图形与坐标练习+知识点
专项练习图形的位似变换与坐标
目 录
• 位似变换基本概念与性质 • 平面直角坐标系中位似变换 • 三角形和四边形位似变换探讨 • 函数图像在位似变换下性质研究 • 实际应用问题中位似变换思想运用 • 总结回顾与拓展延伸
01 位似变换基本概念与性质
位似变换定义及特点
位似变换定义
如果两个图形不仅是相似图形,而且每组对应点的连线交于 一点,对应边互相平行(或在一条直线上),那么这两个图 形叫做位似图形。这个点叫做位似中心,这时的相似比又称 为位似比。
02 平面直角坐标系中位似变 换
平面直角坐标系简介
平面直角坐标系定义
点的坐标
在平面内画两条互相垂直、原点重合 的数轴,组成平面直角坐标系。
平面内一点P的坐标由一对有序实数 (x,y)确定,其中x是点P到y轴的距离, y是点P到x轴的距离。
坐标轴及象限
水平数轴称为x轴或横轴,垂直数轴称 为y轴或纵轴。坐标轴将平面分为四个 象限。
然保持。
渐近线变换规律
反比例函数的渐近线在位似变换 下也会进行相应的平移和缩放,
但渐近线的斜率不会改变。
05 实际应用问题中位似变换 思想运用
几何证明题中位似变换思想运用
利用位似变换证明线段比例关系
01
通过构造位似图形,证明两条线段之间的比例关系,进而解决
几何证明问题。
利用位似变换证明角度相等关系
位似图形特点
两个位似图形中每组对应顶点所在的直线都交于一点,这个 交点叫做位似中心,图形上任意一对对应点到位似中心的距 离之比等于相似比。
相似比与位似中心关系
相似比
在位似变换中,如果两个相似图形的对应边长之比相等,那么这个比值就叫做 相似比。
位似中心与相似比关系
北师大版数学八年级上册第三章位置与坐标知识归纳(含练习)
2020年~2021年最新第三章 位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0; ②第二象限:a <0,b >0;③第三象限:a <0,b <0; ④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P (a ,b )的坐标特征:①一、三象限:b a =; ②二、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( ) A .2 B .3 C .4 D .5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A 点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A .黑(3,3),白(3,1)B .黑(3,1),白(3,3)C .黑(1,5),白(5,5)D .黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400-300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(-2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏”点的距离都是10,则“宝藏”点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,-2).故答案是:(5,2)和(1,-2).7.(2014•曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(-2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A 3处.点2知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P 、Q 两点,其坐标分别为(5,a )、(b ,7).根据图中P 、Q 两点的位置,判断点(6-b ,a-10)落在第几象限?( )A .一B .二C .三D .四考点:点的坐标.解答:∵(5,a )、(b ,7),∴a <7,b <5,∴6-b >0,a-10<0,∴点(6-b ,a-10)在第四象限.故选D .2.(2014•萧山区模拟)已知点P (1-2m ,m-1),则不论m 取什么值,该P 点必不在( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:分横坐标是正数和负数两种情况求出m 的值,再求出纵坐标的正负情况,然后根据各象限内点的坐标特征解答.解答:①1-2m >0时,m <21,m-1<0,所以,点P 在第四象限,一定不在第一象限; ②1-2m <0时,m >21,m-1既可以是正数,也可以是负数,点P 可以在第二、三象限, 综上所述,P 点必不在第一象限.故选A .3.(2014•闵行区二模)如果点P (a ,b )在第四象限,那么点Q (-a ,b-4)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a 、b 的正负情况,再确定出点Q 的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:∵点P (a ,b )在第四象限,∴a >0,b <0,∴-a <0,b-4<0,∴点Q (-a ,b-4)在第三象限.故选C .点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M (-2,1)在( )2秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0) 22秒(0,2),(2,0),(1,1) 33秒(0,3),(3,0),(2,1),(1,2) 4(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为 .考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB 的长,进而得到AC 的长,因为OC=AC-AO ,所以OC 求出,继而求出点C 的坐标.解答:∵点A ,B 的坐标分别为(-6,0)、(0,8),∴AO=6,BO=8,∴AB=22BO AO =10,∵以点A 为圆心,以AB 长为半径画弧,∴AB=AC=10,∴OC=AC-AO=4,∵交x 正半轴于点C ,∴点C 的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 .解答:C (3,5)3.如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,S △OAB =20,OB :AB=1:2,求A 、B 两点的坐标.解答:A (10,0),B (2,-4)4.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=-1C .2a-b=1D .2a+b=1 考点:作图—基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 与b 的数量关系.解答:根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=-1,故选:B .5.如图,在平面直角坐标系中,有一矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上. (1)求点B 的坐标; (2)求⊙O 的面积.解答:(1) B (4,3) (2) 25π6.(2014•南平模拟)如图,在平面直角坐标系中,OABC 是正方形,点A 的坐标是(4,0),点P 在AB 边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为( )A .(2,32)B .(23 , 32-) C .(2,324-) D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0), ∴OC=BC=4,∠B=90°, ∵∠BPC=60°, ∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4, ∴∠3=30°, 在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-, ∴DF=OE=324-,∴D 点坐标为(2,324-).故选C .7.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,3),点C 的坐标为(21,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .考点:轴对称-最短路线问题;坐标与图形性质.分析:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N ,则此时PA+PC 的值最小,求出AM ,求出AD ,求出DN 、CN ,根据勾股定理求出CD ,即可得出答案.解答:作A 关于OB 的对称点D ,连接CD 交OB 于P ,连接AP ,过D 作DN ⊥OA 于N , 则此时PA+PC 的值最小, ∵DP=PA ,∴PA+PC=PD+PC=CD , ∵B (3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32, 由三角形面积公式得:21×OA×AB=21×OB×AM ,∴AM=23, ∴AD=2×23=3,∵∠AMB=90°,∠B=60°, ∴∠BAM=30°, ∵∠BAO=90°, ∴∠OAM=60°, ∵DN ⊥OA , ∴∠NDA=30°,∴AN=21AD=23,由勾股定理得:DN=323, ∵C (21,0),∴CN=3-21-23=1,在Rt △DNC 中,由勾股定理得:DC==+22)323(1231, 即PA+PC 的最小值是231, 8.在直角坐标系中,有四个点A (-8,3)、B (-4,5)、C (0,n )、D (m ,0),当四边形ABCD 的周长最短时,nm的值为( ) A .73- B .23- C .27- D .23考点:轴对称-最短路线问题;坐标与图形性质.分析:若四边形的周长最短,由于AB 的值固定,则只要其余三边最短即可,根据对称性作出A 关于x 轴的对称点A′、B 关于y 轴的对称点B′,求出A′B′的解析式,利用解析式即可求出C 、D 坐标,得到nm .解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.解答:直线AB 方程为y=3x-9,直线OB 斜率为23-. 过O‘点平行于直线OB 的直线方程为:y=23-(x+1) . 联立两方程,解得交点B′的坐标为(35,-4).11.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为 .考点:平行四边形的性质;坐标与图形性质.分析:①CD 是平行四边形的一条边,那么有AB=CD ;②CD 是平行四边形的一条对角线,过C 作CM ⊥AO 于M ,过D 作DF ⊥AO 于F ,交AC 于Q ,过B 作BN ⊥DF 于N ,证△DBN ≌△CAM ,推出DN=CM=a ,BN=AM=8-a ,得出D ((8-a ,6+a ),由勾股定理得:CD 2=(8-a-a )2+(6+a+a )2=8a 2-8a+100=8(a-21)2+98,求出即可.解答:有两种情况:①CD 是平行四边形的一条边,那么有AB=CD=2286+=10 ②CD 是平行四边形的一条对角线,*12.如图,△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上.若线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为( )A .(2m ,n ) B .(m ,n ) C .(m ,2n ) D .(2m ,2n ) 考点:位似变换;坐标与图形性质.分析:根据A ,B 两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.解答:∵△ABO 缩小后变为△A′B′O ,其中A 、B 的对应点分别为A′、B′点A 、B 、A′、B′均在图中在格点上,即A 点坐标为:(4,6),B 点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB 上有一点P (m ,n ),则点P 在A′B′上的对应点P′的坐标为:(2m ,2n). 故选D .*13.(2014•海港区一模)如图,在直角坐标系中,有16×16的正方形网格,△ABC 的顶点分别在网格的格点上.以原点O 为位似中心,放大△ABC 使放大后的△A′B′C′的顶点还在格点上,最大的△A′B′C′的面积是( ) A .8 B .16 C .32 D .64考点:位似变换;坐标与图形性质.分析:根据题意结合位似图形的性质与三角形最长边即为216,进而得出答案.解答:如图所示:△A′B′C′即为符合题意的图形, 最大的△A′B′C′的面积是:21×8×16=64.故选:D .知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称 (1)关于x 轴对称横坐标相等,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P′的坐标是(x ,-y ). (2)关于y 轴对称 纵坐标相等,横坐标互为相反数.即点P (x ,y )关于y 轴的对称点P′的坐标是(-x ,y ). (3)关于直线对称①关于直线x=m 对称,P (a ,b )⇒P (2m-a ,b ) ②关于直线y=n 对称,P (a ,b )⇒P (a ,2n-b ) 2 坐标与图形变化---平移 (1)平移变换与坐标变化向右平移a 个单位,坐标P (x ,y )⇒P (x+a ,y ) 向左平移a 个单位,坐标P (x ,y )⇒P (x-a ,y ) 向上平移b 个单位,坐标P (x ,y )⇒P (x ,y+b ) 向下平移b 个单位,坐标P (x ,y )⇒P (x ,y-b )(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.) 3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ). (2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O(0,0),A(1,3),线段OA向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y=−34x+4与x 轴、y 轴分别交于A 、B 两点,把△A0B 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B′的横坐标等于OA+OB ,而纵坐标等于OA ,进而得出B′的坐标.解答:直线y=-34x+4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A ,OB=O′B′,O′B′∥x 轴,∴点B′的纵坐标为OA 长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B′位置的特殊性,以及点B′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P=153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2, 则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2).故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A′B′,其中点A ,B 的对应点分别为A′,B′.如图1,若点A 表示的数是-3,则点A′表示的数是______;若点B′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A′B′C′D′及其内部的点,其中点A ,B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为a ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为b ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.解答:(1)点A′:-3×31+1=-1+1=0,设点B 表示的数为a ,则31a+1=2, 解得a=3,设点E 表示的数为b ,则31b+1=b , 解得b=23;。
初中数学知识点精讲精析 图形与坐标
23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。
2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。
知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。
现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。
除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。
建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。
平面上的点也可以用一个角度来描述其位置。
2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。
向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。
关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。
【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。
第四、五章 图形与坐标和一次函数基础练习
-2
)
A. x>﹣3 B. x≠0 C. x>﹣3 且 x≠0 D. x≠﹣3 8.已知正比例函数 y=kx(k≠0)的图像经过点(1,-2) ,则这个正比例函数的解析式为( A.y=2x B.y=-2x 1 C.y= x 2 1 D.y=- x 2
)
9.已知一次函数 y=mx+|m-1|的图象过点(0,2) ,且 y 随 x 的增大而减小,则 m 的值为( A.-1 B.3 C.-1 或 3 D.2
A. B. C. D. 12.如图, 一次函数 y=kx+b 的图象与 y 轴的交点坐标是 (0, 1) , 则关于 x 的不等式 kx+b>1 的解是 ( A. x>1 B. x<1 C. x>0 D. x<0 13.直线 y=kx+b 过点(2,2)且与直线 y=﹣3x 相交于点(1,a) ,则两直线与 x 轴所围成 的面积为( ) A. 2 B. 2.4 C. 3 D. 4.8 14.右图是韩老师早晨出门散步时离家的距离 y 与时间 x 之间的函数关系.若用黑点表示韩 老师 家的位置,则韩老师散步行走的路线可能是( )
28.如图,在△ABC,已知 AB=6,AC=BC=5,建立适当的直角坐标系, 并写出△ABC 的各顶点的坐标.
