纳米尺寸效应
纳米材料的四大效应
纳米材料的四大效应
纳米材料具有独特的物理、化学和生物学特性,主要是由于其纳米级尺寸效应而导致的。
以下是纳米材料常见的四大效应:
尺寸效应:当材料的尺寸缩小到纳米级别时,其物理和化学性质可能会发生显著变化。
纳米材料的尺寸相对较小,使得电子、光子和声子等能量传输和储存方式发生改变。
这种尺寸效应可以导致纳米材料在光学、电子学、磁学等领域展示出独特的性能。
表面效应:纳米材料相对于宏观材料具有更大的比表面积,这是由于纳米级尺寸的高比例表面积与体积之间的关系。
这导致纳米材料在与周围环境的相互作用中表现出特殊的化学和物理性质。
纳米材料的高比表面积使得其在催化、吸附、传感等应用中具有更高的效率和反应活性。
量子效应:纳米材料的尺寸接近或小于典型的量子尺寸范围时,量子效应开始显现。
在这种情况下,纳米材料的电子和能带结构将受到限制和量子约束,从而导致电子行为发生变化。
量子效应使得纳米材料在电子学、光电子学和量子计算等领域具有重要应用。
界面效应:当不同类型的纳米材料或纳米结构之间发生接触或相互作
用时,界面效应产生。
这种效应是由于界面上的原子或分子之间的相互作用引起的,导致纳米材料在界面处具有不同的化学、物理和电子性质。
界面效应对于纳米材料的催化、能源转换和生物应用等具有重要意义。
这些纳米材料的效应使其在多个领域具有广泛的应用,包括电子学、光电子学、催化剂、传感器、医学和能源等。
然而,纳米材料的独特性质也带来了一些挑战,如纳米材料的制备和表征、环境和生物安全性等问题需要得到充分考虑和管理。
纳米材料的特性
纳米材料的特性
纳米材料具有许多独特的特性,这些特性使其在各种领域中都具有广泛的应用前景。
以下是一些常见的纳米材料特性:
1.尺寸效应:纳米材料的尺寸通常在纳米级别,相比于宏观材料,其尺寸效应显著,导致其性能和行为发生变化。
例如,纳米颗粒的大比表面积可以增强其化学反应活性和光学性能。
2.表面效应:纳米材料的表面积与体积之比较大,因此表面效应对其性质具有显著影响。
例如,纳米材料的表面能、吸附性和电荷分布等表面特性与宏观材料不同。
3.量子效应:在纳米尺度下,量子效应开始显现,如量子限制效应、量子点效应等,这些效应导致纳米材料在光学、电学和磁学等方面表现出特殊的量子性质。
4.机械性能:纳米材料具有优异的力学性能,例如高强度、高硬度、高韧性等,这些性能使其在材料强化、纳米机械器件等方面具有重要应用价值。
5.光学性能:纳米材料的光学性能受到量子效应和尺寸效应的影响,表现出独特的光学特性,如量子点荧光、等离子体共振、表面增强拉曼散射等。
6.电学性能:纳米材料具有优异的电学性能,如高导电性、高介电常数、量子隧穿效应等,使其在电子器件、传感器、能源存储等领域具有广泛应用。
7.热学性能:纳米材料的热传导性能通常比宏观材料更好,这归因于其大比表面积和量子限制效应,因此被广泛应用于热界面材料、热导电器件等领域。
纳米材料的这些特性使其在材料科学、纳米技术、生物医学、电子器件等领域具有广泛的应用前景,对于推动科学研究和技术创新具有重要作用。
纳米材料的几种特殊效应及其特点
纳米材料的几种特殊效应及其特点纳米材料是一种具有特殊结构和性能的材料,其在纳米尺度下具有许多独特的效应。
下面将介绍几种常见的纳米材料特殊效应及其特点。
1. 表面效应纳米材料具有巨大的比表面积,因此表面效应在纳米材料中显得尤为重要。
一方面,纳米材料的大比表面积可以增加与周围环境的相互作用,从而改变材料的物理、化学和生物特性。
另一方面,由于表面原子或分子的不饱和性,纳米材料表面的能量较高,使其具有更强的反应活性和吸附能力。
此外,纳米材料的表面效应还会导致表面扩散、表面缺陷、表面能量和表面拉应力等特殊现象的出现。
2. 尺寸效应纳米材料的尺寸效应指的是当材料尺寸缩小到纳米尺度时,其性质会发生明显变化。
例如,纳米材料的熔点、晶体结构、磁性、光学性质等都会随着尺寸的减小而发生改变。
这是由于纳米材料中的电子和晶格结构受到限制,使得材料的性能呈现出与宏观材料不同的特点。
尺寸效应在纳米材料的制备和应用中具有重要意义,可以用来调控材料的性能和功能。
3. 量子效应量子效应是指纳米材料中的电子和能带结构受到量子力学的限制,表现出量子尺度下的行为。
在纳米材料中,电子的能级间距受到限制,使得纳米材料的电子能级具有离散化的特点。
这不仅会导致材料的光学、电学和磁学性质的变化,还会使纳米材料具有特殊的量子力学效应,如量子隧穿效应、量子限域效应等。
量子效应是纳米材料在量子计算、光电器件等领域应用的基础。
4. 界面效应界面效应是指纳米材料中不同相或不同材料之间的界面对材料性能的影响。
在纳米材料中,界面通常具有较高的能量和较低的稳定性,因此纳米材料的界面处存在着许多特殊的现象和性质。
例如,纳米颗粒的界面处会形成原子级别的结构缺陷,这些缺陷会对材料的力学性能、热传导性能和电学性能产生重要影响。
此外,纳米材料的界面效应还可以用于增强材料的力学强度、改善材料的界面反应和界面吸附等。
5. 自组装效应自组装效应是指纳米材料在一定条件下,由于表面能的影响而自发地组装成特定的结构。
纳米限域效应原理
纳米限域效应原理纳米限域效应是指当物质的尺寸缩小至纳米级别时,其物理化学性质会发生显著变化的现象。
纳米限域效应的出现是由于纳米尺寸的特殊性质,包括表面积增大、体积减小、晶格缺陷等因素所致。
