(完整)八年级下册数学-二次根式知识点整理(2),推荐文档

合集下载

最新八年级下册数学--二次根式知识点整理

最新八年级下册数学--二次根式知识点整理

最新八年级下册数学--二次根式知识点整理1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变.如:-2x>4,不等式两边同除以-2得x<-2.不等式组的解集是两个不等式解集的公共部分.如{3、分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如,a (a≥0)的式子叫做二次根式,“,”称为二次根号.★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“,”,“,”的根指数为2,即“2,”,我们一般省略根指数2,写作“,”.如2,5 可以写作,5 .(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子.(3)式子,a 表示非负数a的算术平方根,因此a≥0,,a ≥0.其中a≥0是,a 有意义的前提条件.(4)在具体问题中,如果已知二次根式,a ,就意味着给出了a≥0这一隐含条件. (5)形如b,a (a≥0)的式子也是二次根式,b与,a 是相乘的关系.要注意当b 是分数时不能写成带分数,例如错误!错误!可写成错误!,但不能写成2 错误!错误!.练习:一、判断下列各式,哪些是二次根式?(1),6 ;(2),-18 ;(3),x2+1 ;(4)3,-8 ;(5),x2+2x+1 ;(6)3,|x|;(7),1+2x (x<-错误!)二、当x取什么实数时,下列各式有意义?(1),2-5x ;(2),4x2+4x+1 二、二次根式的性质:练习:计算(1)(错误!)2 (2) (4错误!)2 (3) 错误!(4)- 错误!(6)错误!+ 错误!(1≤x≤3)★(,a )2(a≥0)与,a2 的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式.例:3,x,x+y,,3x (x≥0),-ab,错误!(t≠0,x3都是代数式注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=等)(1)将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和不等式都是关系式.如2x+3>3x-5是关系式.练习:下列式子:①0;②π2③2+x=4;④错误!>1;⑤2a+3b;⑥错误!(x≤2),其中是代数式的有()列代数式的常用方法:(1)直接法:根据问题的语言叙述直接写出代数式.(2)公式法:根据公式列出代数式.(3)探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来.练习:列代数式(1)把a本书平均分给若干名学生,若每人分5本,还余3本,则学生人数为()(2)若圆A的半径r是圆B的半径的5倍,则这两个圆的周长之和为()典型例题剖析题型一:二次根式有意义的条件当x取何值时,下列各式在实数范围内有意义?(1),x+5-,3-2x;(2)错误!;(3)错误!+错误!题型二:利用二次根式的非负性化简求值已知a2+,b-2=4a-4,求,ab的值.题型三:二次根式非负性的简单应用已知实数x,y满足|x-4|+,y-8=0,则以x,y的值为两边长的等腰三角形的周长是()题型四:利用,a2 =|a|并结合数轴化简求值已知实数a,b在数轴上的位置如图所示.试化简:,a2+,b2+,(a-b)2+,(b-1)2-,(a-1)2题型五:,a2 =|a|与三角形三边关系的综合应用在△ABC中,a,b,c是三角形的三边长,化简,(a-b+c)2-2|c-a-b|题型六:逆用(,a )2 = a(a≥0)在实数范围内分解因式在实数范围内分解因式:(1)x4-4;(2)x4-4x2+4二次根式的乘除1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2、单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.一、二次根式的乘法法则,a .,b =,ab (a≥0,b≥0)即:二次根式相乘,把被开方数相乘,根指数不变(1)进行二次根式的乘法运算时,一定不能忽略其被开方数a,b均为非负数这一条件. (2)推广①,a .,b .,c =,abc (a≥0,b≥0,c≥0)②a,b .c,d =ac,bd③乘法交换律和结合律在二次根式的乘法中任然可应用.练习:(1),28 .,7 ;(2)错误!.错误!;(3)4错误!.错误!(4)6错误!.(-2错误!)二、二次根式乘法法则的逆用,ab =,a .,b (a≥0,b≥0)即积的算术平方根等于积中各因式的算术平方根的积利用这个性质可以把二次根式化简,在进行二次根式的化简运算时,先将被开方数进行因式分解或因数分解,然后再将能开得尽方的因式或因数开方后移到根号外.注:(1)公式中的a,b可以是数,也可以是代数式,但必须满足a≥0,b≥0,实际上,公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可,如,(-4)×(-9)≠,-4 .,-9 .(2)在本章中如果没有特别说明,所有的字母都表示正数.推广:,abcd =,a .,b .,c .,d (a≥0,b≥0,c≥0,d≥0)练习:化简(1),300 ;(2),(-14)×(-112);(3),200a5b4c3 ;(4),132-122 ;(5),16x4+32x2三、二次根式的除法法则错误!=错误!(a≥0,b>0)即:二次根式相除,把被开方数相除,根指数不变.注:(1)a必须是非负数,b必须是正数,式子才成立.若a,b都是负数,虽然错误!>0,错误!有意义,但错误!,错误!在实数范围内无意义;若b=0,则错误!无意义.(2)如果被开方数是带分数,应先将其化成假分数,如错误!必须先化成错误!,以免出现错误! =,4 ×错误!这样的错误.(3)在二次根式的计算中,最后结果应不含能开得尽方的因数或因式,同时分母中不含二次根式.推广:(m,a )÷(n,b )=(m÷n)×(,a ÷,b ),其中a≥0,b>0,n≠0.