C
A
B
29.有一张图纸被损坏,但上面有如图的两个标志点 A(﹣3,1) ,B(﹣3,3)可认,而主要建筑 C(3,2) 破损,请通过建立直角坐标系找到图中 C 点的位置,并求△ ABC 的周长.
)
10.已知平面直角坐标系中两点 A(﹣1,O) 、B(1,2) .连接 AB,平移线段 AB 得到线段 A1B1,若点 A 的对应点 A1 的坐标为(2,﹣1) ,则 B 的对应点 B1 的坐标为( ) A. (4,3) B. (4,1) C. (﹣2,3) D. (﹣2,1) 11.如图,是一储水容器,当水从上方倒入容器(每秒倒入的水量相同)中时,水位高度 h 与倒水时间 t 的1,3) ,则该函数的解析式是_____________. 22.一次函数 y=2x-1 的图像与 x 轴的交点坐标是__________________. 23.下列四个图象中, y 是关于 x 的函数的是______________.
2022-2023学年浙教版数学八上期末复习专题 图形与坐标(学生版)
2022-2023学年浙教版数学八上期末复习专题图形与坐标一、单选题(每题3分,共30分)1.(2021八上·鄞州期末)根据下列表述,能够确定位置的是()A.甲地在乙地的正东方向上B.一只风筝飞到距A处20米处C.某市位于北纬30°,东经120°D.影院座位位于一楼二排2.(2022八上·西安月考)如果把电影票上3排6座记作(3,6),那么(6,5)表示()A.5排6座B.5排5座C.6排5座D.6排6座3.(2022八上·新城月考)2021年9月15日,中华人民共和国第十四届运动会开幕式在西安奥体中心举行,如图,如果将西安钟楼的位置记为直角坐标系的原点,下列哪个点的位置可以表示奥体中心的位置()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 4.(2020八上·历下期中)如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()A.D7,E6B.D6,E7C.E7,D6D.E6,D75.已知点A的坐标为(a+1,3−a),下列说法正确的是()A.若点A在y轴上,则a=3B.若点A在一三象限角平分线上,则a=1C.若点A到x轴的距离是3 ,则a=±6D.若点A在第四象限,则a的值可以为-26.(2021八上·晋中期末)如图是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”A,B 两点的坐标分别为(-2,-3),(2,-3),则表示蝴蝶身体“尾部”C 点的坐标为()A.(0,-1)B.(1,-1)C.(-1,0)D.(2,-1)7.(2022八上·长清期中)若点P(2−m,5)在y轴上,则m的值等于()A.2B.7C.−2D.−38.(2021八上·扶风期末)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称9.(2021八上·川汇期末)点A(2,m)向上平移2个单位后与点B(n,−1)关于y轴对称,则m n=().A.1B.12C.−18D.1 910.(2021八上·瑞安月考)在平面直角坐标系中,将点A(a,1-a)先向左平移3个单位得点A1,再将A1向上平移1个单位得点A2,若点A2落在第三象限,则a的取值范围是() A.2 <a<3B.a <3C.a >2D.a <2或a >3二、填空题(每题4分,共24分)11.(2022八上·城阳期中)如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,90°),目标B 的位置为(4,30°),现有一个目标C的位置为(3,m°),且与目标B的距离为5,则目标C的位置为.12.(2022八上·城阳期中)已知点M(2m−1,−3),点N(5,2),直线MN∥y轴,则m的值为.13.(2022八上·西安月考)点A(m−1,2m−3)在第一、三象限夹角的角平分线上,则m的值为.14.(2021八上·巴彦期末)点P(a,−3)与Q(2,b)关于y轴对称,则a b的值为.15.(2020八上·深圳期中)如图,已知A1(0,1),A2(√32,−12),A3(−√32,−12),A4(0,2),A5(√3,-1),A6(−√3,-1),A7(0,3),A8(3√32,−32),A9(−3√32,−32)……则点A2010的坐标是16.(2021八上·永吉期末)若(x+2)(x−3)=x2+bx+c,其中b,c为常数,则点P(b,c)关于x 轴的对称点的坐标为.三、解答题(共8题,共66分)17.(2021八上·平远期末)小明和朋友到人民公园游玩,回到家后,利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴,只知道游乐园D的坐标为(1,﹣3),请你帮他画出平面直角坐标系,并写出其他各景点的坐标.18.(2021八上·莲湖期中)已知点A(m﹣2,5)和B(3,n+4),A,B两点关于y轴对称,求m﹣n 的值.19.(2021八上·横县期中)如图,利用关于坐标轴对称的点的坐标的特点,画出与△ABC关于x轴对称的图形.20.(2021八上·海曙期末)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑴请作出⑴ABC关于y轴对称的⑴A′B′C′;⑴写出点B′的坐标.21.已知点P(3a−15,2−a).(1)若点P位于第四象限,它到x轴的距离是4 ,试求出a的值:(2)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.22.(2022八上·台州月考)如图,平面直角坐标系中,A(﹣2,1),B(﹣3,4),C(﹣1,3),过点(1,0)作x轴的垂线l.(1)作出⑴ABC关于直线l的轴对称图形△A1B1C1;(2)直接写出A1(,),B1(,),C1(,);(3)在⑴ABC内有一点P(m,n),则点P关于直线l的对称点P1的坐标为(,)(结果用含m,n的式子表示).23.(2021八上·黑山期中)如图回答下列问题:(1)如图①所示,请用有序数对写出棋盘上棋子“帅、黑车、炮”的位置(把列号写在前面,行号写在后面).(2)如图②所示把O点移动到棋子“仕”的位置时,用有序数对写出棋子“仕、相、黑马”的位置(把列号写在前面,行号写在后面)(3)如图②,已知棋子“将”的位置是(2,8),棋子“黑马”的位置是(4,3),规定列在前,行在后,请你在棋盘上确定A(0,0)点的位置,棋子“红马”的位置是什么?24.(2021八上·佛山月考)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请在图中的网格平面内建立平面直角坐标系,并将△ABC画出来.(2)在图中找一点D,使AD=√26,CD=√13,并将点D标记出来.(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.(4)在y轴上是否存在点Q,使得S△AOQ=12S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.答案解析部分1.【答案】C【知识点】用坐标表示地理位置【解析】【解答】解:根据题意可得,A.甲地在乙地的正东方向上,无法确定位置,故答案为:A不合题意;B.一只风筝飞到距A处20米处,无法确定位置,故答案为:B不合题意;C.某市位于北纬30°,东经120°可以确定一点的位置,故答案为:C符合题意;D.影院座位位于一楼二排,无法确定位置,故答案为:D不合题意.故答案为:C.【分析】根据在平面内要确定一个点的位置,必须是一对有序数对,再对各选项逐一判断即可. 2.【答案】C【知识点】有序数对【解析】【解答】解:把3排6号的电影票记作(3,6),那么(6,5)表示的电影票号是:6排5号.故答案为:C.【分析】根据题意可得数对中的第一个数表示排,第二个数表示号,据此解答.3.【答案】B【知识点】用坐标表示地理位置【解析】【解答】解:由题意可得:奥体中心的位置可以为(2,3).故答案为:B.【分析】由于奥体中心在第一象限,而第一象限的坐标符号为正正,据此解答即可.4.【答案】C【知识点】有序数对【解析】【解答】如图所示:图中“故宫”、“颐和园”所在的区域分别是:E7,D6.故答案为:C.【分析】直接利用已知网格得出“故宫”、“颐和园”所在的位置。
图形在坐标系中的平移重难点题型
图形在坐标系中的平移-重难点题型【北师大版】【知识点1 点在坐标系中的平移】平面直角坐标内点的平移规律,设a >0,b >0(1)一次平移:P (x ,y ) P '(x +a ,y )P (x ,y ) P '(x ,y -b )(2)二次平移: 【题型1 点在坐标系中的平移】 【例1】(2021春•开福区校级期中)在平面直角坐标系中,将点A (x ,y )向左平移3个单位长度,再向上平移5个单位长度后与点B (﹣3,2)重合,则点A 的坐标是( )A .(2,5)B .(0,﹣3)C .(﹣2,5)D .(5,﹣3) 【变式1-1】(2021春•重庆期中)在平面直角坐标系中,点A (m ,n )经过平移后得到的对应点A ′(m +3,n ﹣4)在第二象限,则点A 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【变式1-2】(2021春•江夏区期末)已知△ABC 内任意一点P (a ,b )经过平移后对应点P 1(a +2,b ﹣6),如果点A 在经过此次平移后对应点A 1(4,﹣3),则A 点坐标为( )A .(6,﹣1)B .(2,﹣6)C .(﹣9,6)D .(2,3)【变式1-3】(2021春•新罗区期末)在平面直角坐标系中,将A (n 2,1)沿着x 的正方向向右平移3+n 2个单位后得到B 点.有四个点M (﹣2n 2,1)、N (3n 2,1)、P (n 2,n 2+4)、Q (n 2+1,1),一定在线段AB 上的是( )A .点MB .点QC .点PD .点N【知识点2 图形在坐标系中的平移】 P (x ,y ) P (x - a ,y +b )向左平移a 个单位 再向上平移b 个单向下平移b 个单位向右平移a 个单位在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)【题型2 图形在坐标系中的平移】【例2】(2021春•深圳校级期中)如图,△ABC经过一定的平移得到△A′B′C′,如果△ABC上的点P的坐标为(a,b),那么这个点在△A′B′C′上的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【变式2-1】(2021•邛崃市模拟)如图,在平面直角坐标系中,已知点M(2,1),N(1,﹣1),平移线段MN,使点M落在点M'(﹣1,2)处,则点N对应的点N'的坐标为()A.(﹣2,0)B.(0,﹣2)C.(﹣1,1)D.(﹣3,﹣1)【变式2-2】(2021春•东湖区期末)如图,点A、B的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB平移至A1B1的位置,A1与B1坐标分别是(m,4)和(3,n),则线段AB在平移过程中扫过的图形面积为()A.18B.20C.28D.36【变式2-3】(2020春•凉州区校级期中)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)【题型3 图形在网格中的平移变换】【例3】(2021春•锦江区校级月考)如图,三角形A'B'C'是由三角形ABC经过某种平移得到的,点A与点A',点B与点B',点C与点C'分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B'的坐标,并说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(2)连接BC',直接写出∠CBC'与∠B'C'O之间的数量关系.(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-1】(2020春•江汉区月考)如图,三角形A′B′C′是由三角形ABC经过某种平移得到的,点A与点A′,点B与点B′,点C与点C′分别对应,且这六个点都在格点上,观察各点以及各点坐标之间的关系,解答下列问题:(1)分别写出点B和点B′的坐标,并说明三角形A′B′C′是由三角形ABC经过怎样的平移得到的;(2)连接BC′,直接写出∠CBC′与∠B′C′O之间的数量关系;(3)若点M(a﹣1,2b﹣5)是三角形ABC内一点,它随三角形ABC按(1)中方式平移后得到的对应点为点N(2a﹣7,4﹣b),求a和b的值.