解析几何解答题专练

合集下载

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练及答案解析

高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。

最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)

最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)

最新高考数学“平面解析几何”解答题专项训练(20道题,后附答案)一、解答题(共20题;共195分)1.已知在△ABC中,点A(﹣1,0),B(0,√3),C(1,﹣2).(Ⅰ)求边AB上高所在直线的方程;(Ⅱ)求△ABC的面积S△ABC.2.已知三角形△ABC的三个顶点是A(4,0),B(6,7),C(0,8).(1)求BC边上的高所在直线的方程;(2)求BC边上的中线所在直线的方程.3.已知椭圆C:x2a +y2b=1(a>b>0)的右焦点为F(√2,0),过点F且垂直于x轴的直线与椭圆相交所得的弦长为2.(1)求椭圆C的方程;(2)过椭圆内一点P(0,t),斜率为k的直线l交椭圆于M,N两点,设直线OM,PN(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数λ,使得k1+k2=λk,求实数λ的取值范围.4.在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).(1)求BC边上的高所在的直线方程;(2)设AC中点为D,求△DBC的面积.5.焦距为2c的椭圆Γ:x2a2+y2b2=1( a>b>0),如果满足“ 2b=a+c”,则称此椭圆为“等差椭圆”.(1)如果椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,求ba的值;(2)如果椭圆Γ:x2a +y2b=1( a>b>0)是“等差椭圆”,过D(0,a)作直线l与此“等差椭圆”只有一个公共点,求此直线的斜率;(3)椭圆Γ:x2a2+y2b2=1( a>b>0)是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;(4)对于焦距为12的“等差椭圆”,点A为椭圆短轴的上顶点,P为椭圆上异于A点的任一点,Q为P关于原点O的对称点(Q也异于A),直线AP、AQ分别与x轴交于M、N两点,判断以线段MN为直径的圆是否过定点?说明理由.6.在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.7.已知圆心为C的圆经过A(0,1)和B(3,4),且圆心C在直线l:x+2y−7=0上.(1)求圆C的标准方程;(2)求过原点且与圆C相切的直线方程.8.已知椭圆C:x2a2+y2b2=1(a>b>0),F(﹣c,0)为其左焦点,点P(﹣a2c,0),A1,A2分别为椭圆的左、右顶点,且|A1A2|=4,|PA1|= 2√33|A1F|.(1)求椭圆C的方程;(2)过点A1作两条射线分别与椭圆交于M、N两点(均异于点A1),且A1M⊥A1N,证明:直线MN恒过x轴上的一个定点.9.已知动点P与两个定点O(0,0),A(3,0)的距离的比为12.(1)求动点P的轨迹C的方程;(2)过点B(−2,1)的直线l与曲线C交于M、N两点,求线段MN长度的最小值;(3)已知圆Q的圆心为Q(t,t)(t>0),且圆Q与x轴相切,若圆Q与曲线C有公共点,求实数t的取值范围.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,过右焦点且垂直于长轴的直线与椭圆C交于P,Q两点,且|PQ|=√2.(1)求椭圆C的方程;(2)A,B是椭圆C上的两个不同点,若直线OA,OB的斜率之积为−12(以O为坐标原点),M是OA的中点,连接BM并延长交椭圆C于点N,求|BN||BM|的值.11.已知抛物线y2=2px(p>0)上的两个动点A(x1,y1)和B(x2,y2),焦点为F.线段AB的中点为M(3,y0),且A,B两点到抛物线的焦点F的距离之和为8.(1)求抛物线的标准方程;(2)若线段AB 的垂直平分线与x 轴交于点C ,求 △ABC 面积的最大值. 12.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的长轴长为4,焦距为 2√3 .(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)设直线 l : y =kx +m 与椭圆 C 交于 P , Q 两个不同的点,且 OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =0 , O 为坐标原点,问:是否存在实数 λ ,使得 |PQ ⃗⃗⃗⃗⃗ |=λ|OP ⃗⃗⃗⃗⃗ |⋅|OQ ⃗⃗⃗⃗⃗⃗ | 恒成立?若存在,请求出实数 λ ,若不存在,请说明理由.13.在平面直角坐标系xOy 中,已知椭圆E : x 2a 2+y 2b 2=1 (a >b >0)的离心率为 12 ,且椭圆E 的短轴的端点到焦点的距离等于2. (1)求椭圆E 的标准方程;(2)己知A ,B 分别为椭圆E 的左、右顶点,过x 轴上一点P (异于原点)作斜率为k(k≠0)的直线l 与椭圆E 相交于C ,D 两点,且直线AC 与BD 相交于点Q .①若k =1,求线段CD 中点横坐标的取值范围;②判断 OP⇀⋅OQ ⇀ 是否为定值,并说明理由. 14.已知椭圆M :x 2a 2+y 2b 2 =1(a >b >0)的离心率为 12 ,左焦点F 1到直线 x =−a 2c 的距离为3,圆N 的方程为(x ﹣c )2+y 2=a 2+c 2(c 为半焦距),直线l :y=kx+m (k >0)与椭圆M 和圆N 均只有一个公共点,分别设为A ,B .(1)求椭圆M 的方程和直线l 的方程;(2)在圆N 上是否存在点P ,使 |PB||PA|=2√2 ,若存在,求出P 点坐标,若不存在,说明理由.15.已知抛物线 E 的顶点在原点,焦点 F 在 x 轴上,若点 P(2,2) 在抛物线上.(1)求抛物线 E 的方程;(2)如图,过点 P 且斜率为 k(−2≤k ≤−12) 的直线 l 与抛物线 E 的另一个交点为 A ,过点 P 与直线 l 垂直的直线 m 交 y 轴于点 B ,求直线 AB 的斜率的取值范围. 16.已知双曲线与椭圆x 225+y 29=1 有相同焦点,且经过点(4,6).(1)求双曲线方程;(2)若双曲线的左,右焦点分别是F 1 , F 2 , 试问在双曲线上是否存在点P ,使得|PF 1|=5|PF 2|.请说明理由.17.过抛物线 C:y 2=2px(p >0) )的焦点F 且斜率为 1 的直线交抛物线C 于M ,N 两点,且 |MN|=2 .(1)求p 的值;(2)抛物线C 上一点 Q(x 0,1) ,直线 l:y =kx +m (其中 k ≠0 )与抛物线C 交于A ,B 两个不同的点(A ,B 均与点Q 不重合).设直线QA ,QB 的斜率分别为 k 1,k 2 , k 1k 2=−12 .直线l 是否过定点?如果是,请求出所有定点;如果不是,请说明理由; 18.椭圆 C:x 2a2+y 2b 2=1(a >b >0) 的离心率为 12 ,且过点 (−1,32) .(1)求椭圆 C 的方程;(2)设 P(x,y) 为椭圆 C 上任一点, F 为其右焦点,点 P ′ 满足 PP ′⇀=(4−x,0) .①证明: |PP ′⇀||PF ⇀| 为定值; ②设直线 y =12x +m 与椭圆 C 有两个不同的交点 A 、B ,与 y 轴交于点 M .若 |AF|,|MF|,|BF| 成等差数列,求 m 的值. 19.已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2 √2 。

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)

高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习及答案解析版

1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB(O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( ) A .2 B .3 C .2 D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( ) A.内切 B.相交 C.外切 D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r⋅的取值范围为( )A .()21,1- B .()21,2- C .()1,2 D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)

高中数学解析几何解答题(有答案)解析几何解答题1、椭圆G:的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(0,3)到椭圆上的点最远距离为(1)求此时椭圆G的方程;(2)设斜率为k(k0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于过点P(0,)、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.解:(1)根据椭圆的几何性质,线段F1F2与线段B1B2互相垂直平分,故椭圆中心即为该四点外接圆的圆心…………………1分故该椭圆中即椭圆方程可为………3分设H(x,y)为椭圆上一点,则…………… 4分若,则有最大值…………………5分由(舍去)(或b2+3b+927,故无解)…………… 6分若…………………7分由所求椭圆方程为………………… 8分(1)设,则由两式相减得……③又直线PQ直线m直线PQ方程为将点Q()代入上式得,……④…………………11分由③④得Q()…………………12分而Q点必在椭圆内部,由此得 ,故当时,E、F两点关于点P、Q的直线对称14分2、已知双曲线的左、右顶点分别为,动直线与圆相切,且与双曲线左、右两支的交点分别为 .(Ⅰ)求的取值范围,并求的最小值;(Ⅱ)记直线的斜率为,直线的斜率为,那么,是定值吗?证明你的结论.解:(Ⅰ)与圆相切, ……①由 ,得 ,,故的取值范围为 .由于,当时,取最小值 .6分(Ⅱ)由已知可得的坐标分别为,由①,得,为定值.12分3、已知抛物线的焦点为F,点为直线与抛物线准线的交点,直线与抛物线相交于、两点,点A关于轴的对称点为D.(1)求抛物线的方程。

(2)证明:点在直线上;(3)设,求的面积。

.解:(1)设,,,的方程为.(2)将代人并整理得,从而直线的方程为,即令所以点在直线上(3)由①知,因为,故,解得所以的方程为又由①知故4、已知椭圆的中心在坐标原点,焦点在轴上,离心率为,点(2,3)、在该椭圆上,线段的中点在直线上,且三点不共线.(I)求椭圆的方程及直线的斜率;(Ⅱ)求面积的最大值.解:(I)设椭圆的方程为,则,得, .所以椭圆的方程为.…………………3分设直线AB的方程为 (依题意可知直线的斜率存在),设,则由,得,由,得,,设,易知,由OT与OP斜率相等可得,即,所以椭圆的方程为,直线AB的斜率为 (6)分(II)设直线AB的方程为,即,由得,,.………………8分点P到直线AB的距离为 .于是的面积为……………………10分设,,其中 .在区间内,,是减函数;在区间内,,是增函数.所以的最大值为 .于是的最大值为18.…………………12分5、设椭圆的焦点分别为、,直线:交轴于点,且.(Ⅰ)试求椭圆的方程;(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.解:(Ⅰ)由题意, -------1分为的中点------------2分即:椭圆方程为 ------------3分(Ⅱ)当直线与轴垂直时,,此时,四边形的面积不符合题意故舍掉;------------4分同理当与轴垂直时,也有四边形的面积不符合题意故舍掉;------------5分当直线,均与轴不垂直时,设 : ,代入消去得: ------------6分设 ------------7分所以,------------8分所以,------------9分同理 ------------11分所以四边形的面积由,------------12分所以直线或或或 ---------13分6、已知抛物线P:x2=2py(p0).(Ⅰ)若抛物线上点到焦点F的距离为.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点到焦点F的距离与到准线距离相等,即到的距离为3;,解得.抛物线的方程为.4分(ⅱ)抛物线焦点,抛物线准线与y轴交点为,显然过点的抛物线的切线斜率存在,设为,切线方程为.由,消y得,6分,解得.7分切线方程为.8分(Ⅱ)直线的斜率显然存在,设:,设,,由消y得.且.∵ ,直线:,与联立可得,同理得.10分∵焦点,,,12分以为直径的圆过焦点.14分7、在平面直角坐标系中,设点,以线段为直径的圆经过(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论. 解:(I)由题意可得,2分所以,即 4分即,即动点的轨迹的方程为 5分(II)设直线的方程为 , ,则 .由消整理得,6分则,即 .7分.9分直线12分即所以,直线恒过定点 .13分8、已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.解:(Ⅰ)因为椭圆上一点和它的两个焦点构成的三角形周所以,1分又椭圆的离心率为,即,所以,2分所以, .4分所以,椭圆的方程为 .5分(Ⅱ)方法一:不妨设的方程,则的方程为 . 由得,6分设,,因为,所以,7分同理可得,8分所以,,10分,12分设,则,13分当且仅当时取等号,所以面积的最大值为 .14分方法二:不妨设直线的方程 .由消去得,6分设,,则有,.①7分因为以为直径的圆过点,所以 .由,得 .8分将代入上式,得 .将①代入上式,解得或(舍).10分所以(此时直线经过定点,与椭圆有两个交点),所以.12分设,则 .所以当时,取得最大值 .14分9、过抛物线C: 上一点作倾斜角互补的两条直线,分别与抛物线交于A、B两点。