练习:计算(1),48 ÷,6 ;(2)-,27 ÷(错误!错误!);(3)错误!错误!÷(-错误!;(4)错误!四、二次根式除法法则的逆用错误!=错误!(a≥0,b>0)即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.注:公式中的a,b可以是数,也可以是代数式,但必须满足a≥0,b>0.公式中的a,b是限制公式右边的,对公式的左边,只要错误!≥0即可.例如计算错误!,不能写为错误!=错误!,而应写为错误!=错误!=错误!=错误!.利用这个公式,同样可以达到化简二次根式的目的,在化简被开方数是分数(或分式)的二次根式时,先将其化为错误!(a≥0,b>0)的形式,然后利用分式的基本性质,分子和分母同乘上一个适当的因式,化去分母中的根号即可.当被开方数是带分数时,应先把它化成假分数.练习:化简(1)错误!;(2)错误!;(3)错误!五、最简二次根式的概念★满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.★对于最简二次根式的概念我们可作如下解释:(1)被开方数中不含分母,因此被开方数是整数或整式;(2)被开方数中每一个因数或因式的指数都是1.★化简二次根式的一般方法练习:下列二次根式中哪些是最简二次根式?哪些不是?若不是,请说明理由.(1),0.3 ;(2)错误!;(3)错误!;(4)错误!;(5)错误!;(6)错误!;(7)错误!;(8)错误!拓展:分母有理化:二次根式的除法可以用化去分母中的根号的方法来进行,这种化去分母中根号的变形叫做分母有理化.分母有理化的方法是根据分式的基本性质,将分子和分母都乘上分母的有理化因式.....(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式),化去分母中的根号.分母有理化因式不唯一,但以运算最简便为宜.常用的有理化因式有:,a与,a;,a+b与,a+b;,a-b 与,a-b;,a+,b与,a-,b;a,b+c,d与a,b-c,d等.练习:把下列二次根式化成最简二次根式:(1),240;(2),1.25;(3)错误!;(4),75a2b典型例题剖析题型一:二次根式乘除法法则成立的条件(1)若,x+3.,x-3=,(x+3)(x-3)成立,则()A、x≥3B、x≥-3C、-3≤x≤3D、x为任意实数(2)如果错误!=错误!成立,那么()A、x≥6B、0≤x≤6C、x≥0D、x>6题型二:二次根式的化简化简:(1),12ab.错误!;(2)错误!;(3)错误!题型三:二次根式的乘法混合运算计算:(1)错误!÷3错误!×(-5错误!);(2)2错误!×错误!÷(错误!错误!)题型四:利用二次根式的性质把根号外的非负因数(式)移到根号内把下列各式中根号外的因数(式)移到根号内:(1)5错误!;(2)-3错误!;(3)-2a错误!;(4)-a错误!;(5)x错误!(x<0,y<0)题型五:二次根式的大小比较比较大小:(1)7,2与3,11;(2)-2,11与-3,5二次根式的加减1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项,例如3ab与-4ab2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,合并同类项后,所得项的系数是合并前各同类项的系数和,且字母部分不变.3、整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.4、平方差公式:(a+b)(a-b)=a2-b2完全平方公式(a±b)2=a2±2ab+b25、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(a+b)(m+n)=am+an+bm+bn一、可以合并的二次根式★将二次根式化成最简二次根式,如果被开方数相同,则这样的二次根式可以合并.合并的方法与合并同类项类似,把括号外的因数(式)相加,根指数和被开方数不变,合并的依据是乘法分配律,如m,a+n,a=(m+n),a练习:化简下列二次根式,并指出哪些是可以合并的二次根式.(1),27;(2)-错误!错误!;(3)错误!;(4)错误!(a>0,b>0);(5)b错误!;(6)2,243;(7)错误!(a>0,b>0);(8)3错误!(a>0,b>0);二、二次根式的加减★二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.★二次根式的加减法与整式的加减法类似,步骤如下:(1)将各个二次根式化成最简二次根式;(2)找出化简后被开方数相同的二次根式;(3)合并被开方数相同的二次根式—将系数相加仍作为系数,根指数与被开方数保持不变,可简记为:化简→判断→合并.★二次根式的加减法与二次根式的乘除法的区别如下:注:(1)化成最简二次根式后被开方数不同的二次根式不能合并,但是不能丢弃,它们也是结果的一部分;(2)整式加减运算中的交换律、结合律、去括号法则、添括号法则在二次根式运算中仍然适用;(3)根号外的因式就是这个根式的系数,二次根式的系数是带分数的要化成假分数的形式.练习:计算:(1)错误!错误!+6错误! - 2x错误!;(2)(错误!-错误!+2错误!)-(错误! - 错误!)二、二次根式的混合运算★二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方、再乘除、最后加减,有括号的先算括号里面的(或先去掉括号).★在二次根式的运算中,有理数的运算律、多项式乘法法则及乘法公式仍然适用.注:在进行二次根式的运算时,能用乘法公式的尽量使用乘法公式,有时还需要灵活运用公式和逆用公式,这样可以使计算过程大大化简.练习:计算(1),3(,6+,8);(2)(4,3-3,6)÷2,3;(3)(,6+2)(,6-3)(4)(5+,7)(5-,7);(5)(,5+2)2;(6)(2,3-,2)2;典型例题剖析题型一:二次根式的化简求值问题已知a=错误!,b=错误!,求错误!题型二:巧解二次根式的混合运算题计算:(1)(2,3-,18)(,12+3,2);(2)(,3-1)2+(,3+2)2-2(,3 -1)(,3+2)(3)(,2+,3-,5)2-(,2-,3+,5)2;(4)错误! - 错误!11 / 11。