【变式3-2】(2020春•江岸区校级月考)在如图的直角坐标系中,将△ABC平移后得到△A′B′C′,它们的三个顶点坐标如表所示:△ABC A(a,0)B(5,3)C(2,1)△A′B′C′A′(3,4)B′(7,b)C′(c,d)(1)观察表中各对应点坐标的变化,并填空:△ABC向右平移个单位长度,再向上平移个单位长度可以得到△A′B′C′;a=,b=.(2)求出线段AB在整个平移的过程中在坐标平面上扫过的面积.(3)若点M(m,n)为线段AB上的一点,则m、n满足的关系式是.【变式3-3】(2020春•金乡县期末)在平面直角坐标系中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.①点M平移到点A的过程可以是:先向平移个单位长度,再向平移个单位长度;②点B的坐标为;(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为3,若存在,请直接写出点P的坐标;若不存在,请说明理由.【题型4 坐标系内的平移变换与角度计算综合】【例4】(2020春•通山县期末)如图,在平面直角坐标系中,点A(2,6),B(4,3),将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为A',B',连接AA'交y轴于点C,BB'交x轴于点D.(1)线段A'B'可以由线段AB经过怎样的平移得到?并写出A',B'的坐标;(2)求四边形AA'B'B的面积;(3)P为y轴上的一动点(不与点C重合),请探究∠PCA′与∠A'DB'的数量关系,给出结论并说明理由.【变式4-1】(2021春•庆阳期末)如图①,在平面直角坐标系中,点A、B的坐标分别为(﹣1,0),(3,0),现同时将点A、B向上平移2个单位长度,再向右平移1个单位长度,得到A、B的对应点C、D,连接AC、BD、CD.(1)直接写出点C、D的坐标;(2)如图②,点P是线段BD上的一个动点,连接PC、PO,当点P在线段BD上运动时,试探究∠OPC、∠PCD、∠POB的数量关系,并证明你的结论.【变式4-2】(2020春•大同期末)综合与实践问题背景如图,在平面直角坐标系中,点A的坐标为(﹣3,5),点B的坐标为(0,1),点C 的坐标为(4,5),将线段AB沿AC方向平移,平移距离为线段AC的长度.动手操作(1)画出AB平移后的线段CD,直接写出B的对应点D的坐标;探究证明(2)连接BD,试探究∠BAC,∠BDC的数量关系,并证明你的结论;拓展延伸(3)若点E在线段BD上,连接AD,AE,且满足∠EAD=∠CAD,请求出∠ADB:∠AEB的值,并写出推理过程.【变式4-3】(2020春•鞍山期末)如图,在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(4,0),现将线段AB向右平移一个单位,向上平移4个单位,得到线段CD,点P是y轴上的动点,连接BP;(1)当点P在线段OC上时(如图一),判断∠CPB与∠PBA的数量关系;(2)当点P在OC所在的直线上时,连接DP(如图二),试判断∠DPB与∠CDP,∠PBA之间的数量关系,请直接写出结论.。
八年级数学上第四章《图形与坐标》
第 12 讲 《图形与坐标》(叶胤均)一、知识要点: 1.平面内表示点的位置有两种方法:一是有序实数对,二是距离加方向,这两种方法都需要两个量. 2.平面直角坐标系由两条有公共原点、且互相垂直的数轴构成.点的坐标表示为(x,y) 3.各个象限的符号:(+,+);(-,+);(-,-);(+,-).坐标轴上的点不在象限内. 4.点(x,y)到 x 轴的距离:∣y∣,到 y 轴的距离:∣x∣点 M(x,y)到原点的距离:OM= x2 y2x 轴上 M(x1,0),N(x2,0)之间的距离:MN=∣x1-x2∣平面内任意两点 A(x1,y1)、B(x2,y2)之间的距离:AB= x1 x2 2 y1 y2 25.如果 M(x1,a),N(x2,a),则 MN∥x 轴;反之成立.6.点 M(x,y)①关于 x 轴的对称点的坐标为(x,-y);②关于 y 轴的对称点的坐标为(-x,y);③关于原点的对称点的坐标为(-x,-y);7、①一、三象限的角平分线上的点的坐标为(a,a);②二、四象限的角平分线上的点的坐标为(a,-a)8、坐标平面内点的平移:方向加距离.9、坐标平面内的点与有序实数对一一对应.10、关于一、三象限的角平分线,二、四象限的角平分线对称的点的坐标.二、例题精选:例 1、在如图所示的正方形网格(小正方形的边长为 1) A 中,△ABC 的顶点 A,C 的坐标分别为(-4,5),(-1,3).(1)画出相应的直角坐标系;C(2)作出△ABC 关于 y 轴对称的△A′B′C′;(3)写出点 B′的坐标. B例 2、根据给出的已知点的坐标求四边形 ABCO 的面积.yA(-2,8) B(-11,6)1/7C(-14,0) 例 2Ox例 3、平面直角坐标系中有两点 M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d), 则称点 Q(a+c,b+d)为 M,N 的“和点”,若以坐标原点 O 与任意两点及它们的和点为顶点能组 成四边形,则称这个四边形为和点四边形.现在点 A(2,5),B(-1,3),若以 O,A,B,C 四点为 顶点的四边形是“和点四边形”,求点 C 的坐标.例 4.(1)已知 A(2,4),B(-3,-8),求 A,B 两点间的距离. (2)已知△ABC 各顶点坐标为 A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 说明理由.例 5、平面直角坐标系中,点 A 的坐标是(3a-5,a+1) (1)若点 A 在 y 轴上,求点 A 的坐标; (2)若点 A 到 x 轴的距离与到 y 轴的距离相等,求点 A 的坐标.例 6、平面直角坐标系中,等腰△ABC 的两个顶点的坐标 分别为 A(1,0),B(4,4),如果第三个顶点在坐标轴 上,那么点 C 可能的不同位置有多少个(画图说明)?2/7例 7、已知点 A(2a-b,5+a),B(2b-1,-a+b). (1)若点 A,B 关于 x 轴对称,求 a,b 的值; (2)若点 A,B 关于 y 轴对称,求(4a+b)2017 的值例 8、如图,平面直角坐标系中,一颗棋子从点 P 处开始 依次关于点 A,B,C 作循环对称跳动,即第一次跳到点 P 关于点 A 的对称点 M 处,接着跳到点 M 关于点 B 的对 称点 N 处,第三次再跳到点 N 关于点 C 的对称点处...... 如此下去. (1)在图中画出点 M,N,并写出点 M,N 的坐标; (2)求经过第 2017 次跳动后,棋子的落点与点 P 的距离.yB• C•OxA••P例 9.平面直角坐标系中,点 M 的坐标是(a,-2a).将点 M 向左平移 2 个单位,再向上平移 1 个 单位后得到点 N.若点 N 在第三象限,求 a 的取值范围.例 10、如图①,将射线 Ox 按逆时针方向旋转β,得到射线 Oy,如果 P为射线 Oy 上一点,且 OP=a,那么我们规定用(a,β)表示点 P 在平面内的位置,并记为(a,β).例如,图②中,如果 OM=8,∠xOM=110°,那么点 M 在平面内的位置记为 M(8,110°),根据图形,解答下列问题:(1)如图,如果点 N 在平面内的位置记为(6,30°),那么 ON=,∠xON=.(2)如果点 A,B 在平面内的位置分别记为 A(5,30°),B(12,120°),求 A,B 两点之间的距离.yaPβ O 图① xM(8,110°) •110° O 图② xN(6•,30°)3/7O 图③x三、学生练习:(一)选择题(每小题 3 分,共 30 分)1. 若点 P(a,-b)在第三象限,则 M(ab,-a)应在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 在 x 轴上到点 A(3,0)的距离为 4 的点是( ).A. (7,0) B. (-1,0) C. (7,0)或(-1,0) D. 以上都不对3. 点 M 到 x 轴的距离为 3,到 y 的距离为 4,则点 A 的坐标为( ).A. (3,4)B. (4,3)C. (4,3),(-4,3)D. (4,3),(-4,3)(-4,-3),(4,-3)4. 如果点 P(m+3,2m+4)在 y 轴上,那么点 P 的坐标为( ).A. (-2,0) B. (0,-2) C. (1,0)D. (0,1)5. 点 M 在 x 轴的上方,距离 x 轴 5 个单位长度,距离 y 轴 3 个单位长度,则 M 点的坐标为( ).A. (5,3) B. (-5,3)或(5,3) C. (3,5) D. (-3,5)或(3,5)6. 平面直角坐标系中,一个四边形各顶点坐标分别为 A(1, 2) ,B((4, 2) ,C(4,3) ,D((1,3) ,则四边形 ABCD 的形状是( ).A. 梯形B. 平行四边形C. 正方形D. 无法确定7. 设点 A(m,n)在 x 轴上,位于原点的左侧,则下列结论正确的是( ).A. m=0,n 为一切数B. m=O,n<0C. m 为一切数,n=0D. m<0,n=08. 在坐标轴上与点 M(3,-4)距离等于 5 的点共有( ).A. 4 个B. 3 个C. 2 个D. 1 个9. 直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数 a(a>1),那么所得的图案与原来图案相比( ).A. 形状不变,大小扩大到原来的 a2 倍B. 图案向右平移了 a 个单位C. 图案向上平移了 a 个单位D. 图案沿纵向拉长为 a 倍10. 若 y 0 ,则点 P(x,y)的位置是( ). xA. 在横轴上B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上(二)填空题(每小题 3 分,共 30 分)11. 如果将电影票上“6 排 3 号”简记为(6,3),(7,1)表示的含义是.12. 点(-4,0)在轴上,距坐标原点个单位长度.13. 点 P 在 y 轴上且距原点 1 个单位长度,则点 P 的坐标是.14. 已知点 M(a,3-a)是第二象限的点,则 a 的取值范围是.15. 点 A、点 B 同在平行于 x 轴的一条直线上,则点 A 与点 B 的坐标相等.16. 点 M(-3,4)与点 N(-3,-4)关于对称.17. 点 A(3,b)与点 B(a,-2)关于原点对称则 a=,b=.18. 若点 P(x,y)在第二象限角平分线上,则 x 与 y 的关系是.4/719. 已知点 P(-3,2),则点 P 到 x 轴的距离为,到 y 轴的距离为20. 已知点 A(x,4)到原点的距离为 5,则点 A 的坐标为.(三)解答题(计 60 分)21.等腰梯形 ABCD 的上底 AD=2,下底 BC=4,底角 B=45°,A建立适当的直角坐标系,求各顶点的坐标.B.D C22.正方形的边长为 2,建立适当的直角坐标系,使它的一个顶点的坐标为( 2 ,0),并写出另外三个顶点的坐标.23. 四边形 ABCD 在直角坐标中的位置如图 1 所示,按下列步骤操作并画出变化后的图形:(1)将四边形 ABCD 各点的横纵坐标都乘以12 ,把得到的四边形 A1B1C1D1 画在图 2 的坐标系中; (2)将四边形 A1B1C1D1 各点的横坐标都乘以-1,纵坐标都乘以-1 后再加上 1,把得到的四边形 A2B2C2D2 画在图 3 的坐标系中.(图中每个方格的边长均为 1)yADyyoxoBCxox(图 1)(图 2)24.如图所示,OA=8,OB=6,∠XOA=45°,∠XOB=120°, 求 A、B 的坐标.(图 3)5/725. 根据指令[S,A](S≥0,0°<A<180°,机器人在平面上能完成下列动作:先原地逆时针旋转角度 A,再朝其面对的方向沿直线行走距离 S,现机器人在直角坐标系坐标原点,且面对 x 轴正方向.(1)若给机器人下了一个指令[4,60],则机器人应移动到点;(2)请你给机器人下一个指令,使其移到点(-5,5).26. 观察图形由(1)→(2)→(3)→(4)的变化过程,写出每一步图形是如何变化的,图形中各顶点的坐标是如何变化的.y A(1,2)y A(2,2)yOxO B(2,0) OB(4,0)x(1)(2)B(4,0) xA(2,- 2) (3)yO (0,-1)x B(4,-1)(4) A(2,-5)4)27、如图,在平面直角坐标系中,长方形 OABC 的顶点 A, C 的坐标分别为(10,0),(0,4),D 为 OA 的中点,P 为 BC 边上一点.若△POD 为等腰三角形,求所有满足条件的 点 P 的坐标.yC •P•ODB Ax6/7八年级上四章《图形与坐标》第 12 讲答案例 1、(1)(2)略;(3)坐标是(2,1)例 2、作 BD⊥x 轴,AE⊥x 轴,面积为 80例 3、(1,8)或(-3,-2)或(3,2)例 4、(1)AB=13;(2)AB=AC=5,BC=6 等腰三角形例 5、(1)(0, 8 );(2)a=3,(4,4)或 a=1,(-2,2) 3例 6、如图,9 个点 例 7、(1)a=-8,b=-5;(2)-1•• • • C1 • OAB C•2 C• 5 C7例 8、(1)M(-2,0),N(4,4) (2)PM=2 2例 9、 1 a 2 2例 10.(2)画出图形,得∠AOB=90°,∴AB=13 学生练习:•例6BCDB DCDB AB 11、7 排 1 号; 12、x 的负半轴, 4; 13、(0,1),(0,-1); 14、a<0; 15 纵; 16、y 轴; 17、a=-3,b=2; 18、x+y=0; 19、2,3; 20、(3,4)或(-3,4)21、略; 22、(0, 2 ),(- 2 ,0),(0,- 2 );23、(1,2),(1,0),(2,0),(3,2)(2)(-2,-4),(-2,0),(-4,0),(-6,-4)24、A(4 2 ,4 2 ),B(-3,3 3 ); 25、(1)(2,2 3 );(2)[5 2 ,135]横×2纵×(-1)纵-126、(1)(2)(3)(4)27(1)当 PO=PD 时,P(2.5,4); y (2)当 OP=OD=5 时,P(3,4); C(3)当 DP=OD=5 时,分两种情况:如图 P(2,4)或 P(8,4)O•P•D图(1)B AxyC •P•OD图(2)B AxyC •P45•OD图(3)①B AxyCP• B54•ODAx图(3)②7/7。
