DC-DC电路转换原理(含计算方式)

合集下载

dc-dc变换器原理

dc-dc变换器原理

dc-dc变换器原理
DC-DC变换器是一种电力电子设备,它可以将直流电压转换为不同电压等级的直流电压输出。

其工作原理基于电感和电容的储能特性。

当输入电压施加在变换器的输入端口上时,输入电流开始流过电感。

由于电感的特性,电流变化率有限,电感中的电能会增加。

然后,输入电压被关闭,使电感的磁场崩溃,导致电感中的电流减小。

由于电感的自感特性,电压会增加,从而产生一个与输入电压不同的输出电压。

在DC-DC变换器中,电容被用于平滑输出电压。

当电感储能结束时,电容开始释放其储存的能量,以供应输出负载。

通过控制开关频率和占空比,可以实现对输出电压的调节。

DC-DC变换器还运用了反馈控制系统,通过监测输出电压与期望电压之间的差异来调整开关频率和占空比,从而实现对输出电压的稳定控制。

多种DC-DC变换器拓扑结构和控制策略被用于不同应用场景中,以满足不同的功率转换需求和效率要求。

总之,DC-DC变换器利用电感和电容的储能特性,通过控制开关操作,实现对直流电压的转换和稳定调节。

这使得它在许多电子设备中得到广泛应用,如电源适配器、电动汽车、太阳能系统等。

DC-DC变换器讲解学习

DC-DC变换器讲解学习

输入输出关系:
图3-6 Sepic斩波电路和Zeta斩波电路
U otto ofnf ETt otn onE1 E (2-49)
3-25
2.1.5 Sepic斩波电路和Zeta斩波电路
Zeta斩波电路原理
V处于通态期间,电源E经开关
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1的能量转移至C1,
电压源 电压源的变换
o
t
b)
图3-4 升降压斩波电路及其波形
a)电路图
b)波形
3-20
2.1.4升降压斩波电路和Cuk斩波电路
稳态时,一个周期T内电感L两端电压uL对时间的积分为零,即
数量关系
T
0 uL dt 0
(2-39)
V处于通态
V处于断态
uL = E
EtonUotoff
uL = - uo
(2-40)
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (2-50)

相同的输入输出关系。Sepic电路的电源电流和负载电流均
连续,Zeta电路的输入、输出电流均是断续的。
两种电路输出电压为正极性的。
3-26
t1 E
I 20
t2
E
t
O
EM
t
c) 电流断续时的波形
图3-1 降压斩波电路得原理图及波形
3-4
2.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uoton t otnof

直流变交流逆变器的工作原理及电路分享

直流变交流逆变器的工作原理及电路分享

直流变交流逆变器的工作原理及电路分享直流变交流逆变器的工作原理利用震荡器的原理,先将直流电变为大小随时间变化的脉冲交流电,经隔直系统去掉直流分量,保留交变分量,再通过变换系统(升压或降压)变换,整形及稳压,就得到了符合我们需要的交流电。

利用振荡电路产生一定频率的脉动的直流电流,再用变压器将这个电流转换为需要的交流电压。

三相逆变器则同时产生互差120度相位角的三相交流电压。

逆变器有很多部分组成,其中最核心的部分就是振荡器了。

最早的振荡器是电磁型的,后来发展为电子型的,从分立元件到专用集成电路,再到微电脑控制,越来越完善,逆变器的功能也越来越强,在各个领域都得到了很广泛的应用。

简单直流变交流的逆变器电路该逆变器使用功率场效应晶体管作为逆变器装置。

用汽车电池供电。

因此,在输入电压为12伏直流电。

输出电压是100V的交流电。

但是,输入和输出电压不仅限于此。

您可以使用任何电压。

他们依赖于变压器使用。

波形输出为方波。

根据经验,这个电路约100W功率。

电路必须按装保险丝,因为过多的输入电流流动时,振荡器停止。

逆变器原理电路:将12V直流变成220V交流电将220V交流电转变为24V、36V、48V 都比较简单,只需要使用变压器的原理。

电磁互感,就可以获得不同的电压。

设闭合电路是一个n匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为根据公式可知,E就是电动势,也就是电压。

因为不变,只要铁块两端的线圈数量n不一样就可以达到变压的效果。

将交流电转变为直流电只要加上二极管就可以达到需要的效果,二极管是一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。

然后再利用变压器原理就可以将220V交流电转变成12V直流电,以及我们手机充电器的5V直流输出电压。

那么如何将12V直流转换成220V交流电呢?首先我们来了解一下逆变器,什么是逆变器?逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。