八年级数学下册《二次根式》知识点归纳和题型归类素材 新人教版(2021-2022学年)

八年级数学下册《二次根式》知识点归纳和题型归类素材 新人教版(2021-2022学年)

二次根式知识点归纳和题型归类一、知识框图二。

知识要点梳理ﻫ知识点一、二次根式的主要性质:ﻫ1。

;2.;3.;ﻫ4。

积的算术平方根的性质:;5. 商的算术平方根的性质:。

ﻫ6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算ﻫ(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2) 注意每一步运算的算理;(3)乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

3.二次根式的混合运算(1)ﻬ明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

(3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数.4。

简化二次根式的被开方数,主要有两个途径:错误!因式的内移:因式内移时,若,则将负号留在根号外.即:.错误!因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即:三。

典型题训练一。

利用二次根式的双重非负性(a≥0),a1。

下列各式中一定是二次根式的是( )。

A 、; B 、;C 、; D 、 2。

x取何值时,下列各式在实数范围内有意义。

(1) (2) (3) (4)(5)(6). (7)若,则x 的取值范围是(8)若,则x 的取值范围是。

3。

若有意义,则m 能取的最小整数值是;是一个正整数,则正整数m的最小值是________.4。

当x 为何整数时,有最小整数值,这个最小整数值5,则=_____________; ,则 6.设m、n 满足,则= 。

7,求的值.8。

若三角形的三边a 、b、c 满足=0,则第三边c的取值范围是9。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)

八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)

五、求值:(每小题 7 分,共 14 分)
3 2
3 2
x3 xy2
25.已知 x=
,y=
,求
的值.
3 2
3 2
x4 y 2x3y2 x2 y3
x
2x x2 a2
1
26.当 x=1- 2 时, 求


的值.
x2 a2 x x2 a2 x2 x x2 a2
x2 a2
六、解答题:(共 20 分)
=______.
ab c2d 2
1
1
12.比较大小:- _________- .
27
43
13.化简:(7-5
2
2018
) ·(-7-5
2
2017
) =______________.
14.若
x 1+
y
3
2
2
=0,则(x-1) +(y+3) =____________.
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.
四、巧配方,独占鳌头
例 4. 计算 分析:因为
都有意义,所以
所以
所以
解:原式
五、整体代入,别开生面
例 5. 已知
,求下列各式的值。
(1)
(2)
分析:根据 x、y 值的特点,可以求得
,如果能将所求的值的
式子变形为关于
或 xy 的式子,再代入求值要比直接代入求值简单得多。
解:因为 所以 (1)
(2) (也可以将
1
32
2、【提示】

=-( 3 +2).【答案】×.
32 34
3、【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥1).两式相等,必须 x≥1.但等式左边 x 可取任

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细(带答案)