初中数学图形的坐标与变换知识点归纳
初中数学图形的坐标与变换知识点归纳初中数学中,图形的坐标与变换是一个重要且基础的知识点。
它涉及到平面直角坐标系、图形的平移、旋转、翻转等概念和运算。
下面,我们将对初中数学中相关的知识点进行归纳,帮助大家更好地理解和掌握这些内容。
1. 平面直角坐标系平面直角坐标系是研究平面上点的位置关系的工具。
它由两条互相垂直的数轴(x轴和y轴)组成,原点为坐标原点,分别与x轴和y轴的正方向上的单位长度为1的线段为坐标轴。
2. 点的坐标表示在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
这种用数对表示点的方法称为点的坐标。
3. 图形的平移平移是指图形在平面上沿着一定的方向移动一定的距离,但形状和大小保持不变。
平移可以用坐标表示,对于平移向量(a, b),图形上的每个点(x, y)移动到新位置(x+a, y+b)。
4. 图形的旋转旋转是指图形绕一个固定点旋转一定的角度。
对于顺时针旋转θ度的情况,图形上的每个点(x, y)绕旋转中心点O旋转θ度后的新位置为(x', y'),通过一定的数学公式可以得到旋转后的新坐标。
5. 图形的翻转翻转是指图形相对于某个轴对称的操作。
包括水平翻转和垂直翻转两种情况。
水平翻转是指图形相对于x轴对称,垂直翻转是指图形相对于y轴对称。
翻转后图形上的每个点(x, y)的新坐标可以通过一定的变换公式得到。
6. 点的对称性在平面直角坐标系中,点的对称性也是一个重要的概念。
对称点是指两个在坐标系中关于某个点对称的点,就是它们关于这个点的连线的中点。
7. 图形的对称性除了点的对称性,图形的对称性也是一种重要的性质。
图形如果存在一个中心对称轴,当图形上的每一个点关于该对称轴与对应的对称点重合时,我们说图形具有中心对称性。
如果一个图形既有中心对称性,又有轴对称性,则称为既有中心对称性又有轴对称性。
通过对初中数学中图形的坐标与变换知识点的归纳,我们可以更好地理解和应用这些知识,解决与图形相关的问题。
专题20 图形的变换与坐标(学生版)
知识点01:轴对称变换【高频考点精讲】1、轴对称图形把一个图形沿一条直线折叠,直线两边的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等。
2、轴对称性质(1)关于直线对称的两个图形是全等图形。
(2)对称轴是对应点连线的垂直平分线。
(3)如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
3、关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y)。
4、最短路线问题在直线l上方有两个点A、B,确定直线l上到A、B的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点即为所求。
知识点02:平移变换【高频考点精讲】1、把一个图形整体沿某一直线方向移动一定的距离,得到一个新的图形,图形的这种移动,叫做平移。
2、平移的两个要素:(1)图形平移的方向;(2)图形平移的距离。
3、平移性质:对应点所连线段平行且相等。
4、平移变换与坐标变化(1)坐标点P(x,y)向右平移a个单位,得出P(x+a,y);(2)坐标点P(x,y)向左平移a个单位,得出P(x﹣a,y);(3)坐标点P(x,y)向上平移b个单位,得出P(x,y+b);(4)坐标点P(x,y)向下平移b个单位,得出P(x,y﹣b)。
知识点03:旋转变换【高频考点精讲】1、将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换叫做旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角。
初一数学图形与坐标试题答案及解析
初一数学图形与坐标试题答案及解析1.点P(-2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.【考点】点的坐标2.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a= 。
【答案】-5【解析】根据第四象限内点的纵坐标是负数解答即可.【考点】坐标与图形性质3.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.【答案】(1)图形见解析;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【解析】(1)以火车站向左2个单位,向下1个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系写出体育场、市场、超市的坐标即可.试题解析:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).【考点】坐标确定位置.4.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,-8)B.(1,-2 )C.(-6,-1 )D.( 0 ,-1)【答案】C.【解析】点A(-3,-5)向上平移4个单位,再向左平移3个单位得到点B,坐标变化为(-3-3,-5+4);则点B的坐标为(-6,-1).故选C.【考点】坐标与图形变化——平移.5.下列各点中,在第二象限的点是()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)【答案】C.【解析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故符合此条件的只有(-2,3).故选C.【考点】平面直角坐标系中各象限点的特征.6.已知点P ()在轴上,则P点的坐标为.【答案】(3,.0).【解析】∵点P ()在轴上,∴.∴.∴P点的坐标为(3,.0).【考点】轴上点的特征.7.在平面直角坐标系中,点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵点(-1,m2+1)它的横坐标-1<0,纵坐标m2+1>0,.∴符合点在第二象限的条件,故点(-1,m2+1)一定在第二象限.故选B.【考点】点的坐标.8.某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.8【答案】D【解析】如图,可选择的不同路线条数有:A→C→D→G→H→B;A→C→D→G→N→B;A→C→F→G→H→B;A→C→F→G→N→B;A→C→F→M→N→B;A→E→F→G→H→B;A→E→F→G→N→B;A→E→F→M→N→B.共有8条不同路线.9.丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),则红红家在丽丽家的()A.东南方向B.东北方向C.西南方向D.西北方向【答案】B【解析】根据已知点坐标得出所在直线解析式,进而根据图象与坐标轴交点坐标得出两家的位置关系.解:∵丽丽家的坐标为(﹣2,﹣1),红红家的坐标为(1,2),∴设过这两点的直线解析式为:y=ax+b,则,解得:,∴直线解析式为:y=x+1,∴图象过(0,1),(﹣1,0)点,则红红家在丽丽家的东北方向.故选:B.点评:此题主要考查了坐标确定位置,根据已知得出两点与坐标轴交点坐标是解题关键.10.已知点A(1,2a+2)到x轴的距离是到y轴距离的2倍,则a的值为.【答案】0或﹣2【解析】根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度列出方程,然后求解即可.解:∵点A(1,2a+2)到x轴的距离是到y轴距离的2倍,∴|2a+2|=2×1,∴2a+2=2或2a+2=﹣2,解得a=0或a=﹣2.故答案为:0或﹣2.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度并列出绝对值方程是解题的关键.11.如图,“马”所处的位置为(2,3),其中“马”走的规则是沿着“日”字形的对角线走.(1)用坐标表示图中“象”的位置是.(2)写出“马”下一步可以到达的所有位置的坐标.【答案】(1)(5,3)(2)【解析】(1)根据象在马的左边3个单位,结合图形写出即可;(2)根据网格结构找出与马现在的位置成“日”字的点,然后写出即可.解:(1)(5,3);(2)如图,(1,1),(3,1),(4,2),(4,4),(1,5),(3,5).点评:本题考查了坐标确定位置,熟练掌握网格结构,类比点的坐标的确定方法求解是解题的关键.12.点P(3-a,a-1)在y轴上,则点Q(2-a,a-6)在第______象限。
专项练习图形的位似变换与坐标
A'
B〞
x o
B'
B
A〞
观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,如果位似变换是以原 点为位似中心,相似比为k,那么位似图形对 应点的坐标的比等于k或-k.
例3 如图,矩形OABC的顶点坐标分别为O(0,0), A(6,0),B(6,4),C(0,4).画出以点O为 位似中心,矩形OABC的位似图形OA ′ B ′ C ′ ,使 1 它的面积等于矩形OABC面积的 ,并分别写出A′, 4 B′,C′三点的坐标. y
y
z ( 1,4 ) y
( 5,4 )
1 ; 2
S ( 2,2 ) W ( 1,1 ) x ( 5,1 )
o
x
课堂小结:
1、如果两个图形不仅是相似图形,而且是每组对应点所在的 直线都经过同一个点, 那么这样的两个图形叫做 位似图形 。 2、 这个点叫做 位似中心 。 3、这时的相似比又称为 位似比 。
O
0
x
-1 -2
D E
0 O -1 -2 -3 -4
x
L
(图2)
M
4、如果把图(1)中的“鱼”画到同一个直角坐标系中,它 们是位似图形吗?如果是位似图形,位似中心是哪一个点?
是;
原点O.
顺次连接下列各点,你得到什么图形?
(0,0)
(6,0)
(6,4)
(0,4)
(0,0)
(1)把上面各点坐标的横坐标、纵坐标都除2,画出这 个新图形。 y (0,0) 8
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) y A'
6
4 3 2 1 B 6 12 A B' C C'
第3章 图形与坐标1(解析版)初中数学