(完整版)解析几何练习题及答案

(完整版)解析几何练习题及答案

解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。

专题37平面解析几何解答题(第二部分)

专题37平面解析几何解答题(第二部分)

专题37平面解析几何解答题(第二部分)一、解答题1.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.2.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r r .证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.3.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P满足NP u u u v u u u v .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.5.如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF ==(2)若1,PF PQ =求椭圆的离心率.e6.已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.7.已知椭圆2222:1(0)x y E a b a b +=>>过点,且离心率e =.(1)求椭圆E 的方程;(2)设直:1()l x my m R =-∈交椭圆E 于,A B 两点,判断点9(,0)4G -与以线段AB 为直径的圆的位置关系,并说明理由.8.如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.设椭圆E 的方程为()222210x y a b a b +=>>,点O 为坐标原点,点A 的坐标为 ()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足 2BM MA =,直线OM (Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为 72,求E 的方程.10.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.11.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB V 面积的最大值.12.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.13.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.14.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.15.在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 16.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.17.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u v u u u v ,求|AB |.18.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.。

专题38平面解析几何解答题(第二部分)

专题38平面解析几何解答题(第二部分)

专题38平面解析几何解答题(第二部分)一、解答题1.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.2.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.3.如图,已知抛物线211C 4x :y=,圆222C (y 1)1x +-=:,过点 P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆 2C 相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.4.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.5.已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由. 6.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r ,求直线OQ 斜率的最大值.7.如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF|–1.(Ⅰ)求p 的值;(Ⅱ)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M.求M 的横坐标的取值范围.8.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.9.已知曲线2:,2x C y D =,为直线12y =-上的动点,过D 作C 的两条切线,切点分别为,A B . (1)证明:直线AB 过定点:(2)若以50,2E ⎛⎫ ⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 10.设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.11.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.12.设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.13.在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.14.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OHON ;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.15.已知点F 为抛物线 2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线 E 上,且3AF =.(Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长 AF 交抛物线E 于点 B ,证明:以点F 为圆心且与直线 GA 相切的圆,必与直线GB 相切.。

大学解析几何考试题及答案

大学解析几何考试题及答案

大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。

高考数学解析几何解答题专项练习题(附解析)

高考数学解析几何解答题专项练习题(附解析)

高考数学解析几何解答题专项练习题(附解析)各科成绩的提高是同学们提高总体学习成绩的重要途径,大伙儿一定要在平常的练习中不断积存,查字典数学网为大伙儿整理了解析几何解答题专题训练题,期望同学们牢牢把握,不断取得进步!1.已知过抛物线y2=2px(p0)的焦点,斜率为22的直线交抛物线于A(x1,y1),B(x2,y2)(x1(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若OC=OA+OB,求的值.解(1)直线AB的方程是y=22x-p2,与y2=2px联立,从而有4x2-5px+ p2=0,因此x1+x2=5p4.由抛物线定义得|AB|=x1+x2+p=9,因此p=4,从而抛物线方程是y2=8x.(2)由p=4,知4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-22,y2=42,从而A(1,-22),B(4,42).设OC=(x3,y3)=(1,-22)+(4,42)=(4+1,42-22),又y23=8x3 ,因此[22(2-1)]2=8(4+1),即(2-1)2=4+1,解得=0,或=2.2.已知圆心为C的圆,满足下列条件:圆心C位于x 轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为23,圆C的面积小于13.(1)求圆C的标准方程;(2)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在如此的直线l,使得直线OD 与MC恰好平行?假如存在,求出l的方程;假如不存在,请说明理由.解(1)设圆C:(x-a)2+y2=R2(a0),由题意知|3a+7|32+42=R,a2+3=R解得a=1或a=138,又S=13,a=1,R=2.圆C的标准方程为(x-1)2+y2=4.(2)当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又l与圆C相交于不同的两点,联立得y=kx+3x-12+y2=4,消去y得(1+k2)x2+(6k-2)x+6=0,=(6k-2)2-24(1+k2)=12k2-24k-200,解得k 1-263或k1+263.x1+x2=-6k-21+k2,y1+y2=k(x1+x2)+6=2k+61+k2,OD=OA+OB=(x1+x2,y1+y2),MC=(1,-3),假设OD∥MC,则-3(x1+x2)=y1+y2,36k-21+k2=2k+61+k2,解得k=34-,1-2631+263,+,假设不成立,不存在如此的直线l.3.已知A(-2,0),B(2,0),点C,点D满足|AC|=2,AD=12(AB+AC).(1)求点D的轨迹方程;(2)过点A作直线l交以A,B为焦点的椭圆于M,N两点,线段MN 的中点到y轴的距离为45,且直线l与点D的轨迹相切,求该椭圆的方程.解(1)设C ,D点的坐标分别为C(x0,y0),D(x,y),则AC=(x0+2,y0),AB=(4,0),则AB+AC=(x0+6,y0),故AD=12(AB+AC)=x02+3,y02.又AD=(x+2,y),故x02+3=x+2,y02=y.解得x0=2x-2,y0=2y.代入|AC|=x0+22+y20=2,得x2+y2=1,即所求点D的轨迹方程为x2+y2=1.(2)易知直线l与x轴不垂直,设直线l的方程为y=k(x+2),①设椭圆方程为x2a2+y2a2-4=1(a24).②将①代入②整理,得(a2k2+a2-4)x2+4a2k2x+4a2k2-a4+4a2=0.③因为直线l与圆x2+y2=1相切,故|2k|k2+1=1,解得k2=13.故③式可整理为(a2-3)x2+a2x-34a4+4a2=0.设M(x1,y1),N(x2,y2),则x1+x2=-a2a2-3.由题意有a2a2-3=245(a24),解得a2=8,经检验,现在0.故椭圆的方程为x28+y24=1.4.已知点F1,F2分别为椭圆C:x2a2+y2b2=1(a0)的左、右焦点,P是椭圆C上的一点,且|F1F2|=2,F1PF2=3,△F1PF2的面积为33.(1)求椭圆C的方程;(2)点M的坐标为54,0,过点F2且斜率为k的直线l与椭圆C相交于A,B两点,关于任意的kR,MAMB是否为定值?若是,求出那个定值;若不是,说明理由.解(1)设|PF1|=m,|PF2| =n.在△PF1F2中,由余弦定理得22=m2+n2-2mncos3,化简得,m2+n2-mn=4.由S△PF1F2=33,得12mnsin3=33.化简得mn=43.因此(m+n)2=m2+n2-mn+3mn=8.m+n=22,由此可得,a=2.又∵半焦距c=1,b2=a2-c2=1.因此,椭圆C的方程为x22+y2=1.(2)由已知得F2(1,0),直线l的方程为y=k(x-1),由y=kx-1,x22+y2=1消去y,得(2k2+1)x2-4k2x+2(k2-1)=0.设A(x1,y1),B(x2,y2),则x1+x2=4k22k2+1,x1x2=2k2-12k2+1.∵MAMB=x1-54,y1x2-54,y2=x1-54x2-54+y1y2=x1-54x2-54+k2(x1-1)(x2-1)=(k2+1)x1x2-k2+54(x1+x2)+2516+k2=(k2+1)2k2-22k2+1-4k2k2+542k2+1+2516+k2=-4k2-22k2+1+2516=-716.由此可知MAMB=-716为定值.5.已知双曲线E:x2a2-y2b2=1(a0,b0)的焦距为4,以原点为圆心,实半轴长为半径的圆和直线x-y+6=0相切.(1)求双曲线E的方程;(2) 已知点F为双曲线E的左焦点,试问在x轴上是否存在一定点M,过点M任意作一条直线交双曲线E于P,Q两点(P在Q点左侧),使FPFQ 为定值?若存在,求出此定值和所有的定点M的坐标;若不存在,请说明理由.解(1)由题意知|6|12+-12=a,a=3.又∵2c=4,c=2,b=c2-a2=1.双曲线E的方程为x23-y2=1.(2)当直线为y=0时,则P(-3,0),Q(3,0),F(-2,0),FPFQ=( -3+2,0)(3+2,0)=1.当直线不为y=0时,可设l:x=ty+m(t3),代入E:x23-y2=1,整理得(t2-3)y2+2mty+m2-3=0(t3).(*)由0,得m2+t23.设方程(*)的两个根为y1,y2,满足y1+y2=-2mtt2-3,y1y2=m2-3t2-3,FPFQ=(ty1+m+2,y1)(ty2+m+2,y2)=(t2+1)y1y2+t(m+2)(y1+y2)+(m+2)2=t2-2m2-12m-15t2-3.当且仅当2m2+12m+15=3时,FPFQ为定值,解得m1=-3-3,m2=-3+3(舍去).死记硬背是一种传统的教学方式,在我国有悠久的历史。

[必刷题]2024高三数学下册解析几何专项专题训练(含答案)

[必刷题]2024高三数学下册解析几何专项专题训练(含答案)

[必刷题]2024高三数学下册解析几何专项专题训练(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)2. 已知直线l的斜率为1,且过点P(1,2),则直线l的方程为()A. x+y3=0B. xy+3=0C. x+y+3=0D. xy3=03. 圆C的方程为x^2+y^2=4,点D(3,0)在圆外,则直线CD的斜率为()A. 1B. 1C. 3D. 34. 下列关于椭圆的方程中,离心率最小的是()A. x^2/4 + y^2/9 = 1B. x^2/9 + y^2/4 = 1C. x^2/16 + y^2/25 = 1D. x^2/25 + y^2/16 = 15. 设双曲线x^2/a^2 y^2/b^2 = 1的渐近线方程为y=kx,则k 的值为()A. a/bB. b/aC. a/bD. b/a6. 在平面直角坐标系中,点A(1,2)到直线y=3x+1的距离为()A. 2B. 3C. 4D. 57. 已知抛物线y^2=8x的焦点坐标为()A. (2,0)B. (2,0)C. (0,2)D. (0,2)8. 若直线y=2x+3与圆(x1)^2+(y2)^2=16相交,则交点的个数为()A. 0B. 1C. 2D. 39. 在等轴双曲线x^2 y^2 = 1上,点P到原点的距离为2,则点P的坐标为()A. (1,1)B. (1,1)C. (1,1)D. (1,1)10. 已知点A(2,3)和点B(2,1),则线段AB的中点坐标为()A. (0,2)B. (0,4)C. (2,2)D. (2,4)二、判断题:1. 直线y=2x+1的斜率为2,截距为1。

()2. 两个圆的半径分别为1和2,圆心距为3,则这两个圆相交。

()3. 椭圆的离心率越大,其形状越接近圆。

()4. 抛物线的焦点到准线的距离等于其焦距的一半。

解析几何专题练习(带答案)

解析几何专题练习(带答案)

解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。

专题11平面解析几何(第一部分)