dc-dc变换原理

dc-dc变换原理

dc-dc变换原理
DC-DC变换器是一种电子设备,用于将直流(DC)电压转换为另一种直流电压。

这种转换器在许多电子设备中都有广泛的应用,例如在电源适配器、电动汽车、太阳能系统和通信设备中都可以看到它们的身影。

DC-DC变换器的工作原理基于电感和电容的原理,通过精确控制开关管的导通和截止来实现输入电压到输出电压的变换。

DC-DC变换器的基本工作原理是利用电感和电容储存和释放能量,从而实现电压的升降。

当输入电压施加到变换器上时,开关管周期性地开关,这导致电感和电容中的能量储存和释放。

通过调整开关管的占空比和频率,可以实现对输出电压的精确控制。

在一个典型的升压型DC-DC变换器中,当开关管导通时,电流会通过电感和负载,从而储存能量。

当开关管截止时,电感中的储能会释放,从而提供给负载。

通过控制开关管的导通和截止时间,可以实现输出电压的精确控制。

相比于线性稳压器,DC-DC变换器具有更高的效率和更小的体积。

这使得它们在需要高效能转换和对电源体积要求严格的场合中
得到广泛应用。

总之,DC-DC变换器是一种非常重要的电子设备,它通过精确控制电感和电容的能量储存和释放,实现了输入电压到输出电压的精确变换。

在现代电子设备中,它们的应用已经变得非常普遍,为我们的生活带来了诸多便利。

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成;肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。

输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。

将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。

电感值如何影响电感型升压转换器的性能?因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。

等效串联电阻值低的电感,其功率转换效率最佳。

要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。

电感型升压转换器IC电路输出二极管选择的原则是什么?升压转换器要选快速肖特基整流二极管。

与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。

肖特基二极管平均电流额定值应大于电路最大输出电压.怎样选择电感型升压转换器IC电路的输入电容?升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。

纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。

如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。

DC变DC的原理

DC变DC的原理

DC变DC的原理
DC变DC的原理就是通过电子器件将直流电压转换为不同的
直流电压。

在直流电路中,电流始终沿着一个方向流动,而在交流电路中,电流会时刻改变方向。

因此,当需要将一个直流电压转换为另一个直流电压时,就需要使用DC变DC转换器。

DC变DC转换器主要包括以下几个核心部分:开关器件、电
感器件、电容器件和控制电路。

其中,开关器件负责周期性地开闭电路,使得电能可以传输。

电感器件和电容器件则起到能量存储和平滑输出的作用。

具体来说,当输入的直流电压通过开关器件开启时,电能会存储在电感器件中。

而当开关器件关闭时,存储在电感器件中的电能会转移到输出端,通过电容器件进行输出过滤和平滑。

控制电路则负责监测输出电压,控制开关器件的开闭状态,以保持输出电压稳定。

DC变DC转换器有多种不同的拓扑结构,如升压、降压、升
降压等。

通过不同的拓扑结构和控制策略,可以实现不同输入输出电压之间的转换。

在实际应用中,DC变DC转换器广泛
应用于各种电子设备,如电源适配器、手机充电器、电子产品等。

dc dc电源原理图

dc dc电源原理图

dc dc电源原理图
根据您的要求,为避免文中有标题相同的文字,以下是一份简化的DC DC电源原理图解释:
电源原理图如下:
[图1]
该电源原理图展示了一个基本的DC DC电源电路。

在这个电路中,输入电源通过开关电源转换器(Switching Converter)被转换为所需的输出电压。

该电路由以下主要部分组成:
1. 输入电源(Vin):输入电源是电路的供电来源。

它可以是直流电源或其他类型的电源。

输入电源的电压通常会经过滤波电路进行滤波以去除电源中的噪声和杂波。

2. 整流电路(Rectifier Circuit):整流电路将输入电源转换为脉冲电流。

它通常由一组二极管组成,可以将输入电源的交流部分转换为直流电压。

3. 滤波电路(Filter Circuit):滤波电路通过使用电容器和电感器来进行滤波,以去除电源中的纹波和噪声。

滤波电路的作用是确保输出电压平稳且不受干扰。

4. 开关电源转换器(Switching Converter):开关电源转换器是DC DC电源的核心部分。

它通过周期性调整开关管的通断
状态来将输入电压转换为所需的输出电压。

开关电源转换器通常由开关管、电感器和电容器组成。

5. 输出电压(Vout):输出电压是经过开关电源转换器变换后得到的电压。

输出电压的大小和稳定性是根据设计要求和控制开关电源转换器的参数来确定的。

请注意,由于没有具体的标题,上述描述涵盖了整个DC DC 电源原理图的主要内容,以便更好地理解电路的工作原理。

DCDC原理及指标介绍

DCDC原理及指标介绍

DC-DC原理及指标介绍1、开关电源:是一种高频化电能转换装置,其主要利用电子开关器件(如晶体管、MOS管、可控晶闸管等),通过控制电路,使电子开关器件周期性地"接通"和"关断",让电子开关器件对输入电压进行脉冲调制,从而实现电压变换以及输出电压可调和自动稳压的功能。