本文将介绍纳米限域效应的原理以及其在科学研究和应用领域的重要性。
一、纳米尺寸效应的原理纳米尺寸效应是指当物质的尺寸缩小至纳米级别时,其物理化学性质会发生明显变化的现象。
这种变化主要是由于纳米尺寸的特殊性质所引起的。
纳米材料的比表面积会随着尺寸的减小而增大。
比表面积是指单位质量或单位体积的材料所暴露的表面积。
由于纳米材料的体积相对较小,而表面积相对较大,因此纳米材料具有更多的表面原子或分子,这使得纳米材料在表面活性上具有明显优势。
纳米材料的晶格缺陷会增加。
由于尺寸的减小,晶体结构的完整性受到破坏,晶格缺陷会变得更加显著。
这些晶格缺陷可以提供额外的活性位点,从而影响材料的化学反应性能。
纳米材料的量子尺寸效应也是导致纳米限域效应的重要原因之一。
量子尺寸效应是指当材料的尺寸减小到与其波长相当的尺寸时,量子力学效应开始显现。
在纳米尺寸下,电子和光子的行为将受到量子效应的影响,从而导致材料性质的变化。
二、纳米限域效应的应用纳米限域效应在科学研究和应用领域具有广泛的应用价值。
1. 催化领域:纳米限域效应能够提高催化剂的活性和选择性。
纳米尺寸下的催化剂具有更多的表面活性位点和较高的比表面积,这使得催化剂在催化反应中表现出更高的催化活性和选择性。
2. 传感器领域:纳米限域效应可以提高传感器的敏感性和响应速度。
纳米尺寸下的传感器具有更大的表面积和更高的量子尺寸效应,能够更好地与目标物质相互作用,从而提高传感器的检测灵敏度和响应速度。
3. 材料领域:纳米限域效应可以改善材料的力学性能和热学性能。
纳米材料具有较高的强度和硬度,并且可以通过调控晶格缺陷和界面效应来改善材料的力学性能。
此外,纳米材料由于其特殊的光学、电学和热学性质,在光电子器件、能源储存和转换等领域也有广泛的应用。
纳米材料的尺寸效应研究方法
纳米材料的尺寸效应研究方法纳米材料的尺寸效应是指纳米级颗粒或结构体的尺寸在一定范围内对材料性能表现出的显著影响。
近年来,随着纳米材料的广泛应用,对纳米尺度效应进行深入研究的需求日益增加。
在纳米材料的尺寸效应研究过程中,科学家们发展了多种方法,以了解纳米材料尺寸对其性能的影响。
一、制备方法在研究纳米材料的尺寸效应时,制备方法是至关重要的一步。
常用的制备方法包括化学合成法、物理气相沉积法和气溶胶法等。
这些方法可以控制纳米颗粒或结构体的尺寸,以及形貌和物理化学性质。
例如,化学合成法通过控制反应温度、浓度和反应物比例等参数,可以合成出具有不同尺寸、形态和结构的纳米材料。
而物理气相沉积法则通过在高温环境下,使物质蒸发并沉积在基底上,实现纳米尺寸的控制。
气溶胶法则通过将气溶胶粒子排列到基底上形成纳米结构。
二、表征方法纳米材料的尺寸效应研究需要采用一系列表征手段来研究其结构、形貌和性能。
常见的表征方法包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和光谱学等。
透射电子显微镜是一种用来观察纳米材料内部结构和形貌的强大工具。
它可以提供高分辨率的成像,用来研究纳米颗粒的大小、形态和晶体结构。
而扫描电子显微镜则可以提供更高分辨率的表面形貌信息。
X射线衍射可以用来确定纳米材料的晶体结构和晶格常数。
通过分析衍射峰的位置和强度,可以了解纳米结构中发生的晶体缺陷或相变。
光谱学方法则可以在纳米材料中研究电子结构特性和光学性质等。
三、性能测试方法纳米材料的尺寸效应研究不仅关注其基本结构和形貌,还需要对其物理化学性质进行测试。
常用的测试方法包括力学性能测试、电学性能测试和热学性能测试等。
力学性能测试可以通过纳米压痕仪和纳米拉伸仪等设备,来研究纳米材料的硬度、弹性模量和屈服强度等力学性质。
电学性能测试则可以通过纳米电极测试系统,以及化学电池和交流电阻测试等方法,来研究纳米材料的电导率、电容率和电化学性能等。
纳米材料的三个效应
纳米材料的三个效应
纳米材料在纳米尺度下表现出一些特殊的效应,主要有以下三个:
1. 尺寸效应:纳米材料的尺寸通常在纳米级别,具有高比表面积和量子尺寸效应。
由于其表面积相对较大,与体积相比更多的原子或分子位于表面,导致表面活性增加。
此外,由于尺寸接近原子或分子的尺度,纳米材料的物理和化学性质可能与宏观材料不同,如光学、磁性、电学等性质的变化。
2. 量子效应:当纳米材料尺寸接近或小于其特定量子限制时,量子效应开始显现。
量子效应是指在纳米尺度下,粒子的行为受到量子力学规律的显著影响。
例如,纳米材料的能带结构和电子输运性质可能与宏观材料有所不同,如量子点的能级结构、电子隧穿效应等。
3. 表面效应:由于纳米材料的高比表面积,表面效应在其性质和行为中起着重要作用。
表面效应指的是纳米材料表面原子或分子与环境之间的相互作用对其性质的影响。
纳米材料的表面活性位点增多,导致与周围环境的相互作用增强,从而改变了材料的光学、化学、催化等性质。
此外,表面效应还可以影响纳米材料的稳定性、生物相容性等方面。
这些效应使得纳米材料具有许多独特的性质和潜在的应用,如纳米电子器件、纳米传感器、纳米药物递送系统、纳米催化剂等。
然而,纳米材料也面临着一些挑战,如制备和表征的复杂性、稳定性问题以及与环境和生物系统的相互作用等。
因此,对纳米材料的研究和应用需要深入理解和有效管理这些特殊效应。
1/ 1。
纳米尺寸效应[整理]