《阳光测评》2020-2021学年下学期八年级数学单元基础卷【湘教版】第3章图形与坐标(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列所给出的点中,在第二象限的是()A.(3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣3,2)【答案】D【解答】解:A、(3,2)在第一象限,故本选项不合题意;B、(3,﹣2)在第四象限,故本选项不合题意;C、(﹣3,﹣2)在第三象限,故本选项不合题意;D、(﹣3,2)在第二象限,故本选项符合题意.故选:D.【知识点】点的坐标2.过点A(﹣3,2)和B(﹣3,5)作直线,则直线AB()A.与x轴平行B.与y轴平行C.与y轴相交D.与x轴,y轴均相交【答案】B【解答】解:∵A(﹣3,2)、B(﹣3,5),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选:B.【知识点】坐标与图形性质3.若点A(m,﹣2)与点B(3,n)关于原点对称,则m+n=()A.﹣1B.1C.﹣5D.5【答案】A【解答】解:∵点A(m,﹣2)与点B(3,n)关于原点对称,∴m=﹣3,n=2,∴m+n=﹣3+2=﹣1,故选:A.【知识点】关于原点对称的点的坐标4.已知点P(2021,﹣2021),则点P关于x轴对称的点的坐标是()A.(﹣2021,2021)B.(﹣2021,﹣2021)C.(2021,2021)D.(2021,﹣2021)【答案】C【解答】解:∵点P(2021,﹣2021),∴点P关于x轴对称的点的坐标是(2021,2021).故选:C.【知识点】关于x轴、y轴对称的点的坐标5.将点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为()A.(﹣6,﹣8)B.(﹣6,﹣11)C.(﹣5,﹣9)D.(﹣5,﹣11)【答案】D【解答】解:点P(﹣6,﹣9)向右平移1个单位,再向下平移2个单位后得到P′,则P′坐标为(﹣6+1,﹣9﹣2),即(﹣5,﹣11),故选:D.【知识点】坐标与图形变化-平移6.点A(4,3)经过某种图形变化后得到点B(﹣3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90°D.绕原点顺时针旋转90°【答案】C【解答】解:因为点A(4,3)经过某种图形变化后得到点B(﹣3,4),所以点A绕原点逆时针旋转90°得到点B,故选:C.【知识点】坐标与图形变化-旋转、关于x轴、y轴对称的点的坐标7.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)【答案】D【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选:D.【知识点】坐标与图形变化-对称8.2020年9月16日,云南省瑞丽市共诊断2例新冠肺炎确诊病例,均为缅甸输入.下列表述,能确定瑞丽位置的是()A.云南西部B.云南与缅甸交界处C.东经97.85°D.东经97.85°,北纬24.01°【答案】D【解答】解:A、云南西部,位置不确定,故本选项错误;B、云南与缅甸交界处,位置不确定,故本选项错误;C、东经97.85°,位置不明确,故本选项错误;D、东经97.85°,北纬24.01°,有序数对,位置明确,故本选项正确.故选:D.【知识点】坐标确定位置9.下列说法中:①点(1,a)一定在第四象限;②坐标轴上的点不属于任一象限;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上;④直角坐标系中,在y轴上的点到原点的距离为5的点的坐标是(0,5),正确的有()A.1个B.2个C.3个D.4个【答案】B【解答】解:①中,a>0时点就不在第四象限,故说法错误;②坐标轴上的点不属于任一象限,说法正确;③横坐标为零的点在y轴上,纵坐标为零的点在x轴上,说法正确;④在y轴上的点到原点的距离为5的点的坐标是(0,5)也可以是(0,﹣5),所以说法错误.②③两种说法正确.故选:B.【知识点】两点间的距离公式10.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0.0),A9(5.0),依据图形所反映的规律,则A102的坐标为()A.(2,25)B.(2,26)C.(,﹣)D.(,﹣)【答案】B【解答】解:根据题意可得,A2的坐标(2,1),A6的坐标(2,2),A10的坐标(2,3),…,∵102=25×4+2,∴A102的纵坐标为(102+2)÷4=26∴A102的坐标(2,26).故选:B.【知识点】规律型:点的坐标二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.已知点A(﹣3,1),点B在y轴正半轴上,且AB=5,则点B的坐标为:.【答案】(0,5)【解答】解:∵点B在y轴正半轴上,设点B的坐标为(0,x),AB=5,∴=5,解得x=5或﹣3,∵点B在y轴正半轴上,∴x=5.故答案为(0,5).【知识点】两点间的距离公式12.若点P(2x,x﹣3)到两坐标轴的距离之和为5,则x的值为.【解答】解:当点P在第一象限,x﹣3>0,解得:x>3,且2x+x﹣3=5,解得:x=<3,不合题意;当点P在第二象限,,不等式组无解,不合题意;当点P在第三象限,,不等式组的解集为:x<0,则﹣2x﹣x+3=5,解得:x=﹣;当点P在第四象限,则,不等式组的解集为:0<x<3,故2x﹣(x﹣3)=5,解得:x=2,当点P在x轴上,则x﹣3=0,解得:x=3,此时2x=6,不合题意;当点P在y轴上,则2x=0,解得:x=0,此时|x﹣3|=3,不合题意;综上所述:x=﹣或x=2.【知识点】点的坐标13.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2013的坐标为.【答案】(2013,2012)【解答】解:设A n(x,y),∵当n=1时,A1(1,0),即x=n=1,y=1﹣1=0,当n=2时,A2(2,3),即x=n=2,y=2+1=3;当n=3时,A3(3,2),即x=n=3,y=3﹣1=2;当n=4时,A4(4,5),即x=n=4,y=4+1=5;…∴当点的位置在奇数位置横坐标与下标相等,纵坐标减1,当点的位置在偶数位置横坐标与下标相等,纵坐标加1,∴A2013(x,y)的坐标是(n,n﹣1)∴点A2013的坐标为(2013,2012).故答案为:(2013,2012).【知识点】规律型:点的坐标14.已知A、E两点的坐标分别是(2,﹣3)和(2,3),则下面结论:(1)A、E两点关于x轴对称;(2)A、E两点关于y轴对称;(3)A、E两点关于原点对称,其中正确的是(填序号)【答案】(1)【解答】解:由A、E两点的坐标分别是(2,﹣3)和(2,3),得A、E两点关于x轴对称,故答案为:(1).【知识点】关于原点对称的点的坐标、关于x轴、y轴对称的点的坐标15.如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为.【解答】解:∵点D的坐标为(1,),∴AD==2,∵四边形ABCD为菱形,∴CD=AD=2,CD∥AB,∴C点坐标为(3,).故答案为(3,).【知识点】坐标与图形性质、菱形的性质16.如图,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).如果将△ABC绕C点顺时针旋转90°,得到△A′B′C′,那么点A的对应点A′的坐标为.【答案】(8,3)【解答】解:由图知A点的坐标为(3,6),根据旋转中心C,旋转方向顺时针,旋转角度90°,画图,从而得A′的坐标为(8,3).【知识点】坐标与图形变化-旋转三、解答题(本大题共7小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P在第一象限,且到两坐标轴的距离相等,求P点的坐标.【解答】解:(1)∵点P(8﹣2m,m﹣1)在x轴上,∴m﹣1=0,解得:m=1;(2)∵点P在第一象限,且到两坐标轴的距离相等,∴8﹣2m=m﹣1,解得:m=3,∴P(2,2).【知识点】点的坐标18.(1)A(1,﹣2)、B(﹣2,2)两点间的距离为;(2)C(﹣5,0)、D(3,0)两点间的距离为;(3)E(0,3)、F(0,9)两点间的距离为.【答案】【第1空】5【第2空】8【第3空】6【解答】解:(1)AB==5.故答案是:5;(2)CD=|﹣5﹣3|=8;故答案是:8;(3)EF=|3﹣9|=6.故答案是:6.【知识点】两点间的距离公式19.已知点A(2,m),B(n,﹣5),根据下列条件求m,n的值.(1)A,B两点关于y轴对称;(2)AB∥y轴.【解答】解:(1)根据轴对称的性质,得m=﹣5,n=﹣2;(2)根据平行线的性质,得m≠﹣5,n=2.【知识点】关于x轴、y轴对称的点的坐标20.已知四边形ABCD各顶点的坐标分别是A(0,0)、B(1,2)、C(5,4)、D(7,0).(1)建立平面直角坐标系,并画出四边形ABCD;(2)求四边形ABCD的面积.【解答】解:(1)如图所示,四边形ABCD即为所求;(2)如图所示,过B作BE⊥AD于E,作CF⊥AD于F,则四边形ABCD的面积=×1×2+×(2+4)×4+×2×4=17.【知识点】坐标与图形性质21.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A1(,),A3(,),A12(,);(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.【答案】【第1空】0【第2空】1【第3空】1【第4空】0【第5空】6【第6空】0【解答】解:(1)由图可知,∴A1(0,1),A3(1,0),A12(6,0);故答案为:0,1;1,0;6,0;(2)∵n是4的倍数,∴根据(1)OA n=n÷2=,∴点A n的坐标(,0),∴A n﹣1(﹣1,0),A n+1(,0),A n+2(+1,1);(3)∵100÷4=25,∴100是4的倍数,∴A100(50,0),∵101÷4=25…1,∴A101与A100横坐标相同,∴A101(50,1),∴从点A100到点A101的移动方向与从点O到A1的方向一致,为从下向上.【知识点】规律型:点的坐标22.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,求平移后三个顶点的坐标.【解答】解:由题意可知此题平移规律是:(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).【知识点】坐标与图形变化-平移23.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)请你具体说明△DEF是△ABC经过如何变换得到的图形;(3)若点P(2a﹣12,﹣3a)与点Q(3b,2b+5)也是通过上述变换得到的一对对应点,求a、b的值.【解答】解:(1)A(2,3),D(﹣2,﹣3);B(1,2),E(﹣1,﹣2);C(3,1),F(﹣3,﹣1),这三组对应点的横纵坐标都互为相反数;(2)△DEF是由△ABC绕原点O旋转180°得到;(3)根据题意得2a﹣12+3b=0,﹣3a+2b+5=0,解得a=3,b=2.【知识点】坐标与图形变化-旋转。
8年级-上册-数学-第4章《图形与坐标》-知识点
浙教版-8年级-上册-数学-第4章《图形与坐标》分节知识点一、平面直角坐标系要点一、确定位置的方法1、有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:(1)有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同。
