.如图,在三棱柱111ABC A B C -中,1CC ⊥面ABC ,2AC BC ==,22AB =,14CC =,M 是棱1CC 上一点.(1)若,M N 分别是1CC ,AB 的中点,求证://CN 面1AB M ;(2)若132C M =,求二面角1A B M C --的大小. 20.如图所示正四棱锥S ABCD -,2,2SA SB SC SD AB =====,P 为侧棱SD 上的点.(1)求证:AC SD ⊥;(2)若3SAP APD S S =,侧棱SC 上是否存在一点E ,使得BE ∥ 平面PAC .若存在,求SE EC的值;若不存在,试说明理由. 21.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.22.如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥平面ABCD ,2PA AD ==,22BD =(1)求证:BD ⊥平面PAC ;(2)求平面PCD 与平面CDB 所成夹角余弦值的大小;(3)求点C 到平面PBD 的距离23.如图,在组合体中,ABCD -A 1B 1C 1D 1是一个长方体,P -ABCD 是一个四棱锥.AB =2,BC =3,点P ∈平面CC 1D 1D 且PD =PC =2(1)证明:PD ⊥平面PBC ;(2)求直线PA 与平面ABCD 所成角的正切值;(3)若AA 1=a ,当a 为何值时,PC //平面AB 1D .24.如图,在四棱锥P ABCD -中,PA ⊥平面ABC ,//,90AD BC ABC ︒∠=,2AD =,23AB =,6BC =.(1)求证:平面PBD ⊥平面PAC ;(2)PA 长为何值时,直线PC 与平面PBD 所成角最大?并求此时该角的正弦值. 25.在斜三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,且2AB AC ==,123AA =.(Ⅰ)求证:平面1AB C ⊥平面11ABB A ;(Ⅱ)求直线1BC 与平面11ABB A 所成角的正弦值.26.如图,已知四棱锥的底面是正方形,且边长为4cm ,侧棱长都相等,E 为BC 的中点,高为PO ,且30OPE ∠=︒,求该四棱锥的侧面积和表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题目条件先确定出外接球的球心,得出外接球半径,然后计算表面积.【详解】因为SA ⊥平面ABC ,BC ⊂平面ABC ,所以SA ⊥BC ,又90ABC ∠=,SA AB A ⋂=,且AB平面SAB ,SA ⊂平面SAB , 所以BC ⊥平面ABC ,所以BC SB ⊥. 因为21SA AC AB ===,,所以2SC =,3SB =,1BC =,根据该几何体的特点可知,该四面体的外接球球心位于SC 的中点,则外接球半径112R SC ==, 故该四面体的外接球的表面积为244R ππ=.故选:C.,【点睛】本题考查棱锥的外接球问题,难度一般,根据几何条件确定出球心是关键.2.B解析:B【分析】利用折叠前四边形ABCD 中的性质与数量关系,可证出BD DC ⊥,然后结合平面A BD ' ⊥平面BCD ,可得CD ⊥平面A BD ',从而可判断①③;三棱锥'A BCD -的体积为11222232⋅=,可判断②;因为CD ⊥平面A BD ',从而证明CD A B '⊥,再证明'A B ⊥平面A DC ',然后利用线面垂直证明面面垂直.【详解】①90,BAD AD AB ︒∠==,45ADB ABD ︒∴∠=∠=,//,45AD BC BCD ︒∠=,BD DC ∴⊥,平面A BD ' ⊥平面BCD ,且平面A BD '平面BCD BD =, CD 平面A BD ',A D '⊂平面A BD ',CD A D '∴⊥,若A D BC '⊥则A D '⊥面BCD ,则A D '⊥BD ,显然不成立, 故A D BC '⊥不成立,故①错误;②棱锥'A BCD -的体积为1132⋅=,故②错误; ③由①知CD ⊥平面A BD ',故③正确;④由①知CD ⊥平面A BD ',又A B '⊂平面A BD ',CD A B '∴⊥, 又A B A D ''⊥,且'A D 、CD ⊂平面A DC ',A D CD D '=,A B '∴⊥平面A DC ',又A B '⊂平面'A BC ,∴平面'A BC ⊥平面A DC ',故④正确.故选:B .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,关键是利用好直线与平面、平面与平面垂直关系的转化,也要注意利用折叠前后四边形ABCD 中的性质与数量关系.3.C解析:C【分析】根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴26R ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键.4.B解析:B【分析】根据直线、平面间平行、垂直的位置关系判断.【详解】若l ∥α,l ∥β,则α∥β或,αβ相交,A 错;若l ∥α,由线面平行的性质得,知α内存在直线b 使得//l b (过l 作平面与α相交,交线即是平行线),又l ⊥β,∴b β⊥,∴α⊥β,B 正确;若α⊥β,l ⊥α,则不可能有l ⊥β,否则由l ⊥α,l ⊥β,得//αβ,矛盾,C 错; 若α⊥β,l ∥α,则l 与β可能平行,可能在平面内,可能相交也可能垂直,D 错. 故选:B .【点睛】本题考查空间直线、平面间平行与垂直关系的判断,掌握直线、平面间位置关系是解题关键.5.D解析:D【分析】根据正四棱锥P ABCD -的体积公式,列出方程,求得2R =,再利用球的表面积公式,即可求解.【详解】由题意,设外接球O 的半径为R ,则,OP OA R AB ===,则正四棱锥P ABCD -的体积为21116(2)333V Sh R R ==⨯⨯=,解得2R =, 所以球O 的表面积为2244216S R πππ==⨯=.【点睛】本题主要考查了组合体的结构特征,以及锥体的体积、球的表面积的计算,其中解答中根据组合体的结构特征,结合锥体的体积公式和球的表面积公式,准确计算是解答的关键,着重考查推理与运算能力。

人教版高中数学必修第二册第三单元《立体几何初步》检测题(答案解析)

人教版高中数学必修第二册第三单元《立体几何初步》检测题(答案解析)