开关电源的优势:①功耗低,效率高。

②体积小,重量轻。

③稳压范围宽。

开关电源的损耗来源:①开关管损耗。

②电感电容损耗。

③二级管损耗。

开关电源的损耗分析:开关电源的效率可以达到90%以上,如果精心优化与设计,甚至可以达到95%以上,这在以电池作为电力来源的场合非常重要,例如手机、小型无人机等。

因此开关电源设计的优劣程度将直接影响设备的续航能力。

(1)开关管损耗:这是开关电源的主要损耗,主要包括开关损耗、导通损耗。

因此应该尽量选择导通电阻比较小的开关管作为开关电源的核心元器件。

(2)电感电容损耗:电感损耗主要包括直流电阻损耗,电容损耗主要包括漏电流损耗。

因此应该尽量选择直流电阻较小的电感和漏电流较小的电容元器件。

(3)二极管损耗:主要包括导通损耗和开关损耗。

因此应该尽量选择导通压降较小,反向恢复时间较短的二极管,例如肖特基二极管或快恢复二极管等。

2、开关电源的分类:按照调制方式的不同可分为脉宽调制(PWM)和脉频调制(PFM)两种,目前脉宽调制(PWM)在开关电源中占据主导地位。

按照管子的连接方式可分为串联式开关电源、并联式开关电源和变压器式开关电源三大类。

按照输出电压的不同可分为降压式开关电源和升压式开关电源两种。

按照输入输出类型可分为:AC-AC、DC-AC、AC-DC、DC-DC四种,这里以DC-DC为主进行介绍。

按照是否有电气隔离可分为隔离型开关电源和非隔离型开关电源两种。

3、开关电源的三种基本拓扑结构(以非隔离型为主):DC/DC变换器一般都包括两种基本工作模式:电感电流连续模式(CCM)、电感电流断续模式(DCM)。

DC-DC电路设计介绍

DC-DC电路设计介绍

3.1 直流PWM控制技术基础
3.1.1 直流变换的基本原理及PWM概念
iS
T US与断开
基本的直流变换电路
iS
io
(2)开关管T断开时, R两端电压 uo=0
T US
uo R
开关管IGBT断开控制:
开关管T断开等效电路 UG=0
3.1.1 直流变换的基本原理及PWM概念
假设条件:
1、器件是理想的(不考虑开关时间、导通压降等) 2、输出滤波电容较大,输出电压基本平直
2 主要波形—电感电流连续情形
降压电路
uG>0
uG=0
T导通等效电路
电感电流连续情形: iL>0
T断开等效电路
2 主要波形—电感电流连续情形
+ uL -
uG
+
uo
-
uL
T导通等效电路
数学模型:
Us uC
重点:电路结构、工作原理及主要数量关系
第3章 DC/DC变换电路
直流变换—将直流电能(DC)转换成另一 固定电压或电压可调的直流电能。
直流变换电路—完成直流变换的电路。
直流变换器—实现直流变换的装置。
3.1 直流PWM控制技术基础
3.1.1 直流变换的基本原理及PWM概念
直流变换问题的提出
直流供电电压一定,而负载需要不同电压 直流调速:需要可变的直流电压 直流升压:太阳能电池输出电压较低,需要
uL
tcon
数学模型:
US uC
t
uC
uL
L
d iL dt
uC
初值条件
iL
iC
C
d uC dt
iL
uC R

常用DCDC电源电路方案设计

常用DCDC电源电路方案设计

常用DC /DC电源电路设计方案分析1、DC/DC电源电路简介DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。

一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。

常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。

不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。

结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。

2、DC/DC转换电路分类DC/DC转换电路主要分为以下三大类:(1)稳压管稳压电路。

(2)线性(模拟)稳压电路。

(3)开关型稳压电路3、稳压管稳压电路设计方案稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。

比较常用的是并联型稳压电路,其电路简图如图(1)所示,选择稳压管时一般可按下述式子估算:(1) Uz=Vout; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)Vout这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。

有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。

这里主要介绍TL431、REF02的应用方案。

3.1 TL431常用电路设计方案TL431是一个有良好的热稳定性能的三端可调分流基准电压源。

它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。

该器件的典型动态阻抗为0.2Ω,参考电压源误差1%,输出电流为1.0-100mA。

双向全桥dc-dc变换器建模与调制方法的研究-概述说明以及解释

双向全桥dc-dc变换器建模与调制方法的研究-概述说明以及解释

双向全桥dc-dc变换器建模与调制方法的研究-概述说明以及解释1.引言1.1 概述双向全桥DC-DC变换器是一种较为常见的电力电子转换器,广泛应用于电力系统、电动汽车、可再生能源等领域。

