广东省惠州市博罗县杨侨中学2020-2021学年八年级下学期期中数学试题

合集下载

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。

2020-2021学年度第二学期期中质量检测八年级数学试题及答案

2020-2021学年度第二学期期中质量检测八年级数学试题及答案

2020-2021学年度第⼆学期期中质量检测⼋年级数学试题及答案2020-2021学年度第⼆学期期中质量检测⼋年级数学试题满分:120分,考试时间:100分⼀、选择题(本⼤题共有8⼩题,每⼩题3分,共24分在每⼩题所给的四个选项中,只有⼀项是符合题⽬要求的,请将正确选项的字母代号填涂在答题卡相应位置上.) 1.下列图形中,既是轴对称图形,⼜是中⼼对称图形的有(▲)A .1个B .2个C .3个D .4个 2..菱形不具有的性质是(▲)A.对⾓线互相平分B.对⾓线相等C.对⾓线互相垂直D.每⼀条对⾓线平分⼀组内⾓3.下列各式:()22214151 ,, ,, 232x x y a x x b y π-+--,4x-y 其中分式共有(▲)A .2个B .3个C .4个D .5个4.⼀个不透明的布袋中装有5个⽩球和3个红球,它们除了颜⾊不同外,其余均相同.从中随机摸出⼀个球,摸到红球的概率是(▲)A .13 B .15 C .38 D .585.关于反⽐例函数xy 1=的图像,下列说法不正确的是(▲)A .图像在第⼀、三象限B .图像经过点(1,1)C .当0D .当1>x 时,10<6.如图,菱形纸⽚ABCD 中,∠A=60°,折叠菱形纸⽚ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的⼤⼩为( ▲ )A .78°B .75°C .60°D .45°学校_______班级_______考试学_______姓名_________………………………………密……………………………………封………………………………………线…………………………………………7.设有反⽐例函数=y -x2,),(11y x 、),(22y x 、()33,y x 为其图像上的三个点,210x x <<<3x ,则下列各式正确的是(▲)A .321y y y <<B .132y y y <<C .123y y y <<D .231y y y << 8.如图,在Rt △ABC 中,∠C=90°,AC=BC =6cm ,点P 从点B 出发,沿BA ⽅向以每秒 2 cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB ⽅向以每秒2cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间t 秒,若四边形QPBP ′为菱形,则t 的值是(▲)A .1.5B . 2C .2 2D .3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.当分式6562---x x x 的值为0时,x 的值为▲ .10.下列命题:①⼀组对边平⾏,另⼀组对边相等的四边形是平⾏四边形;②对⾓线互相平分的四边形是平⾏四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平⾏四边形;④⼀组对边相等,⼀组对⾓相等的四边形是平⾏四边形.其中正确的命题是▲.(将命题的序号填上即可).11.已知反⽐例函数25ky -=(k-1)x ,那么k 的值是▲ .12. 已知y 与x ?3成反⽐例,当x=4时,y=?1;那么y 与x 的函数关系可以表⽰为y= ▲__.13.从形状、⼤⼩相同的9张数字卡⽚(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是:①偶数;②⼩于6的数;③不⼩于9的数,这些事件按发⽣的可能性从⼤到⼩排列是▲(填序号)14.⽤反证法证明“等腰三⾓形的底⾓是锐⾓”时,⾸先应假设▲. 15.下列4个分式:①332++a a ;②22y x y x --;③n m m 22;④1m 2+,中最简分式有▲个.16. 若关于x 的⽅程221--=-x mx x ⽆解,则m 的值是___▲_____. 17.如图,在平⾯直⾓坐标系中,直线y =﹣kx +m 与双曲线y =(x >0)交于A 、B 两点,点A 的横坐标为1,点B 的横坐标为4,则不等式﹣kx +m >的解集为 _▲_ .18.如图,在△ABC 中,AB=3cm ,AC=4cm ,BC=5cm,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂⾜分别是D 、E.线段DE 的最⼩值是 _▲_ cm.三、解答题(本⼤题共9⼩题,共66分.请在答题卡指定区域内作答,解答时应写出⽂字说明,推理过程或演算步骤)19. (本题满分6分)计算(1)22x x y x y-++ (2)22214()244x x x x x x x x +---÷--+ 20.(本题满分6分)解⽅程:(1)21122x x x =--- (2) 3911332-=-+x x x 21.(本题满分6分))先化简:)112(1222xx x x x x --÷+-+,再从﹣2<x <3的范围内选取⼀个你喜欢的x 值代⼊求值.22. (本题满分8分已知21y y y +=,y1与x 成正⽐例,2y 与2x 成反⽐.当x =1时,y =﹣12;当x =4时,y =7.(1)求y 与x 的函数关系式和x 的取值范围;(2)当x =41时,求y 的值. 23.(本题满分8分)△ABC 在平⾯直⾓坐标系xOy 中的位置如图所⽰.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平⾯直⾓坐标系中直线AB 上的⼀个动点,点N 是x 轴上的⼀个动点,且以O 、A 2、M 、N 为顶点的四边形是平⾏四边形,请直接写出点N 的坐标.24.(本题满分8分)准备⼀张矩形纸⽚,按如图操作:将△ABE 沿BE 翻折,使点A 落在对⾓线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对⾓线BD 上的N 点.(1)求证:四边形BFDE 是平⾏四边形;(2)若四边形BFDE 是菱形,BE =2,求菱形BFDE 的⾯积.25.(本题满分8分)某⼀⼯程,在⼯程招标时,接到甲,⼄两个⼯程队的投标书.施⼯⼀天,需付甲⼯程队⼯程款1.2万元,⼄⼯程队⼯程款0.5万元.⼯程领导⼩组根据甲,⼄两队的投标书测算,有如下⽅案:①甲队单独完成这项⼯程刚好如期完成;②⼄队单独完成这项⼯程要⽐规定⽇期多⽤6天;③若甲,⼄两队合做3天,余下的⼯程由⼄队单独做也正好如期完成.试问:规定⽇期是多少天?在不耽误⼯期的前提下,你觉得哪⼀种施⼯⽅案最节省⼯程款?请说明理由.26.(本题满分12分)如图,在平⾯直⾓坐标系中,A 点的坐标为(a ,6),AB ⊥x 轴于点B ,AB 3OB 4,反⽐例函数y=kx 的图象的⼀⽀分别交AO 、AB 于点C 、D .延长AO 交反⽐例函数的图象的另⼀⽀于点E .已知点D 的纵坐标为32.(1)求反⽐例函数的解析式及点E 的坐标; (2)连接BC ,求S △CEB .(3)若在x 轴上的有两点M (m,0)N(-m,0).①以E 、M 、C 、N 为顶点的四边形能否为矩形?如果能求出m 的值,如果不能说明理由。