八年级数学下册第十六章二次根式总结(重点)超详细单选题1、若a =√2﹣1,则a +1a 的整数部分是( )A .0B .1C .2D .3答案:C分析:把a 的值代入,利用二次根式的混合运算法则计算得出最简结果,再估算即可求解.解:∵a =√2−1,∴a +1a =√2−1+√2−1=√2−1+√2+1=2√2,∵4<8<9, ∴2<2√2<3,∴a +1a 的整数部分是2,故选:C小提示:本题主要考查了二次根式的混合运算,无理数的估算能力,掌握二次根式的混合运算法则是解决问题的关键.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式中,无意义的是( )A .√(−3)2B .√(−3)33C .√−32D .√−(−3)答案:C分析:根据二次根式的被开方数是非负数判断即可.解:A .原式=√9=3,故该选项不符合题意;B .原式=−3,故该选项不符合题意;C .原式=√−9,−9是负数,二次根式无意义,故该选项符合题意;D .原式=√3,故该选项不符合题意;故选:C .小提示:本题考查了二次根式有意义的条件,立方根,掌握二次根式的被开方数是非负数是解题的关键.4、当x >2时,√(2−x )2= ( )A .2−xB .x −2C .2+xD .±(x −2)答案:B分析:根据√a 2=|a |的进行计算即可.∵x >2,∴√(2−x )2=|2−x |=x −2,故B 正确.故选:B .小提示:本题考查了二次根式的性质与化简,熟练掌握√a 2=|a |是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、若式子√m+2(m−1)2有意义,则实数m 的取值范围是( )A .m >﹣2B .m >﹣2且m ≠1C.m ≥﹣2D .m ≥﹣2且m ≠1答案:D分析:根据二次根式有意义的条件即可求出答案.由题意可知:{m +2≥0m −1≠0, ∴m≥﹣2且m≠1,故选D .小提示:本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件.7、下列计算:(1)(√2)2=2;(2)√(−2)2=2;(3)(−2√3)2=12;(4)(√2+√3)(√2−√3)=−1,其中结果正确的个数为( )A .1B .2C .3D .4答案:D分析:根据二次根式的运算法则即可进行判断.(1)(√2)2=2,正确;(2)√(−2)2=2正确;(3)(−2√3)2=12正确;(4)(√2+√3)(√2−√3)=−1,正确,故选D.小提示:此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:(√a)2=a;√a2=|a|.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、化简2√5−√5×(2−√5)的结果是()A.5B.−5C.√5D.−√5答案:A分析:先进行二次根式乘法,再合并同类二次根式即可.解: 2√5−√5×(2−√5),=2√5−2√5+5,=5.故选择A.小提示:本题考查二次根式乘除加减混合运算,掌握二次根式混合运算法则是解题关键.10、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.填空题11、实数2﹣√3的倒数是_____.答案:2+√3分析:先根据倒数的定义写出2﹣√3的倒数,再分母有理化即可.解:2−√3的倒数是2−√3=√3(2−√3)(2+√3)=2+√34−3=2+√3,所以答案是:2+√3.小提示:本题考查实数的倒数,分母有理化.掌握利用平方差公式分母有理化的方法是解题关键.12、我们知道√5是一个无理数,设它的整数部分为a,小数部分为b,则(√5+a)·b的值是_________.答案:1分析:先根据2<√5<3,确定a=2,b=√5-2,代入所求代数式,运用平方差公式计算即可.∵2<√5<3,∴a=2,b=√5-2,∴(√5+a)·b=(√5+2)(√5-2)=5-4=1,所以答案是:1.小提示:本题考查了无理数的估算,无理数整数部分的表示法,平方差公式,正确进行无理数的估算,灵活运用平方差公式是解题的关键.13、若a>√2a+1,化简|a+√2|−√(a+√2+1)2=_____.答案:1分析:先根据a>√2a+1,判断出a<−1−√2,据此可得a+√2<−1,a+√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a>√2a+1,∴(1−√2)a>1,则a<1−√2,即a<−1−√2,∴a+√2<−1,a+√2+1<0,原式=−a−√2+a+√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.14、计算√(−2)2的结果是_________.答案:2分析:根据二次根式的性质进行化简即可.解:√(−2)2=2.所以答案是:2.小提示:此题主要考查了二次根式的化简,注意:√a2=|a|={a(a>0)0(a=0)−a(a<0).15、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.解答题16、计算:(1)√32−√18−√18;(2)(7+4√3)(7−4√3)−(√3−1)2.答案:(1)34√2 (2)√3−3分析:(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算.(1)原式=4√2−3√2−√24=3√24 (2)原式=49−48−(3−2√3+1)=2√3−3小提示:本题考察了二次根式的混合运算和乘法公式.先把二次根式化为最近二次根式,然后再合并同类项,平方差公式(a −b)(a +b)=a 2−b 2,完全平方公式(a ±b)2=a 2±2ab +b 2,正确化简二次根式和使用乘法公式是解题的关键.17、计算:(1)√100+√−273−2×√14(2)−√(−3)2+√6+|√6−3|答案:(1)6(2)0分析:(1)先计算算术平方根与立方根,再合并即可;(2)先求解算术平方根与绝对值,再合并即可.(1)解:√100+√−273−2×√14=10−3−2×12=10−3−1=6;(2)−√(−3)2+√6+|√6−3|=−3+√6+3−√6=0小提示:本题考查的是化简绝对值,算术平方根与立方根的含义,二次根式的加减运算,掌握以上运算是解本题的关键.18、在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.(1)√45,(2)√13,(3)√52,(4)√0.5,(5)√145.答案:(1)不是,3√5;(2)不是,√33;(3)是;(4)不是,√22;(5)不是,3√55. 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.(1)√45=3√5,含有开得尽方的因数,因此不是最简二次根式.(2)√13=√33,被开方数中含有分母,因此它不是最简二次根式; (3)√52,被开方数不含分母,被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)√0.5=√12=√22,在二次根式的被开方数中,含有小数,不是最简二次根式; (5)√145=√95=3√55,被开方数中含有分母,因此它不是最简二次根式. 小提示:本题考查最简二次根式的定义.解决此题的关键,是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.。