它具有高效能、高可靠性和灵活性等特点,可以实现双向能量传输和电压变换。

因此,对双向全桥DC-DC变换器的建模与调制方法进行研究具有重要意义。

概括地说,双向全桥DC-DC变换器由两个单相桥连接而成,其输入和输出可以分别是直流电压或交流电压。

通过控制开关器件的开关状态和占空比,可以实现能量的双向流动和电压的升降。

其基本结构包括四个功率开关器件、两个变压器和一组电容滤波器。

通过适当设计变压器和电容参数,可以实现不同电压转换比的变换功能。

为了更好地理解双向全桥DC-DC变换器的工作原理和性能特点,需要进行准确的建模和分析。

建模方法是研究的关键一步,可以基于功率平衡原理和电磁场方程建立数学模型,描述其动态特性和稳态行为。

同时,调制方法则是控制变换器工作状态的关键技术,可以利用不同的调制策略来实现对输出电压的精确控制。

本文旨在对双向全桥DC-DC变换器的建模与调制方法进行深入研究。

首先,我们将介绍双向全桥DC-DC变换器的基本原理和结构,包括其工作原理、拓扑结构和特点。

接着,我们将详细探讨双向全桥DC-DC变换器的建模方法,包括基于电压平衡方程和状态空间方程的建模方式。

同时,还将介绍常用的建模工具和仿真方法,以及模型参数的确定方法。

在建立准确的数学模型基础上,我们将重点研究双向全桥DC-DC变换器的调制方法。

我们将介绍常见的调制策略,如PWM调制、多谐波调制和频率调制等,并比较它们的优缺点。

同时,还将探讨调制参数的选择和调制器件的设计原则,以及调制方法与输出性能指标之间的关系。

在研究的结论部分,我们将总结本文的研究结果,归纳出双向全桥DC-DC变换器建模与调制方法的主要贡献和应用价值。

同时,我们也将讨论研究的局限性和未来的研究方向,以期进一步完善和拓展相关领域的研究。

第十四讲:隔离DCDC变换电路

第十四讲:隔离DCDC变换电路

L
VD2
C
R Uo
S1
W11 W12 S2
VD1
W21 W22
L C

VD3 S
R Uo

U in
VD2
图4.25 正激电路原理图
图4.35 推挽电路原理图
20
3、 推挽(Push-Pull)电路 ——电路连续工作模式
(1)t0~t1时段(S1导通状态)
☞电感电流线性上升,增 加量:
o
t
N 2 ton N2 D Uo U in U in N1 toff N1 1 D
uS
o
U in
N1 Uo N2
t
t0
t1
t2
t
(4)S承受的最大电压:
14
N1 u S U in Uo N2
图4.31 反激电路电流连续时主要电 压、电流波形
2、 反激(Flyback)电路 ——电路断续工作模式
第十四讲:隔离DC/DC变换电路 1、 正激电路
2、 反激电路 3、 推挽电路 4、 半桥电路 5、 全桥电路
重点掌握:1、2、3
1
1、 正激(Forward)电路
——电路结构分析
☞ 根据变压器的磁芯磁复位方法的不同,正激电路包含多种 不同的拓扑结构。其中,在电路输入端接复位绕组是最基本 的磁芯磁复位方法。 ☞ 隔离变压器为高频变压器,有三个绕组,标有“•”的一端为 同名端。 VD3是复位绕组的串连二极管。 原边绕组W1,匝数N1 副边绕组W2,匝数N2 复位绕组W3,匝数N3 ☞开关S采用PWM控制方式、 VD1是输出整流二极管、 VD2是续流二极管、L和C是 输出滤波电感和滤波电
toff trst

DC-DC电路转换原理(含计算方式)

DC-DC电路转换原理(含计算方式)

PUSH-PULL
第三章 第 9 页
HALF-BRIDGE
第三章 第 10 页
FULL-BRIDGE
第三章 第 11 页
METHODS OF CONTROL
第三章 第 12 页
直流斩波电路
➢直流斩波电路(DC Chopper)
❖ 将直流电变为另一固定电压或可调电压的直流电; ❖ 也称为直接直流--直流变换器(DC/DC Converter); ❖ 一般直流斩波是指直接将直流电变为另一直流电,不包括直
ton——V通的时间 toff——V断的时间 α--导通占空比 称为降Uo压最斩大波为电E路,。减小占空比α ,Uo随之减小。因此
负载电流平均值:
V
L io R
E
iG
VD uo
a)
iG
ton toff
O
T
io i1
i2
I10
I20
O
t1
uo
E
+
M EM
-
t
t
Io
Uo
-EM R
(3-2)
❖电流断续时,Uo被抬高,电机机械特性变软,一般 不希望出现 。
b)
图3-2 升压斩波电路及其工作波形
量为 U o-EI1toff
a)电路图 b)波形
➢ 稳态时,一个周期T中L积蓄能量与释放能量
相等:
E 1 to I n U o - E I 1 toff
(3-20)
化简得:
Uo to
nto to ff
ffET E to ff
(3-21)
T/toff>1,输出电压高于电源电压,故称该电路为升压斩波电路
3.1.1 降压斩波电路

DCDC工作原理介绍课件PPT模板

DCDC工作原理介绍课件PPT模板

1.两种开关状态
VG>0, T管导通,D阻断 To n DTS
1.两种开关状态 VG=0, T管阻断
T of f T ST on (1D )T S
Thank you.
演讲结速,谢谢观赏!
PPT常用编辑图使用方法
1.取消组合
2.填充颜色
3.调整大小
选择您要用到的图标单击右键选择“ 取消组 合”
(1)开关管T和二极管D从导通变为阻断,或从阻断变为导通的 过渡过程时间均为零;
(2)开关器件的通态电阻为零,电压降为零。断态电阻为无限 大,漏电流为零;
(3)电路中的电感和电容均为无损耗的理想储能元件; (4)线路阻抗为零。电源输出到变换器的功率等于变换器的输
出功率。
VSIS VOIO
2. 降压原理 对开关管T加驱动信号VG ,开关周期为TS
输出电压的直流平均值
V O C o 2 10 2 v E d ( O t) 2 1 V S 2 1 V S 2 D D s (V -2 3
变压比为M
V O M S D V S V V S/2(-3)
将(3-2),(3-4)代入到(3-1)中
V E(O t) D S V n 12 n V SsinnD )(co nts )((-3 5)
VO2VS
TToofnfVS
DSV
EO V S iD 0 iL iS
VG>0, T管导通 To n DTS
EO 0 iD iL
VG=0, T管阻断
T of f T ST on (1D )T S
输出电压
E(O t)C 0 ancon st)((3 -1) n 1
n次谐波幅值 a n2 n V Ssin n 2 ) (2 n V Ssin nD )((-3 4)