一、选择题1.在四面体S ABC -中,SA ⊥平面ABC ,9021ABC SA AC AB ︒∠====,,,则该四面体的外接球的表面积为( )A .23πB .43πC .4πD .5π2.已知直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,则异面直线1AB 和1BC 所成的角的大小是( ).A .π6B .π4C .π3D .π23.如图,梯形ABCD 中,AD ∥BC ,1AD AB ==,AD AB ⊥,45BCD ∠= ,将ABD ∆沿对角线BD 折起.设折起后点A 的位置为A ',并且平面A BD '⊥平面BCD . 给出下面四个命题: ①A D BC '⊥;②三棱锥A BCD '-的体积为22; ③CD ⊥平面A BD ';④平面A BC '⊥平面A DC '.其中正确命题的序号是( )A .①②B .③④C .①③D .②④ 4.已知m ,n 是不同的直线,α,β是不同的平面,则下列条件能使n α⊥成立的是( ) A .αβ⊥,m β⊂ B .//αβ,n β⊥ C .αβ⊥,//n β D .//m α,n m ⊥ 5.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 6.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 7.已知平面α,β,γ和直线l ,下列命题中错误的是( )A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 11.如图,梯形ABCD 中,AD ∥BC ,AD =AB =1,AD ⊥AB ,∠BCD =45°,将△ABD 沿对角线BD 折起,设折起后点A 的位置为A ′,使二面角A ′—BD —C 为直二面角,给出下面四个命题:①A ′D ⊥BC ;②三棱锥A ′—BCD 的体积为2;③CD ⊥平面A ′BD ;④平面A ′BC ⊥平面A ′D C .其中正确命题的个数是( )A .1B .2C .3D .412.如图,在直三棱柱111ABC A B C -中,4AC BC ==,AC BC ⊥,15CC =,D 、E 分别是AB 、11B C 的中点,则异面直线BE 与CD 所成的角的余弦值为( )A .33B .13C .5829D .38729 13.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,则下列命题中真命题是( )A .若l β⊥,则αβ⊥B .若l m ⊥,则αβ⊥C .若αβ⊥,则l m ⊥D .若//αβ,则//l m14.长方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E 为AB 的中点,3CE =,53cos 9ACE ∠=,且四边形11ABB A 为正方形,则球O 的直径为( ) A .4 B 51C .451D .4或5 二、解答题15.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,90,,60ADP PD AD PDC ∠==∠=,E 为PD 的中点.(1)证明:CE ⊥平面PAD .(2)求三棱锥E ABC -外接球的体积.16.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 平面1ABB 所成的角的正弦值.17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)20.如图所示,正方形ABCD 与直角梯形ADEF 所在平面互相垂直,90//22ADE AF DE DE DA AF ∠====,,.(1)求证:AC ⊥平面BDE ;(2)求证://AC 平面BEF ;(3)若AC 与BD 相交于点O ,求四面体BOEF 的体积.21.如图1,矩形ABCD ,1,2,AB BC ==点E 为AD 的中点,将ABE △沿直线BE 折起至平面PBE ⊥平面BCDE (如图2),点M 在线段PD 上,//PB 平面CEM .(1)求证:2MP DM =;(2)求二面角B PE C --的大小;(3)若在棱,PB PE 分别取中点,F G ,试判断点M 与平面CFG 的关系,并说明理由. 22.在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点.(1)求证:平面EFG ⊥平面PDC ;(2)求证:平面//EFG 平面PM A .23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)确定E 的位置,使//PB 平面AEC ;(2)设1==PA AB ,3PC =,根据(1)的结论,求点E 到平面PAC 的距离. 25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD(2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题目条件先确定出外接球的球心,得出外接球半径,然后计算表面积.【详解】因为SA ⊥平面ABC ,BC ⊂平面ABC ,所以SA ⊥BC ,又90ABC ∠=,SA AB A ⋂=,且AB平面SAB ,SA ⊂平面SAB , 所以BC ⊥平面ABC ,所以BC SB ⊥. 因为21SA AC AB ===,,所以2SC =,3SB =1BC =,根据该几何体的特点可知,该四面体的外接球球心位于SC 的中点, 则外接球半径112R SC ==, 故该四面体的外接球的表面积为244R ππ=.故选:C.,【点睛】本题考查棱锥的外接球问题,难度一般,根据几何条件确定出球心是关键.2.D解析:D【分析】连结1A B ,可证1A B ⊥平面11A BC ,从而可到异面直线1AB 和1BC 所成的角为直角,故可得正确的选项.【详解】连结1A B ,1AA ⊥面,ABC 平面111//A B C 面ABC ,1AA ∴⊥平面111A B C11A C ⊂平面111111,A B C AA AC ∴⊥ ABC 与111A B C △是全等三角形,AB AC ⊥1111A B A C ∴⊥111111,A B AA A AC ⋂=∴⊥平面11AA B B又1AB ⊂平面11AA B B ,111AC AB ∴⊥矩形11AA B B 中,1AA AB =∴四边形11AA B B 为正方形,可得11A B AB ⊥11111A B AC A AB ⋂=∴⊥,平面11A BC 结合1BC ⊂平面11A BC ,可得11AB BC ⊥,即异面直线1AB 与1BC 所成角为2π故选:D【点睛】在求异面直线所成角时可以将异面直线通过平行线转化到共面直线,然后构造三角形,求得直线夹角.本题通过补全图形,判定线面的垂直关系,得证线线垂直关系,求得异面直线夹角为2π. 3.B解析:B【分析】利用折叠前四边形ABCD 中的性质与数量关系,可证出BD DC ⊥,然后结合平面A BD ' ⊥平面BCD ,可得CD ⊥平面A BD ',从而可判断①③;三棱锥'A BCD -的体积为1132⋅=,可判断②;因为CD ⊥平面A BD ',从而证明CD A B '⊥,再证明'A B ⊥平面A DC ',然后利用线面垂直证明面面垂直.【详解】①90,BAD AD AB ︒∠==,45ADB ABD ︒∴∠=∠=,//,45AD BC BCD ︒∠=,BD DC ∴⊥,平面A BD ' ⊥平面BCD ,且平面A BD '平面BCD BD =, CD 平面A BD ',A D '⊂平面A BD ',CD A D '∴⊥,若A D BC '⊥则A D '⊥面BCD ,则A D '⊥BD ,显然不成立, 故A D BC '⊥不成立,故①错误;②棱锥'A BCD -的体积为113226⋅=,故②错误; ③由①知CD ⊥平面A BD ',故③正确;④由①知CD ⊥平面A BD ',又A B '⊂平面A BD ',CD A B '∴⊥, 又A B A D ''⊥,且'A D 、CD ⊂平面A DC ',A D CD D '=,A B '∴⊥平面A DC ',又A B '⊂平面'A BC ,∴平面'A BC ⊥平面A DC ',故④正确.故选:B .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,关键是利用好直线与平面、平面与平面垂直关系的转化,也要注意利用折叠前后四边形ABCD 中的性质与数量关系.4.B解析:B【分析】n α⊥必有n 平行α的垂线,或者n 垂直α的平行平面,依次判定选项即可.【详解】解:αβ⊥,m β⊂,不能说明n 与α的关系,A 错误;//αβ,n β⊥能够推出n α⊥,正确;αβ⊥,//n β可以得到n 与平面α平行、相交,所以不正确.//m α,n m ⊥则n 与平面α可能平行,所以不正确.故选:B .【点睛】本题考查直线与平面垂直的判定,考查空间想象能力,是基础题.5.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,233BO BE ==,2AB =所以cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠,在CFD △中,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯,即1=90cos cos =3αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 6.D解析:D【分析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,证明平面1//A BGE 平面1B HI ,得到1//B F 面1A BE ,则F 落在线段HI 上,求出112HI CD == 【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点, 1//A B EG ,则1A BEG 四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,112HI CD ∴==,即F 在侧面11CDD C 上的轨迹的长度是2a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 7.D解析:D【分析】根据面面垂直的判定定理即可判断A 正确;根据线面平行的判定定理可知B 正确; 根据面面垂直的性质定理可知C 正确;根据线面垂直的判定定理可知D 错误.【详解】对于A ,因为αβ⊥,所以存在直线a ⊂α,使a ⊥β,又β∥γ,所以a ⊥γ,有α⊥γ,正确;对于B ,α⊥β,设α∩β=m ,则在平面α内存在不同于直线m 的直线l ,满足l ∥m , 根据线面平行的判定定理可知,l ∥β,正确;对于C ,过直线l 上任意一点作直线m ⊥γ,根据面面垂直的性质定理可知,m 既在平面α又在平面β内,所以直线l 与直线m 重合,即有l ⊥γ,正确;对于D ,若α⊥β,l ∥α,则l ⊥β不一定成立,D 错误.故选:D .【点睛】本题主要考查线面位置关系的判断,考查学生的逻辑推理能力,属于中档题. 8.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.B解析:B【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值.【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球.因为三棱锥A BCD -的棱长为22, 可得外接球直径22226R =++=62R =,故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,△OBD 为等腰三角形,过点O 作BD 的垂线,垂足为H , 222662,1222OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B.【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.11.C解析:C【分析】根据//AD BC ,1AD AB ==,AD AB ⊥,45BCD ︒∠=, 易得 CD BD ⊥,再根据,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',可判断③的正误;由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则可求出A BDC V '-,进而可判断②的正误;根据CD ⊥平面A BD ',有CD A B '⊥,,A B A D ''⊥ 得A B '⊥平面CDA ',④利用面面垂直的判定定理判断④的正误;根据CD ⊥平面A BD ',有CD A D '⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,进而可判断①的正误.【详解】由题意,取BD 中点H ,连接A H ',则折叠后的图形如图所示:由二面角A BD C '--为直二面角,可得A H '⊥平面BCD ,则A H CD '⊥,∴A BDC V '-=1221326⨯⨯=,②正确, ∵CD BD ⊥,A H CD '⊥,且A H BD H '=,∴CD ⊥平面A BD ',故③正确,∵1A B '=,由几何关系可得3A C '=,2BC =,∴2222132A B A C BC ''+=+==,∴A B A C ''⊥,由CD ⊥平面A BD ',得CD A B '⊥,又A CCD C '=∴A B '⊥平面A DC ',∵A B '⊂平面A BC ',∴ 平面A BC '⊥平面A DC ',④正确, CD ⊥平面A BD ',CD A D '∴⊥,若A D BC '⊥,则可证A D '⊥平面BCD ,则得到A D BD '⊥,与已知矛盾,所以①错误.故选C .【点睛】本题通过折叠性问题,考查了面面垂直的性质,面面垂直的判定,考查了体积的计算,解题关键是利用好直线与平面,平面与平面垂直关系的转化关系,属于中档题.12.C解析:C【分析】取11A C 的中点F ,连接DF 、EF 、CF ,推导出四边形BDFE 为平行四边形,可得出//BE DF ,可得出异面直线BE 与CD 所成的角为CDF ∠,通过解CDF ,利用余弦定理可求得异面直线BE 与CD 所成的角的余弦值.【详解】取11A C 的中点F ,连接DF 、EF 、CF .易知EF 是111A B C △的中位线,所以11//EF A B 且1112EF A B =. 又11//AB A B 且11AB A B =,D 为AB 的中点,所以11//BD A B 且1112BD A B =,所以//EF BD 且EF BD =.所以四边形BDFE 是平行四边形,所以//DF BE ,所以CDF ∠就是异面直线BE 与CD 所成的角.因为4AC BC ==,AC BC ⊥,15CC =,D 、E 、F 分别是AB 、11B C 、11A C 的中点, 所以111122C F AC ==,111122B E BC ==且CD AB ⊥. 由勾股定理得22442AB =+=2242AC BC CD AB ⋅=== 由勾股定理得2222115229CF CC C F =+=+=2222115229DF BE BB B E ==+=+=.在CDF 中,由余弦定理得((22229222958cos 2922922CDF +-∠==⨯⨯. 故选:C.【点睛】本题考查异面直线所成角的余弦值的计算,一般利用平移直线法找出异面直线所成的角,考查计算能力,属于中等题. 