专题11平面解析几何(第一部分)

专题11平面解析几何(第一部分)一、单选题1.在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .42.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .3.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为 ( )A .1B .2C D .4.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A .①B .②C .①②D .①②③ 5.圆心为()1,1且过原点的圆的方程是A .()()22111x y -+-=B .()()22111x y +++=C .()()22112x y +++=D .()()22112x y -+-=6.若直线210x y +-=是圆22()1x a y -+=的一条对称轴,则=a ( )A .12 B .12- C .1 D .1-7.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .78.已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m =A .1±B .C .D .2±9.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则 A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b二、填空题10.已知椭圆22221(0)x y M a b a b+=>>:,双曲线22221x y N m n -=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为;双曲线N 的离心率为.三、解答题11.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.四、单选题12.若双曲线2222:1x y C a b -=离心率为2,过点,则该双曲线的方程为( )A .2221x y -=B .2213y x -= C .22531x y -= D .22126x y -=五、填空题13.已知双曲线C 的焦点为(2,0)-和(2,0)C 的方程为.14.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线为20x y +=,一个焦点为,则=a ;b =.15.已知双曲线221x y m +=的渐近线方程为y =,则m =. 16.已知双曲线22:163x y C -=,则C 的右焦点的坐标为;C 的焦点到其渐近线的距离是. 17.已知双曲线2221x y a-= (a >0)+y =0,则a =.六、单选题18.已知双曲线2221x y a-=(a >0则a =A B .4 C .2 D .12七、填空题19.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .20.若双曲线2221(0)4x y a a -=>a =. 21.若双曲线221y xm -=m =. 22.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=.23.已知()2,0是双曲线2221y x b -=(0b >)的一个焦点,则b =.。

解析几何专项训练试题答案

解析几何专项训练试题答案

解析几何专项训练试题答案一、选择题1. 若点A(2,3)关于直线x=3的对称点为A',则A'的坐标为:A. (4,3)B. (2,3)C. (1,3)D. (5,3)答案:D解析:点A(2,3)关于直线x=3的对称点A'的横坐标为3-(2-3)=4,纵坐标不变,因此A'的坐标为(4,3)。

2. 已知圆的标准方程为$(x-a)^2+(y-b)^2=r^2$,则其圆心坐标为:A. (a, b)B. (a, r)C. (b, r)D. (r, a)答案:A解析:根据圆的标准方程$(x-a)^2+(y-b)^2=r^2$,可知圆心坐标为(a, b)。

3. 直线2x-3y=6的斜率为:A. 2/3B. -2/3C. 3/2D. -3/2答案:B解析:直线方程2x-3y=6可以转化为y=(2/3)x-2,其斜率为2/3,因此答案为-2/3。

4. 已知三角形ABC的三个顶点分别为A(1,2),B(4,6),C(7,2),求三角形ABC的面积。

A. 4B. 6C. 8D. 10答案:C解析:首先计算线段AB和AC的斜率,分别为1和-1,说明AB和AC 垂直。

然后计算AB的长度为3,由于AC与AB垂直,所以三角形ABC 为直角三角形,其面积为1/2 * AB长度 * BC长度 = 1/2 * 3 * 5 = 7.5。

选项中没有7.5,但最接近的是8,因此选择C。

5. 已知椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,则其焦点坐标为:A. (a, 0)B. (0, b)C. (a, b)D. (0, 0)答案:D解析:椭圆的标准方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其焦点位于y轴上,且焦距为2c,因此焦点坐标为(0, c)或(0, -c)。

由于题目未给出具体数值,无法确定c的值,但焦点坐标的形式为(0, c),因此答案为D。

专题36平面解析几何解答题(第一部分)

专题36平面解析几何解答题(第一部分)

专题36平面解析几何解答题(第一部分)一、解答题1.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.2.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG V 是直角三角形; (ii )求PQG V 面积的最大值.3.已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.4.设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.5.平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>抛物线E :22x y=的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.6.已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).7.已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.8.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =u u u r u u u r.证明:直线HN 过定点.9.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=u u u r u u u r ,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.10.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.11.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.12.平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144+=x y E a b ,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求OQ OP的值;(ⅱ)求ABQ ∆面积的最大值.13.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子在滑槽AB 内做往复运动时,带动绕O 转动一周(不动时,也不动),处的笔尖画出的曲线记为.以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.14.在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>,焦距为2. (Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.15.如图,设椭圆2221x y a+=(a >1).(Ⅰ)求直线y=kx +1被椭圆截得的线段长(用a 、k 表示);(Ⅱ)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.16.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.17.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 18.设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 19.已知抛物线21:4C x y =的焦点也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为26. (1)求2C 的方程; (2)过点的直线l 与1C 相交于,两点,与2C 相交于,两点,且AC u u u r 与BD u u u r同向(ⅰ)若AC BD =,求直线l 的斜率 (ⅱ)设1C 在点处的切线与x 轴的交点为M ,证明:直线l 绕点旋转时,MFD ∆总是钝角三角形。

解析几何解答题精选(高考前必练)

解析几何解答题精选(高考前必练)

∙1F 2F ∙Qxy AO考前必练---------解析几何解答题精选1、已知点P 是⊙O :229x y +=上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足23DQ DP =。

(1)求动点Q 的轨迹方程;(2)已知点(1,1)E ,在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使1()2OE OM ON =+(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由。

2、设1F 、2F 分别是椭圆C :22221(0)x y a b a b +=>>的左右焦点。

(1)设椭圆C 上点33,2到两点1F 、2F 距离和等于4,写出椭圆C 的方程和焦点坐标;(2)设K 是(1)中所得椭圆上的动点,求线段1KF 的中点B 的轨迹方程;(3)设点P 是椭圆C 上的任意一点,过原点的直线L 与椭圆相交于M ,N 两点,当直线PM ,PN 的斜率都存在,并记为PM k ,PN k ,试探究PM PN k K ⋅的值是否与点P 及直线L 有关,不必证明你的结论。

3、已知A 、B 分别是直线x y 33=和x y 33-=上的两个动点,线段AB 的长为32,P 是AB 的中点.(1)求动点P 的轨迹C 的方程;(2)过点)0,1(Q 任意作直线l (与x 轴不垂直),设l 与(1)中轨迹C 交于M N 、两点,与y 轴交于R 点.若RM MQ λ= ,RN NQ μ=,证明:λμ+为定值.4、设椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为12,F F ,上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且02221=+Q F F F .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若过A 、Q 、2F 三点的圆恰好与直线l :033=--y x 相切,求椭圆C 的方程;(III)在(Ⅱ)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点)0,(m P 使得以PN PM ,为邻边的平行四边形是菱形,如果存在,求出m 的取值范围,如果不存在,说明理由.5、如图,椭圆12222=+by a x (0>>b a )的左、右焦点分别为F 1(-1,0)、F 2(1,0),M、N 是直线2a x =上的两个动点,且0N F M F 21=∙。

解答题针对训练: 解析几何(解析版)

解答题针对训练: 解析几何(解析版)