dcdc工作原理

dcdc工作原理

dcdc工作原理
DC/DC转换器是一种电子器件,用于将一种直流电压转换为
另一种不同电压水平的直流电压。

它包含输入端、输出端、控制电路和功率开关电路。

工作原理是这样的:转换器首先将输入电压与控制电路中的参考电压进行比较,然后根据比较结果来控制功率开关的导通和截止。

当功率开关导通时,输入电压经过电感和滤波电容传递到输出端,输出端得到所期望的输出电压。

当功率开关截止时,电感中的电流由于无法瞬间改变而继续流动,此时使用电容储存能量,维持输入电压到输出电压的平滑转换。

此外,DC/DC转换器通常会使用PWM(脉宽调制)技术来控制功率开关的导通和截止时间,以实现输出电压的精确稳定调节。

PWM技术通过调整开关的导通时间和截止时间来控制输
出电压的大小,以使输出电压能够根据输入电压和负载变化进行调节。

总之,DC/DC转换器通过控制功率开关的导通和截止来实现
输入电压到输出电压的转换,并采用PWM技术来稳定调节输
出电压。

它在现代电子设备中广泛应用,如电源适配器、电动车充电器、通信系统等。

DC-DC电源基础知识ppt课件

DC-DC电源基础知识ppt课件
负载电压极性与电源极性相反。
DC-DC电源分类及工作原 理
当开关闭合与开关断开的状态达到平衡时,增加的磁通等于减少的磁通, (Vi)*Ton=(Vo)*Toff,根据Ton比Toff值不同,可能Vi< Vo,也可能Vi>Vo。
典型电路分析




用 的
非MOS开关管集 成的RT8105
TI公司TPS54627
大容值的电容通常具有较大的等效电感,因而其自谐振频率较小,所以比较适合 用于滤除低频干扰噪声;小容值的电容通常等效电感也较小,因此自谐振频率较
关键器件选 择
输入电容的作用 输入电容的作用是保持输入电压稳定在一定的范围内,并且滤除输入直流电压中 的交流成分。 如右下图,C1电容起到储能作用,当逻辑器件状态变化时提供一个瞬态电流,减 小电源瞬变及跌落,保持电源完整性。一般为铝电解电容。 C2、C3是滤波电容。电容能够“通交流、阻直流”,输入信号中的交流成分可以 通过电容排到大地,剩下纯净的直流成分。其中大电容滤除低频成分、小电容滤 除高频成分。
压,斜坡振荡器提供斜坡输入信号Vramp,它的频率等于开关频率。
稳压过程
PWM控制原理
(1)当输出电压U0增大时,取样电压UNI会同时增大,可简述为:
Uo
UNI
Uc(t)
UG的 d(t)
Uo
(2)当输出电压U0减小时,取样电压UNI会同时减小,可简述为:
Uo
UNI
Uc(t)
UG的 d(t)
Uo
PWM控制原理
4.1 输出电感 · 作用
关键器件选 择
能够将电能转化为磁能而存储起来。由
于电感电流不可突变从而维持整个开关周期
电流的持续输出。

电力电子技术课件-10-DCDC变换器

电力电子技术课件-10-DCDC变换器

t off
L I L UO
根据式(3.2.4)、(3.2.5)可求出开关周期TS为
TS1ftontoffUO (IU LdLU dUO)
ILU O (U fdL dU U O)U dD (f1 LD )
流 可一 得上周式期中内△的I平L为均流值过与电负感载电电流流的IO峰相-等峰,即值同,最时大代为入I关2,最系小式为△II1L。= 电I2-感I电1
IOBU2dLTOS D(1D)
式中IOB为电感电流临界连续时的负载电流平均值。
总结:临界负载电流 IOB与输入电压Ud、电感L、开关频率f以及开关管T 的占空比D都有关。
当实际负载电流Io> IOB时,电感电流连续;
当实际负载电流Io = IOB时,电感电流处于连续(有断流临界点);
当实际负载电流Io <IOB时,电感电流断流;
I0
I2
2
I1
(3.2.8)
I1I0U2dLTS D(1D)
2021/5/4
10
4.1.1 Buck变换器
电感电流iL临界连续状态:
变换电路工作在临界连续状态时,即有I1=0,由
I1I0U2dLTS D(1D)
可得维持电流临界连续的电感值L0为:
Lo
UdTS 2I0B
D(1D)
即电感电流临界连续时的负载电流平均值为 :
2021/5/4
基本的斩波器电路及 其负载波形
3
4.1 直流变换电路的工作原理
直流变换电路的常用工作方式主要有两种:
① 脉冲频率调制(PFM)工作方式:
即维持导通时间不变,改变工作周期。在这种调 压方式中,由于输出电压波形的周期是变化的,因此 输出谐波的频率也是变化的,这使得滤波器的设计比 较困难,输出谐波干扰严重,一般很少采用。