13.A解析:A【分析】利用平面与平面垂直的判定定理,平面与平面垂直、平行的性质定理判断选项的正误即可.【详解】由α,β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊂,知: 在A 中,l β⊥,则αβ⊥,满足平面与平面垂直的判定定理,所以A 正确; 在B 中,若l m ⊥,不能得到l β⊥,也不能得到m α⊥,所以得不到αβ⊥,故B 错误;在C 中,若αβ⊥,则l 与m 可能相交、平行或异面,故C 不正确;在D 中,若//αβ,则由面面平行的性质定理得l β//,不一定有//l m ,也可能异面,故D 错误.故选:A .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.C解析:C【分析】设2AB x =,则AE x =,29BC x =-,由余弦定理可得2225393923939x x x =++-⨯⨯+⨯,求出x ,即可求出球O 的直径. 【详解】 根据题意,长方体内接于球O 内,则球的直径为长方体的体对角线,如图作出长方体1111ABCD A B C D -:设2AB x =,则AE x =,29BC x =-,由余弦定理可得:2225393923939x x x =++-⨯+,∴1x =6, ∴2AB =,22BC =O 4484++=;或26AB =3BC =,球O 2424351++=故选:C .【点睛】本题考查球的直径的计算方法,考查余弦定理,考查计算能力和分析能力,属于常考题.二、解答题15.(1)证明见解析;(2)823π. 【分析】 (1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】 (1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)3V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积. 16.(1)证明见解析;(2【分析】(1)由已知条件可得2221111A B AB AA +=,2221111AB B C AC +=,则111AB A B ⊥,111AB B C ⊥,再利用线面垂直的判定定理可证得结论;(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,可证得1C D ⊥平面1ABB ,从而1C AD ∠是1AC 与平面1ABB 所成的角,然后在1Rt C AD 求解即可【详解】(1)证明: 由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得111AB A B ==,所以2221111A B AB AA +=,由111AB A B ⊥.由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥得11B C =, 由2AB BC ==,120ABC ∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥,又11111A B B C B =,因此1AB ⊥平面111A B C . (2)解 如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD . 由1AB ⊥平面111A B C ,1AB ⊂平面1ABB ,得平面111A B C ⊥平面1ABB ,由111C D A B ⊥,得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由11B C =11AB =,11AC =得111cos C A B ∠=,111sin C A B ∠=,所以1C D,故111sin 13C D C AC AD ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13.【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的关键是通过过点1C 作111C D A B ⊥,交直线11A B 于点D ,连接AD ,然后结合条件可证得1C AD ∠是1AC 与平面1ABB 所成的角,从而在三角形中求解即可,考查推理能力和计算能力,属于中档题 17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m nm n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(221. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,22113AO AA AO =-=2211115OB B C OC =-= 221122AB AO OB =+=,∵11AA B 中,11122A B AB ==,12AA =, ∴117AA B S = ∴1112237323d ⨯⨯⨯=, 解得217d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B 所成角的正弦值为:1121sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)截面见解析,面积为2;(2)12.【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为22;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==,所以1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.20.(1)证明见解析;(2)证明见解析;(3)23. 【分析】(1)证明DE AC ⊥,AC BD ⊥,AC ⊥平面BDE 即得证;(2)设AC BD O =,取BE 中点G ,连接FG ,OG ,证明//AO 平面BEF ,即证//AC 平面BEF ;(3)先求出四面体BDEF 的体积43V =,再根据12BOEF BDEF V V =求解. 【详解】(1)证明:平面ABCD ⊥平面ADEF ,90ADE ∠=︒, DE ∴⊥平面ABCD ,DE AC ∴⊥.ABCD 是正方形,AC BD ∴⊥,因为,BD DE ⊂平面BDE ,BD DE D ⋂=,AC ∴⊥平面BDE .(2)证明:设AC BD O =,取BE 中点G ,连接FG ,OG ,OG 为BDE 的中位线1//2OG DE ∴//AF DE ,2DE AF =,//AF OG ∴, ∴四边形AFGO 是平行四边形, //FG AO ∴.FG ⊂平面BEF ,AO ⊂/平面BEF ,//AO ∴平面BEF ,即//AC 平面BEF .3()平面ABCD ⊥平面ADEF ,AB AD ⊥,AB ∴⊥平面.ADEF 因为//9022AF DE ADE DE DA AF ∠=︒===,,,DEF ∴的面积为122DEF S ED AD =⨯⨯=, ∴四面体BDEF 的体积1433DEF V S AB =⋅⨯= 又因为O 是BD 中点,所以1223BOEF BDEF V V == 2.3BOEF V ∴= 【点睛】方法点睛:求几何体的体积的方法:方法一:对于规则的几何体一般用公式法.方法二:对于非规则的几何体一般用割补法.方法三:对于某些三棱锥有时可以利用转换的方法. 21.(1)证明见解析;(2)90;(3)M ∈平面CFG ,理由见解析.【分析】(1)设BD EC O ⋂=,连接MO ,由线面平行的性质可得//PB MO ,可得MD OD MP OB =,由//ED BC 可得12OD ED OB BC ==,即可证明; (2)取BE 中点Q ,连接PQ ,通过面面垂直的性质可得PQ ⊥平面BCDE ,进而可得PQ EC ⊥,再由EC BE ⊥可得EC ⊥平面PBE ,即平面PBE ⊥平面PEC ,即得出结果;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,证明//FG CN ,可得,,,F C N G 确定平面FCNG ,判断M 是PEN △的重心,可得M ∈平面CFG .【详解】(1)设BD EC O ⋂=,连接MO ,//PB 平面CEM ,PB ⊂平面PBD ,平面PBD 平面CEM MO =,//PB MO ∴,MD OD MP OB ∴=, //ED BC ,12OD ED OB BC ∴==, 12MD MP ∴=,即2MP DM =; (2)取BE 中点Q ,连接PQ ,PB PE =,PQ BE ∴⊥,又平面PBE ⊥平面BCDE ,PQ ∴⊥平面BCDE , EC ⊂平面BCDE ,PQ EC ∴⊥,2BE EC ==,2BC =,满足222BE EC BC +=,EC BE ∴⊥,PQ BE Q ⋂=,EC ∴⊥平面PBE ,EC ⊂平面PEC ,∴平面PBE ⊥平面PEC ,∴二面角B PE C --的大小为90;(3)延长ED 到N ,使ED DN =,连接,,CN PN GN ,,F G 分别是,PB PE 的中点,//FG BE ∴,2BC ED =,BC EN ∴=,//BC EN ,∴四边形BCNE 是平行四边形,//BE CN ∴,//FG CN ∴,则,,,F C N G 确定平面FCNG ,PEN 中,PD 是EN 边中线,且:2:1PM MD =,M ∴是PEN △的重心,又GN 为PE 边的中线,则M 在GN 上,∴M ∈平面CFG .【点睛】关键点睛:(1)本问考查线段比例关系的证明,解题的关键是由平行得出比例关系,利用等量替换求解;(2)本问考查二面角的求解,解题的关键是证明平面PBE ⊥平面PEC ,从而得出二面角为90;(3)本问考查平面的性质,解题的关键是作出恰当的辅助线,延长ED 到N ,使ED DN =,通过//FG CN 得出,,,F C N G 确定平面FCNG ,再通过M 是PEN △的重心得出M 在GN 上.22.(1)证明见解析;(2)证明见解析.【分析】(1)先证明BC ⊥平面PDC ,再利用线线平行证明GF ⊥平面PDC ,即证面面垂直; (2)先利用中位线证明//EG PM ,////GF BC AD ,再由此证明面面平行即可.【详解】(1)证明:由已知MA ⊥平面ABCD ,//PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥, 又PD DC D ⋂=,∴BC ⊥平面PDC ,在PBC 中,∵G 、F 分别为PB 、PC 的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴//EG PM ,//GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴//GF AD ,∵EG 、GF 在平面PM A 外,PM 、AD 在平面PM A 内,∴//EG 平面PM A ,//GF 平面PM A ,又∵EG 、GF 都在平面EFG 内且相交,∴平面//EFG 平面PM A .【点睛】本题考查了线线、线面、面面之间平行与垂直关系的转化,属于中档题.23.(1)证明见解析;(2)14 【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----===,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -,与三棱锥D QBC -的体积相等, 即1111313232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯⨯⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=. 【点睛】 本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用24.(1)E 为PD 的中点;(2)2. 【分析】(1)E 为PD 的中点,连接BD 交AC 于点O ,连接OE ,则//OE PB ,故而//PB 平面AEC ; (2)点E 到平面PAC 距离等于点D 到平面PAC 距离的12倍,由1122E PAC D PAC P ACD V V V ---==可得答案. 【详解】(1)E 为PD 的中点.证明:连接BD ,使AC 交BD 于点O ,取PD 的中点为E ,连接EO ,∵O ,E 分别为BD ,PD 的中点,∴//OE PB .又OE ⊂平面AEC ,PB ⊄平面AEC ,∴//PB 平面AEC .(2)222AC PC PA =-=∴222AB BC AC +=,∴AB BC ⊥,即菱形ABCD 为正方形.又点E 到平面PAC 距离等于点D 到平面PAC 距离的12倍, 设点E 到平面PAC 的距离为h , ∴1122E PAC D PAC P ACD V V V ---==, 11111111132322h ⎛⎛⎫⨯⨯⨯⋅=⨯⨯⨯⨯⨯ ⎪⎝⎝⎭解得4h =. 【点睛】本题考查了线面平行的判定,等体积法求棱锥的高,属于基础题.25.(1)证明见解析;(2.【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明. (2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解.【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥ 11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC , BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B ,∴平面11BDD B ⊥平面1C OC .…(2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD 所以1C OC ∠是二面角1C BD C --的平面角则在正方体1111ABCD A B C D -中11,2C C OC ==∴在1Rt C OC ∆中,11tan C C C OC OC∠==故二面角1C BD C -- .【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析.【分析】(1)若要证BF //平面PAD ,只要BF 所在面和平面PAD 平行即可;(2)若要证平面BEF ⊥平面PCD ,只要证平面PCD 内的一条直线和平面BEF 垂直即可.【详解】(1)∵AB CD ∥,2CD AB =,E 是CD 的中点, ∴AB DE ,即ABED 是平行四边形.∴BE AD .∵BE ⊄平面,PAD AD ⊄平面PAD , ∴BE 平面PAD ,又EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD , ∴EF 平面PAD ,EF ,BE ⊂平面BEF ,且EFBE E =,∴平面BEF 平面PAD . ∵BF ⊂平面BEF ,∴BF ∥平面PAD .(2)由题意,平面PAD ⊥平面ABCD ,且两平面交线为AD ,CD ⊂平面ABCD ,CD AD ⊥,∴CD ⊥平面PAD .∴CD PD ⊥.∴CD EF ⊥.又CD BE ⊥,BE ,EF ⊂平面BEF ,且EE EF E ⋂=,∴CD ⊥平面BEF .∵CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点睛】本题考查了线面平行和面面垂直的证明,解决此类问题的关键是能利用线面关系的定理和性质进行逻辑推理,往往使用逆推法进行证明,需要较强的空间感和空间预判,属于较难题.。