纳米材料中电子能级分布显著地不同于大块晶体材料中的电子能级分布。
在大块晶体中,电子能级准连续分布,形成一个个的晶体能带。
金属晶体中电子未填满整个导带,在热扰动下,金属晶体中的电子可以在导带各能级中较自由地运动,因而金属晶体表现为良好的导电及导热性。
在纳米材料中,由于至少存在一个维度为纳米尺寸,在这一维尺度中,电子相当于被限制在一个无限深的势阱中,电子能级由准连续分布转变为分立的束缚态能级。
能级间距δ决定了金属纳米材料是否表现出不同于大块材料的物理性质。
当离散的能级间距δ大于热能、静电能、静磁能、光子能量或超导态的凝聚能时,将导致金属纳米微粒的热、电、磁、光、以及超导电性与宏观物体有显著的不同,呈现出一系列的反常特性,此即为金属纳米微粒的量子尺寸效应。
例如,宏观状态下的金属Ag是导电率最高的导体,但粒径d<20nm的Ag颗粒在1K的低温下却变成了绝缘体;这是由于其能级间距δ变大,低温下的热扰动不足以使电子克服能隙的阻隔而移动,电阻率增大,从而使金属良导体变为绝缘体。
对于半导体而言,在尺寸小于100nm的纳米尺度范围内,半导体纳米微粒随着其粒径的减小也会呈现量子化效应,显现出与常规块体不同的光学和电学性质。
常规大块半导体的能级是连续的能级,当颗粒减小时,半导体的载流子被限制在一个小尺寸的势阱中,在此条件下,导带和价带过渡为分立的能级,使半导体的能隙变宽,、吸收光谱阈值向短波方向移动,此即为半导体纳米微粒的量子尺寸效应。
与金属导体相比,半导体纳米微粒组成的固体禁带宽度较大,受量子尺寸效应的影响非常明显。
对任何一种材料,都存在一个临界颗粒大小的限制,小于该尺寸的颗粒将表现出量子尺寸效应。
除导体变为半导体、绝缘体以外,纳米微粒的比热、磁矩等性质将与其所含电子数目的奇偶性有关,如:含有偶数电子的颗粒具有抗磁性,含有奇数电子的颗粒具有顺磁性(电子自旋磁矩的抵消情况不同)。
纳米金属颗粒的电子数一般不易改变,因为当其半径接近T)要大。
纳米材料的性质
纳米材料的性质纳米材料的性质指的是它们相比于宏观材料表现出的特殊物理、化学和力学特性。
纳米材料具有以下几种显著的性质:1. 尺寸效应:纳米材料的尺寸通常在1到100纳米之间,与宏观材料相比非常小。
这种尺寸效应使得纳米材料的物理性质发生显著变化。
例如,纳米材料的电子结构可以改变,导致其光学、电子和磁性质的变化。
2. 表面增强效应:由于纳米材料具有更大的比表面积,纳米尺度颗粒和纳米结构的材料具有更高的表面活性。
这种表面增强效应使得纳米材料在催化、吸附、光谱、传感和生物学等领域有着广泛的应用。
3. 量子效应:当材料尺寸缩小到纳米尺度时,量子效应开始显现。
量子效应指的是纳米材料中的电子和其他粒子行为具有测量不确定性、随机性或波动性。
量子效应的发生使得纳米材料的电子结构变得复杂,因而产生了新的光学、电子和磁性质。
4. 机械性能提升:纳米结构的材料具有更高的硬度、强度和韧性。
这是因为纳米材料的晶体颗粒尺寸较小,导致晶体缺陷和位错的数量减小,从而改善了其力学性能。
5. 温度和电导率调节:纳米材料在温度和电导率方面具有显著的调节性能。
由于纳米尺度颗粒间的热传导性能较差,所以纳米材料的热电性能比宏观材料更好。
这使得纳米材料可以用于高效热电器件的制备。
6. 自组装和自修复:纳米材料具有自组装和自修复能力,可以通过自我组装形成更复杂的结构。
这些自组装的纳米材料可以用于制备纳米电路、纳米器件和纳米传感器等。
总之,纳米材料具有许多独特的性质,这些性质使得纳米材料在各个领域具有广泛的应用潜力,包括能源、环境、生物医学、电子器件等。
随着纳米科学和技术的发展,我们可以期待更多纳米材料性质的发现和应用的拓展。
纳米材料四大效应
纳米材料四大效应纳米材料是一种具有特殊尺寸和结构的材料,其尺寸在纳米尺度范围内,即1纳米(nm)等于十亿分之一米。
由于其独特的性质和应用潜力,纳米材料在科学研究和工业应用中引起了广泛的关注。
纳米材料具有四大效应,包括量子效应、表面效应、尺寸效应和量子尺寸效应。
一、量子效应量子效应是指纳米材料在纳米尺度下具有与宏观材料不同的性质和行为。
由于其尺寸接近电子波长,纳米材料的电子结构和能带结构发生变化,导致其电子、光学、磁学等性质呈现出新的特性。
例如,纳米材料的能带宽度增大,带隙变窄,电子输运性质改变,导致电子在材料中的行为呈现出量子级别的效应。
这种量子效应使得纳米材料在光电、催化、传感等领域具有广泛的应用前景。
二、表面效应纳米材料与宏观材料相比,其比表面积更大。
由于纳米材料的尺寸较小,其比表面积相对较大,使得纳米材料的表面原子或分子与外界环境之间的相互作用增强。
这种表面效应使得纳米材料在催化、吸附、储能等方面具有优异的性能。
例如,纳米金属催化剂具有较高的催化活性,纳米多孔材料具有较大的吸附容量,纳米材料的电极材料具有较高的储能密度。
三、尺寸效应纳米材料的尺寸在纳米尺度范围内,相对于宏观材料,其尺寸具有明显的差异。
这种尺寸效应使得纳米材料的物理、化学和力学性质发生变化。
例如,纳米颗粒的晶格缺陷比例增加,导致其力学性能下降;纳米材料的杨氏模量和热膨胀系数随尺寸的减小而发生变化。
尺寸效应使得纳米材料在材料加工、力学强化等方面具有独特的应用潜力。
四、量子尺寸效应当纳米材料的尺寸接近或小于其准束缚半径时,量子尺寸效应将显现出来。
量子尺寸效应是指纳米材料的电子、光学和磁学性质与其尺寸有关,呈现出量子级别的效应。