如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.(2)可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).要点二、平面直角坐标系与点的坐标的概念1、平面直角坐标系(1)在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).要点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.2、点的坐标(1)平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.要点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3)对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.要点三、坐标平面1、象限(1)建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.要点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2、各个象限内和坐标轴上点的坐标的符号特征要点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.二、坐标平面内图形的轴对称和平移要点一、关于坐标轴对称点的坐标特征1、关于坐标轴对称的点的坐标特征(1)P(a,b)关于x轴对称的点的坐标为(a,-b);(2)P(a,b)关于y轴对称的点的坐标为(-a,b);(3)P(a,b)关于原点对称的点的坐标为(-a,-b).2、象限的角平分线上点坐标的特征(1)第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);(2)第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3、平行于坐标轴的直线上的点(1)平行于x轴的直线上的点的纵坐标相同;(2)平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1、点的平移:(1)在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2、图形的平移:(1)在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化。
中考数学练习《坐标与图形的变换》(含答案解析)
坐标与图形的变换一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为52.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:;(2)求经过第2008次跳动之后,棋子落点与点P的距离.坐标与图形的变换参考答案与试题解析一、选择题1.下列说法中正确的是()A.是一个无理数B.函数的自变量x的取值范围是x>1C.8的立方根是±2D.若点P(﹣2,a)和点Q(b,﹣3)关于x轴对称,则a+b的值为5【考点】立方根;无理数;二次根式有意义的条件;函数自变量的取值范围;关于x轴、y轴对称的点的坐标.【专题】计算题.【分析】对每个选项分别求出正确结论,然后就可以进行验证.【解答】解:A、=2,是一个有理数,故A错误;C、正数有一个正的立方根,故C错误;D、两点若共于x轴对称,则横坐标相等,纵坐标互为相反数,得a=3,b=﹣2,则a+b=1,故D错误;B、根据二次根式和分式有意义的条件得x>1,故B正确;故选B.【点评】判断一个数是否是无理数,应先化简后判断;二次根式有意义的条件是被开方数大于或等于0,分式有意义的条件是分母不等于0;掌握立方根的性质和关于x轴对称的两点的坐标之间的关系.2.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(1,7),(﹣2,2),(3,4)B.(1,7),(﹣2,2),(4,3)C.(1,7),(2,2),(3,4)D.(1,7),(2,﹣2),(3,3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可在此题平移规律是(x+2,y+3),照此规律计算可知原三个顶点(﹣1,4),(﹣4,﹣1),(1,1)平移后三个顶点的坐标是(1,7),(﹣2,2),(3,4).故选A.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.3.如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则B1的坐标是()A.(4,1)B.(0,1)C.(﹣1,1) D.(1,0)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:从B到B1,点的移动规律是(x﹣2,y),如此规律计算可知B1的坐标为(0,1).故选B.【点评】本题考查图形的平移变换.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.如图,把矩形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(﹣2,4) C.(4,2)D.(2,﹣4)【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据矩形的特点和旋转的性质来解决.【解答】解:矩形的对边相等,B′C′=OA=4,A′B′=OC=2,∴点B′的坐标为(4,2)故选C.【点评】需注意旋转前后线段的长度不变,第一象限内点的符号为(+,+).5.在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将点A向x轴负方向平移一个单位得点A′【考点】关于x轴、y轴对称的点的坐标.【分析】已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),从而求解.【解答】解:根据轴对称的性质,可知横坐标都乘以﹣1,即是横坐标变成相反数,则实际是作出了这个图形关于y轴的对称图形.故选:B.【点评】考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.6.已知△ABC在平面直角坐标系的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(﹣2,1) B.(2,1)C.(2,﹣1) D.(﹣2,﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:原三角形中点A的坐标是(﹣4,1),将△ABC向右平移6个单位后,平移后点的横坐标变为﹣4+6=2,而纵坐标不变,所以点A的坐标变为(2,1).故选B.【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.7.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为()A.(a﹣2,b﹣3)B.(a﹣3,b﹣2)C.(a+3,b+2)D.(a+2,b+3)【考点】坐标与图形变化﹣平移.【专题】压轴题;网格型.【分析】直接利用平移中点的变化规律求解即可.【解答】解:根据题意:A点坐标为(﹣3,﹣2),平移后,A'的坐标为(0,0);故①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P'的坐标为(a+3,b+2).故选C.【点评】本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点.8.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转90°后,B点到达的位置坐标为()A.(﹣2,2) B.(4,1)C.(3,1)D.(4,0)【考点】坐标与图形变化﹣旋转.【专题】压轴题;数形结合.【分析】利用网格结构找出点B绕点D顺时针旋转90°后的位置,然后根据平面直角坐标系写出点的坐标即可.【解答】解:如图,点B绕点D顺时针旋转90°到达点B′,点B′的坐标为(4,0).故选:D.【点评】本题考查了旋转与坐标与图形的变化,根据网格结构找出点B旋转后的位置是解题的关键.二、填空题9.点P(﹣2,3)关于x轴的对称点的坐标是(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数.【解答】解:点P(﹣2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,∴对称点的坐标是(﹣2,﹣3).故答案为:(﹣2,﹣3).【点评】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到.10.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是10 .【考点】轴对称﹣最短路线问题.【专题】压轴题.【分析】本题首先要明确奶站应建在何处,点A关于x轴的对称点A的坐标是1B与x轴的交点就是奶站应建的位置.从A、B两点到奶(0,﹣3),则线段A1B的长.通过点B向y轴作垂线与C,根据勾股定站距离之和最小时就是线段A1理就可求出.的坐标是(0,﹣3),过点B向x轴作【解答】解:点A关于x轴的对称点A1和x轴平行的直线交于C,垂线与过A1C=6,BC=8,则A1B==10∴A1∴从A、B两点到奶站距离之和的最小值是10.故填10.【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.11.将点A(,0)绕着原点顺时针方向旋转45°角得到点B,则点B的坐标是(4,﹣4).【考点】坐标与图形变化﹣旋转.【分析】根据旋转的性质,旋转不改变图形的大小和形状.【解答】解:旋转后已知OB=OA=4,做BC⊥x轴于点C,那么△OBC是等腰直角三角形,∴OC=BC=4,∵在第四象限,∴点B的坐标是(4,﹣4).【点评】解答此题要注意旋转前后线段的长度不变,构造直角三角形求解即可.12.如图,Rt△OAB的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向旋转90°,则点B的对应点B′的坐标是(2,﹣1).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据旋转的性质,旋转不改变图形的大小和形状,准确把握旋转的方向和度数.【解答】解:把Rt△OAB的绕点O按顺时针方向旋转90°,就是把它上面的各个点按顺时针方向旋转90度.点A在y轴上,且OA=2,正好旋转到x轴正半轴.则旋转后A′点的坐标是(2,0);又旋转过程中图形不变,OA=2,AB=1,故点B′坐标为(2,﹣1).【点评】本题将一个图形的旋转放在坐标系中来考查,是一道考查数与形结合的好试题,也为高中后续学习做了良好的铺垫.从考试情况看,还有非常多考生没完全理解旋转的三大要素即中心、方向、角度,故失分的较多.本题综合考查学生旋转和坐标知识.13.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.在平面直角坐标系中,Rt△OAB的顶点A的坐标为,若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是().【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】根据A点坐标可知∠AOB=30°,因此旋转后OA在y轴上.如图所示.作B′C′⊥y轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.【解答】解:将△OAB绕O点,逆时针旋转60°后,位置如图所示,作B′C′⊥y轴于C′点,∵A的坐标为,∴OB=,AB=1,∠AOB=30°,∴OB′=,∠B′OC′=30°,∴B′C′=,OC′=,∴B′(,).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.15.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为(2,3).【考点】坐标与图形变化﹣旋转.【专题】压轴题;网格型.【分析】正确作出A旋转以后的点,即可确定坐标.【解答】解:由图知A点的坐标为(﹣3,2),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(2,3).【点评】本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.三、解答题16.如图,图形中每一小格正方形的边长为1,已知△ABC.(1)AC的长等于;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是(1,2);(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是(﹣3,﹣2).【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【专题】网格型.【分析】(1)根据图形,可得出AC的坐标,可得纵横坐标的关系,进而可求出AC的长;(2)根据图形,可得出ABC的坐标,向右平移2个单位可得A'的坐标;(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标.【解答】解:(1)根据图形,可得出A的坐标为(﹣1,2),C的坐标为(0,﹣1),故AC的长等于=;(2)根据图形,可得出A的坐标为(﹣1,2),B的坐标为(3,1),C的坐标为(0,﹣1),将△ABC向右平移2个单位得到△A'B'C',则A点的对应点A'的坐标是(1,2);(3)根据旋转的规律,把△OAB的绕点O按逆时针方向旋转90°,就是把它上面的各个点按逆时针方向旋转90°,可得A1的坐标为(﹣3,﹣2).【点评】此题主要考查图形的平移及平移特征﹣﹣﹣在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图﹣轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.18.如图,在平面直角坐标系中,一颗棋子从点P处开始依次关于点A、B、C 作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于C的对称点处,…如此下去.(1)在图中画出点M、N,并写出点M、N的坐标:(﹣2,0),(4,4);(2)求经过第2008次跳动之后,棋子落点与点P的距离.【考点】作图﹣轴对称变换.【专题】压轴题;规律型.【分析】(1)点P关于点A的对称点M,即是连接PA延长到M使PA=AM,所以M的坐标是M(﹣2,0),点M关于点B的对称点N处,即是连接MB延长到N 使MB=BN,所以N的坐标是N(4,4);(2)棋子跳动3次后又回点P处,所以经过第2008次跳动后,棋子落在点M 处,根据勾股定理可知PM的值.【解答】解:(1)M(﹣2,0),N(4,4);故答案为:M(﹣2,0),N(4,4);(2)棋子跳动3次后又回点P处,且2008÷3=669…1,所以经过第2008次跳动后,棋子落在点M处,∴PM=.答:经过第2008次跳动后,棋子落点与P点的距离为.【点评】考查学生对点对称意义的理解及学生在新的知识环境下运用所学知识的能力.本题着重考查学生探索规律和计算能力.。