2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下学期期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .4.如图,点E ,F ,G ,Q ,H 在一条直线上,且EF =GH ,我们知道按如图所作的直线l 为线段FG 的垂直平分线.下列说法正确的是( )A .l 是线段EH 的垂直平分线B .l 是线段EQ 的垂直平分线C .l 是线段FH 的垂直平分线D .EH 是l 的垂直平分线5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 36.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<210.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.12.已知a+b+c=0,a>b>c,则ca的取值范围是.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有个.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax2﹣2ax+a;(2)解不等式组:{x+3≤2(x+2)x3+1>3x−14,并写出所有非负整数解.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标.(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标.18.(9分)如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB、AC于点E、点D,∠A=36°.求证:AD=BC.19.(9分)(1)已知3m=6,9n=2,求32m﹣2n+1的值;(2)已知a+b=6,ab=8,求a2+b2与(a﹣b)2的值.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.21.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型乙型价格(万元/套)m n生产量(台/日)120100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m,n的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.22.(9分)如图,△ABC中,AB=30cm,AC=20cm,以BC为边作等边△BCD,连接AD,求AD的最大值,最小值分别是多少?2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.若m >n ,则下列不等式正确的是( ) A .m ﹣4<n ﹣4B .m 4>n4C .4m <4nD .﹣2m >﹣2n【解答】解:∵m >n ,∴m ﹣4>n ﹣4;14m >14n ;4m >4n ,﹣2m <﹣2n .故选:B .2.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A .∠B =∠CB .AD ⊥BCC .AD 平分∠BACD .AB =2BD【解答】解:∵△ABC 中,AB =AC ,D 是BC 中点 ∴∠B =∠C ,(故A 正确) AD ⊥BC ,(故B 正确) ∠BAD =∠CAD (故C 正确) 无法得到AB =2BD ,(故D 不正确). 故选:D .3.不等式组{2x −4≤0x +2>0的解集在数轴上用阴影表示正确的是( )A .B .C .D .【解答】解:{2x −4≤0①x +2>0②,由①得x ≤2,由②得x >﹣2, 故此不等式组的解集为:故选:C .4.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l 为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线【解答】解:如图:A.∵直线l为线段FG的垂直平分线,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=OG+GH,即EO=OH,∴l为线段EH的垂直平分线,故此选项正确;B.∵EO≠OQ,∴l不是线段EQ的垂直平分线,故此选项错误;C.∵FO≠OH,∴l不是线段FH的垂直平分线,故此选项错误;D .∵l 为直线,EH 不能平分直线l , ∴EH 不是l 的垂直平分线,故此选项错误; 故选:A .5.已知a <b ,则下列不等式不成立的是( ) A .a ﹣1<b ﹣1B .a2<b2C .a ﹣b <0D .1−a 3<1−b 3【解答】解:∵a <b ,∴a ﹣1<b ﹣1,12a <12b ,a ﹣b <0,1−a 3>1−b 3.故选:D .6.如图,将三角形ABE 向右平移1cm 得到三角形DCF ,如果三角形ABE 的周长是10cm ,那么四边形ABFD 的周长是( )A .12cmB .16cmC .18cmD .20cm【解答】解:∵△ABE 的周长=AB +BE +AE =10(cm ),由平移的性质可知,BC =AD =EF =1(cm ),AE =DF ,∴四边形ABFD 的周长=AB +BE +EF +DF +AD =10+1+1=12(cm ). 故选:A .7.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是∠BOA 的角平分线.”他这样做的依据是( )A .角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确【解答】解:(1)如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选:A.8.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)【解答】解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.9.已知一次函数y=ax+b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为()A.x>﹣2B.x<﹣2C.x>2D.x<2【解答】解:∵一次函数y=ax+b的图象经过一、二、三象限,则函数y随x的增大而增大,∴a>0.把点(﹣2,0),代入即可得到:﹣2a+b=0.即2a﹣b=0.