2023-2024学年高二数学单元速记——第五章空间向量与立体几何(单元重点综合测试)(解析版)

2023-2024学年高二数学单元速记——第五章空间向量与立体几何(单元重点综合测试)(解析版)

第1章空间向量与立体几何(单元重点综合测试)一、单项选择题:每题5分,共8题,共计40分。

【答案】D【分析】利用空间向量共面定理进行求解.【详解】若a ,b ,c 共面,则存在实数x ,y ,使得c xa yb =+ ,即()()()7,5,=2,1,31,4,2x y λ-+--,即725432x y x y x yλ=-⎧⎪=-+⎨⎪=-⎩,解得337177657x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩.故选D.【答案】A【分析】先利用空间向量的数量积及模长的坐标表示求出·,,a b a b,再利用空间向量的数量积的运算律进行求解.【详解】因为()1,1,0a = ,()1,0,2b =- ,所以1a b ⋅=- ,a = b = 因为ka b + 与2a b - 互相垂直,所以()()20ka b a b +⋅-= ,即()222|2|0k a k a b b +-⋅-= ,即4(2)50k k ---=,解得75k =.故选A.A .12B .14【答案】B【分析】设1BE BB λ=,由空间向量的线性运算可得EF112AB AD AA λ⎛⎫=-++- ⎪⎝⎭,由空间向量基本定理即可求解.【详解】设1BEBB λ=,因为1112EF EB BA AD DF BB AB AD DD λ=+++=--++ 1111122AA AB AD AA AB AD AA λλ⎛⎫=--++=-++- ⎪⎝⎭,所以=1x -,1y =,12z λ=-.因为1124x y z λ++=-=,所以14λ=.故选:B.【答案】C【分析】建立空间直角坐标系,利用向量法可以求得向量夹角的余弦值,再根据向量夹角与异面直线夹角的关系可以求得异面直线夹角的余弦值.【详解】画出四面体A BCD -,建立坐标系,利用向量法求异面直线所成角的余弦值即可.解:四面体A BCD -是由正方体的四个顶点构成的,如下图所示建立如下图所示的空间直角坐标系,设正方体的棱长为2(0,0,0),(2,0,0),(2,2,0),(1,1,1) B C D M(1,1,1),(0,2,0)BM CD==cos,3||BM CDBM CDBM CD⋅〈〉===⋅因为异面直线夹角的范围为0,2π⎛⎤⎥⎝⎦,所以异面直线BM与CD夹角的余弦值为3故选CA.23-B.23【答案】B【分析】根据空间向量基本定理求出211,,366x y z===-,求出答案.【详解】因为2,PM MC PN ND==,所以121122232233PM DP PC APN AD AC AM NP P+=+=-+-=12112212112362336366AD AC AP AD AB AD AP AB AD AP=-+-=-++-=+-,故211,,366x y z===-,故23x y z++=.故选B【答案】D【分析】分别求出EF 与PE,即可得EF PE ⋅ ,EF 与PE ,根据点P 到直线EF可求解.【详解】因为()2,0,2EF =- ,()1,2,3PE =,所以()1220324EF PE ⋅=⨯-+⨯+⨯= ,EF =PE =所以点P 到直线EF=故选:D.【答案】C【分析】以D 为原点,以DA ,DC ,1DD的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系D xyz -.取1AA 的中点为H ,连接1B H ,1D H .证明出点P 只能在线段1HB 上运动.设1HP HB λ=(01λ≤≤)表示出()4,44,22CP λλ=-+,求出模长,利用二次函数求出PC 长度的取值范围.【详解】以D 为原点,以DA ,DC ,1DD的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系D xyz -.则()000D ,,,()400A ,,,()440B ,,,()040C ,,,()1004D ,,,()1404A ,,,()1444B ,,,()1044C ,,,()042E ,,.取1AA 的中点为H ,连接1B H ,1D H .在正方体1111ABCD A B C D -中,11BB DD =且11//BB DD ,所以四边形11BB D D 为平行四边形,所以11//BD B D .又11B D ⊂面11HB D ,BD ⊄面11HB D ,所以//BD 面11HB D .同理可证://DE 面11HB D .又DB DE D ⋂=,所以平面11B D H ∥平面BDE .因为1PD ∥平面BDE ,所以点P 只能在线段1HB 上运动.易知()4,0,2H ,设1HP HB λ=(01λ≤≤),()10,4,2HB = ,则()0,4,2HP λλ= ,()()()4,0,20,4,24,4,22DP DH HP λλλλ=+=+=+,()()()4,4,220,4,04,44,22CP DP DC λλλλ=-=+-=-+,()()22221616141202436CP λλλλ=+-++=-+ .当35λ=时,2CP 取得最小值1445;当0λ=时,2 CP 取得最大值36.故PC 长度的取值范围为⎤⎥⎣⎦.故选C【点睛】立体几何求最值的方法有两类:(1)几何法:利用几何图形求最值;(2)代数法:把距离表示为函数,利用函数求最值.8.如图,在直三棱柱111ABC A B C -中,AC BC ⊥,2AC =,1BC =,12AA =,点D 在棱AC 上,点E 在棱1BB 上,给出下列三个结论:①三棱锥E ABD -的体积的最大值为②1A D DB +的最小值为③点D 到直线1C E 的距离的最小值为其中所有正确结论的个数为(A .0B 【答案】C【分析】根据锥体的体积公式判断①,将将ABC 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,利用勾股定理求出距离最小值,即可判断②,建立空间直角坐标系,利用空间向量法求出点到距离,再根据函数的性质计算可得.【详解】在直三棱柱111ABC A B C -中1BB ⊥平面ABC ,对于①:因为点E 在棱1BB 上112A B A B ==,所以[]0,2BE ∈,又13E ABD ABD V BE S -=⋅ ,又AC BC ⊥,2AC =,1BC =,点D 在棱AC 上,所以[]0,2AD ∈,[]110,122ABD S AD BC AD =⋅=∈ ,所以1233E ABD ABD V BE S -=⋅≤ ,当且仅当D 在C 点、E 在1B 点时取等号,故①正确;对于②:如图将ABC 翻折到与矩形11ACC A 共面时连接1A B 交AC 于点D ,此时1A D DB +取得最小值,因为1112A C CC ==,1BC =,所以13BC =,所以1A B =即1A D DB +,故②错误;对于③:如图建立空间直角坐标系,设(),0,0D a ,[]0,2a ∈,()0,1,E c ,[]0,2c ∈,()10,0,2C ,所以()1,0,2C D a =- ,()10,1,2C E c =-,则点D 到直线1C E的距离d ==当2c =时2d =≥,当02c ≤<时()2024c <-≤,()21142c ≤-,()215142c +≥-,则()241601512c <≤+-,所以当()()224221c c --+取最大值165,且20a =时min d ==即当D 在C 点E 在B 点时点D到直线1C E ,故③正确;故选C二、多项选择题:每题5分,共4题,共计20分,全部选对得5分,部分选对得2分,有选错的不得分。

高中数学单元测试卷集精选---立体几何07

高中数学单元测试卷集精选---立体几何07

立几面测试007一、选择题 (12×4=48)1、若a ⊂α, b ⊂β,α∩β=c ,a∩b =M ,,则( ) A 、M ∈cB 、M ∉ cC 、M ⊂cD 、M ⊂β2、点A 在直线l 上,l 在平面α外,用符号表示正确的是 ( ) (A )A∈l ,l ∉α(B )A∈l ,l ⊄α (C )A ⊂l ,l ⊄α (D )A ⊂l ,l ∈α3、EF 是异面直线a 、b 的公垂线,直线l ∥EF,则l 与a 、b 交点的个数为 ( ) A 、0 B 、1 C 、0或1 D 、0,1或24、以下四个结论:① 若a ⊂α, b ⊂β,则a, b 为异面直线;② 若a ⊂α, b ⊄α,则a, b 为异面直线;③ 没有公共点的两条直线是平行直线;④ 两条不平行的直线就一定相交。

其中正确答案的个数是 ( ) (A )0个 (B )1个 (C )2个 (D )3个5、教室内有根棍子,无论怎样放置,地面上总有这样的直线与棍子所在直线( ) A 、平行B 、垂直 C 、相交但不垂直 D 、异面6、正方体ABCD -A 1B 1C 1D 1中,AC 与B 1D 所成的 角为( )A 、6πB 、4πC 、3πD 、2π 7、直线a 与平面α所成的角为30o,直线b 在平面α内,若直线a 与b 所成的角为ϕ,则( ) A 、0º<ϕ≤30º B 、0º<ϕ≤90º C 、30º≤ϕ≤90º D 、30º≤ϕ≤180º8、b a ,是空间两条不相交的直线,那么过直线b 且平行于直线a 的平面( ) A 、有且仅有一个 B 、至少有一个 C 、至多有一个 D 、有无数个 9、正方体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点, 则直线CE 垂直于 ( ) A 、直线AC B 、直线B 1D 1 C 、直线A 1D 1D 、直线A 1A10、已知P 为△ABC 所在平面α外一点,PA=PB=PC ,则P点在平面α内的射影一定是△ABC 的 ( ) A 、内心 B 、外心 C 、垂心 D 、重心 11、右图是一个无盖正方体盒子的表面展开图,A 、B 、C为其上三个点,则在正方体盒子中,∠ABC 等于 ( )A CBA 1C BAB 1C 1D 1 DA 1CBAB 1C 1D 1 D EF EP C BA A 、45° B、60°C、90° D、120° 12、在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1A 、 AB 上的点,若∠NMC 1=90°,则∠NMB 1 ( )A 、小于90°B 、等于90°C 、大于90°D 、不能确定二、填空题(4×4=16分)13、平面α同侧的两点A 、B 到α的距离分别为4和6,则线段AB 的中点M 到α平面的距离为______________14、已知E 、F 分别为棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱BB 1、B 1C 1的中点,则A 1到EF 的距离为15、P 是△ABC 所在平面外一点;PB=PC=AB=AC ,M 是线段PA上一点,N 是线段BC 的中点,则∠MNB=________ 16、在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 三、解答题(56分)17、(10分)已知直线a 和b 是异面直线,直线c ∥a ,b 与c 不相交,用反证法证明:b 、c 是异面直线。