八年级下册数学第一章二次根式

八年级下册数学第一章二次根式

第一节:概述1.1 介绍数学第一章的主题 - 二次根式 1.2 定义二次根式第二节:二次根式的运算2.1 开方2.2 含有根号的算术式的加减乘除2.3 对一元二次方程进行求根第三节:二次根式的化简3.1 提取因数3.2 合并同类项3.3 求解含有二次根式的方程第四节:一元二次方程的复根4.1 i的引入4.2 复数解的运算第五节:二次根式在几何中的应用5.1 定理的引入5.2 二次根式的计算第六节:二次根式的实际应用6.1 实际问题6.2 解题方法6.3 实际应用案例第七节:总结7.1 本章知识点总结7.2 学习方法和技巧的总结第八节:拓展8.1 相关知识的拓展8.2 学科交叉知识的拓展第一节:概述1.1 介绍数学第一章的主题 - 二次根式数学是一门关于数量、结构、空间和变化等概念的研究。

而二次根式作为数学课程中的一个重要内容,是数学在现实生活中的一种具体应用。

八年级下册的数学教材中,第一章就是关于二次根式的学习。

在这一章节中,我们将会学习到如何对含有二次根式的算式进行运算、如何对二次根式进行化简、以及二次根式在几何和实际生活中的应用等知识。

1.2 定义二次根式在数学中,二次根式指的是形如a√b的数学表达式,其中a和b都是实数,b为大于等于0的数,且a不等于0。

其中√b表示对b开平方的结果。

2√3和-5√8都是二次根式。

在这一章节中,我们将深入学习二次根式的运算规则,化简方法以及实际应用,全面掌握二次根式的相关知识。

第二节:二次根式的运算2.1 开方在学习二次根式的运算过程中,我们首先需要了解开方的概念。

开方是指找出一个数的平方根。

对于一个非负数a,如果存在另一个非负数b,使得b的平方等于a,则称b为a的平方根,记作√a。

在实际应用中,开方是一种常见的运算方法,我们将学习如何对含有根号的算式进行加减乘除等运算。

2.2 含有根号的算术式的加减乘除含有根号的算术式在运算过程中与普通的算术式有些许不同。

人教版八年级数学下册二次根式的知识点汇总(超值哦)

人教版八年级数学下册二次根式的知识点汇总(超值哦)

二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式.例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、1x y+、x y+(x≥0,y•≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.知识点二:取值范围1、二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义.例2.当x是多少时,31x-在实数范围内有意义?例3.当x是多少时,23x++11x+在实数范围内有意义?知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0().注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

例4(1)已知y=2x-+2x-+5,求xy的值.(2)若1a++1b-=0,求a2004+b2004的值知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论.上面的公式也可以反过来应用:若,则,如:,.例1 计算1.(32)22.(35)23.(56)24.(72)2例2在实数范围内分解下列因式:(1)x2—3 (2)x4—4 (3) 2x2—3知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

数学八年级下册二次根式

数学八年级下册二次根式

数学八年级下册二次根式
一、二次根式的定义
二次根式是指形如√a(a≥0)的式子,其中a叫做二次根式的被开方数。

二、二次根式的性质
1. 偶次根式的被开方数可取一切正数,因此二次根式是双钩性质的体现。

2. 当二次根式中的被开方数小于0时无意义,说明开偶次方时,要求底数非负。

三、二次根式的运算
1. 乘法运算:二次根式相乘(除),把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行相加或相乘。

2. 加法运算:几个二次根式合并成一项时,需要把被开方数相同的二次根式进行合并。

四、二次根式的应用
1. 求实际问题的解:在解决实际问题时,需要把实际问题转化为数学问题,再利用二次根式进行求解。

2. 判断近似值是否合理:在进行近似计算时,需要利用二次根式对结果进行判断,看是否符合实际要求。

总之,二次根式是数学中的一个重要概念,它具有广泛的应用,需要我们熟练掌握其定义、性质和运算。

(完整)人教版八年级下册数学第16章《二次根式》讲义第1讲二次根式认识、性质

(完整)人教版八年级下册数学第16章《二次根式》讲义第1讲二次根式认识、性质

第1讲 二次根式认识、性质第一部分 知识梳理知识点一: 二次根式的概念形如()的式子叫做二次根式。

必须注意:因为负数没有平方根,所以是为二次根式的前提条件知识点二:二次根式()的非负性()表示a 的算术平方根, 即0()。

非负性:算术平方根,和绝对值、偶次方。

非负性质的解题应用: (1)、如若,则a=0,b=0; (2)、若,则a=0,b=0; (3)、若,则a=0,b=0。

知识点三:二次根式的性质第二部分 考点精讲精练考点1、二次根式概念 例1、下列各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________(填序号). 例2、下列各式哪些是二次根式?哪些不是?为什么?(121 (219-(321x +(439 (56a - (6221x x ---例3)))2302,12203,1,2xx y y x x x x y +=--++f p 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 例4、下列各式中,属于二次根式的有( )例5、若21x +的平方根是5±_____=.1、下列各式中,一定是二次根式的是( )A B C D2中是二次根式的个数有______个 3、下列各式一定是二次根式的是( )A B C D4、下列式子,哪些是二次根式, 1x、 x>0)1x y +、(x≥0,y ≥0) .51+x 、2+1x 、______个。