DCDC和LDO的基本原理与测试

DCDC和LDO的基本原理与测试

DCDC和LDO的基本原理与测试DC-DC和LDO(Linear Voltage Regulator)是两种常见的电源管理器件,用于将输入电压转换为稳定的输出电压,满足各种电子设备的供电需求。

下面将介绍它们的基本原理和测试方法。

一、DC-DC的基本原理:DC-DC电路是一种电子电路,用于将直流电源的电压转换为需要的输出电压。

其基本原理是利用电感和电容储能的特性,通过开关管控制输入电压的开关行为,形成周期性的开关信号。

开关管的开关频率很高,通常在几十kHz到几MHz之间。

通过调整开关管的导通时间和断开时间,可以调节输出电压的大小。

DC-DC电路由输入端、输出端、开关器件、电感元件、电容元件等组成。

开关器件通常使用MOSFET、BJT、IGBT等器件,电感元件用于储存能量和平滑电流,电容元件用于滤波和储存能量。

DC-DC电路的测试方法:1.输入输出电压测试:使用万用表或示波器测量输入输出电压的大小和波形,确保输出电压稳定在设定值附近。

2.效率测试:使用电源负载仪测量输入输出功率,计算DC-DC的转换效率。

计算方式为:效率=输出功率/输入功率*100%。

3.稳压性能测试:输入电压发生变化时,测量输出电压的稳定性。

比如在输入电压从最小值变化到最大值的过程中,测量输出电压的偏差和响应时间。

4.转换速度测试:测量DC-DC的开启和关闭时间,检查其对快速变化的输入信号的响应能力。

5.峰值电流测试:通过测量输入电流的峰值,判断DC-DC的输电能力。

二、LDO的基本原理:LDO是一种线性稳压器,通过将输入电压调节为稳定的输出电压来完成电压转换。

LDO的基本原理是通过一个功率晶体管,使得输入电压与输出电压之间的电压差保持不变。

LDO的控制电路通过控制功率晶体管的导通和截止来调整输出电压,当电压差增大时,控制电路减小功率晶体管导通电流,反之增大。

LDO电路由输入端、输出端、功率晶体管、反馈电路等组成。

其中反馈电路是实现电压稳定性的核心部分,通常使用电阻和电平装置形成负反馈控制回路。

dcdc工作原理

dcdc工作原理

dcdc工作原理
DC-DC转换器工作原理
DC-DC转换器是一种能够将直流电能从一种电压转换为另一
种电压的电子设备。

它通常由以下几个主要组件组成:输入电源、半导体开关、输出电感、输出电容以及控制电路。

在工作过程中,输入电源提供直流电源电压,而半导体开关则用于控制电流的流动。

半导体开关可以是晶体管、MOS管或
者其他开关元件。

当开关关闭时,输入电压施加在输出电感上,电感储存了电流能量;而当开关打开时,电感上的电流由于无法消失而被迫流到输出电容中,从而维持输出电压的连续性。

为了控制输出电压的大小,控制电路会监测输出电压,并根据需要调整半导体开关的开关频率和占空比。

通过改变开关的开关频率或者开闭时间的比例,可以调整输出电压的大小。

DC-DC转换器通常有几种不同的工作模式,包括降压型、升
压型、降升压型等。

每一种类型的转换器都有自己的特点和适用场景。

总的来说,DC-DC转换器能够通过半导体开关和控制电路将
输入的直流电压转换为不同的输出电压。

它在电子设备中起到了关键的作用,可以提供适合不同电路和组件的电压需求。

双向DCDC变换器设计

双向DCDC变换器设计

用于锂电池化成系统的桥式DC/DC变换器 (2)1引言 (3)2 双向H桥DC/DC变换器拓扑分析 (4)2.1 双向DC/DC变换器 (4)2.2 双向H桥DC/DC变换器结构分析 (4)2.2 双向H桥DC/DC变换器工作状态分析 (5)2.2.1 正向工作状态模型分析 (5)2.2.2 反向工作状态模型分析 (8)3 硬件电路分析设计 (11)3.1 器件参数选择分析 (11)3.1.1 主开关管的选择 (11)3.1.2 滤波电感参数的计算 (11)3.2 硬件电路分析设计 (12)3.2.1 驱动电路分析设计 (12)4 系统结构与控制 (18)4.1 系统结构 (18)4.2 控制系统结构 (18)4.3 DC/DC变换器控制方法 (19)4.3.1 电压控制模式 (20)4.3.2 电流控制模式 (20)4.4 软件设计 (21)5 实验调试与结果分析 (22)5.1 实验平台搭建 (22)5.2 样机调试 (23)5.2.1 供电电源调试 (23)5.2.2 驱动信号调试 (24)5.2.3 单片机程序,VB工程调试 (25)5.2.4 保护与采样电路测试 (25)5.2.4 开环、闭环测试 (28)5.3 小结 (30)6 总结 (31)7 辞 (32)参考文献 (33)用于锂电池化成系统的桥式DC/DC变换器摘要:随着锂电池在生活中各个方面的广泛普及,锂电池在生产过程中重要的化成环节逐渐成为关注的焦点。