高二数学空间向量与立体几何单元测试卷三

高二数学空间向量与立体几何单元测试卷三

高二数学《空间向量与立体几何》单元测试卷三姓名:_________班级:________ 得分:________ 一、选择题(每小题5分,共60分)1、在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) (A )0 (B )1 (C )2 (D )32、在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、是 ( ) (A ) 有相同起点的向量 (B )等长向量 (C )共面向量 (D )不共面向量3、若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分又不必要条件4、已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角,〈〉a b 为 ( ) (A )30° (B )45° (C )60° (D )以上都不对5、直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) (A )+-a b c (B )-+a b c (C )-++a b c (D )-+-a b c6、已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( ) (A )0° (B )45° (C )90° (D )180°7、已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) (A )627 (B )637 (C )647 (D )6578、已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 ( )(A )2 (B )3 (C )4 (D )59、设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB 则△BCD 是 ( ) (A )钝角三角形 (B )直角三角形 (C )锐角三角形 (D )不确定10、已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( ) (A )131(,,)243 (B )123(,,)234 (C )448(,,)333 (D )447(,,)33311.已知a = ( 2, –1, 2 ), b = (2, 2 , 1 ), 则以a , b 为邻边的平行四边形的面积是 ( ) (A)65. (B)265. (C) 4 . (D) 8.12.已知a =(3,-2,-3),b =(-1,x -1,1),且a 与b 的夹角为钝角,则x 的取值范围是( ) A .(-2,+∞) B .(-2,53)∪(53,+∞) C .(-∞,-2)D .(53,+∞)FE D 1C 1B 1A 1DCBAy二、填空题(每小题4分,共16分)13、若A(m +1,n -1,3),B(2m,n,m -2n),C(m +3,n -3,9)三点共线,则m+n= . 14、在空间四边形ABCD 中,AC 和BD 为对角线, G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .15、设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n , 则,〈〉a b = .16、已知向量a 和c 不共线,向量b ≠0,且()()⋅⋅=⋅⋅a b c b c a ,d =a +c ,则,〈〉d b = . 三、解答题(共74分)17、在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1和 BB 1的中点.(1)证明:AEC 1F 是平行四边形;(2)求AE 和AF 之间的夹角;(3)求四边形AEC 1F 的面积. 18、在棱长为1正四面体ABCD 中,E 为AD 的中点,试求CE 与平面BCD 所成的角.19、ABCD 是直角梯形,∠ABC =∠BAD =90°, SA ⊥平面ABCD , SA =AB =BC =1,AD =12. (1)求SC 与平面ASD 所成的角余弦; (2)求平面SAB 和平面SCD 所成角的余弦.20.如图,在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB =90°.侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . (1)求A 1B 与平面ABD 所成角的大小. (2)求A 1到平面ABD 的距离.21.在棱长为1的正方体中ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、BD 的中点,G 在CD 上,且CG =CD/4,H 为C 1G 的中点,⑴求证:EF ⊥B 1C ;⑵求EF 与C 1G 所成角的余弦值; ⑶求FH 的长。

高二数学第二章《立体几何》单元测试题-人教版

高二数学第二章《立体几何》单元测试题-人教版

学号 姓名 成绩一、选择题(本大题共10小题,每小题5分,共50分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对 2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角5、若直线l αa α⊂l a l αl a l a l a 中正确的个数有A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 A 、34B 、35C、7D、710、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为 A 、2V B 、3V C 、4V D 、5V QPC'B'A'C BAB 1C 1A 1D 1B ACD二、填空题(本大题共4小题,每小题5分,共20分);11、设b a ,是两条直线,βα,是两个平面,则下列命题成立的是 ;(1),,//;(2)//,;(3),//;(4),,a b a b b a a a a a b a b αααααββαββααβαβ⊥⊥⊄⊥⊥⊥⊥⊥⊥⊥⊥则则则则12、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 ; 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 ;14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)三、解答题(本大题共3小题,每小题10分,共30分)15、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)16、已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点.求证:(1)C 1O 1A (01).AE AFAC ADλλ==<< 1 412. 平行 13. 菱形 14. AC 垂直BD 三、F E DBAC D 1OD BAC 1B 1A 1CH G F ED BA C15. 略16. 略6 17. (II)7 )。

全国100所名校单元测试示范卷高二(空间向量与立体几何)第一次综合测试(数学)+答案解析(附后)

全国100所名校单元测试示范卷高二(空间向量与立体几何)第一次综合测试(数学)+答案解析(附后)

全国100所名校单元测试示范卷高二(空间向量与立体几何)第一次综合测试(数学)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.直线l :的倾斜角为A.B.C.D.2.若不重合的直线,的方向向量分别为,,则与的位置关系是( )A. B. C.,相交不垂直D. 不能确定3.若直线与圆O :交于A ,B 两点,则A.B. 2C.D. 44.在正四棱锥中,已知,,,则A.B.C.D.5.与直线l :关于y 轴对称的直线的方程为A.B.C.D.6.如图所示,在三棱柱中,底面ABC ,,,点E ,F分别是棱AB ,的中点,则EF 与所成角的大小为A. B. C. D. 7.已知四边形ABCD 为正方形,P 为平面ABCD 外一点,,,二面角的大小为,则点A 到平面PBD 的距离是A. B.C.D. 18.已知点是直线l :上的动点,过点P 作圆C :的切线PA ,A为切点,的最小值为2,圆M :与圆C 外切,且与直线l 相切,则m 的值为A. B. C. 4 D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知直线:,直线:,则A. 直线可以与x轴平行B. 直线可以与y轴平行C. 当时,D. 当时,10.以下命题正确的是A. 两个不同平面,的法向量分别为,,则B. 若直线l的方向向量,平面的一个法向量,则C. 已知,,若与垂直,则实数D. 已知A,B,C三点不共线,对于空间任意一点O,若,则P,A,B,C四点共面11.如图,平面ABCD,,,,,,,则A. B. 平面ADEC. 平面BDE与平面BDF的夹角的余弦值为D. 直线CE与平面BDE所成角的正弦值为12.已知圆:,圆:,则.( )A. 若圆与圆无公共点,则B. 当时,两圆公共弦所在直线方程为C. 当时,P、Q分别是圆与圆上的点,则的取值范围为D. 当时,过直线上任意一点分别作圆、圆切线,则切线长相等三、填空题:本题共4小题,每小题5分,共20分。

高二年数学(理科)《立体几何》单元测试卷

高二年数学(理科)《立体几何》单元测试卷

高二年数学(理科)《立体几何》单元测试卷一、选择题(共10小题,每小题5分,共50分,每个小题只有一个正确选项)1、现有四个图形①三角形 ②四边形 ③梯形 ④菱形.,可能不是平面图形的是( ) A.① B .② C.③ D .④2.直线和平面平行的性质定理的数学符号表示是( ) A .a ∥a b a ⇒=⋂⊂αββα,,∥b B . α⊄a ,a ∥b ,α⊂b ⇒a ∥α C .a ∥α,⇒⊂βa a ∥b D .a ∥α⇒=⋂b αβ,a ∥b3、如图,二面角βα--l 的大小为30°,α∈P ,点P 到β的距离为h ,则点P 到棱l 的距离为( )A.h B .3h C.21h D .2h 4、设a 、b 、c 表示直线,α、β、γ表示平面.给出四个命题( ) ① c ⊥a,a ∥b ⇒c ⊥b ②γ⊥α,α∥β⇒γ⊥β ③ a ⊥α,α∥β⇒a ⊥β ④a α⊥,a//b b α⇒⊥则正确命题的个数是( )A.4 B .3 C.2 D .15、教室内有根棍子,无论怎样放置,地面上总有这样的直线与棍子所在直线( ) A 、平行 B 、垂直 C 、相交但不垂直 D 、异面6、如图,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点,则在正方体盒子中,∠ABC 等于 ( ) ( ) A .45° B .60° C .90° D .120° 7、下列命题中正确的是( )A .若平面M 外的两条直线在平面M 内的射影为一条直线及此直线外的一个点,则这两条直线互为异面直线;B .若平面M 外的两条直线在平面M 内的射影为两条平行直线,则这两条直线相交;C .若平面M 外的两条直线在平面M内的射影为两条平行直线,则这两条直线平行;D .若平面M 外的两条直线在平面M 内的射影为两条互相垂直的直线,则这两条直线垂直。

8、如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A . PD ⊥BD B .PD ⊥CDC .PB ⊥BCD .PA ⊥BDOADC B P9、如图,在长方体1111ABCD A BC D -中,AB=BC=2,1AA =1,则1AC 与平面1111A B C D 所成角的正弦值为( )A.3 B .23 C.4D .1310、如图,在四棱锥P-ABCD 中,已知底面ABCD 是边长为a 的正方形,PA ⊥平面ABCD ,且PA=2a,那么点A 到平面PBD 的距离是( ) A.a B .a 32 C.a 23 D .a 23二、填空题(共4小题,每小题5分,共20分)11.若点P 是△ABC 所在平面外一点,且PA=PB=PC,则点P 在平面ABC 内的射影O 是△ABC 的 心. 12.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 .13.已知过球面上A 、B 、C 三点的截面和球心的距离等于球的半径的一半,且AB=BC=CA=2,则球面面积是_____________________.14、如图,在ABC ∆中,90ACB ︒∠=,AB=8,60ABC ︒∠=, PC ⊥平面ABC, PC=4,M 是AB 上的一个动点,则PM 的最小值为____________________第12题图 第14题图CDB C 1D 1A 1B 1A ODABCP C DBC 1D 1A 1B 1AC ABP三、解答题(本题共5小题,共70分。