考点2、根式取值范围及应用例1有意义,则x 的取值范围是例2有意义的x 的取值范围例3、当_____x 时,式子4x -有意义. 例4、在下列各式中,m 的取值范围不是全体实数的是( ) A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、若y=5-x +x -5+2019,则x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,则x 、y 应满足的条件是( ) A .0≥x 且0≥y B .0>yxC .0≥x 且0>yD .0≥yx 62()x y =+,则x -y 的值为( )A .-1B .1C .2D .37、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。

(八年级数学教案)二次根式的知识点总结

(八年级数学教案)二次根式的知识点总结

二次根式的知识点总结八年级数学教案【知识回顾】1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a&gt;0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、(2009____(省、市、区、县))已知数a,b,若=b-a,则( )A. a&gt;bB. a&lt;bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a移到根号内,得( )A. ;B. - ;C. - ;D.。

最新部编人教版初中八年级下册数学知识点总结

最新部编人教版初中八年级下册数学知识点总结

八年级数学(下册)知识点总结第十六章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件: 大于或等于0。

3.二次根式的双重非负性:a :①0≥a ,②0≥a 附:具有非负性的式子:①0≥a ;②0≥a ;③02≥a4.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

5.同类二次根式:二次根式化成最简二次根式后,若被 相同,则这几个二次根式就是同类二次根式。

6.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 27.二次根式的运算:(1)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (2)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=(b ≥0,a>0). (3)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.a (a >0)a -(a <0)0 (a =0);【典型例题】1、概念与性质 例1下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315; (2)22)-(x例3、 在根式1) 222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例4、已知:的值。

求代数式22,211881-+-+++-+-=x yy x xy y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()ba b b a a b ++++,其中a=512,b=512.例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -4、比较数值(1)、根式变形法当0,0a b >>时,①如果a b >a b >a b <a b < 例1、比较35与53的大小。

八年级数学《二次根式》知识点归纳和题型归类

八年级数学《二次根式》知识点归纳和题型归类

二次根式知识点归纳和题型归类一、知识框图二.知识要点梳理知识点一、二次根式的主要性质:1.; 2.; 3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理; (3) 乘法公式的推广:(4)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.2.二次根式的加减运算 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. (3)二次根式运算结果应化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数. 4.简化二次根式的被开方数,主要有两个途径: ○1因式的内移:因式内移时,若,则将负号留在根号外.即:.○2因式外移时,若被开数中字母取值范围未指明时,则要进行讨论.即: 三.典型题训练一. 利用二次根式的双重非负性0≥a (a ≥0),1.下列各式中一定是二次根式的是( )。

A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。

(1) (2)121+-x (3)45++x x (4)(5)(6). (7)若1)1(-=-x x x x ,则x 的取值范围是(8)若1313++=++x x x x ,则x 的取值范围是 。

3.若13-m 有意义,则m 能取的最小整数值是 ; 是一个正整数,则正整数m 的最小值是________.1213-+-x x4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。

八年级数学下册第1章二次根式知识点总结范文(页)

八年级数学下册第1章二次根式知识点总结范文(页)

八年级数学下册第1章二次根式知识点总结范文(页)#飞驰教育个性化辅导讲义知识点一:二次根式的概念【知识要点】二次根式的定义:形如.的式子叫二次根式,其中&叫被开方数,只有当二是一个非负数时,才有意义.【例2】若式子有意义,则某的取值范围是J某3举一反三:1、使代数式:某—2某—〔有意义的某的取值范围是2、如果代数式Jm—有意义,那么,直角坐标系中点p(mn)的位置在(imnA、第一象限B、第二象限C第三象限D、第四象限【例3】若【例3】若y=.某5+5某+2022,则某+y=解题思路:式子、a(a>0)某50某5,y=2022,则某+y=20225某0’举一反三:1、若.举一反三:1、若.某11某2(某y),■则某-y的值为(3、当a取什么值时,代数式、、2a11取值最小,并求出这个最小值。