知识点4 坐标与图形的变化(含解析)
知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。
七年级数学平面直角坐标系重点题型及知识点
七年级数学平面直角坐标系重点题型及知识点单选题1、如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段A′B′,则点 B 的对应点B′的坐标是()A.(-4 , 1)B.(-1, 2)C.(4 ,- 1)D.(1 ,- 2)答案:D解析:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,-2),故选D.小提示:本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键.2、如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.(2,3)B.(0,3)C.(3,2)D.(2,2)答案:D解析:解:若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.3、已知x是整数,当|x−√30|取最小值时,x的值是( )A.5B.6C.7D.8答案:A解析:根据绝对值的意义,找到与√30最接近的整数,可得结论.解:∵√25<√30<√36,∴5<√30<6,且与√30最接近的整数是5,∴当|x−√30|取最小值时,x的值是5,故选A.小提示:本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.4、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是()A.(-3,2)B.(3,2)C.(-3,-2)D.(3,-2)答案:D解析:由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.解:∵“奥迪”的坐标是(−2,−1),“奔驰”的坐标是(1,−1),∴建立平面直角坐标系,如图所示:∴“东风标致”的坐标是(3,−2);故选:D.小提示:本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、课间操时,小华、小军、小刚的位置如图所示,小军对小刚说,如果我的位置用(–1,0)表示,小华的位置用(–3,–1)表示,那么小刚的位置可以表示成()A.(1,2)B.(1,3)C.(0,2)D.(2,2)答案:A解析:如图,根据题意作出直角坐标系,即可得出小刚的位置.如图,小刚的位置可以表示为(1,2)小提示:此题主要考查直角坐标系的定义,解题的关键是根据题意画出直角坐标系.6、下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.答案:B解析:A、∵AB//CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选:B.7、如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是()A.(0,4)→(0,0)→(4,0)B.(0,4)→(4,4)→(4,0)C.(0,4)→(3,4)→(4,2)→(4,0)D.(0,4)→(1,4)→(1,1)→(4,1)→(4,0)答案:C解析:根据点的坐标的定义结合图形对各选项分析判断即可得解.A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;C、(3,4)→(4,2)不都能到达,故本选项正确;D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.故选C.小提示:本题考查了坐标确定位置,熟练掌握点的坐标的定义并准确识图是解题的关键.8、如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,2)B.(﹣9,6)C.(﹣1,6)D.(﹣9,2)答案:A解析:根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:A.小提示:本题考查坐标与平移,解题的关键是记住平移规律:坐标,右移加,左移减;纵坐标,上移加,属于中考常考题型.填空题9、如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,规定一个单位长度表示1 km.甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是___.答案:(10,8√3)解析:根据题意建立如图所示的直角坐标系,则OA=2,AB=16,∠ABC=30°,所以AC=8,BC=8√3,则OC=OA+AC=10,所以B(10,8√3),故答案为(10,8√3).10、观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.答案:√n+1n+2=(n+1)√1n+2(n≥1)解析:观察分析可得√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,则将此规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1)解:根据题意得:√1+13=(1+1)√11+2,√2+14=(2+1)√12+2,√3+15=(3+1)√13+2,……,发现的规律用含自然数n(n≥1)的等式表示出来是√n+1n+2=(n+1)√1n+2(n≥1).所以答案是:√n+1n+2=(n+1)√1n+2(n≥1)小提示:本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.11、在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.答案:二、四.解析:试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.12、如图是玉渊潭公园部分景点的分布示意图,在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,当表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)时,表示留春园的点的坐标为___.答案:(9,-1)解析:根据表示西桥的点的坐标为(−6,1),表示中堤桥的点的坐标为(1,2)建立平面直角坐标系,确定坐标原点的位置,进而可确定表示留春园的点的坐标.解:根据题意可建立如下所示平面直角坐标系,则表示留春园的点的坐标为(9,−1),故答案为(9,−1).小提示:此题考查坐标确定位置,解题的关键就是确定坐标原点和x,y轴的位置.13、将点P(2,−3)向右平移4个单位得到点P′,则点P′的坐标为__________.答案:(6,−3)解析:根据平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.解:将点P(2,﹣3)向右平移4个单位长度得点P′,则点P′的坐标为(6,﹣3).所以答案是:(6,﹣3).小提示:本题考查了坐标与图形变化-平移,熟练掌握平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)是解题的关键.解答题14、如图,用(−1,−1)表示A点的位置,用(3,0)表示B点的位置.(1)画出直角坐标系.(2)点E的坐标为______.(3)△CDE的面积为______.答案:(1)见解析;(2)(3,2);(3)3.5.解析:(1)根据坐标与象限的关系,建立直角坐标系,将(−1,−1)、(3,0)表示在直角坐标系中即可;(2)根据坐标与象限的关系,点E在第一象限,横坐标、纵坐标均为正数,据此解题(3)由割补法解题,△CDE的面积等于梯形面积减去两个直角三角形面积即可解题.(1)如图所示,即为所求(2)点E在第一象限,横坐标、纵坐标均为正数,∴E(3,2)所以答案是:(3,2);(3)S△CDE=(1+3)2×3−12×1×3−12×1×2=3.5所以答案是:3.5.小提示:本题考查坐标与图形,是重要考点,难度较易,掌握相关知识是解题关键.15、在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.答案:(1)3;(2)D;(3)与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.解析:(1)根据A点坐标可得出A点在y轴上,即可得出A点到原点的距离;(2)根据点的平移的性质得出平移后的位置;(3)利用图形性质得出直线CE与坐标轴的位置关系;(4)利用图形性质得出互相垂直的直线.解:由题意得,如图所示:(1)A点到原点的距离是3.(2)将点C向x轴的负方向平移6个单位,它与点D重合.(3)直线CE与y轴平行,与x轴垂直;(4)直线CD与CE垂直,直线CD与FG垂直.故答案为(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.小提示:此题主要考查了点的坐标性质以及平移的性质,根据坐标系得出各点的位置是解题关键.。
图形与坐标练习+知识点
图形与坐标练习+知识点1、有序数对:我们把这种有顺序的两个数a 与b 组成的数队,叫做有序实数对。
记作(a ,b ); 注意:a 、b 的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向 竖直的数轴称为y 轴或纵轴,取向上方向为正方向 两坐标轴的交点为平面直角坐标系的原点 3、象限:坐标轴上的点不属于任何象限 P (x ,y )第一象限:x>0,y>0 即(+,+) 第二象限:x<0,y>0 即(-,+) 第三象限:x<0,y<0 即(-,-) 第四象限:x>0,y<0 即(+,-) 横坐标轴上的点:(x,0) 即:x 轴上的点,纵坐标y 等于0; 纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0; 坐标轴上的点不属于任何象限;平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x,y )距x 轴的距离为︱y ︱距y 轴的距离为︱x ︱距原点的距离为22x y +坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱x 1-x 2︱点A (0,y 1)点B (0,y 2),则AB 距离为 ︱y 1-y 2︱坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为22)()(2121y y x x -+-6、角平分线问题:若点(x,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)若点(x,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数 8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (2x 21x + ,0)点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (2x 21x + ,2y 21y +) 9、平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a,y )向左平移a 个单位长度,可以得到对应点(x-a,y ) 向上平移a 个单位长度,可以得到对应点(x,y+a ) 向下平移a 个单位长度,可以得到对应点(x,y-a ) 10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