立体几何单元测试卷

立体几何单元测试卷

立体几何 单元测试卷一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求) 1.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题错误的是( ) A .若a ⊥α,b ∥α,则a ⊥b B .若a ⊥α,b ∥a ,b ⊂β,则α⊥β C .若a ⊥α,b ⊥β,α∥β,则a ∥b D .若a ∥α,a ∥β,则α∥β 答案 D解析 由题意可得A ,B ,C 选项显然正确,对于选项D :当α,β相交,且a 与α,β的交线平行时,有a ∥α,a ∥β,但此时α与β不平行.故选D.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 答案 D解析 连接C 1D ,BD .∵N 是D 1C 的中点,∴N 是C 1D 的中点,∴MN ∥BD .又∵CC 1⊥BD ,∴CC 1⊥MN ,故A ,C 正确.∵AC ⊥BD ,MN ∥BD ,∴MN ⊥AC ,故B 正确,故选D.3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( ) A.8π3 B.82π3C .82π D.32π3答案 B解析 S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2= 2.∴V =43πR 3=82π3,故选B.4.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A .4B .2 2 C.203 D .8答案 D解析 由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD =3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为12×2×2×4=8.5.如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则P A 与BE 所成的角为( )A.π6B.π4 C.π3 D.π2答案 C解析 连接AC ,BD 交于点O ,连接OE ,易得OE ∥P A . ∴所求角为∠BEO . 由所给条件易得OB =62,OE =12P A =22,BE = 2. ∴cos ∠OEB =12,∴∠OEB =60°,选C.6.直三棱柱ABC -A 1B 1C 1的直观图及三视图如下图所示,D 为AC 的中点,则下列命题是假命题的是()A.AB1∥平面BDC1B.A1C⊥平面BDC1C.直三棱柱的体积V=4D.直三棱柱的外接球的表面积为43π答案 D解析由三视图可知,直三棱柱ABC-A1B1C1的侧面B1C1CB是边长为2的正方形,底面ABC是等腰直角三角形,AB⊥BC,AB=BC=2.连接B1C交BC1于点O,连接AB1,OD.在△CAB1中,O,D分别是B1C,AC的中点,∴OD∥AB1,∴AB1∥平面BDC1.故A正确.直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∴AA1⊥BD.又AB=BC=2,D为AC的中点,∴BD⊥AC,∴BD⊥平面AA1C1C.∴BD⊥A1C.又A1B1⊥B1C1,A1B1⊥B1B,∴A1B1⊥平面B1C1CB,∴A1B1⊥BC1.∵BC1⊥B1C,且A1B1∩B1C=B1,∴BC1⊥平面A1B1C.∴BC1⊥A1C,∴A1C⊥平面BDC1.故B正确.V=S△ABC×C1C=12×2×2×2=4,∴C正确.此直三棱柱的外接球的半径为3,其表面积为12π,D错误.故选D.7.在平面四边形ABCD中,AD=AB=2,CD=CB=5,且AD⊥AB,现将△ABD沿着对角线BD 翻折成△A′BD,则在△A′BD折起至转到平面BCD内的过程中,直线A′C与平面BCD所成的最大角的正切值为()A .1 B.12 C.33D. 3答案 C解析 如图所示,OA =1,OC =2.当A ′C 与圆相切时,直线A ′C 与平面BCD 所成的角最大,最大角为30°,其正切值为33.故选C.8.一个圆锥被过顶点的平面截去了较小的一部分,余下的几何体的三视图如图,则该几何体的表面积为( )A.5+33π2+3π2+1 B .25+33π+3π2+1 C.5+33π2+3π2 D.5+33π2+π2+1 答案 A解析 还原为直观图如图所示,圆锥的高为2,底面半径为2,圆锥的母线长为6,故该几何体的表面积为S =12×2×5+12×2π×2×34×6+π×(2)2×34+12×2×1=5+33π2+3π2+1.9.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°答案 C解析 由条件,知CA →·AB →=0,AB →·BD →=0, CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉=(217)2.∴cos 〈CA →,BD →〉=-12,〈CA →,BD →〉=120°,∴二面角的大小为60°,故选C.10.已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,这个几何体的体积是( )A .288+36πB .60πC .288+72πD .288+18π答案 A解析 将几何体的三视图转化为直观图此几何体下面为长方体上面为半圆柱,根据三视图所标数据,可得 V 长方体=6×8×6=288, V 半圆柱=12×32×π×8=36π.∴此几何体的体积为V =288+36π.11.在正方体ABCD -A 1B 1C 1D 1中,E 是棱BB 1中点,G 是DD 1中点,F 是BC 上一点且FB =14BC ,则GB 与EF 所成的角为( )A .30°B .120°C .60°D .90°解析 方法一:连D 1E ,D 1F ,解三角形D 1EF 即可. 方法二:如图建立直角坐标系D -xyz ,设DA =1,由已知条件,得G (0,0,12),B (1,1,0),E (1,1,12),F (34,1,0),GB →=(1,1,-12),EF →=(-14,0,-12).cos 〈GB →,EF →〉=GB →·EF →|GB →||EF →|=0,则GB →⊥EF →.故选D.12.已知正方体ABCD -A 1B 1C 1D 1棱长为1,点P 在线段BD 1上,当∠APC 最大时,三棱锥P -ABC 的体积为( )A.124B.118C.19D.112答案 B解析 以B 为坐标原点,BA 为x 轴,BC 为y 轴,BB 1为z 轴建立空间直角坐标系,设BP →=λBD 1→,可得P (λ,λ,λ),再由cos ∠APC =AP →·CP →|AP →||CP →|可求得当λ=13时,∠APC 最大,故V P -ABC =13×12×1×1×13=118.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知四个命题:①若直线l ∥平面α,则直线l 的垂线必平行于平面α;②若直线l 与平面α相交,则有且只有一个平面经过直线l 与平面α垂直; ③若一个三棱锥每两个相邻侧面所成的角都相等,则这个三棱锥是正三棱锥; ④若四棱柱的任意两条对角线相交且互相平分,则这个四棱柱为平行六面体. 其中正确的命题是________.解析④正确,如右图,A1C与B1D互相平分,则四边形A1B1CD是平行四边形,同理四边形ABC1D1是平行四边形,则A1B1綊AB綊CD,因此四边形ABCD是平行四边形,进而可得这个四棱柱为平行六面体.14.(2013·江苏)如图所示,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.答案1∶24解析由题意可知点F到面ABC的距离与点A1到面ABC的距离之比为1∶2,S△ADE∶S△ABC=1∶4.因此V1∶V2=13AF·S△AED2AF·S△ABC=1∶24.15.已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若P A,PB,PC两两相互垂直,则球心到截面ABC的距离为________.答案3 3解析正三棱锥P-ABC可看作由正方体P ADC-BEFG截得,如图所示,PF为三棱锥P-ABC的外接球的直径,且PF⊥平面ABC.设正方体棱长为a,则3a2=12,a=2,AB=AC=BC=2 2.S△ABC=12×22×22×32=2 3.由V P-ABC=V B-P AC,得13·h·S△ABC =13×12×2×2×2,所以h=233,因此球心到平面ABC的距离为33.16.如图所示是一几何体的平面展开图,其中ABCD为正方形,E,F,分别为P A,PD的中点,在此几何体中,给出下面四个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的有______个.答案 2解析将几何体展开图拼成几何体(如图),因为E,F分别为P A,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面P AD,E∈平面P AD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面P AD与平面BCE 不一定垂直,④错.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B-CEPD的体积.答案(1)略(2)2解析(1)该组合体的三视图如右图所示.(2)因为PD ⊥平面ABCD ,PD ⊂平面PDCE , 所以平面PDCE ⊥平面ABCD . 因为四边形ABCD 为正方形, 所以BC ⊥CD ,且BC =DC =AD =2.又因为平面PDCE ∩平面ABCD =CD ,BC ⊂平面ABCD , 所以BC ⊥平面PDCE .因为PD ⊥平面ABCD ,DC ⊂平面ABCD , 所以PD ⊥DC .又因为EC ∥PD ,PD =2,EC =1, 所以四边形PDCE 为一个直角梯形,其面积 S 梯形PDCE =12(PD +EC )×DC =12×3×2=3.所以四棱锥B -CEPD 的体积V B -CEPD =13S 梯形PDCE ×BC =13×3×2=2.18.(本小题满分12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面P AC ;(3)求直线AM 与平面ABCD 所成角的正切值. 答案 (1)略 (2)略 (3)455解析 (1)连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M为PD的中点,所以PB∥MO.因为PB⊄平面ACM,MO⊂平面ACM,所以PB∥平面ACM.(2)因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC.又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD.而AC∩PO=O,所以AD⊥平面P AC.(3)取DO中点N,连接MN,AN.因为M为PD的中点,所以MN∥PO,且MN=12PO=1.由PO⊥平面ABCD,得MN⊥平面ABCD,所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,AD=1,AO=12,所以DO=52.从而AN=12DO=54.在Rt△ANM中,tan∠MAN=MNAN=154=455,即直线AM与平面ABCD所成角的正切值为455.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,四边形ABCD为正方形,AB=4,P A=3,A点在PD上的射影为G点,E点在AB上,平面PEC⊥平面PCD.(1)求证:AG∥平面PEC;(2)求AE的长;(3)求二面角E-PC-A的正弦值.答案(1)略(2)3625(3)3210解析(1)证明:∵P A⊥平面ABCD,∴P A⊥CD.又∵CD⊥AD,P A∩AD=A,∴CD⊥平面P AD.∴CD⊥AG.又PD⊥AG,∴AG⊥平面PCD.作EF⊥PC于点F,连接GF,∵平面PEC ⊥平面PCD ,∴EF ⊥平面PCD .∴EF ∥AG .又AG ⊄平面PEC ,EF ⊂平面PEC ,∴AG ∥平面PEC .(2)解:由(1)知A ,E ,F ,G 四点共面,又AE ∥CD ,AE ⊄平面PCD ,CD ⊂平面PCD ,∴AE ∥平面PCD .又∵平面AEFG ∩平面PCD =GF ,∴AE ∥GF .又由(1)知EF ∥AG ,∴四边形AEFG 为平行四边形,∴AE =GF .∵P A =3,AD =4,∴PD =5,AG =125. 又P A 2=PG ·PD ,∴PG =95. 又GF CD =PG PD ,∴GF =95×45=3625,∴AE =3625. (3)解:过E 作EO ⊥AC 于点O ,连接OF ,易知EO ⊥平面P AC ,又EF ⊥PC ,∴OF ⊥PC .∴∠EFO 即为二面角E -PC -A 的平面角.EO =AE ·sin45°=3625×22=18225,又EF =AG =125, ∴sin ∠EFO =EO EF =18225×512=3210. 20.(本小题满分12分)如图所示,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =2 3.(1)求证:AB ∥平面MCD ;(2)求平面ACM 与平面BCD 所成二面角的正弦值.答案 (1)略 (2)255解析 (1)证明:取CD 中点O ,因为△MCD 为正三角形,所以MO ⊥CD .由于平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .又因为AB ⊥平面BCD ,所以AB ∥MO .又AB ⊄平面MCD ,MO ⊂平面MCD ,所以AB ∥平面MCD .(2)连接OB ,则OB ⊥CD ,又MO ⊥平面BCD .取O 为原点,直线OC ,BO ,OM 为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示.OB =OM =3,则各点坐标分别为C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23). CM →=(-1,0,3),CA →=(-1,-3,23).设平面ACM 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧ n 1·CM →=0,n 1·CA →=0,得⎩⎪⎨⎪⎧-x +3z =0,-x -3y +23z =0, 解得x =3z ,y =z ,取z =1,得n 1=(3,1,1).又平面BCD 的法向量为n 2=(0,0,1),所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=15. 设所求二面角为θ,则sin θ=255. 21.(本小题满分12分)圆锥PO 如图①所示,图②是它的正(主)视图.已知圆O 的直径为AB ,C 是圆周上异于A ,B 的一点,D 为AC 的中点.(1)求该圆锥的侧面积S ;(2)求证:平面P AC ⊥平面POD ;(3)若∠CAB =60°,在三棱锥A -PBC 中,求点A 到平面PBC 的距离.答案 (1)3π (2)略 (3)223 解析 (1)由圆锥的正视图可知,圆锥的高h =2,底面半径r =1,所以其母线长为l =3,所以圆锥的侧面积S =12l ·2πr =12×3×2π×1=3π. (2)证明:因为AB 是圆O 的直径,所以AC ⊥BC .又因为O ,D 分别为AB ,AC 的中点,所以OD ∥BC ,所以OD ⊥AC .因为PO ⊥平面ABC ,所以AC ⊥PO .因为PO ∩OD =O ,PO ,OD ⊂平面POD ,所以AC ⊥平面POD .因为AC ⊂平面P AC ,所以平面P AC ⊥平面POD .(3)因为∠CAB =60°,AB =2,所以BC =3,AC =1.所以S △ABC =32. 又因为PO =2,OC =OB =1,所以S △PBC =334. 设A 到平面PBC 的距离为h ,由于V P -ABC =V A -PBC ,得13S △ABC ·PO =13S △PBC ·h ,解得h =223. 22.(本小题满分12分)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长是2,侧棱长是3,D 是AC 的中点.(1)求证:B 1C ∥平面A 1BD ;(2)求二面角A 1-BD -A 的大小;(3)在线段AA 1上是否存在一点E ,使得平面B 1C 1E ⊥平面A 1BD ?若存在,求出AE 的长;若不存在,说明理由.答案 (1)略 (2)π3 (3)存在且AE =33解析 (1)如图①所示,连接AB 1交A 1B 于点M ,连接B 1C ,DM .因为三棱柱ABC -A 1B 1C 1是正三棱柱,所以四边形AA 1B 1B 是矩形,所以M 为AB 1的中点.因为D 是AC 的中点,所以MD 是三角形AB 1C 的中位线,所以MD ∥B 1C . 因为MD ⊂平面A 1BD ,B 1C ⊄平面A 1BD ,所以B 1C ∥平面A 1BD .(2)作CO ⊥AB 于点O ,所以CO ⊥平面ABB 1A 1,所以在正三棱柱ABC -A 1B 1C 1中建立如图②所示的空间直角坐标系O -xyz .因为AB =2,AA 1=3,D 是AC 的中点,所以A (1,0,0),B (-1,0,0),C (0,0,3),A 1(1,3,0).所以D (12,0,32),BD →=(32,0,32),BA 1→=(2,3,0). 设n =(x ,y ,z )是平面A 1BD 的法向量,所以⎩⎨⎧ n ·BD →=0,n ·BA 1→=0,即⎩⎪⎨⎪⎧ 32x +32z =0,2x +3y =0.令x =-3,则y =2,z =3.所以n =(-3,2,3)是平面A 1BD 的一个法向量.由题意可知AA 1→=(0,3,0)是平面ABD 的一个法向量,所以cos 〈n ,AA 1→〉=2343=12.所以二面角A 1-BD -A 的大小为π3. (3)设E (1,y,0),则C 1E →=(1,y -3,-3),C 1B 1→=(-1,0,-3).设平面B 1C 1E 的法向量n 1=(x 1,y 1,z 1),所以⎩⎨⎧ n 1·C 1E →=0,n ·C 1B 1→=0,即⎩⎪⎨⎪⎧ x 1+(y -3)y 1-3z 1=0,-x 1-3z 1=0.令z 1=-3,则x 1=3,y 1=63-y ,所以n 1=(3,63-y ,-3). 又n 1·n =0,即-33+123-y-33=0,解得y =33. 所以存在点E ,使得平面B 1C 1E ⊥平面A 1BD 且AE =33.。