例如,纳米颗粒的能带结构呈现出禁带宽度的量子化现象,导致光学性质和能带结构的变化;纳米线和纳米薄膜的电子输运性质受到限制,呈现出量子隧穿效应。
量子尺寸效应使得纳米材料在信息存储、量子计算和光电器件等领域具有巨大的应用潜力。
纳米材料的四大效应及应用
纳米材料的四大效应及应用纳米材料是指具有纳米级尺寸的材料,其在纳米尺度下具有独特的物理、化学和生物学性质。
纳米材料的研究和应用领域涉及众多领域,其中包括了四大效应:量子效应、表面效应、尺寸效应和量子限域效应。
本文将分别介绍这四大效应,并探讨它们在不同领域的应用。
一、量子效应量子效应是指当材料尺寸缩小到纳米级时,其物理性质开始显示出量子力学效应的特征。
在纳米材料中,电子和光子的行为受到限制,其能带结构和能级分布发生了明显变化。
量子效应的一个典型例子是量子点材料,其尺寸小于10纳米,具有禁带宽度和荧光峰的量子尺寸效应。
量子效应不仅改变了材料的电学、光学和磁学性质,还催生了许多新颖的应用,如纳米激光器、量子计算和量子通信等。
二、表面效应表面效应是指纳米材料的大比表面积导致其表面活性增强,与周围环境的相互作用更加显著。
纳米材料的表面原子数目相对较多,表面原子的化学键和电子状态与材料内部不同,使得纳米材料在催化、储能、传感和生物医学等领域具有独特的应用价值。
例如,纳米金属催化剂在化学反应中表现出高效催化活性,纳米多孔材料在气体吸附和分离中具有优越性能,纳米生物传感器可以实现高灵敏度的生物检测。
三、尺寸效应尺寸效应是指纳米材料的尺寸对其性质和行为产生显著影响的现象。
纳米材料的尺寸在纳米级别,与宏观材料相比,具有更高的比表面积和更短的扩散距离。
尺寸效应导致纳米材料的熔点、硬度、热导率、磁性等性质发生变化。
例如,纳米颗粒的熔点降低,纳米薄膜的硬度增加,纳米线的热导率增强。
基于尺寸效应的纳米材料在能源、材料和电子器件等领域具有广泛应用,如纳米催化剂、纳米传感器和纳米电池等。
四、量子限域效应量子限域效应是指当纳米材料的尺寸缩小到与其载流子(如电子、空穴)波长相当时,载流子的运动受到限制,表现出量子力学效应。
纳米材料的电子和光学性质在量子限域效应下发生变化,如自发发光增强效应和拉曼散射增强效应。
这种效应使得纳米材料在光电器件、光催化和生物成像等领域有着广泛的应用。
纳米材料的四大效应
小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应我的理解是尺寸小了就会出现一些新的现象、新的特性。
从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。
由此很好地揭示了纳米材料良好的催化活性。
表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。
我觉得其实质就是小尺寸效应。
量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。
可否直接说连续的能带变成能级。
宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。
近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。
这两个更侧重于物理层面,总是不能很好的给出朴实的语言加以描述,甚是头疼。
既然是科普,我想如何将这四个概念给工人、初中生甚至是小学生说明白,至关重要。
表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。
对直径大于 0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。
超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金属超微颗粒(直径为 2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。
纳米材料四大效应
纳米材料四大效应
纳米材料的四大效应包括:量子效应、尺寸效应、表面效应和量子限域效应。
1. 量子效应(Quantum Effect):纳米尺度下,由于粒子的波
动性质变得显著,可能出现光电效应、磁电效应和量子隧穿效应等。
纳米材料的量子效应可以使电子能级发生分裂和禁能带展宽,从而改变材料的电子结构和光学特性。
2. 尺寸效应(Size Effect):纳米材料尺寸在纳米尺度范围内,具有特殊的物理和化学性质。
纳米颗粒的尺寸效应主要体现在其形状、比表面积和热稳定性等方面。
纳米材料的尺寸效应能够影响材料的磁性、光学性质和力学性能等。
3. 表面效应(Surface Effect):纳米材料比表面积大于宏观材料,纳米颗粒的表面活性较高。
纳米材料的表面效应主要体现在材料的催化活性、界面反应速率、光敏性和生物活性等方面。
表面效应可以改变纳米材料的化学反应动力学过程和表面能,从而影响材料的性质和应用。
4. 量子限域效应(Quantum Confinement Effect):纳米材料的尺寸接近或小于电子的波长时,会引起量子限域效应。
量子限域效应使得纳米材料中的电子和光子受到限制或约束,使得纳米材料的能带结构和能级分布发生改变。