专题五 解答题针对训练之解析几何1.已知椭圆x 2a2+y 2b 2=1(a >b >0)的一个顶点为A (0,﹣3),右焦点为F ,且|OA |=|OF |,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【分析】(Ⅰ)根据可得c =b =3,由a 2=b 2+c 2,可得a 2=18,即可求出椭圆方程; (Ⅱ)根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3,联立方程组,求出点B 的坐标,再根据中点坐标公式可得点P 的坐标,根据向量的知识求出点C 的坐标,即可求出CP 的斜率,根据直线垂直即可求出k 的值,可得直线AB 的方程.【解答】解:(Ⅰ)由已知可得b =3,记半焦距为c ,由|OF |=|OA |可得c =b =3, 由a 2=b 2+c 2,可得a 2=18, ∴椭圆的方程为x 218+y 29=1,(Ⅱ):∵直线AB 与C 为圆心的圆相切于点P , ∴AB ⊥CP ,根据题意可得直线AB 和直线CP 的斜率均存在,设直线AB 的方程为y =kx ﹣3, 由方程组{y =kx −3x 218+y 29=1,消去y 可得(2k 2+1)x 2﹣12kx =0,解得x =0,或x =12k2k 2+1,依题意可得点B 的坐标为(12k2k 2+1,6k 2−32k 2+1), ∵P 为线段AB 的中点,点A 的坐标为(0,﹣3),∴点P 的坐标为(6k2k 2+1,−32k 2+1),由3OC →=OF →,可得点C 的坐标为(1,0),故直线CP 的斜率为−32k 2+16k2k 2+1−1=32k 2−6k+1,∵AB ⊥CP ,∴k •32k 2−6k+1=−1,整理可得2k 2﹣3k +1=0, 解得k =12或k =1,∴直线AB 的方程为y =12x ﹣3或y =x ﹣3.2.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【分析】(1)方法一:设直线AB 的方程,代入抛物线方程,根据抛物线的焦点弦公式即可求得k 的值,即可求得直线l 的方程;方法二:根据抛物线的焦点弦公式|AB |=2p sin 2θ,求得直线AB 的倾斜角,即可求得直线l的斜率,求得直线l 的方程;(2)根据过A ,B 分别向准线l 作垂线,根据抛物线的定义即可求得半径,根据中点坐标公式,即可求得圆心,求得圆的方程.【解答】解:(1)方法一:抛物线C :y 2=4x 的焦点为F (1,0), 设直线AB 的方程为:y =k (x ﹣1),设A (x 1,y 1),B (x 2,y 2),则{y =k(x −1)y 2=4x ,整理得:k 2x 2﹣2(k 2+2)x +k 2=0,则x 1+x 2=2(k 2+2)k 2,x 1x 2=1,由|AB |=x 1+x 2+p =2(k 2+2)k 2+2=8,解得:k 2=1,则k =1,∴直线l 的方程y =x ﹣1;方法二:抛物线C :y 2=4x 的焦点为F (1,0),设直线AB 的倾斜角为θ,由抛物线的弦长公式|AB |=2psin 2θ=4sin 2θ=8,解得:sin 2θ=12, ∴θ=π4,则直线的斜率k =1,∴直线l 的方程y =x ﹣1;(2)由(1)可得AB 的中点坐标为D (3,2),则直线AB 的垂直平分线方程为y ﹣2=﹣(x ﹣3),即y =﹣x +5,设所求圆的圆心坐标为(x 0,y 0),则{y 0=−x 0+5(x 0+1)2=(y 0−x 0+1)22+16, 解得:{x 0=3y 0=2或{x 0=11y 0=−6,因此,所求圆的方程为(x ﹣3)2+(y ﹣2)2=16或(x ﹣11)2+(y +6)2=144.3.已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.【分析】(1)设D (t ,−12),A (x 1,y 1),则x 12=2y 1,利用导数求斜率及两点求斜率可得2tx 1﹣2y 1+1=0,设B (x 2,y 2),同理可得2tx 2﹣2y 2+1=0,得到直线AB 的方程为2tx ﹣2y +1=0,再由直线系方程求直线AB 过的定点;(2)由(1)得直线AB 的方程y =tx +12,与抛物线方程联立,利用中点坐标公式及根与系数的关系求得线段AB 的中点M (t ,t 2+12),再由EM →⊥AB →,可得关于t 的方程,求得t =0或t =±1.然后分类求得|EM →|=2及所求圆的方程. 【解答】(1)证明:设D (t ,−12),A (x 1,y 1),则x 12=2y 1,由于y ′=x ,∴切线DA 的斜率为x 1,故y 1+12x 1−t=x 1,整理得:2tx 1﹣2y 1+1=0.设B (x 2,y 2),同理可得2tx 2﹣2y 2+1=0. 故直线AB 的方程为2tx ﹣2y +1=0.∴直线AB 过定点(0,12);(2)解:由(1)得直线AB 的方程y =tx +12.由{y =tx +12y =x22,可得x 2﹣2tx ﹣1=0. 于是x 1+x 2=2t ,y 1+y 2=t(x 1+x 2)+1=2t 2+1. 设M 为线段AB 的中点,则M (t ,t 2+12),由于EM →⊥AB →,而EM →=(t ,t 2−2),AB →与向量(1,t )平行,∴t +(t 2﹣2)t =0,解得t =0或t =±1.当t =0时,|EM →|=2,所求圆的方程为x 2+(y −52)2=4;当t =±1时,|EM →|=√2,所求圆的方程为x 2+(y −52)2=2.4.已知椭圆C 的中心在原点O ,焦点在x 轴上,左、右焦点分别为F 1,F 2,离心率为12,右焦点到右顶点的距离为1. (1)求椭圆C 的方程;(2)过F 2的直线l 与椭圆C 交于不同的两点A ,B ,则△F 1AB 的面积是否存在最大值?若存在,求出这个最大值及直线l 的方程;若不存在,请说明理由. 【分析】(1)利用椭圆的简单性质,结合离心率求解椭圆方程即可.(2)设A (x 1,y 1),B (x 2,y 2),不妨设 y 1>0,y 2<0由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,通过直线与椭圆方程联立,几何韦达定理,弦长公式求解三角形的面积.然后求解直线方程.【解答】解:(1)设椭圆C :x 2a 2+y 2b 2=1(a >b >0) 因为e =ca =12,a ﹣c =1 所以a =2,c =1, 即椭圆C :x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),不妨设 y 1>0,y 2<0由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由{x =my +1x 24+y 23=1得(3m 2+4)y 2+6my ﹣9=0,则y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4, ∴S △F 1AB =12|F 1F 2|(y 1−y 2)=12√m 2+13m 2+4,令√m 2+1=t ,可知t ≥1则m 2=t 2﹣1, ∴S △F 1AB =12t3t 2+1+123t+1t令f(t)=3t +1t ,则f ′(t)=3−1t 2,当t ≥1时,f '(t )>0,即f (t )在区间[1,+∞)上单调递增, ∴f (t )≥f (1)=4,∴S △F 1AB ≤3,即当t =1,m =0时,△F 1AB 的面积取得最大值3, 此时直线l 的方程为x =1.5.已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 【分析】(1)设A (x 1,y 1),B (x 2,y 2),利用点差法得6(x 1﹣x 2)+8m (y 1﹣y 2)=0,k =y 1−y 2x 1−x 2=−68m=−34m又点M (1,m )在椭圆内,即14+m 23<1,(m >0),解得m 的取值范围,即可得k <−12,(2)设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3),可得x 1+x 2=2由FP →+FA →+FB →=0→,可得x 3﹣1=0,由椭圆的焦半径公式得则|F A |=a ﹣ex 1=2−12x 1,|FB |=2−12x 2,|FP |=2−12x 3=32.即可证明|F A |+|FB |=2|FP |.【解答】解:(1)设A (x 1,y 1),B (x 2,y 2), ∵线段AB 的中点为M (1,m ), ∴x 1+x 2=2,y 1+y 2=2m 将A ,B 代入椭圆C :x 24+y 23=1中,可得{3x 12+4y 12=123x 22+4y 22=12, 两式相减可得,3(x 1+x 2)(x 1﹣x 2)+4(y 1+y 2)(y 1﹣y 2)=0, 即6(x 1﹣x 2)+8m (y 1﹣y 2)=0, ∴k =y 1−y 2x 1−x 2=−68m=−34m点M (1,m )在椭圆内,即14+m 23<1,(m >0),解得0<m <32 ∴k =−34m <−12.(2)证明:设A (x 1,y 1),B (x 2,y 2),P (x 3,y 3), 可得x 1+x 2=2∵FP →+FA →+FB →=0→,F (1,0),∴x 1﹣1+x 2﹣1+x 3﹣1=0, ∴x 3=1由椭圆的焦半径公式得则|F A |=a ﹣ex 1=2−12x 1,|FB |=2−12x 2,|FP |=2−12x 3=32. 则|F A |+|FB |=4−12(x 1+x 2)=3,∴|F A |+|FB |=2|FP |,6.已知A ,B 分别为椭圆E :x 2a2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →•GB →=8.P为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【分析】(1)求出AG →•GB →=a 2﹣1=8,解出a ,求出E 的方程即可;(2)联立直线和椭圆的方程求出C ,D 的坐标,求出直线CD 的方程,判断即可. 【解答】解:如图所示:(1)由题意A (﹣a ,0),B (a ,0),G (0,1),∴AG →=(a ,1),GB →=(a ,﹣1),AG →•GB →=a 2﹣1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1;(2)由(1)知A (﹣3,0),B (3,0),设P (6,m ), 则直线P A 的方程是y =m9(x +3),联立{x 29+y 2=1y =m 9(x +3)⇒(9+m 2)x 2+6m 2x +9m 2﹣81=0,由韦达定理﹣3x c =9m 2−819+m 2⇒x c =−3m 2+279+m 2,代入直线P A 的方程为y =m9(x +3)得: y c =6m 9+m2,即C (−3m 2+279+m 2,6m 9+m 2),直线PB 的方程是y =m3(x ﹣3),联立方程{x 29+y 2=1y =m 3(x −3)⇒(1+m 2)x 2﹣6m 2x +9m 2﹣9=0,由韦达定理3x D =9m 2−91+m 2⇒x D =3m 2−31+m 2,代入直线PB 的方程为y =m3(x ﹣3)得y D =−2m1+m 2, 即D (3m 2−31+m 2,−2m1+m 2), 则①当x c =x D 即27−3m 29+m 2=3m 2−3m 2+1时,有m 2=3,此时x c =x D =32,即CD 为直线x =32,②当x c ≠x D 时,直线CD 的斜率K CD =y C −y D x C−x D=4m3(3−m 2),∴直线CD 的方程是y −−2m 1+m 2=4m3(3−m 2)(x −3m 2−31+m 2),整理得:y =4m3(3−m 2)(x −32),直线CD 过定点(32,0). 综合①②故直线CD 过定点(32,0).7.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |. (1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .【分析】(1)利用已知条件可得,c +a =b 2a=c 2−a 2a,化简得到a 和c 的关系,即可得到答案;(2)法一:设B (x 0,y 0),然后分两种情况进行证明,①当BF ⊥AF 时,∠BF A =2∠BAF =90°;②当BF 与AF 不垂直时,然后利用同角三角函数关系以及二倍角公式进行化简变形,即可证明.法二:延长AF 至点B ',使FB '=FB ,设出点B 的坐标,然后利用焦半径公式得到BF ,从而得到B '的坐标,再通过分析得到BA =BB ',从而证明得到答案.【解答】解:(1)当|AF |=|BF |且BF ⊥AF 时,有c +a =b 2a=c 2−a 2a,所以a =c ﹣a ,则e =c a=2;(2)法一:由(1)得c =2a ,b =√3c , 设B (x 0,y 0),则x 0>0,y 0>0,且x 02a 2−y 023a 2=1,即y 02=3x 02﹣3a 2.①当|BF |=|AF |且BF ⊥AF 时,∠BF A =2∠BAF =90°; ②当BF 与AF 不垂直时, tan ∠BAF =y 0x+a,tan ∠BF A =−y 0x0−c,∴tan2∠BAF =2tan∠BAF1−tan 2∠BAF =2(x 0+a)y 0(x0+a)2−y 02=2(x 0+a)y 0−2(x0+a)(x 0−2a)=−y 0x 0−c,∴tan2∠BAF =tan ∠BF A ,即∠BF A =2∠BAF , 综上∠BF A =2∠BAF . 