本文主要设计介绍了使用于锂电池化成系统的桥式变换器部分,包含计算机监控、DC/DC双向变换器。

双向DC/DC变换器通过调节MOSFET的占空比,实现对锂电池的智能充放电。

本文对双向DC/DC变换器的工作原理进行了分析,并通过样机对预期功能进行验证。

关键字:电池化成;双向DC/DC变换器;实验分析Abstract:As the lithium battery becomes more and more popular in every aspects of our life, battery formation, a critical process in battery production, draws plenty of attention. This paper introduces a full bridge converter, which used in a formation energy feedback system of lithium battery, including a PC monitor and a DC/DC bi-directional converter. The bi-directional DC/DC converter system can realize the intelligent charging and discharging of the lithium batteries by adjusting the duty ratio of MOSFET. The working principle of DC/DC bi-converter was analyzed, and the experimental prototype function was validated through experiments.Keywords: battery formation; DC/DC bi-directional converter; experimental analysis1引言进如21世纪以来,随着环境问题、能源问题与社会发展问题的矛盾日益突出,发展节能减排的绿色经济以成为全社会关注的焦点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T/toff>1,输出电压高于电源电压,故称该电路为升压斩波电路
3.1.2
工作原理
升压斩波电路
L i1 E iG V io C uo R VD
假设L值很大,C值也很大 ; V通时,E向L充电,充电电 流恒为I1,同时C的电压向 负载供电,因C值很大,输 出电压uo为恒值,记为Uo。 设V通的时间为ton,此阶段 L上积蓄的能量为 EI1ton V断时,E和L共同向C充电 并向负载R供电。设V断的 时间为toff,则此期间电感L 释放能量为 Uo - E I1toff 稳态时,一个周期T中L积蓄 能量与释放能量相等。
第三章 第 20 页
3.1.1 降压斩波电路
m EM / E
t T t1 / 1 T
负载电流断续的情况: I10=0,且t=tx时,i2=0,利用式(3-7)和式(3-6) 可求出tx为: 1 - (1 - m)e - t x ln (3-16) m 电流断续时,tx<toff,由此得出电流断续的条件为: (3-17)
iG O io I1 O
a)
t
b)
图3-2 升压斩波电路及其工作 波形
t
第三章 第 23 页
3.1.2
Uo
升压斩波电路
ton toff T E E toff toff
(3-21) T/toff ≥1 输出电压高于电源电压,故称该电路为升压斩波电路。也 称之为boost变换器 T/toff ——升压比,调节其大小即可改变Uo 大小,调节方法与3.1.1 节中介绍的改变导通比α的方法类似。将升压比的倒数记作β ,即
d i1 L Ri1 EM E (3-3) dt
图3-1 降压斩波电路的原理图及波形 a)电路图 b)电流连续时的波形 c)电流断续时的波形 第三章 第 17 页
3.1.1 降压斩波电路
设此阶段电流初值为I10,=L/R,解上式得:
i1 I10e
t

V断态期间,设负载电流为i2,可列出如下方程: di (3-5) L 2 Ri E 0
电力变换
常见的电力变换种类
第三章 第 1 页
CLASSIFY COMPARE
第三章 第 2 页
COMPARE
第三章 第 3 页
BUCK
第三章 第 4 页
BOOST
第三章 第 5 页
BUCK/BOOST
第三章 第 6 页
HALF-FORWARD
第三章 第 7 页
FLYBACK
第三章 第 8 页

t off T
。 β 和导通占空比α 有如下关系:
1
Uo 1
(3-22)
1 E 1-
因此,式(3-21)可表示为

E
(3-23)
(实际上,同学们只需记忆α即可) 升压斩波电路能使输出电压高于电源电压的原因: 一是L储能之后具有使电压泵升的作用; 二是电容C可将输出电压保持。
也可带蓄电池负载,两种情况下负载中均会出 现反电动势,如图中EM所示 。
降压斩波电路工作原理
t=0时刻驱动V导通,电源E向负载供电,负 载电压uo=E,负载电流io按指数曲线上升;
t=t1 时刻控制V关断,负载电流经二极管VD 续流,负载电压uo 近似为零,负载电流呈指 数曲线下降。为了使负载电流连续且脉动小 通常使串接的电感L值较大 。 也称为Buck变换器
O
to n
t
c) 电流断续时
第三章 第 26 页
3.1.2
用于直流电动机传动时
E - EM R
t 1 - e