__11的值.已知a是亦整数部分,b是亦的小数部分,求a的值。

若<17的整数部分为某,小数部分为y,求某的值.b2y知识点二:二次根式的性质【知识要点】非负性:是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.(.a)2a(a0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a(a0)a(a0)注意a(a0)a(a0)注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.—2a(a0)—2a(a0)a的范围是非负(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)(a)2a的范围是非负数.(3)a2和(..a)2的运算结果都是非负的.【典型例题】【例4】若2c420,则a举一反三:已知直角三角形两边某、【例4】若2c420,则a举一反三:已知直角三角形两边某、y的长满足|+..-./y25y6=°,则第三边长为.2、若ab1与.a2b4互为相反数,则2005b如一:.—疏-(公式c.a)2a(a0)的运用)[例5】化简:\a1(—)2的结果为(A4—2aB、0C、2a—4D、4举一反三:3举一反三:3已知直角三角形的两直角边分别为、、2和5,则斜边长为a(a0)的应用)a(a0)[例6】已知某2,则化简.'某[例6】已知某2,则化简.'某24某4的结果是举一反三:2、化简■.4某24某12某32得((A)2(B)4某4(C)—2(D)4某43、已知a0,化简求值:卜4(a—Ha举一反三:实数a在数轴上的位置如图所示:化简:举一反三:实数a在数轴上的位置如图所示:化简:【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简IA2bB.2bC2aD.2a【例8】化简某28某16的结果是2某-5,则【例8】化简(A)某为任意实数(B)1<某<4(C)某>1(D)某<1举一反三:若代数式(2a)2.(a4)2的值是常数2,则a的取值范围是(d.a2或a4a.a>4b.a<2d.a2或a4或a=1D.a<1【例9】如果aa22a11,那么a或a=1D.a<11、如果a..孑~6a~93成立,那么实数a的取值范围是()A.a0B.a3;C.a3;D.a32、若(某3)2某30,则某的取值范围是()(A)某3(B)某3(C)某3(D)某3【例10】化简二次根式aa22的结果是3a2(B).a2(O2(D)a21、把根号外的因式移到根号内:当b>0时,bi{=某知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

八年级数学二次根式知识点

八年级数学二次根式知识点

八年级数学二次根式知识点嘿,亲爱的小伙伴们!咱们今天来好好唠唠八年级数学里的二次根式这个有趣的家伙。

说起二次根式,你就把它想象成一个有点小脾气的精灵。

它藏在数学的大森林里,时不时蹦出来考考咱们的智慧。

先瞧瞧二次根式的定义,这就像是精灵的身份证明。

形如√a(a≥0)的式子,那就是二次根式啦!这就好像是说,只有心情好(a 大于等于0)的精灵才能出来玩耍。

要是 a 是负数,那可就闹笑话啦,精灵都生气得躲起来啦!再说说二次根式的性质,这可是精灵的特殊本领哟!比如说,(√a)² = a(a≥0),这就好像是精灵给自己施了个魔法,摇身一变就变成了原本的样子。

还有√a² = |a|,这就像是精灵会根据不同的情况给自己穿上不同的外衣,一会儿是正数的样子,一会儿又是 0 的模样。

还有二次根式的运算,这简直就是精灵们的魔法大战!乘法运算就像是精灵们手拉手一起发力,√a×√b = √ab(a≥0,b≥0)。

除法运算呢,就像是精灵们在比赛谁更厉害,√a÷√b = √(a÷b)(a≥0,b>0)。

化简二次根式,这可是让精灵变得更漂亮的魔法!把根式里能开出来的都开出来,就像给精灵好好打扮一番,让它变得整洁又漂亮。

怎么样,是不是觉得二次根式也没那么可怕啦?其实啊,只要咱们用心去了解它,和它交朋友,它就能乖乖地为咱们服务,帮咱们在数学的世界里闯荡。

可别小看了这小小的二次根式,它在解决很多数学问题的时候可都是大功臣呢!比如在求解方程、几何图形的计算中,它都能发挥大作用。

所以呀,小伙伴们,别害怕和二次根式打交道,多练练,多琢磨琢磨,相信你一定能和它成为好伙伴,在数学的奇妙世界里畅游无阻!这二次根式的知识点,你掌握住了吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方等于 它本身。
a2=|a|= 一个数的 a(a≥0) 平方的算