量子限域效应能够使纳米材料具有特殊的光电学、能量传输和传感等性质。
纳米压痕尺寸效应产生的原因
纳米压痕尺寸效应产生的原因
纳米压痕尺寸效应是指在纳米尺度下进行压痕实验时,材料的
硬度和弹性模量会随着压痕尺寸的减小而发生变化的现象。
这种现
象的产生可以从多个角度来解释。
首先,从晶体学角度来看,纳米尺度下材料的晶粒尺寸和晶界
对材料的力学性能产生显著影响。
在纳米尺度下,材料的晶粒尺寸
可能接近或小于压痕尺寸,导致晶界对位错的拷贝和移动受到限制,从而影响了材料的变形行为和硬度。
其次,纳米尺度下的表面效应也是产生尺寸效应的重要原因。
由于纳米尺度下材料表面的原子结构与体积内部的原子结构存在巨
大差异,因此纳米尺度下的表面能量对材料的力学性能产生了显著
影响,导致了硬度和弹性模量的尺寸依赖性。
此外,纳米尺度下的位错堆积和位错运动也会对材料的力学性
能产生影响。
在纳米尺度下,位错的运动受到晶界、表面和其他位
错的干扰,从而影响了材料的变形行为和硬度。
最后,纳米尺度下的量子尺寸效应也是产生尺寸效应的重要原
因之一。
在纳米尺度下,材料的电子结构和光学性质会受到量子尺
寸效应的影响,从而影响了材料的力学性能。
综上所述,纳米压痕尺寸效应的产生是由于晶体学、表面效应、位错运动和量子尺寸效应等多种因素共同作用的结果。
对这些因素
的综合影响导致了纳米尺度下材料力学性能的尺寸依赖性。
纳米颗粒的尺寸效应对磁性的影响
纳米颗粒的尺寸效应对磁性的影响随着纳米科学和纳米技术的迅猛发展,纳米材料的研究成为了科学界的热点之一。
其中,纳米颗粒作为纳米材料的重要代表之一,具有独特的物理和化学性质,引起了广泛的关注。
而在纳米颗粒中,尺寸效应是其中一个重要的影响因素,尤其在磁性方面。
从小尺寸开始,纳米颗粒的磁性随着尺寸的减小而呈现出独特的变化。
当纳米颗粒的尺寸达到纳米级别时,其表面原子和尺寸变得越来越重要。
尺寸效应使得表面原子的数量相对于体积原子的数量变得更加显著,从而导致了磁性的显著变化。
首先,较小尺寸的纳米颗粒磁性呈现出超顺磁性。
纳米颗粒的直径通常小于10纳米,表面的相互作用比体积更加显著。
在这种情况下,磁性行为主要由表面自旋相互作用所主导。
由于尺寸效应,表面原子自旋排列的不规则性增强,磁矩不同的表面原子分布更均匀。
因此,较小尺寸的纳米颗粒呈现出超顺磁性,表现出磁化率随温度增加而增加的特性。
随着纳米颗粒的尺寸进一步减小,达到纳米级别以下时,其磁性呈现出不同的变化。
纳米尺寸的进一步减小使得表面原子占据了颗粒中的绝大部分,而体积原子所占比例较小。
这导致了表面自旋相互作用更加显著,而体积自旋相互作用变得相对较弱。
在这种情况下,纳米颗粒的磁性行为主要由表面自旋相互作用所主导,呈现出铁磁性。
与超顺磁性不同的是,纳米颗粒的铁磁性表现出磁化率随温度减小而增加的特性。
除了超顺磁性和铁磁性,纳米颗粒的尺寸效应还会带来其他磁性行为的变化。
例如,在一些特殊情况下,当纳米颗粒的尺寸进一步缩小到纳米级别以下时,纳米颗粒可能会出现反铁磁性或者无序磁性。
这是由于在这种极小的尺寸下,表面自旋相互作用的增强使得纳米颗粒的自旋排列变得复杂。
这些不同的磁性行为不仅在理论上具有重要意义,也对纳米材料的实际应用具有重要的影响。
总的来说,纳米颗粒的尺寸效应对磁性的影响是复杂而多样的。
较小尺寸的纳米颗粒呈现出超顺磁性,而进一步减小尺寸则呈现出铁磁性。
此外,还存在着反铁磁性和无序磁性等特殊情况。
纳米材料的特性
纳米材料的特性纳米材料的特性纳米材料是指在尺寸维度上具有纳米级别尺寸(1-100纳米)的材料。
由于其尺寸和结构的特殊性,纳米材料展现出许多独特的特性,这些特性在各种领域中具有广泛的应用,如电子学、催化剂、材料科学等。
以下是关于纳米材料的一些主要特性:1. 尺寸效应:纳米材料具有特定的尺寸效应,即其特性会随着尺寸的减小而显著改变。
在纳米尺度下,电子和光子的行为受到约束效应的影响,如量子大小效应和表面效应。
因此,纳米材料的电学、光学、磁学等性质与传统材料相比具有显著差异。
2. 巨大的比表面积:纳米材料的巨大比表面积使其相对于体积材料具有更多的活性表面,有利于吸附、催化和反应的发生。
例如,在催化剂中使用纳米颗粒可以提高催化活性,因为它们能提供更多的活性表面,与反应物接触。
3. 高强度和硬度:纳米材料由于具有较小的晶体尺寸和内部组织的特殊结构,具有更高的强度和硬度。
这是因为纳米颗粒具有更大的表面活性,从而增加了原子之间的键合数目,并提高了材料的强度。
4. 优异的导电性:纳米材料如纳米线、纳米管和纳米片具有优异的电导率,这是由于其小尺寸和高比表面积导致大量的载流子密度。
这使得纳米材料在电子学和光电器件中具有重要的应用潜力。
5. 量子效应:在纳米尺度下,材料的能带结构和光学特性会出现量子效应。
例如,纳米颗粒具有量子大小效应,其能带结构会发生变化,并且在光学上显示出新的能带间跃迁。
6. 热稳定性:纳米材料的热稳定性一般较高,能够耐受较高温度和压力。
这使得纳米材料具有在高温环境下使用的潜力,例如在高温催化、传感和能源存储中的应用。
纳米材料的这些特性使其在各种领域中具有广泛的应用潜力,如电子学、催化剂、能源存储、生物医药等。
随着对纳米材料性质的进一步研究和理解,纳米科技的发展和应用将为人类创造出更多的机会和可能性。
纳米材料五大效应
纳米材料五大效应