法二:延长AF 至点B ',使FB '=FB ,设B (x 0,y 0),则BF =ex 0﹣a =2x 0﹣a , 所以B ′(2x 0﹣a +c ,0),又因为点A (﹣a ,0),所以x B′+x A2=2x0−2a+c2=2x0−2a+2a2=x0=x B,所以BA=BB',所以∠BAF=∠BB'F=12∠BFA,即∠BF A=2∠BAF.8.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,点A(b,0),点B、F分别为椭圆的上顶点和左焦点,且|BF|⋅|BA|=2√6.(Ⅰ)求椭圆C的方程;(Ⅱ)若过定点M(0,2)的直线l与椭圆C交于G,H两点(G在M,H之间)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围?如果不存在,请说明理由.【分析】(Ⅰ)根据离心率可得ba =√32,再根据且|BF|⋅|BA|=2√6,可得ab=√12,由此能求出椭圆的方程.(Ⅱ)将直线l1:y=x+2代入椭圆中,得7x2+16x+4=0,由此利用韦达定理能求出GH 的中点M,再由菱形的对角线互相垂直平分能求出存在满足题意的点P,且能求出m的值.【解答】解:(Ⅰ)∵椭圆C:x 2a2+y2b2=1(a>b>0)的离心率e=12,∴e2=1−b 2a2=14∴ba =√32∵|BF|=√b2+c2=a,|BA|=√2b,∴√2ab=2√6,∴ab=√12,∴a=2,b=√3,故椭圆的方程为x 24+y 23=1;(Ⅱ)设l 的方程为y =kx +2(k >0),与椭圆方程联立,消去y 可得(3+4k 2)x 2+16kx +4=0.设G (x 1,y 1),H (x 2,y 2),则x 1+x 2=−16k3+4k 2∴PG →+PH →=(x 1﹣m ,y 1)+(x 2﹣m ,y 2)=(x 1+x 2﹣2m ,y 1+y 2). =(x 1+x 2﹣2m ,k (x 1+x 2)+4)又GH →=(x 2﹣x 1,y 2﹣y 1)=(x 2﹣x 1,k (x 2﹣x 1)).由于菱形对角线互相垂直,则(PG →+PH →)•GH →=0,∴(x 2﹣x 1)[(x 1+x 2)﹣2m ]+k (x 2﹣x 1)[k (x 1+x 2)+4]=0. 故(x 2﹣x 1)[(x 1+x 2)﹣2m +k 2(x 1+x 2)+4k ]=0. ∵k >0,所以x 2﹣x 1≠0.∴(x 1+x 2)﹣2m +k 2(x 1+x 2)+4k =0,即(1+k 2)(x 1+x 2)+4k ﹣2m =0. ∴(1+k 2)(−16k3+4k 2)+4k ﹣2m =0. 解得m =−2k 3+4k2,即m =−23k+4k∵3k+4k ≥2√3k⋅4k =4√3,当且仅当3k=4k ,即k =√32时取等号, 所以−√36≤m <0,故存在满足题意的点P 且m 的取值范围是[−√36,0). 9.设D 是圆O :x 2+y 2=16上的任意一点,m 是过点D 且与x 轴垂直的直线,E 是直线m 与x 轴的交点,点Q 在直线m 上,且满足2|EQ |=√3|ED |.当点D 在圆O 上运动时,记点Q 的轨迹为曲线C . (1)求曲线C 的方程.(2)已知点P (2,3),过F (2,0)的直线l 交曲线C 于A ,B 两点,交直线x =8于点M .判定直线P A ,PM ,PB 的斜率是否依次构成等差数列?并说明理由.【分析】(1)由题意设Q (x ,y ),D (x 0,y 0),根据2|EQ |=√3|ED |,Q 在直线m 上,则椭圆的方程即可得到;(2)设出直线l 的方程,和椭圆方程联立,利用根与系数的关系得到k 1+k 3,并求得k 2的值,由k 1+k 3=2k 2说明直线P A ,PM ,PB 的斜率成等差数列.【解答】解:(1)设Q (x ,y ),D (x 0,y 0),∵2|EQ |=√3|ED |,Q 在直线m 上, ∴x 0=x ,|y 0||√3y |.①∵点D 在圆x 2+y 2=16上运动, ∴x 02+y 02=16,将①式代入②式即得曲线C 的方程为x 2+43y 2=16,即x 216+y 212=1, (2)直线P A ,PM ,PB 的斜率成等差数列,证明如下: 由(1)知椭圆C :3x 2+4y 2=48, 直线l 的方程为y =k (x ﹣2),代入椭圆方程并整理,得(3+4k 2)x 2﹣16k 2x +16k 2﹣48=0.设A (x 1,y 1),B (x 2,y 2),直线P A ,PM ,PB 的斜率分别为k 1,k 2,k 3, 则有x 1+x 2=16k 23+4k 2,x 1x 2=16k 2−483+4k 2,可知M 的坐标为(8,6k ). ∴k 1+k 3=y 1−3x 1−2+y 2−3x 2−2=k(x 1−2)−3x 1−2+k(x 2−2)−3x 2−2=2k ﹣3•x 1+x 2−4x 1x 2+4−2(x 1+x 2)=2k ﹣3•−12−36=2k ﹣1,2k 2=2•6k−38−2=2k ﹣1. ∴k 1+k 3=2k 2.故直线P A ,PM ,PB 的斜率成等差数列.10.已知抛物线C :y 2=2px (p >0),圆E :(x ﹣3)2+y 2=1.(Ⅰ)F 是抛物线C 的焦点,A 是抛物线C 上的定点,AF →=(0,2),求抛物线C 的方程;(Ⅱ)在(Ⅰ)的条件下,过点F 的直线l 与圆E 相切,设直线l 交抛物线C 于P ,Q 两点,则在x 轴上是否存在点M 使∠PMO =∠QMO (O 为坐标原点)?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)将A 的坐标代入抛物线可得p =2,可得抛物线C 的方程;(Ⅱ)∠PMO =∠QMO ⇔k PM +k QM =0. 【解答】解:(Ⅰ)抛物线C 的焦点为F(p2,0),由AF →=(0,2)知A(p2,−2),代入抛物线方程得p =2,故抛物线C 的方程为:y 2=4x(Ⅱ)当直线的斜率不存在时,过点F (1,0)的直线不可能与圆E 相切; 所以过抛物线焦点与圆相切的直线的斜率存在, 设直线斜率为k ,则所求的直线方程为y =k (x ﹣1),所以圆心到直线l 的距离为d =√1+k 2,当直线l 与圆相切时,有d =1=√1+k 2,k =±√33所以所求的切线方程为y=√33(x−1)或y=−√33(x−1)不妨设直线l:y=√33(x−1),交抛物线于P(x1,y1),Q(x2,y2)两点,联立方程组{y=√33(x−1)y2=4x,得x2﹣14x+1=0.所以x1+x2=14,x1•x2=1,假设存在点M(t,0)使,∠PMO=∠QMO则k PM+k QM=0.所以k PM+k QM=y1x1−t +y2x2−t=√33(x1−1)x1−t+√33(x2−1)x2−t=√33[(x1−1)(x2−t)+(x2−1)(x1−t)(x1−t)(x2−t)]=√33[2x1x2−(t+1)(x1+x2)+2t(x1−t)(x2−t)]=√33[2−(t+1)⋅14+2t(x1−t)(x2−t)]=√33(−12−12t)(x1−t)(x2−t)=0即t=﹣1故存在点M(﹣1,0)符合条件,当直线l:y=−√33(x−1)时,由对称性易知点M(﹣1,0)也符合条件综上存在点M(﹣1,0)使∠PMO=∠QMO.11.设椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若椭圆E的离心率为√22,△ABF2的周长为4√6.(Ⅰ)求椭圆E的方程;(Ⅱ)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点C,D,设弦AB,CD的中点分别为M,N,证明:O,M,N三点共线.【分析】(Ⅰ)由已知椭圆E的离心率为√22,△ABF2的周长为4√6,解得:a,c,b值,可得椭圆E的方程;(Ⅱ)设A(x1,y1),B(x2,y2),M(x0,y0).利用点差法,可得k OM=−12k ,k ON=−12k,进而证得结论.【解答】(本小题满分12分)(Ⅰ)由题意知,4a =4√6,a =√6.又∵e =√22,∴c =√3,b =√3,∴椭圆E 的方程为x 26+y 23=1.…………………………(5分)(Ⅱ)易知,当直线AB 、CD 的斜率不存在时,由椭圆的对称性知,中点M ,N 在x 轴上,O ,M ,N 三点共线;当直线AB ,CD 的斜率存在时,设其斜率为k ,且设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).联立方程得{x 126+y 123=1x 226+y 223=1相减得x 126+y 123−(x 226+y 223)=0,∴x 12−x 226=−y 12−y 223,(x 1−x 2)(x 1+x 2)6=−(y 1−y 2)(y 1+y 2)3,∴y 1−y 2x 1−x 2⋅y 1+y2x 1+x 2=−36,y 1−y 2x 1−x 2⋅y 0x 0=−36,即k ⋅k OM =−12,∴k OM =−12k.同理可得k ON =−12k ,∴k OM =k ON ,所以O ,M ,N 三点共线.………………(12分) 12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)离心率e =√32,短轴长为2.(Ⅰ)求椭圆C 的标准方程;(Ⅱ) 设直线l 过椭圆C 的右焦点,并与椭圆相交于E ,F 两点,截得的弦长为52,求直线l 的方程;(Ⅲ) 如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点.试问:以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.【分析】(Ⅰ)由题意可得b =1,由离心率公式和a ,b ,c 的关系,解得a ,进而得到椭圆方程;(Ⅱ)当直线的斜率存在时,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,解方程可得k ,再由直线的斜率不存在,不成立.即可得到所求直线的方程;(Ⅲ)以MN 为直径的圆过定点(±1,0).求得M ,N 的坐标,由直径式的圆的方程可得MN 为直径的圆的方程,整理得一般式方程,令y =0,即可得到所求定点的坐标. 【解答】解:(Ⅰ)由短轴长为2,得b =1,由e =ca =√a 2−b 2a=√32,得a 2=4,b 2=1.∴椭圆C 的标准方程为x 24+y 2=1;(Ⅱ)(1)当直线的斜率存在时,设直线方程:y =k(x −√3),E (x 1,y 1),F (x 2,y 2), 由{y =k(x −√3)x 24+y 2=1可得(4k 2+1)x 2−8√3k 2x +12k 2−4=0, ∴x 1+x 2=8√3k 24k 2+1,x 1x 2=12k 2−44k 2+1,∴|EF|=√1+k 2⋅(8√3k 24k 2+1)4(12k 2−44k 2+1)=52, ∴k =±12;(2)当直线的斜率不存在时,|EF |=1不符合.∴直线方程为x −2y −√3=0和x +2y −√3=0. (Ⅲ)以MN 为直径的圆过定点(±1,0).证明如下:设P (x 0,y 0),则Q (﹣x 0,﹣y 0),且x 024+y 02=1,即x 02+4y 02=4,∵A (﹣2,0),∴直线P A 方程为:y =y 0x 0+2(x +2),∴M(0,2y 0x0+2),直线QA 方程为:y =−y 0−x+2(x +2),∴N(0,2y 0x 0−2),以MN 为直径的圆为(x −0)(x −0)+(y −2y 0x 0+2)(y −2y 0x 0−2)=0,或通过求得圆心O ′(0,2x 0y 0x 02−4),r =|4y 0x 02−4|得到圆的方程.即x 2+y 2−4x 0y 0x 02−4y +4y 02x 02−4=0,∵x 02−4=−4y 02,∴x 2+y 2+x0y 0y −1=0,令y =0,则x 2﹣1=0,解得x =±1. ∴以MN 为直径的圆过定点(±1,0).13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,点A 为椭圆的右顶点,点B 为椭圆的上顶点,点F 为椭圆的左焦点,且△F AB 的面积是1+√32. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x =my +1与椭圆C 交于P 、Q 两点,点P 关于x 轴的对称点为P 1(P 1与Q 不重合),则直线P 1Q 与x 轴交于点H ,若点H 为定值,则求出点H 坐标;否则,请说明理由.【分析】(Ⅰ)利用椭圆的定义离心率和三角形的面积公式可得abc 的等量关系式,从而可求椭圆C 的方程;(Ⅱ)设直线x =my +1与椭圆C 交于P 、Q 两点,点P 关于x 轴的对称点为P 1(P 1与Q不重合),即P (x 1,y 1)、Q (x 2,y 2)、P (x 1,﹣y 1),联立方程组由{x =my +1,x 24+y 2=1,化简由韦达定理表达直线P 1Q 的方程,根据题意可得直线P 1Q 与x 轴交点H (4,0). 【解答】解:(I )由题意点A 为椭圆的右项点,点B 为椭圆的上顶点,点F 为椭圆的左焦点,可得F (﹣c ,0),B (0,b ),A (a ,0),因为离心率为√32,即ca=√32,① △F AB 的面积是1+√32.即12b (a +c )=1+√32;② 又因为a 2=b 2+c 2;③ 由①②③解得 a =2,b =1所以椭圆C :x 24+y 2=1;(Ⅱ)设P (x 1,y 1)、Q (x 2,y 2)、P (x 1,﹣y 1), 由{x =my +1,x 24+y 2=1,得(m 2+4)y 2+2my ﹣3=0,(m ≠0)显然△>0,由韦达定理有:y 1+y 2=−2m m 2+4.y 1•y 2=−3m 2+4. 