(完整版)高中数学必修2立体几何测试题及答案

(完整版)高中数学必修2立体几何测试题及答案

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分)1,三个平面可将空间分成n 个部分,n 的取值为( )A ,4;B ,4,6;C ,4,6,7 ;D ,4,6,7,8。

2,两条不相交的空间直线a 、b ,必存在平面α,使得( )A ,a ⊂α、b ⊂α;B ,a ⊂α、b ∥α ;C ,a ⊥α、b ⊥α;D ,a ⊂α、b ⊥α。

3,若p 是两条异面直线a 、b 外的任意一点,则( )A ,过点p 有且只有一条直线与a 、b 都平行;B ,过点p 有且只有一条直线与a 、b 都垂直;C ,过点p 有且只有一条直线与a 、b 都相交;D ,过点p 有且只有一条直线与a 、b 都异面。

4,与空间不共面四点距离相等的平面有( )个A ,3 ;B ,5 ;C ,7;D ,4。

5,有空间四点共面但不共线,那么这四点中( )A ,必有三点共线;B ,至少有三点共线;C ,必有三点不共线;D ,不可能有三点共线。

6,过直线外两点,作与该直线平行的平面,这样的平面可有( )个A ,0;B ,1;C ,无数 ;D ,涵盖上三种情况。

7,用一个平面去截一个立方体得到的截面为n 边形,则( )A ,3≤n ≤6 ;B ,2≤n ≤5 ;C ,n=4;D ,上三种情况都不对。

8,a 、b 为异面直线,那么( )A ,必然存在唯一的一个平面同时平行于a 、b ;B ,过直线b 存在唯一的一个平面与a 平行;C ,必然存在唯一的一个平面同时垂直于a 、b ;D ,过直线b 存在唯一的一个平面与a 垂直。

9,a 、b 为异面直线,p 为空间不在a 、b 上的一点,下列命题正确的个数是( )①过点p 总可以作一条直线与a 、b 都垂直;②过点p 总可以作一条直线与a 、b 都相交;③过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。

高二数学立体几何单元测试题(含答案)

高二数学立体几何单元测试题(含答案)

单 元 测 试 题一、选择题(每题5分,共12题,共60分) 1. 下列符号语言描述正确的是(C )①若点A ∈α,点B ∈α,则AB ∈α,②若点A ∉α,点B ∉α,则AB ⊄α,③若点A ∉直线l ,则点A 和直线l 确定一平面.A. ①②B. ①③C. ②③D. ①②③ 2. 下列几个图形中,虚线、实线使用不正确的有(D )A.(2)(3)B.(1)(3)C.(3)(4)D.(4)3.在平行六面体ABCD A B C D ''''-中,向量AB 'u u u r 、AD 'u u u u r 、BD u u u r是(C)A 有相同起点的向量B 等长的向量C 共面向量D 不共面向量4.“直线上有一点在平面内”是“这条直线在这个平面内”的(B )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分又不必要条件5. 设向量a r 、b r 、c r不共面,则下列集合可作为空间的一个基底的是(C)A {a r +b r ,b r -a r ,a r }B {a r +b r ,b r -a r ,b r }C {a r +b r ,b r -a r ,c r }D {a r +b r +c r ,a r +b r ,c r }6.平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 和BD 的交点,若11A B u u u u r =a r ,11A D u u u u r =b r ,1A A u u u r =c r,则下列式子中与1B M u u u u r相等的是(A)A - 21a r + 21b r +c rB 21a r + 21b r +c rC 21a r - 21b r +c rD -21a r - 21b r +c r7.O 、A 、B 、C 为空间四个点,又OA u u u r 、OB uuu r 、OC u u u r为空间的一个基底,则(D)A O 、A 、B 、C 四点共面,但不共线 B O 、A 、B 、C 四点不共线C O 、A 、B 、C 四点中任意三点不共线D O 、A 、B 、C 四点不共面8. Rt △ABC 在平面α内的射影是△A 1B 1C 1,设直角边AB ∥α,则△A 1B 1C 1的形状是(B ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法判断 9.“直线l 垂直于平面α内的无数条直线”是“l ⊥α”的(B)A 充分条件B 必要条件C 充要条件D 既不充分又不必要条件10.两条直线a 、b 满足a ∥b ,b ∥α,则a 与平面α的关系是(D)A a ∥αB a ⊄αC a ⊂αD a ⊂α或a ∥α11.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是(D)A 过A 有且只有一个平面平行于a 、bB 过A 至少有一个平面平行于a 、bC 过A 有无数个平面平行于a 、bD 过A 且平行a 、b 的平面可能不存在12.如下图,正四面体S —ABC 中,D 为SC 的中点,则BD 与SA 所成角的余弦值是(C)解析:取AC 的中点E ,连结DE 、BE ,则DE ∥SA , ∴∠BDE 就是BD 与SA 所成的角设SA=a ,则BD=BE=23 a ,DE=21a ,cos ∠BDE=DE BD BE DE BD ⋅-+2222二、填空题(每题4分,共4题,共16分)13.请写出三垂线定理 。

高二数学立体几何第三单元测试题

高二数学立体几何第三单元测试题

高二级数学立体几何第三单元测试题(120分钟)班级姓名__________ 学号_______一、选择题(本大题共10小题;每小题3分;共30分)1.在一个45°的二面角的一个面内有一条直线与二面角的棱成45°角;则此直线与二面角的另一个面所成的角为()°°°°2.已知二面角α—AB—β是直二面角;P为棱AB上一点;PE、PF分别在面α、β内;∠EPB=∠FPB =45°;那么∠EPF的大小是()°°°l⊥平面α;直线m⊂平面β;有下列四个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β;其中正确的两个命题是()A.①②B.①③C.②④D.③④C—BD—A为直二面角;且DA⊥平面ABC;则△ABC的形状为()AB线AB与CD所成的角为()°°°°6.如果二面角α—l—β的平面角是锐角;点P到α、β和棱l的距离分别为22、4、42;则二面角大小为()°或30°°或75°°或60°°或60°7.已知直角△ABC的斜边AB在平面α内;AC、BC分别与α成30°、45°角;则α与△ABC所在平面所成二面角的度数为()°°°°或120°8.异面直线a、b所成的角为θ;a、b与平面α都平行;b⊥平面β;则直线a与平面β所成的角()θθθθ不能相等9空间四边形DABC中;ABC DBC BAD CAD≅≅≅;且AB=AC=3;BC=2;则二面角A—BC —D的大小为()A. 300 B. 450 C.600 D.90010.如图;已知∠C=90°;AC=BC;M、N分别为BC和AB中点;沿直线MN将△BMN折起;使二面角B′—MN—B为60°;则斜线B′A与平面ABC所成角的正切值为()A.52B.53C.54D.53题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本大题共4小题;每小题4分;共16分)11.空间四边形ABCD 中;AB=CD ;且AB 和CD 成30角;E ;F 分别是BC ;AD 的中点;则EF 和AB 所成的角是 。