1. 纳米尺度效应:纳米材料的尺寸在纳米级别,从而展现出与宏观材料截然不同的物理、化学和生物学特性。
比如,纳米颗粒的表面积相对较大,使其具有更高的催化活性和吸附性能。
2. 量子效应:纳米材料的尺寸与电子或光子的波长相当,使得其电子和光学性质受到量子效应的显著影响。
例如,金属纳米粒子在特定尺寸下表现出明显的局域表面等离子共振效应。
3. 尺寸效应:纳米材料的尺寸可以调控制备过程中的晶粒大小和晶界数量,从而影响其力学、热学和光学性能。
例如,纳米材料通常具有较高的强度和硬度,同时也表现出不同的热膨胀和光学吸收行为。
4. 表面效应:纳米材料的大比表面积使其表面与体相的相互作用更加显著。
纳米表面的特殊结构和化学性质可以被用来改善材料的催化活性、附着性和生物相容性。
5. 量子点效应:纳米量子点是特殊尺寸范围内的半导体晶粒,其能带结构可以调控,从而使得它们的光学性质具有可调控的发光特性。
这种效应被广泛应用于发光二极管、太阳能电池和生物成像等领域。
纳米材料的四大效应
纳米材料的四大效应
纳米材料的四大效应
1、体积效应
当纳米粒子的尺寸与传导电子的德布罗意波相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化性及熔点等都较普通粒子发生了很大的变化,这就是纳米粒子的体积效应。
纳米粒子的以下几个方面效应及其多方面的应用均基于它的体积效应。
例如,纳米粒子的熔点可远低于块状本体,此特性为粉粉冶金工业提供了新工艺;利用等离子共振频移随颗粒尺寸变化的性质,可以改变颗粒尺寸,控制吸收的位移,制造具有一种频宽的微波吸收纳米材料,用于电磁屏蔽,隐形飞机等。
2、量子尺寸效应
粒子尺寸下降到一定值时,费米能级接近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。
Kubo采用一电子模型求得金属超微粒子的能级间距为:4Ef/3N。
纳米晶材料的尺寸效应分析
纳米晶材料的尺寸效应分析纳米晶材料是一种在微观尺度上拥有特殊性质的材料。
由于其尺寸在纳米级范围内,与宏观材料相比,纳米晶材料具有许多独特的物理、化学和力学性质。
尺寸效应是指当材料的尺寸达到纳米级时,其物理和化学性质会发生显著变化的现象。
本文将对纳米晶材料的尺寸效应进行分析,探讨其对材料性能和应用的影响。
尺寸效应的第一个显著特点是表面积增大。
纳米晶材料具有较高的比表面积,这是由于其小尺寸导致其表面积相对于体积的增加。
较高的比表面积使纳米晶材料与环境之间的相互作用增大,增强了材料的催化活性和吸附能力。
此外,纳米晶材料的较大表面积也提高了材料的能量储存和传递效率,使其在能源领域具有广泛的应用前景。
除了表面积效应,纳米晶材料的尺寸效应还表现为量子尺寸效应。
在纳米级尺寸下,材料中的电子和晶格结构受到限制,在这一尺寸范围内,量子效应将显著影响材料的性质。
通过调控纳米晶材料的尺寸,我们可以改变其带隙大小、能带结构和表面电荷分布,从而有效调控材料的光电、电子输运和光催化等性质。
这使得纳米晶材料在光子学、电子学和光催化等领域具有广泛的应用前景。
进一步地,纳米晶材料的力学性质也会因尺寸效应而发生变化。
在宏观材料中,晶体缺陷和位错往往是材料的强度和韧性的主要限制因素。
然而,在纳米晶材料中,随着晶粒尺寸的减小,缺陷和位错的移动受到抑制,从而使其力学性能得到提升。
此外,尺寸效应还能够调控纳米晶材料的塑性和断裂行为,使其具有优异的韧性和强度特性。
因此,纳米晶材料在结构材料领域具有广泛的应用前景。
除了以上提到的性质外,纳米晶材料的尺寸效应还具有其他一些较为复杂的影响。
例如,调控纳米晶材料的尺寸可以改变其电荷输运性质和热导率。
此外,纳米晶材料的尺寸效应还能够调控材料的磁性和光学性质等。
这些复杂的尺寸效应为纳米晶材料的研究和应用提供了更为广阔的空间。
综上所述,纳米晶材料的尺寸效应对其性质和应用有着重要的影响。
通过调控材料的尺寸,我们可以实现对材料性能的有效调控和优化。
纳米材料四大效应及相关解释
纳米材料四大效应及相关解释四大效应基本释义及内容:量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。
当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。
小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。
对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。
表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。
宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。
近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。
四大效应相关解释及应用:表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径的变小比表面积将会显著地增加。
例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g。
粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。
这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的。
表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米尺寸效应纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。
纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。
纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。
这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。
随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。
对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。
超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。
在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。
超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。
如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。
利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。
小尺寸效应随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。
由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。
(1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。
事实上,所有的金属在超微颗粒状态都呈现为黑色。
尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。
由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。
利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。
此外又有可能应用于红外敏感元件、红外隐身技术等。
(2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。
例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。
因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。
采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。
日本川崎制铁公司采用0.1~1微米的铜、镍超微颗粒制成导电浆料可代替钯与银等贵金属。
超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。
例如,在钨颗粒中附加0.1%~0.5%重量比的超微镍颗粒后,可使烧结温度从3000℃降低到1200~1300℃,以致可在较低的温度下烧制成大功率半导体管的基片。
(3)特殊的磁学性质人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。
磁性超微颗粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依靠它游向营养丰富的水底。
通过电子显微镜的研究表明,在趋磁细菌体内通常含有直径约为2′10-2微米的磁性氧化物颗粒。
小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为80安/米,而当颗粒尺寸减小到2′10-2微米以下时,其矫顽力可增加1千倍,若进一步减小其尺寸,大约小于6′10-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。
利用磁性超微颗粒具有高矫顽力的特性,已作成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。
利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。
(4)特殊的力学性质陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性。
因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性,使陶瓷材料具有新奇的力学性质。
美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。