直线P 1Q 的方程为:y +y 1=y 2+y1x 2−x 1(x ﹣x 1),因为直线P 1Q 与x 轴交于点H ,若点H 为定值, 令y =0,则x =x 2−x1y 2+y 1y 1+x 1=x 2y 1+x 1y 2y 1+y 2;又x 1=my 1+1,x 2=my 2+1;x=(my2+1)y1+(my1+1)y2y1+y2=2my1y2+(y1+y2)y1+y2=4;所以直线P1Q与x轴交点H(4,0).14.已知O为坐标原点,点F1,F2为椭圆M:x2a2+y2b2=1(a>b>0)的左右焦点,点E(a,b)在抛物线N:x2=4√33y上,直线EF2与椭圆M的一个交点为F,且EF的中点恰为F2.(1)求椭圆M的标准方程;(2)过抛物线N上一点P与抛物线N相切的直线l与椭圆M相交于A、B两点,设AB 中点为C,直线OP与直线OC的斜率分别是k1,k2,证明:k1k2为定值.【分析】(1)根据题意求得F及中点F2,根据a与b,c的关系,即可求得a和b的值,求得椭圆方程;(2)根据导数的几何意义,求得直线AB的方程,利用韦达定理及中点坐标公式即可求得C点坐标,即可求得k1k2为定值.【解答】解:(1)由题意F恰为(0,b),所以中点F2(c,0)满足c=a2,因为a2=b2+c2,所以a2=43b2,由①②解得a=2,b=√3,c=1,所以椭圆M的标准方程为x 24+y23=1;(2)证明:设P(t,√3t 24),因为抛物线N:y=√34x2,求导y′=√32x,则直线AB方程:y=√32t(x﹣t)+√34t2,A(x1,y1),B(x2,y2),将直线AB代入椭圆x 24+y23=1得:12(1+t2)x2﹣12t3x+3t4﹣48=0,因此x1+x2=t31+t2,y1+y2=√32t(x1+x2)−√32t2=−√3t22(1+t2),所以C (t 32(1+t 2),−√3t 24(1+t 2)),则k 1=√34t ,k 2=−√32t ,所以k 1k 2=−38(点差法等其他方法正常给分).15.已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)经过点M (﹣2,1),且右焦点F(√3,0). (Ⅰ)求椭圆Γ的标准方程;(Ⅱ)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点,记t =MA →⋅MB →,若t 的最大值和最小值分别为t 1,t 2,求t 1+t 2的值. 【分析】(Ⅰ)列方程组求解出a 2,b 2即可;(Ⅱ)对k 讨论,分别建立方程组,找到根与系数关系,建立t 的恒成立方程进行求解. 【解答】解:(Ⅰ)由题意可知,{a 2−b 2=3,4a 2+1b 2=1,解之得a 2=6,b 2=3, 故椭圆Γ的标准方程为x 26+y 23=1.(Ⅱ)当直线AB 斜率存在时,设AB 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2), 由{x 26+y 23=1,y =k(x −1),得x 2+2k 2(x ﹣1)2=6,即(1+2k 2)x 2﹣4k 2x +2k 2﹣6=0,因为(1,0)在椭圆内部,△>0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−61+2k 2,则t =MA →⋅MB →=(x 1+2)(x 2+2)+(y 1−1)(y 2﹣1) =x 1x 2+2(x 1+x 2)+4+(kx 1﹣k ﹣1)(kx 1﹣k ﹣1) =(1+k 2)x 1x 2+(2−k 2−k)(x 1+x 2)+k 2+2k +5 =(1+k 2)⋅2k 2−62k 2+1+(2−k 2−k)⋅4k 22k 2+1+k 2+2k +5,=15k 2+2k−12k 2+1,所以(15﹣2t )k 2+2k ﹣1﹣t =0.k ∈R , 则△=22+4(15﹣2t )(1+t )≥0,∴(2t ﹣15)(t +1)﹣1≤0,即2t 2﹣13t ﹣16≤0, 又t 1,t 2是2t 2﹣13t ﹣16=0的两根,∴t 1+t 2=132,当直线AB 斜率不存在时,联立{x 26+y 23=1,x =1,得y =±√102,不妨设A(1,√102),B(1,−√102), MA →=(3,√102−1),MB →=(3,−√102−1),MA →⋅MB →=9−104+1=152,可知t 1<152<t 2.综上所述,t 1+t 2=132.16.已知抛物线D :x 2=4y ,过x 轴上一点E (不同于原点)的直线l 与抛物线D 交于两点A (x 1,y 1),B (x 2,y 2),与y 轴交于C 点.(1)若EA →=λ1EC →,EB →=λ2EC →,求乘积λ1•λ2的值;(2)若E (4,0),过A ,B 分别作抛物线D 的切线,两切线交于点M ,证明:点M 在定直线上,求出此定直线方程.【分析】(1)设E (t ,0)t ≠0,C (0,m ),用t ,m 表示出λ1,λ2,设直线l 斜率为k ,联立方程组,根据根与系数的关系即可得出λ1λ2的值;(2)利用导数求出抛物线在A ,B 处的切线方程,联立方程组得出M 的交点坐标,再根据根与系数的关系消去参数即可得出定直线方程. 【解答】解:(1)设E (t ,0)t ≠0,C (0,m ), ∵EA →=λ1EC →,EB →=λ2EC →,∴{(x 1−t ,y 1)=λ1(−t ,m)(x 2−t ,y 2)=λ2(−t ,m),解得{λ1=t−x1t λ2=t−x 2t,设直线l 的斜率为k ,方程为y =k (x ﹣t ), 由{y =k(x −t)x 2=4y得x 2﹣4kx +4kt =0, 当△=16k 2﹣16kt >0时,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1x 2=4kt , ∴λ1λ2=t 2−(x 1+x 2)t+x 1x 2t 2=t 2−4kt+4ktt 2=1.(2)设M (x ,y ),由x 2=4y 可得y =x 24,故y ′=x2, ∴抛物线在A (x 1,x 124)处的切线方程为y −x 124=x 12(x ﹣x 1),即y =x 12x −x 124,同理可得抛物线在B (x 2,x 224)处的切线方程为y =x 22x −x 224,联立方程组{y =x12x −x124y =x 22x −x 224,得{x =x 1+x22y =x 1x 24, ∵E (4,0),即t =4,由(1)可得x 1+x 2=4k ,x 1x 2=16k , ∴{x =2ky =4k,即y =2x . ∴点M (x ,y )在直线y =2x 上.17.在直角坐标系xOy中,动圆P与圆Q:(x﹣2)2+y2=1外切,且圆P与直线x=﹣1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(﹣2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)设P(x,y),圆P的半径为r,根据动圆P与圆Q:(x﹣2)2+y2=1外切,可得√(x−2)2+y2=r+1,又动圆P与直线x=﹣1相切,可得r=x+1,消去r得曲线C的轨迹方程.(2)假设存在曲线C上的点M满足题设条件,不妨设M(x0,y0),A(x1,y1),B(x2,y2),则y02=8x0,y12=8x1,y22=8x2,k MA=y1−y0x1−x0=8y1+y0,k MB=y2−y0x2−x0=8y2+y0,可得:k MA+k MB=8y1+y0+8y2+y0=8(y1+y2+2y0)y02+(y1+y2)y0+y1y2,显然动直线l的斜率存在且非零,设l:x=ty﹣2,与抛物线方程联立得:y2﹣8ty+16=0,利用根与系数的关系代入上式,进而得出结论.【解答】解:(1)设P(x,y),圆P的半径为r,因为动圆P与圆Q:(x﹣2)2+y2=1外切,………………………………………(1分)所以√(x−2)2+y2=r+1,①………………………………………………………(2分)又动圆P与直线x=﹣1相切,所以r=x+1,②………………………………………………………………………(3分)由①②消去r得y2=8x,所以曲线C的轨迹方程为y2=8x.…………………………………………………(5分)(2)假设存在曲线C上的点M满足题设条件,不妨设M(x0,y0),A(x1,y1),B(x2,y2),则y 02=8x 0,y 12=8x 1,y 22=8x 2,k MA =y 1−y 0x 1−x 0=8y1+y 0,k MB =y 2−y 0x 2−x 0=8y2+y 0,…(6分)所以k MA +k MB =8y1+y 0+8y2+y 0=8(y 1+y 2+2y 0)y 02+(y 1+y 2)y0+y 1y 2,③…………(7分)显然动直线l 的斜率存在且非零,设l :x =ty ﹣2, 联立方程组{y 2=8x x =ty −2,消去x 得y 2﹣8ty +16=0,由△>0得t >1或t <﹣1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2.…………………(8分) 代入③式得k MA +k MB =8(8t+2y 0)y 02+8ty+16,令8(8t+2y 0)y 02+8ty0+16=m (m 为常数),整理得(8my 0−64)t +(my 02−16y 0+16m)=0,④………………………(9分)因为④式对任意t ∈(﹣∞,﹣1)∪(1,+∞)恒成立,所以{8my 0−64=0my 02−16y 0+16m =0,…………………………………………………(10分)所以{m =2y 0=4或{m =−2y 0=−4,即M (2,4)或M (2,﹣4),即存在曲线C 上的点M (2,4)或M (2,﹣4)满足题意.…………………(12分) 18.椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,右焦点为F ,上、下顶点分别是B ,C ,|AB|=√7,直线CF 交线段AB 于点D ,且|BD |=2|DA |. (1)求E 的标准方程;(2)是否存在直线l ,使得l 交E 于M ,N 两点,且F 恰是△BMN 的垂心?若存在,求l 的方程;若不存在,说明理由.【分析】(1)方法一先分别求出直线AB ,CF 的方程,再求得D 的坐标.然后将|BD |=2|DA |转化为BD →=2DA →,得到a =2c ,再结合|AB|=√7,求得a 和b 的值,从而得到椭圆的标准方程;方法二:设椭圆的左焦点G ,由椭圆的对称性可知BG ∥CF ,根据平行线的性质,即可求得a =2c ,再结合|AB|=√7,求得a 和b 的值,从而得到椭圆的标准方程; (2)只要能通过假设存在满足题意的直线,根据F 是△BMN 的垂心,得到BF ⊥MN ,进而确定直线MN 的斜率,由此设出直线MN 的方程并与椭圆方程联立;再根据F 是△BMN 的垂心,得到MF ⊥BN ,将其转化为MF →⋅BN →=0或k MF •k BN =﹣1,并结合韦达定理,即可求得m 的值,求得直线l 的方程.【解答】解:(1)方法一:设椭圆E 的右焦点F (c ,0), 则直线AB 的方程:xa +yb =1,直线CF 的方程:xc −yb =1, 联立解得:{x =2aca+c y =b(a−c)a+c ,则D (2ac a+c ,b(a−c)a+c ), 由|BD |=2|DA |,则BD →=2DA →,则(2aca+c ,−2bca+c )=2(a(a−c)a+c,−b(a−c)a+c),则a =2c ,由|AB |=√a 2+b 2=√7,a 2=b 2+c 2,解得:c =1,a =2,b =√3, ∵椭圆E 的标准方程为x 24+y 23=1.方法二:设椭圆的左焦点G ,由椭圆的对称性可知BG ∥CF , ∵|BD |=2|DA |,则|GF |=2|F A |,即2c =2(a ﹣c ),则a =2c , 由|AB |=√a 2+b 2=√7,a 2=b 2+c 2,解得:c =1,a =2,b =√3, ∵椭圆E 的标准方程为x 24+y 23=1.(2)假设存在满足条件的直线MN ,由垂心的性质可得BF ⊥MN ,从而得到直线l 的斜率k =√33, 设l 的方程为y =√33x +m ,M (x 1,y 1),N (x 2,y 2),联立{y =√33x +m x 24+y 23=1,整理得:13x 2+8√3mx +12(m 2﹣3)=0,由△=(8√3m )2﹣4×13×12(m 2﹣3)>0,解得:−√393<m <√393, x 1+x 2=−8√3m13,x 1x 2=12(m 2−3)13.由MF ⊥BN ,则MF →⋅BN →=0,即(1−x 1)x 2−y 1(y 2−√3)=0, 整理得y 1y 2−√3y 1+x 1x 2﹣x 2=0, 将y 1=√33x 1+m ,y 2=√33x 2+m , 代入化简得43x 1x 2+√33(m −√3)(x 1+x 2)+m 2−√3m =0, ∴1613(m 2﹣3)−813(m 2−√3m )+m 2−√3m =0,∴16(m 2﹣3)﹣8(m 2−√3m )+13(m 2−√3m )=0,提取公因式(m −√3),(m −√3)[16(m +√3)﹣8m +13m ](m −√3)=0, 即(21m +16√3)(m −√3)=0, 由B (0,√3),则m ≠√3,解得m =−16√321,满足−√393<m <√393, ∴m 的值−16√321,直线l 的方程y =√33x −16√321.。