高二数学单元测试(立体几何)

高二数学单元测试(立体几何)

2009—2010学年度下学期高二数学单元测试(2)命题范围 (立体几何2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确地选项填在题后的括号内.1.若四棱锥的四个侧面与底面所成的角都相等,则其底面四边形必是( )A .矩形B .菱形C .圆外切四边形D .圆内接四边形2.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( )A .BC//平面PDFB .DF ⊥PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面AB C 1D 1的距离为 ( )A .21B .42C .22 D .23 4.设地球的半径为R ,若甲地位于北纬45︒东经120︒乙两地的球面距离为 ( )A B .6R πC .56R π D .23R π5.如图代表未折叠正方体的展开图,将其折叠起来,变成正方体后,图形是( )A B C D6.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( )A .32B .33C .34 D .237.如图,在三棱柱ABC —A ′B ′C ′中,点E 、F 、H 、 K 分别为AC ′、CB ′、A ′B 、B ′C ′的中点,G 为△ABC 的 重心. 从K 、H 、G 、B ′中取一点作为P , 使得该棱柱恰有 2条棱与平面PEF 平行,则P 为 ( ) A .K B .H C .G D .B ′8.正三棱锥S -ABC 的高SO =h ,斜高SM =l , 点P 在SO 上且分SO 所成的比是1 :2,则过P 点且平行于底面的截面面积是 ( )A .33(l 2-h 2)B .433(l 2-h 2)C .3(l 2-h 2) D .233(l 2-h 2) 9.将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26a B .12a 2 C .18a 2 D .24a 210.一圆柱被一平面所截,截口是一个椭圆.已知椭圆的长轴长为5,短轴长为4,被截后几何体的最短侧面母线长为1,求该几何体的体积是 ( ) A .10π B .5π C . 20π D . 15π11.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( ) A .2 B .4 C .6 D .812.山坡与水平面成30 度角,坡面上有一条与山底坡脚的水平线成30 度角的直线小路,某人沿小路上坡走了一段路后升高了100米,则此人行走的路程为 ( )A .300米B .400米C .200米D .3200米第Ⅱ卷(非选择题,共90分)二、填空题:每小题5分,共20分,把正确答案填写在题中的横线上,或按题目要求作答. 13.棱长为a 的正四面体中,高为H ,斜高为h ,相对棱间的距离为d ,则a .H .h .d 的大小关系正确的是___________________.14.用底面半径2R 的圆柱形铁罐做一种半径为R 的球型产品的外包装,一听4个,铁罐的高度至少应为 .15.在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 . 16.有两个相同的直三棱柱,高为a2,底面三角形的 三边长分别为)0(5,4,3>a a a a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学立体几何第一二章测试卷必修 2
班级 编号 姓名 得分:
一、 选择:12×5=60分
1、经过空间任意三点作平面
( )
A .只有一个
B .可作二个
C .可作无数多个
D .只有一个或有无数多个
2、两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是 ( )
A .cm 77
B .cm 27
C .cm 55
D .cm 210
3.已知α,β是平面,m ,n 是直线.下列命题中不正确的是 ( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β=n ,则m ∥n
C .若m ⊥α,m ⊥β,则α∥β
D .若m ⊥α,β⊂m ,则α⊥β
4.在正三棱柱所成的角的大小为与则若中B C AB BB AB C B A ABC 111111,2,=- ( )
A .60°
B .90°
C .105°
D .75°
5、在正方体1111
ABCD A B C D -中,下列几种说法正确的是 ( )
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45o 角
D 、11AC 与1B C
成60o 角
6、如图:正四面体S -ABC 中,如果E ,F 分别是SC ,AB 的中点, 那么异面直线EF 与SA 所成的角等于 ( ) A .90° B .45° C .60°
D .30°
7、异面直线a 、b 成60°,直线c ⊥a ,则直线b 与c 所成的角的范围为 ( )
A .[30
°,90°] B .[60°,90°] C .[30°,60°] D .[60°,120°] 8、PA 、PB 、PC
是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB
所成角的余弦值是
( )
A .
2
1
B .
2
2
C .
3
6
D .33
9、如图,PA ⊥矩形ABCD ,下列结论中不正确的是( ) A .PB ⊥BC B .PD ⊥CD
C .P
D ⊥BD
D .PA ⊥BD
B
A
10、设M
是球心O 的半径OP 的中点,分别过,M O 作垂直于OP 的平面,截球面得两个圆,
则这两个圆的面积比值为: ( )
(A)41 (B)12 (C)23 (D)34
11、如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,BC 1⊥AC ,则C 1在底面ABC 上的射
影必在( )
(A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部 12、.(08
年海南卷12)某几何体的一条棱长为7,在该几何体的正
视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视
图中,这条棱的投影分别是长为a 和b 的线段,则a + b 的最大值为 ( ) A. 22
B. 32
C. 4
D. 52
一、 填空:4×4=16分
13、长方体一个顶点上三条棱的长分别为3、4、5,且它的八个顶点都在同一球面上,这个球 的表面积是
14、已知球内接正方体的表面积为S ,则球体积等于 .
15、若AC 、BD 分别是夹在两个平行平面? 、? 间的两条线段,且AC =13,BD =15,AC 、BD 在平面? 上的射影长的和是14,则? 、? 间的距离为 .
16、从平面?外一点P 引斜线段PA 和PB ,它们与?分别成45?和30?角,则?APB 的最大值、 最小值分别是 。

三、计算证明:
17、(12分)在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足PD
CP
QD AQ NB CN MB AM ====k .求证:M 、N 、P 、Q 共面. 18、(12分)已知长方体的长宽都是4cm ,高为2cm .
(1)求BC 与''C A ,'AA 与'BC ,D A '
与'BC 所成角的余弦值;
(2)求'AA 与BC ,'AA 与CD ,'
AA 与'CC 所成角的大小. 19、(12分)ABCD 是边长为1的正方形,N M ,分别为BC DA ,上的点,且AB MN //,沿MN 将正方形折成直二面角CD MN AB -- (1)求证:平面⊥ADC 平面AMD ;
(2)设x AM =)10(<<x ,点N 与平面ADC 间的距离为y ,试用x 表示y
20、(14分)已知正方体1111ABCD A B C D -,O
是底ABCD 对角线的交点.
求证:(1)//1O C 面11AB D ;(2)1AC ⊥面11
AB D .
21、(10分)如图,平面α∥平面β,点A 、C ∈α,B 别在线段AB 、CD 上,且FD CF EB AE =
,求证:EF ∥β22、(14分)设棱锥M -ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如图,△AMD 的面积为1,试求能够放入这个棱锥的最大球的半径.
24
19、解:(1)MN ⊥AM ,MN//CD ∴CD ⊥AM 又CD ⊥DM ∴CD ⊥平面ADM ∴平面ADC ⊥平面ADM
(2)∵MN//CD MN ⊄平面ADC CD ⊂平面ADC ∴MN//平面ADC ∴M 、N 到平面ADC 的距离相等
过M 作MP ⊥AD ∵平面ADM ⊥平面ADC ∴MP ⊥平面ADC ∵MN ⊥DM MN ⊥AM ∴∠AMN=900
在Rt △ADM 中,2
2)1()1(x x x x MP -+-=
∴1
22)1(2
+--=
=x x x x MP y
20、证明:(1)连结11A C ,设11111AC B D O =I
连结1AO ,Q 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形11A C AC ∴P 且 11A C AC =
又1,O O 分别是
11,A C AC 的中点,11O C AO ∴P 且11O C AO =11AOC O ∴是平行四边形
111,C O AO AO ∴⊂P 面11AB D ,1C O ⊄面11AB D ∴1C O P 面11AB D
(2)1
CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又1111A C B D ⊥Q , 1111B D AC C ∴⊥面
1
11AC B D ⊥即 同理可证11A C AB ⊥, 又1111D B AB B =I ∴1A C ⊥面11AB D 21、略
22、(14分) 解:如图,∵ AB ⊥AD ,AB ⊥MA ∴ AB ⊥平面MAD,设E 、F 分别为AD 、BC 的中点,则EF ∥AB ∴ EF ⊥平面MAD, ∴ EF ⊥ME 设球O 是与平面MAD 、平面ABCD 、平面MBC
都相切的球, 由对称性可设O 为△MEF 的内心,
则球O 的半径r 满足:r =
2S △MEF
ME +EF +MF
设AD =EF =a ,∵ S △MAD =1,∴ ME =2
a
,MF =
a 2
+( 2
a
)2
A
∴ r =
2
a +2
a
+a 2+(
2
a
)2

2
22+2
=2 -1,且当a =2
a ,即a = 2 时,上式等号成立
∴ 当AD =ME =2 时,与平面MAD 、平面ABCD 、平面MBC 都相切的球的最大半径为2 -1.
再作OG ⊥ME 于G ,过G 作GH ⊥MA 于H ,易证OG ∥平面MAB
∴ G 到平面MAB 的距离就是球心O 到平面MAB 的距离,∵ △MGH ∽△MAE ,∴ GH AE =
MG
MA
, 其中MG =2 -(2 -1)=1,AE =
22 ,MA =(22)2+(2)2 =102 ∴ HG = MG ·AE MA = 55 ,∵ 55
>2 -1 ∴ 点O 到平面MAB 的距离大于球O 的半径,同样,点O 到平面MCD 的距离大于球O 的半径
∴ 球O 在棱锥M -ABCD 中,且不可能再大,因而所求的最大球的半径为2 -1.
★★★★★如果直角三角形的斜边与平面α平行,两条直角边所在直线与平面α所成的角分
别为 21θθ和,则 ( B )A .
1sin sin 2212≥+θθ B .1sin sin 2212≤+θθ C .1sin sin 2212>+θθ D .
1sin sin 22
12<+θθ。

相关文档
最新文档