术平方根
a2=|a|= 等于这个
-
数的绝对
a(a<0) 值。
应用与拓展
(1) 二次根式的非负性 ( a≥0,a≥0)应用较多,如:
a + 1+ b - 3=0,则 a+1=0,b-3=0,即 a= -1,b=3; 又如 x - a+ a - x,则 x 的取
3 = =3
据 a 的符号去掉绝
对值号。
练习:计算(1)( )2
(2) (4 3)2
(3) Error!
(4)-
(6) x2 - 2x + 1+ x2 - 6x + 9(1≤x≤3)
★( a)2(a≥0)与 a2的区别与联系:
( a)2
a2
2
表示的意义不 表示非负数 a 的算术平方根的
表示 a2 的算术平方根
是( ) 题型四:利用 a2=|a|并结合数轴化简求值
已知实数 a,b 在数轴上的位置如图所示。
试化简: a2+ b2+ (a - b)2+ (b - 1)2- (a - 1)2 题型五: a2=|a|与三角形三边关系的综合应用 在△ABC 中,a,b,c 是三角形的三边长,化简 (a - b + c)2-2|c-a-b|
2
数为 2,即“ ”,我们一般省略根指数 2,写作“
”。如2 5可以写作 5。
(2) 二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a表示非负数 a 的算术平方根,因此 a≥0, a≥0。其中 a≥0 是 a有意义 的前提条件。
(4)在具体问题中,如果已知二次根式 a,就意味着给出了 a≥0 这一隐含条件。
1
二、当 x 取什么实数时,下列各式有意义?
(1) 2 - 5x;
(2) 4x2 + 4x + 1
二、二次根式的性质:
二次根式的性 质
a(a≥0)的 性质
符号语言 a≥0
(a≥0)
文字语言
一个非负 数的算术 平方根是 非负数。
( a) 2(a≥0)的性 质
a2的性质
( a)2 = 一个非负
a(a≥0) 数的算术 平方根的
三、代数式 用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连
s 接起来的式子叫代数式。例:3,x,x+y, 3x(x≥0),-ab,t(t≠0,x3 都是代数式 注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=
等)
(1( 将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和
典型例题剖析 题型一:二次根式有意义的条件 当 x 取何值时,下列各式在实数范围内有意义?
(1) x + 5- 3 - 2x; (2) ; 题型二:利用二次根式的非负性化简求值
(3) x - 3+ 3 + x
已知 a2+
b - 2=4a-4,求 ab的值。
题型三:二次根式非负性的简单应用 已知实数 x,y 满足|x-4|+ y - 8=0,则以 x,y 的值为两边长的等腰三角形的周长

平方
取值范围不同 读法不同
a≥0
a 为任意实数
读作“根号 a 的平方”或“a 读作“根号 a2”或“a 的平方

的算术平方根的平方”
的算术平方根”
被开方数不同
被开方数是 a
被开方数是 a2

运算顺序不同
先开放后平方
先平方后开方
运算结果,运 算依据不同 作用不同
联系
( a)2 =a,依据平方与开平 依据算术平方根的定义得到
二次根式 1、 算术平方根的定义:一般地,如果一个正数 x 的平方等于 a,那么这个正数 x 叫做
a 的算术平方根。
2、 解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2 得 x<-2。不等式组的解集是两个不等式解集
{ 的公共部分。如
X≥-2 X<5
的解集为-2≤x<5。
3、 分式有意义的条ຫໍສະໝຸດ :分母≠04、 绝对值:|a|=a (a≥0);|a|= - a (a<0)
一、 二次根式的概念 一般地,我们把形如 a(a≥0)的式子叫做二次根式,“ ★ 正确理解二次根式的概念,要把握以下五点:
”称为二次根号。
(1)二次根式的概念是从形式上界定的,必须含有二次根号“ ”,“ ”的根指
a≥0,则 a=( a)2 如:2=( 2)
1 2,2=( )2
(1)正用公式:
Error!=|3-π|=3-π
(2)逆用公式:
注意 a(a≥0)的最
小值为 0。
逆用公式可以在实数 范围内分解因式,如 a2-5=a2-( 5)2 =(a+ 5)(a- 5)
化简形如 a2的式 子时,先转化为 |a|形式,再根
不等式都是关系式。如 2x+3>3x-5 是关系式。
x-2 练习:下列式子:①0;②π2③2+x=4;④ 3 >1;⑤2a+3b;⑥ 2 - x(x≤2),
其中是代数式的有(

列代数式的常用方法:
3
(1) 直接法:根据问题的语言叙述直接写出代数式。 (2) 公式法:根据公式列出代数式。 (3) 探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来。 练习:列代数式 (1) 把 a 本书平均分给若干名学生,若每人分 5 本,还余 3 本,则学生人数为( ) (2) 若圆 A 的半径 r 是圆 B 的半径的 5 倍,则这两个圆的周长之和为( )
方互为逆运算得到
( a)2 = a(a≥0),正向运用 可化简二次根式,逆向运用可以将 任意一个非负数写成一个数的平方 的形式
a2=|a|,正向运用可以将根号 内的非负因式取算术平方根移到根 号外,逆用运用可以将根号外的非 负因式平方后移到根号内
①含有两种相同的运算,都要进行平方与开方
②结果都是非负数;③a≥0 时,( a)2= a2
(5)形如 b a(a≥0)的式子也是二次根式,b 与 a是相乘的关系。要注意当 b 是分
8
2
数时不能写成带分数,例如3 2可写成 ,但不能写成 2 3 2。
练习:一、判断下列各式,哪些是二次根式?(1) 6; (2) - 18; (3) x2 + 1;
1 (4)3 - 8; (5) x2 + 2x + 1; (6)3 |x|; (7) 1 + 2x(x<- 2)
值范围是 x-a≥0,a-x≥0,解得
x=a。
(2) 具有非负性的性质: ①a2≥0;②|a|≥0;③ a≥0
(a≥0)。 (3)若 a2+|b|+ c=0,则
a=0,b=0,c=0,即若几个非负数
的和等于 0,则这几个非负数分别
等于 0。
正用公式:( 5)2
=5;(
m2 + 1)2=m2+1;逆用公式:若
相关文档
最新文档