专题08平面解析几何

专题08平面解析几何

专题08平面解析几何一、单选题1.已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A .4B .3C .2D 2.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( )A .1B .2C .4D .3.双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -= 4.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >) B .221168x y +=(0y >) C .221164y x +=(0y >) D .221168y x +=(0y >) 5.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2 C .3 D .二、多选题6.设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 7.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A e 相切B .当P ,A ,B三点共线时,||PQ =C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个三、填空题8.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.9.圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.10.若函数()21f x ax =-+恰有一个零点,则a 的取值范围为.11.抛物线216y x =的焦点坐标为.12.若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .四、解答题13.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点. (1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP V 的面积为9,求l 的方程.14.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.15.已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程. (2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤u u r u u u r .若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.16.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ; (2)证明:数列{}n n x y -是公比为11k k +-的等比数列; (3)设n S 为12n n n P P P ++V 的面积,证明:对任意正整数n ,1n n S S +=.17.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.。

数学竞赛《解析几何》专题训练

数学竞赛《解析几何》专题训练

数学竞赛《解析几何》专题训练一、选择题1、在平面直角坐标系中,方程1(,22x yx ya b a b +-+=为相异正数),所表示的曲线是( )A.三角形B.正方形C.非正方形的长方形D.非正方形的菱形2、若椭圆2213620x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐为 ( )A. B.(- C.(3, D.(3,-3、设双曲线22221x y a b -= 的离心率,23e ⎡⎤⎢⎥⎣⎦∈,则双曲线的两条渐近线夹角α的取值范围是 ( )A. ,63ππ⎡⎤⎢⎥⎣⎦ B .,62ππ⎡⎤⎢⎥⎣⎦ C .,32ππ⎡⎤⎢⎥⎣⎦ D .2,33ππ⎡⎤⎢⎥⎣⎦4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。

( )A .1 B.2 C.3 D.45、双曲线12222=-by a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别以线段PF 1、A 1A 2为直径的两圆一定 ( )A.相交B.相切C.相离D.以上情况均有可能6、设方程1)19cos()19sin(2007220072=+ y x 所表示的曲线是 ( )A.双曲线B.焦点在x 轴上的椭圆C.焦点在y 轴上的椭圆D.以上答案都不正确7、过椭圆22221x y a b+=(0)a b >>中心的弦AB,(,0)F c 是右焦点,则AFB ∆的最大面积为( ) A,bc B,ab C,ac D,2b二、填空题 8、已知030330y x y x y ≥⎧⎪-≥⎨⎪+-≤⎩,则22x y +的最大值是 .9、若直线x cos θ+y sin θ=cos 2θ-sin 2θ(0<θ<π)与圆x 2+y 2=41有公共点,则θ 的取值范围是 . 10、过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =λPH (λ≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值 范围是 .11、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF的最大值为 . 12、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .三、解答题13、已知抛物线2128y x x =-+-和点111(,)48A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何解答题专练19.(本小题14分)已知椭圆G 的中心在坐标原点,焦点在x 轴上,且经过点)20P ,和点212Q ⎛-- ⎝⎭,.(Ⅰ)求椭圆G 的标准方程;(Ⅱ)如图,以椭圆G 的长轴为直径作圆O ,过直线2-=x 上的动点T 作圆O 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆G 交于不同的两点C ,D ,求CD AB的取值范围.解:(Ⅰ)设椭圆G 的标准方程为22221x y a b+=(0a b >>),将点)20P ,和点21Q ⎛- ⎝⎭,代入,得22221112a a b ⎧=⎪⎨+=⎪⎩,解得2221a b ⎧=⎪⎨=⎪⎩.故椭圆G 的标准方程为2212x y +=.(Ⅱ)圆2C 的标准方程为222xy +=, 设()11,A x y ,()22,B x y ,则直线AT 的方程为112x x y y +=,直线BT 的方程为222x x y y +=, 再设直线2-=x 上的动点()2,T t -(t R ∈),由点()2,T t -在直线AT 和BT 上,得设1s m =(104s <≤),则AB CD=设()31632f s s s =+-,则()()2269661160f s ss '=-=-≥,故()f s 在10,4⎛⎤ ⎥⎝⎦上为增函数, 于是()f s 的值域为(]1,2,CD AB的取值范围是(.19.(本小题满分14分)已知椭圆C :22221(0)x y a b a b +=>>离心率2e =,短轴长为.(Ⅰ)求椭圆C 的标准方程; (Ⅱ) 如图,椭圆左顶点为A ,过原点O 的直线(与坐标 轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点.试问以MN 为直径的圆是否经过 定点(与直线PQ 的斜率无关)?请证明你的结论.19.(本小题共14分) (Ⅰ)由短轴长为,得b = ………………1分由2c e a a ===,得224,2ab ==. ∴椭圆C的标准方程为22142x y +=. (4)分(Ⅱ)以MN为直径的圆过定点(F . ………………5分证明如下:设0(,)P x y ,则00(,)Q x y --,且2200142x y +=,即220024xy +=, ∵(2,0)A -,∴直线PA方程为:0(2)2y y x x =++,∴002(0,)2y M x +……………6分 直线QA方程为:0(2)2y y x x =+-,∴002(0,)2y N x -, ………………7分 以MN为直径的圆为000022(0)(0)()()022y y x x y y x x --+--=+-………………10分【或通过求得圆心0202(0,)4x y O x '-,0204||4y r x =-得到圆的方程】即222000220044044x y y x y y x x +-+=--,∵220042x y -=-,∴220220x x y y y ++-=, (12)分 令0y =,则220x -=,解得x =∴以MN为直径的圆过定点(F . …………14分19.(本小题满分14 分) 已知椭圆C :()22221x y a b a b+=>>0的一个焦点为F (2,0),离心率为过焦点F 的直线l 与椭圆C 交于 A ,B 两点,线段 AB 中点为D ,O 为坐标原点,过O ,D 的直线交椭圆于M ,N 两点。