( 3 - 4)
dt
-
2
M
设此阶段电流初值为I20,解上式得:
t E M - i2 I 20e - 1 - e R t
(3 - 6)
当电流连续时,有:
I10 i2 (t2 )
I 20 i1 (t1 )
(3-1)
ton——V通的时间 toff——V断的时间 α--导通占空比
Uo最大为E ,减小占空比α ,Uo随之减小。因此 称为降压斩波电路。
负载电流平均值:
Io U o Байду номын сангаас EM R
(3-2)
电流断续时,Uo被抬高,电机机械特性变软,一般
不希望出现 。
图3-1 降压斩波电路的原理图及波形 a)电路图 b)电流连续时的波形 c)电流断续时的波形
稳态时,一个周期T中L积蓄能量与释放能量 相等: 化简得:
iG O io I1 O
a)
t
b)
t
图3-2 升压斩波电路及其工作波形 a)电路图 b)波形
EI1ton U o - E I1toff
(3-20) (3-21)
第三章 第 22 页
Uo
ton toff T E E toff toff
EI1 U o I o
Uo 1 E Io R R
(3-25)
由式(3-24)即可得出电源电流I1为:
Uo 1 E I1 Io 2 E R
(3-26)
第三章 第 25 页
3.1.2
2. 升压斩波电路的典型应用 一是用于直流电动机传动; 二是用作单相功率因数校 正(PFC)电路; 三是用于其他交直流电源 中。 uo
t t 1 - on x m E T
(3-18)
此时Uo不仅和占空比α 有关,也和反电动势EM有关。 此时负载电流平均值为:
tx 1 ton - ton tx m E U o - Em I o i1 d t i2 d t 0 0 T T R R
Io
E - EM
R
(3-13)
在上述情况中,均假设L值为无穷大,负载电流平直的情况。这种情况下,假设 t 电源电流平均值为I1,则有 I1 on I o I o (3-14) T 其值小于等于负载电流Io,由上式得: EI1=U0I0 (3-15)
即输出功率等于输入功率,可将降压斩波器看作直流降压变压器。
(3-19) 第 21 页 第三章
3.1.2
升压斩波电路
L i1 E iG V io C uo R VD
升压斩波电路工作原理(boost变换器)
假设L值很大,C值也很大; V通时,E向L充电,充电电流恒为I1,同 时C的电压向负载供电,因C值很大,输出 电压uo为恒值,记为Uo。设V通的时间为 ton,此阶段L上积蓄的能量为EI1ton V断时,E和L共同向C充电并向负载R供电。 设V断的时间为toff,则此期间电感L释放能 量为 U - E I t o 1 off
第三章 第 16 页
3.1.1 降压斩波电路
斩波电路三种控制方式(根据对输出电压平均值 进行调制的方式不同而划分) 1. T不变,变ton —脉冲宽度调制(PWM) 2. ton不变,变T —频率调制 3. ton和T都可调,改变占空比—混合型

基于“分段线性”的思想,对降压斩波电路
进行解析: V通态期间,设负载电流为i1,可列出如下 方程:
(3-9)
E EM 1 - e - E - m R R R 1 - e-
(3-10)
;t1 / 1
分别是负载电流瞬时值的最小值和最大值。 把式(3-9)和式(3-10)用泰勒级数近似(即ρ趋于零,即L趋于无穷大,e-ρ用等 价无穷小代替),可得 - m E I I10 I 20 o R (3-11) 上式表示了平波电抗器L为无穷大,负载电流完全平直时的负载电流平均值Io,此 第三章 第 19 页 时负载电流最大值、最小值均等于平均值。
直流斩波电路的种类:


三种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩 波电路;
复合斩波电路——不同基本斩波电路组合; 多相多重斩波电路——相同结构基本斩波电路的组合,可以工 作在两个或四个象限。
第三章 第 13 页
3.1.1 降压斩波电路
斩波电路的典型用途之一是拖动直流电动机,
(3 - 7)
(3 - 8)
图3-1 降压斩波电路的原理图及波形 a)电路图 b)电流连续时的波形 c)电 流断续时的波形
第三章 第 18 页
3.1.1 降压斩波电路
即V进入通态时的电流初值就是V在断态阶段结束时的电流值,反过来,V进入断态 时的电流初值就是V在通态阶段结束时的电流值。 由式(3-4)、(3-6)、(3-7)、(3-8)得出(主要是根据充放电曲线):
m
EM e -1 E e -1

T / ;=L/R)
对于电路的具体工况,可据此式判断负载电流是否连续。 在负载电流断续工作情况下,负载电流一降到零,续流二极管VD即 关断,负载两端电压等于EM。输出电压平均值为:
Uo
ton E (T - ton - tx ) EM T
升压斩波电路
L VD
M
EM
V uo
E
a) E uo E
O i
t i1 I1 0 I2 0 to ff T b) i2 I1 0 t
O io i1 I2 0 O to n T t1 t x t 2 to ff c) i2
t
图3-3 用于直流电动机回馈能量 的升压斩波电路及其波形 a) 电路图 b) 电流连续时
PUSH-PULL
第三章 第 9 页
HALF-BRIDGE
第三章 第 10 页
FULL-BRIDGE
第三章 第 11 页
METHODS OF CONTROL
相关文档
最新文档