初一数学图形与坐标试题
初一数学图形与坐标试题1.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a= 。
【答案】-5【解析】根据第四象限内点的纵坐标是负数解答即可.【考点】坐标与图形性质2.如图,长阳公园有四棵树,A、B、C、D(单位:米)(1)请写出A、B两点坐标﹒(2)为了更好的保护古树,公园决定将如图所示的四边形用围栏圈起来,划为保护区,请你计算保护区面积﹒【答案】(1)A(10,10)、B(20,30);(2)保护区面积为1950m2.【解析】(1)根据图形即可直接写出A、B两点坐标;(2)用大长方形面积减去三个小三角形面积即可.试题解析:(1)A(10,10)、B(20,30);(2)保护区面积为:60×50﹣×10×60﹣×10×50﹣×20×50=1950m2.【考点】点的坐标.3.已知点A在第三象限,则点B在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.【解析】根据点在第三象限的条件横坐标是负数,纵坐标是负数,可判断出点A坐标中m、n的符号特点,进而可求出所求的点B的横纵坐标的符号,进而判断点B所在的象限:∵点A在第三象限,∴m<0,n<0,∴|m|>0,-n>0,∴点B在第一象限.故选A.【考点】点的坐标.4.第四象限内的点Q(x,y)满足|x|=3,y2=4,则点Q的坐标是_________.【答案】(3,﹣2).【解析】∵|x|=3,y2=4,∴x=±3,y=±2,∵点P(x,y)在第四象限,∴x>0,y<0,∴x=3,y=﹣2,∴P点坐标为(3,﹣2).故答案是(3,﹣2).【考点】点的坐标.5.将点A(-2,-3)向右平移3个单位长度得到点B,则点B在第象限。
【答案】四.【解析】先利用平移中点的变化规律求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.【考点】坐标与图形变化-平移.6.点M(-2,1)关于X轴对称的点的坐标是()A.(-2,-1)B.(2,1)C.(2,-1)D.(1,-2)【答案】A.【解析】根据“关于x轴对称的两点坐标关系:横坐标不变,纵坐标互为相反数”知点M(-2,1)关于X轴对称的点的坐标是(-2.-1)故选A.【考点】关于x轴、y轴对称的点的坐标.7.如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)如图1,写出点B的坐标();(2)如图2,若过点C的直线CD交线段AB于点D,且把长方形OABC的周长分为3:1两部分,求点D的坐标;(3)如图3,将(2)中的线段CD向下平移2个单位,得到C/D/,试计算四边形OAD/C/的面积.【答案】(1)点B(3,5);(2)(3,4);(3)7.5.【解析】(1)点B的横坐标等于点A的横坐标,点B的纵坐标等于点C的纵坐标,从而求得点B的坐标;(2)分两种情况讨论,并把不合题意的舍去即可;(3)根据平移的性质,得C′(0,3),D′(3,2),然后再求四边形OAD′C′的面积.(1)点B(3,5)(2)过C作直线CD交AB于D,由图可知:OC=AB=5,OA=CB=3.①当(CO+OA+AD):(DB+CB)=1:3时即:(5+3+AD):(5-AD+3)=1:38-AD=3(8+AD)AD=-4(不合题意,舍去)②当(DB+CB):(CO+OA+AD)=1:3时即:(5-AD+3):(5+3+AD)=1:38+AD=3(8-AD)AD=4∴点D的坐标为(3,4)(3)由题意知:C′(0,3),D′(3,2)由图可知:OA=3,AD′=2,OC′=3∴S四边形OAD′C″=(OC′+AD′)•OA=×(3+2)×3=7.5.【考点】1.矩形的性质;2.坐标与图形性质;3.平移的性质.8.在平面直角坐标系中,点A(2,-3)在第几象限?答()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D.【解析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故点A(2 , -3)位于第四象限.故选D.【考点】平面直角坐标系中各象限点的特征.9.在平面直角坐标系中有以下各点:A(-1,2),B(-1,-2),C(3,-3),D(3,4),则四边形ABCD的形状是______,面积大小为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 平面直角坐标系知识点归纳
1、有序数对:我们把这种有顺序的两个数a 与b 组成的数队,叫做有序实数对。
记作(a ,b ); 注意:a 、b 的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向
竖直的数轴称为y 轴或纵轴,取向上方向为正方向
两坐标轴的交点为平面直角坐标系的原点
3、象限:坐标轴上的点不属于任何象限 P (x ,y )
第一象限:x>0,y>0 即(+,+)
第二象限:x<0,y>0 即(-,+)
第三象限:x<0,y<0 即(-,-)
第四象限:x>0,y<0 即(+,-)
横坐标轴上的点:(x ,0) 即:x 轴上的点,纵坐标y 等于0;
纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0;
坐标轴上的点不属于任何象限;
平行于x 轴(或横轴)的直线上的点的纵坐标相同;
平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x ,y )距x 轴的距离为︱y ︱
距y 轴的距离为︱x ︱
距原点的距离为22x y +
坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱x 1-x 2︱
点A (0,y 1)点B (0,y 2),则AB 距离为 ︱y 1-y 2︱
坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为 22)()(2121y y x x -+-
6、角平分线问题:若点(x ,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)
若点(x ,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)
7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)
关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数
8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (2
x 21x + ,0) 点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (2x 21x + ,2
y 21y +)
9、平移: 在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x+a ,y ) 向左平移a 个单位长度,可以得到对应点(x-a ,y ) 向上平移a 个单位长度,可以得到对应点(x ,y+a ) 向下平移a 个单位长度,可以得到对应点(x ,y-a ) 10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: 建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
练习: 1.平面直角坐标系中点P (1-,2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.点P 的横坐标是3-,且到x 轴的距离是5,则P 点的坐标是( ) A.(5,3-) 或(5-,3-) B.(3-,5) 或(3-,5-) C.(3-,5) D.(3-,5-) 3.在平面直角坐标系中,点P (3-,4)关于y 轴对称点的坐标为( ) A.(3-,4) B.(3,4) C.(3,-4) D.(3-,-4) 4.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误..的是 A .炎陵位于株洲市区南偏东约35︒的方向上 B .醴陵位于攸县的北偏东约16︒的方向上 C .株洲县位于茶陵的南偏东约40︒的方向上 D .株洲市区位于攸县的北偏西约21︒的方向上 5.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的一半,则点A 的对应点的坐标是( ) A.(4-,3) B.(4,3) C.(2-,6) D.(2-,3) 6.如图,把△ABC 经过一定的变换得到△A /B /C /,如果△ABC 上的点P 的坐标为(a ,b ),那么这个点在△A /B /C /上的对应点P /的坐标为( ) A.(2-a ,3-b ) B.(3-a ,2-b ) C.(3+a ,2+b ) D.(2+a ,3+b ) 7.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是( ) A .男生在13岁时身高增长速度最快 B . 第5题图 第4题图 . .醴陵 .攸县 .茶陵 .炎陵 · 株洲市区 株洲县 北 南 东 西
龄/ 第8题图 第6题图
8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....
,则点C 的个数是( ) A .6 B .7 C .8 D .9
9.在平面直角坐标系中,点P (1-a ,a )是第二象限内的点,则a 的取值范围是 。
10.已知点A (a ,4-),B (3,b )关于原点对称,则a = ,b = 。
11.将点P (2-,1)先向左平移1个单位长度,再向上平移2个单位长度得到点Q ,则Q 点的坐标是 。
12.点M (2-,4-)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 。
13.在平面直角坐标系中,△ABC 的顶点坐标分别为A (6,6),B (-3,3),C (3,3)△ABC 的面积是 。
14.如图,12时我鱼政船在H 岛30海里的A 处,渔政船以每小时40海里的速度向东航行,13时到达B 处,并测得H 岛的方向是北偏西54°。
则BC= 海里,此时渔政船在H 岛南偏东 °的方向,距H 岛 海里。
15.如图,在平面直角坐标系中,△ABC 是边长为2的等边三角形,则A 、B 、C 三个顶点的坐标分别是A ,B ,C 。
16.在平面直角坐标系中,已知点A (2,2)、B (2,3),点P 在y 轴上,且三角形APB 为直角三角形,则点P 的坐标是 。
简答题:
17.如图,写出平面直角坐标系中点A ,B ,C ,D ,E ,F 的坐标。
18.孔明和爸爸、妈妈到人民公园游玩,回到家后,他利用平面直角坐标系画出公园的景区地图,如图所示,可是他忘记了在图中标出原点和x 轴、y 轴。
只知道游乐园D 的坐标为(2,2-),请你为他画出坐标系,并求写出各景点的坐标。
19.在如图所示的平面直角坐标系中,描出A (2,1),
B (0,3-),
C (4,4-)三点,依次连接各点得到△ABC ,分别作出△ABC 关于x 轴和y 轴对称的图形,并写出它们各顶点的坐标。
20.如图,已知A (3,4-),B (4,3-),C (5,0),求四边形ABCO 的面积。