(1)求椭圆C 的方程;(2)求四边形AMBN 面积的最大值。

(19)(本小题共13分)在平面直角坐标系中xOy中,动点E到定点(1,0)的距离与它到直线1x=-的距离相等.(Ⅰ)求动点E的轨迹C的方程;(Ⅱ)设动直线:l y kx b=+与曲线C相切于点P,与直线1x=-相交于点Q.证明:以PQ为直径的圆恒过x轴上某定点.19.(本小题共14分)已知椭圆C:2236+=的右焦点为F.x y(Ⅰ)求点F的坐标和椭圆C的离心率;(Ⅱ)直线l:y kx mk≠过点F,且与椭圆C交于P,=+(0)Q两点,如果点P 关于x 轴的对称点为P ',判断直线P Q '是否经过x 轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.解: (Ⅰ)因为椭圆C :22162x y +=所以焦点(2,0)F ,离心率e =……………………4分(Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.kx k x k +-+-=(依题意∆>).设 11(,)P x y ,22(,)Q x y , 则21221231k x x k +=+,2122126.31k x x k -=+ .因为点P 关于x 轴的对称点为P ',则11(,)P x y '-. 所以,直线P Q '的方程可以设为211121()y y y yx x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+3=.所以直线P Q'过x轴上定点(3,0). (14)分19.(本小题共14分)动点),(y x P 到定点)0,1(F 的距离与它到定直线4:=x l 的距离之比为21. (Ⅰ) 求动点P 的轨迹C 的方程;(Ⅱ) 已知定点(2,0)A -,(2,0)B ,动点(4,)Q t 在直线l 上,作直线AQ 与轨迹C 的另一个交点为M ,作直线BQ 与轨迹C 的另一个交点为N ,证明:,,M N F 三点共线. 19.(本小题共14分) 解:(Ⅰ)由题意得21|4|)1(22=-+-x y x , ………………2分 化简并整理,得 13422=+y x .所以动点),(y x P 的轨迹C的方程为椭圆13422=+y x . ………………5分(Ⅱ)当0=t 时,点B M 与重合,点A N 与重合,,,M N F三点共线. ………7分当0≠t 时根据题意::(2),:(2)62t tQA y x QB y x =+=- 由()2214326x y t y x ⎧+=⎪⎪⎨⎪=+⎪⎩消元得:2223(2)1209t x x ++-=整理得:2222(27)441080tx t x t +++-=该方程有一根为2,x =-另一根为Mx ,根据韦达定理,222241085422,2727M M t t x x t t ---==++由()2214322x y t y x ⎧+=⎪⎪⎨⎪=-⎪⎩消元得:2223(2)120x t x +--= 整理得:2222(3)44120tx t x t +-+-=该方程有一根为2,x =另一根为Nx ,根据韦达定理,2222412262,33N N t t x x t t --==++当MNxx =时,由222254226273t t t t --=++得:29,t =1M N x x ==,,,M N F 三点共线;当MNxx ¹时,218(2)627MM t t yx t =+=+,26(2)23NN t tyx t -=-=+22221862754219127M MFM t y t t k t x t t +===----+;2222663261913N NFN t y t t kt x t t -+===----+NFMF K k =,,,M N F 三点共线. 综上,命题恒成立.………………14分19.(本小题共14分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,右顶点A 是抛物线28y x=的焦点.直线l :(1)y k x =-与椭圆C 相交于P ,Q 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)如果AM AP AQ=+u u u u r u u u r u u u r,点M 关于直线l 的对称点N 在y轴上,求k 的值.答案:(Ⅰ)2214x y +=(Ⅱ)2k =±解析:(Ⅰ)抛物线28yx=,所以焦点坐标为(2,0),即(2,0)A , 所以2a =.又因为c e a==,所以c =所以2221b ac =-=,所以椭圆C的方程为2214x y +=. ……………………4分(Ⅱ)设11(,)P x y ,22(,)Q x y ,因为AM AP AQ=+u u u u r u u u r u u u r ,(2,0)A ,所以11(2,)AP x y =-u u u r,22(2,)AQ x y =-u u u r,所以1212(4,+)AM AP AQ x x y y =+=+-u u u u r u u u r u u u r,所以()12122,M x xy y +-+.由2214(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(41)8440kx k x k +-+-=(判别式0∆>),得2122282224141k x x k k -+-=-=++,121222(2)4+1ky yk x x k -+=+-=,即2222(,)4141kM k k --++. 设3(0,)N y , 则MN 中点坐标为3221(,)41412y k k k --+++, 因为M ,N 关于直线l 对称,所以MN 的中点在直线l 上, 所以3221(1)41241k yk k k --+=-++,解得32yk=-,即(0,2)N k -.由于M ,N 关于直线l 对称,所以M ,N 所在直线与直线l 垂直,所以222(2)4112041kk k k k ---+⋅=---+,解得2k =±. ……………………14分19. (本小题满分14分)已知直线022=+-y x 经过椭圆)0(1:2222>>=+b a by a x C 的左顶点A和上顶点D ,椭圆C 的右顶点为Bx 轴上方的动点,直线AS ,BS 与直线4:=x l (Ⅰ) 求椭圆C 的方程;(Ⅱ)求线段MN 的长度的最小值.19. (本小题满分14分) 解:(Ⅰ).椭圆C的方程为1422=+y x . ………3分(Ⅱ)直线AS 的斜率k 显然存在,且0>k ,故可设直线AS的方程为)2(+=x k y , ………4分 从而)6,4(k M ………5分由⎪⎩⎪⎨⎧=++=14)2(22y x x k y 得041616)41(2222=-+++k x k x k, ………7分 设),(11y x S ,则22141416)2(k k x +-=⨯-, 得2214182k k x +-=, (8)分从而21414k k y +=,即)414,4182(222k k k k S ++-, ………9分又)0,2(B ,故直线BS的方程为)2(41--=x ky ………10分由⎪⎩⎪⎨⎧=--=4)2(41x x k y 得⎪⎩⎪⎨⎧-==k y x 214∴)21,4(kN -, ………11分 故kk MN 216||+=, ………12分又∵0>k , ∴322162216||=⨯≥+=kk k k MN , ………13分当且仅当k k 216=,即63=k 时等号成立,∴63=k 时,线段MN的长度取得最小值为32. …………14分19.(本小题满分14分) 已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程; (Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y轴的交点1(0,)2D . ……………… 1分 则线段CD的中点11(,)24,||CD ==, ……………… 3分即OCD ∆外接圆的圆心为11(,)24,半径为1||24CD =, 所以OCD∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分(Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点. 理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y ,则(,0)m C k-,(0,)D m , ……………… 6分由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x kmx m +++-=, ……………… 7分所以 2216880k m ∆=-+>,(*) ……………… 8分由韦达定理,得122412km x x k -+=+,21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以1224120km x x k mk-+==+-, ………………10分 解得k =.……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =. 所以12|x x -= ……………… 12分即 12||3||mx x k-==,解得5m =±.……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为25y x =±,或25y x =-±. ……………… 14分19.(本小题共14分)已知椭圆C 的离心率e =1(A ,2A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N点坐标;若不存在,说明理由.19.(本小题共14分) 解:(Ⅰ)由已知2,a =22c e a ==————2分∴1c =,221b ac =-=∴椭圆C 的方程为2212x y +=;————4分∴NP NQ⊥,即NP NQ ⋅=u u u r u u u r ————10分∴1121(,)(2,2)0k x x k b b b----=,∴21112(1)210kx x x b-+-+=对满足2221b k =+恒成立,∴12110210x x x -=⎧⎨-+=⎩,∴11x=故在x 轴上存在定点(1,0)N ,使得以PQ 为直径的圆恒过定点N .——14分19. (本小题满分14分)已知,A B 是椭圆22:239C xy +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形. 19.解:(Ⅰ) 设(,)A x y ,00(,)-B x y , ---------------------------------------1分因为∆ABM为等边三角形,所以00||1|=-y x .---------------------------------2分又点0(,)A x y 在椭圆上,所以002200||1|,239,y x x y ⎧=-⎪⎨⎪+=⎩消去y ,-----------------------------------------3分得到2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分当02=x时,||=AB当043=-x 时,||=AB .-----------------------------------------5分{说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为0(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y得222(23)6390+++-=k x kmx m ,------------------6分由∆>得到222960--<m k ①----------------------------7分所以122623+=-+km x xk ,121224()223+=++=+m y y k x x m k ,----------------------------8分所以2232(,)2323-++kmmN kk,又(1,0)M如果∆ABM为等边三角形,则有⊥MN AB,--------------------------9分所以1MN k k ⨯=-, 即2222313123mk k km k +⨯=---+,------------------------------10分化简2320k km ++=,②------------------------------11分由②得232k m k+=-,代入① 得2222(32)23(32)0k k k+-+<,化简得2340+<k ,不成立,-------------------------------------13分{此步化简成4229188k k k ++<或4291880kk ++<或22(32)(34)0kk ++<都给分}故∆ABM不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239xy +=,且1[3,3]x ∈-,所以||MA ===,----------------8分设22(,)B x y ,同理可得||MB =,且2[3,3]x ∈------------------9分因为21(3)13y x =-+在[3,3]-上单调所以,有12x x =⇔||||MA MB =,---------------------------------11分因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠,---------------------------------13分 所以∆ABM不可能为等边三角形.---------------------------------14分(19)(本小题满分13分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,短轴的一个端点B 到F 的距离等于焦距. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线l 与椭圆C 交于不同的两点M ,N ,是否存在直线l ,使得△BFM 与△BFN 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由.(19)(本小题满分13分) 解: (Ⅰ)由已知得1c =,22a c ==------------------3分2223b ac =-=,所以椭圆C的方程为22143x y +=------------------4分 (Ⅱ)2BFMBFNS S ∆∆=等价于2FMFN=------------------2分当直线l 斜率不存在时,1FM FN=,不符合题意,舍去; ------------------3分当直线l 斜率存在时,设直线l 的方程为(1)y k x =-, 由221,43(1)x y y k x ⎧+=⎪⎨⎪=-⎩消x并整理得222(34)690k y ky y ++-=------------------5分设11(,)M x y ,22(,)M x y ,则12263+4ky y k +=-①,21229=34k y y k -+②------------------7分由2FM FN =得122yy =-③由①②③解得k =l:1)y x =-使得BFM ∆与BFN∆的面积比值为2------------------9分19、(本小题共13分)已知椭圆()2222:10x y G a b a b+=>>过点1,A ⎛ ⎝⎭和点()0,1B -.(1)求椭圆G 的方程; (2)设过点30,2P ⎛⎫ ⎪⎝⎭的直线l 与椭圆G 交于,M N 两点,且||||BM BN =,求直线l 的方程.19.(共13分) 解:(Ⅰ)因为椭圆()2222:10x y G a b a b+=>>过点1A ⎛ ⎝⎭和点()01B -,.所以1b =,由22111a ⎝⎭+=,得23a=.所以椭圆G 的方程为2213x y +=.(Ⅱ)显然直线l 的斜率k 存在,且0k ≠.设直线l的方程为32y kx =+.由22133.2x y y kx ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并整理得22153034k x kx ⎛⎫+++= ⎪⎝⎭,由2219503k k ⎛⎫=-+> ⎪⎝⎭△,2512k >.设()11M x y ,,()22N x y ,,MN 中点为()22Q x y ,,得12229262x x kx k +==-+,12623262y y y k +==+.由BM BN =,知BQ MN ⊥,所以6611y x k+=-,即2231162962k k k k ++=--+.化简得223k =,满足0>△.所以k =因此直线l的方程为32y =+.19.(本小题满分14分)给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O ,半径为的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为0)F ,,其短轴上的一个端点到F. (Ⅰ)求椭圆C 的方程和其“准圆”方程;(Ⅱ)点P 是椭圆C 的“准圆”上的动点,过点P作椭圆的切线12l l ,交“准圆”于点M N ,.(ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ⊥;(ⅱ)求证:线段MN 的长为定值.19.(本小题满分14分) 解:(Ⅰ)1c a b ==∴=Q , ∴椭圆方程为2213x y +=, (2)分准圆方程为224x y +=. ………………3分(Ⅱ)(ⅰ)因为准圆224xy +=与y 轴正半轴的交点为(02)P ,,设过点(02)P ,且与椭圆相切的直线为2y kx =+, 所以由22213y kx x y =+⎧⎪⎨+=⎪⎩,,得22(13)1290k x kx +++=.因为直线2y kx =+与椭圆相切, 所以2214449(13)0k k ∆=-⨯+=,解得1k =±, ………………6分 所以12l l ,方程为22y x y x =+=-+,. ………………7分121l l k k ⋅=-Q ,12l l ∴⊥. ………………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在,则1l:x =当1l:x =1l与准圆交于点1)1)-,此时2l 为1y =(或1y =-),显然直线12l l ,垂直; 同理可证当1l:x =时,直线12l l ,垂直. ………………10分②当12l l ,斜率存在时,设点0()P x y ,,其中2204x y +=.设经过点0()P x y ,与椭圆相切的直线为0()y t x x y =-+, 所以由0022()13y t x x y x y =-+⎧⎪⎨+=⎪⎩,,得 2220000(13)6()3()30t x t y tx x y tx ++-+--=.由∆=化简整理得2220000(3)210x t x y t y -++-=, 因为22004x y +=,所以有2220000(3)2(3)0x t x y t x -++-=. 设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程222000(3)2(3)0x t x y t x -++-=,所以121t t ⋅=-,即12l l ,垂直. ………………12分综合①②知:因为12l l ,经过点0(,)P x y ,又分别交其准圆于点M N ,,且12l l , 垂直. 所以线段MN为准圆224x y +=的直径, ||4MN =, 所以线段MN的长为定值. ………………14分(19) (本小题共14分)如图,已知椭圆E :22221(0)x y a b a b +=>>的离心率为3,过左焦点(3,0)F -且斜率为k的直线交椭圆E 于A ,B 两点,线段AB 的中点为M,直线l :40x ky +=交椭圆E 于C ,D 两点. (Ⅰ)求椭圆E 的方程; (Ⅱ)求证:点M 在直线l 上;(Ⅲ)是否存在实数k ,使得三角形BDM 的面积是三角形ACM的3倍?若存在,求出k 的值;若不存在,说明理由.19. 解:(Ⅰ)由题意可知32c e a ==,3c =,于是2,1a b ==. 所以,椭圆的标准方程为2214x y +=程.---------------------------------3分(Ⅱ)设11(,)A x y ,22(,)B x y ,00(,)M x y ,22(3)14y k x xy ⎧=+⎪⎨+=⎪⎩即2222(41)831240k x k x k +++-=. 所以,21283k x x -+=,2120432x x k x +-==,003(3)k y k x =+=, 于是222433(,)4141k kM k k -∴++.40k +=,所以M 在直线l 上. --------------------------8分 (Ⅲ)由(Ⅱ)知点A 到直线CD 的距离与点B 到直线CD 的距离相等, 若∆BDM 的面积是∆ACM 面积的3倍,则|DM |=3|CM |,因为|OD |=|OC |,于是M 为OC 中点,;设点C 的坐标为33(,)x y ,则302y y =.因为22414x kyx y =-⎧⎪⎨+=⎪⎩,解得3y =.=,解得218k =,所以4k =±.----------------14分(19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>经过点(1,2,离心率为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)直线(1)(0)y k x k =-≠与椭圆C 交于,A B 两点,点M 是椭圆C的右顶点.直线AM 与直线BM 分别与y 轴交于点,P Q ,试问以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.19. (本小题满分14分) 解:(Ⅰ)由题意得221314c a a b ⎧⎪⎪⎨⎪+=⎪⎩,解得=2a ,1b =.所以椭圆C的方程是2214x y +=. …………… 4分(Ⅱ)以线段PQ 为直径的圆过x 轴上的定点.由22(1)14y k x x y =-⎧⎪⎨+=⎪⎩得2222(14)8440kx k x k +-+-=. 设1122(,),(,)A x y B x y ,则有2122814k x x k +=+,21224414k x x k -=+.又因为点M 是椭圆C 的右顶点,所以点(2,0)M .由题意可知直线AM 的方程为11(2)2y y x x =--,故点112(0,)2y P x --.直线BM 的方程为22(2)2y y x x =--,故点222(0,)2y Q x --. 若以线段PQ 为直径的圆过x 轴上的定点0(,0)N x ,则等价于0PN QN ⋅=u u u r u u u r恒成立. 又因为1012(,)2y PN x x =-u u u r ,2022(,)2y QN x x =-u u u r ,所以221212001212224022(2)(2)y y y y PN QN x x x x x x ⋅=+⋅=+=----u u u r u u u r 恒成立.又因为121212(2)(2)2()4x xx x x x --=-++2222448241414k k k k -=-+++22414k k =+,212121212(1)(1)[()1]y y k x k x k x x x x =--=-++22222448(1)1414k k k k k-=-+++22314k k -=+, 所以2222212000212212414304(2)(2)14k y y k x x x k x x k -++=+=-=--+.解得0x=.故以线段PQ为直径的圆过x 轴上的定点(. …………… 14分。

相关文档
最新文档