研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。
呈纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。
至于金属一陶瓷等复合纳米材料则可在更大的范围内改变材料的力学性质,其应用前景十分宽广。
超微颗粒的小尺寸效应还表现在超导电性、介电性能、声学特性以及化学性能等方面。
宏观量子隧道效应各种元素的原子具有特定的光谱线,如钠原子具有黄色的光谱线。
原子模型与量子力学已用能级的概念进行了合理的解释,由无数的原子构成固体时,单独原子的能级就并合成能带,由于电子数目很多,能带中能级的间距很小,因此可以看作是连续的,从能带理论出发成功地解释了大块金属、半导体、绝缘体之间的联系与区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。
当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。
例如,导电的金属在超微颗粒时可以变成绝缘体,磁矩的大小和颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。
因此,对超微颗粒在低温条件下必须考虑量子效应,原有宏观规律已不再成立。
电子具有粒子性又具有波动性,因此存在隧道效应。
近年来,人们发现一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称之为宏观的量子隧道效应。
量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件的基础,或者它确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。
例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而溢出器件,使器件无法正常工作,经典电路的极限尺寸大概在0.25微米。
目前研制的量子共振隧穿晶体管就是利用量子效应制成的新一代器件。
纳米效应的应用纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。
这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。
就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。
一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。
因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。
纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。
金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。
纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。
纳米材料分类纳米材料就是具有纳米尺度的粉末、纤维、膜或块体。
科学实验证实,当常态物质被加工到极其微细的纳米尺度时,会出现特异的表面效应、体积效应和量子效应,其光学、热学、电学、磁学、力学乃至化学性质也就相应地发生十分显著的变化。
因此纳米材料具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
纳米纤维:指直径为纳米尺度而长度较大的线状材料。
可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。
纳米膜:纳米膜分为颗粒膜与致密膜。
颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。
致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。
可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。
纳米块体:是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。
主要用途为:超高强度材料;智能金属材料等。
专家指出,对纳米材料的认识才刚刚开始,目前还知之甚少。
从个别实验中所看到的种种奇异性能,说明这是一个非常诱人的领域,对纳米材料的开发,将会为人类提供前所未有的有用材料。
纳米科技大事记1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想;70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工;1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着我国开始开始在国际纳米科技领域占有一席之地;1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;近年来,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。