不等式ax>b的解集就是求函数y=ax﹣b>0,故当x>2时,不等式ax>b成立.则不等式ax>b的解集为x>2.故选:C.10.如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD 上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为()A.14B.13C.12D.10【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故选:D.二.填空题(共5小题,满分15分,每小题3分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.12.已知a+b+c=0,a>b>c,则ca 的取值范围是﹣2<ca<−12.【解答】解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得ca>−2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得ca <−12,∴﹣2<ca<−12.故答案为:﹣2<ca<−12.13.若关于x的不等式组{2x−k>0x−2≤0有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.【解答】解:解不等式2x﹣k>0得x>k 2,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤k2<−2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.14.如图,是由边长为1个单位长度的小正方形的网格,在格点中找一点C,使△ABC是等腰三角形,这样的点C有6个.【解答】解:AB=√5,以B为顶点,BC=BA,这样的C点有4个;以A为顶点,AC=AB,这样的C点有2个;以C为顶点,CA=CB,这样的点不存在,但与前面的重合;所以使△ABC的等腰三角形,这样的格点C的个数有6个.故答案为6.15.如图所示,在平面直角坐标系中,A(4,0),B(0,2),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是y=2x﹣8.【解答】解:∵A(4,0),B(0,2),∴OA=4,OB=2,过点C作CD⊥x轴于点D,∵∠ABO +∠BAO =∠BAO +∠CAD ,∴∠ABO =∠CAD ,在△ACD 和△BAO 中{∠ABO =∠CAD ∠AOB =∠CDA AB =AC,∴△ACD ≌△BAO (AAS )∴AD =OB =2,CD =OA =4,∴C (6,4)设直线AC 的解析式为y =kx +b ,将点A ,点C 坐标代入得{4k +b =06k +b =4, ∴{k =2b =−8, ∴直线AC 的解析式为y =2x ﹣8.故答案为:y =2x ﹣8.三.解答题(共7小题,满分63分,每小题9分)16.(9分)(1)分解因式:ax 2﹣2ax +a ;(2)解不等式组:{x +3≤2(x +2)x 3+1>3x−14,并写出所有非负整数解. 【解答】解:(1)ax 2﹣2ax +a =a (x 2﹣2x +1)=a (x ﹣1)2;(2){x +3≤2(x +2)①x 3+1>3x−14②, 解不等式①得,x ≥﹣1,解不等式②得,x <3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x <3:∴非负整数解有:0,1,2.17.(9分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,1),B(﹣1,3),C(﹣1,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为(﹣4,﹣5),画出△A2B2C2;(2)若△A1B1C1绕某一点旋转可以得到△A2B2C2,直接写出旋转中心坐标(﹣1,﹣2).(3)在x轴上有一点P使得P A+PB的值最小,直接写出点P的坐标(−134,0).【解答】解:(1)如图所示,△A1B1C1,△A2B2C2即为所求.(2)如图所示,点Q即为所求,其坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2);(3)如图所示,点P即为所求,设直线A′B的解析式为y=kx+b,将点A′(﹣4,﹣1),B(﹣1,3)代入,得:{−4k +b =−1−k +b =3, 解得:{k =43b =133, ∴直线A ′B 的解析式为y =43x +133, 当y =0时,43x +133=0, 解得x =−134,∴点P 的坐标为(−134,0). 故答案为:(−134,0). 18.(9分)如图,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∠A =36°.求证:AD =BC .【解答】证明:∵AB 的垂直平分线分别交AB 、AC 于点E 、点D ,∴DB =DA ,∴△ABD 是等腰三角形;∵∠A =36°,∴∠ABD =∠A =36°,∠ABC =∠C =(180°﹣36°)÷2=72°,∴∠BDC =∠A +∠ABD =72°,∴∠C =∠BDC ,∴BD =BC ,∴AD =BC .19.(9分)(1)已知3m =6,9n =2,求32m ﹣2n +1的值;(2)已知a +b =6,ab =8,求a 2+b 2与(a ﹣b )2的值.【解答】解:(1)∵3m =6,9n =2,∴32m﹣2n+1=(3m)2÷9n×3=36÷2×3=54;(2)将a+b=6平方得:(a+b)2=a2+b2+2ab=36,把ab=8代入得:a2+b2+16=36,即a2+b2=20;∴(a﹣b)2=a2+b2﹣2ab=20﹣16=4.20.(9分)如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.(1)求∠EDA的度数;(2)若AB=10,AC=8,DE=20√39,求S△ABC.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=60°∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=30°∵DE⊥AB,∴∠DEA=90°∴∠EDA=90°﹣∠BAD=60°(2)过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=20√3 9,又AB=10,AC=8,∴S△ABC=12×10×20√39+12×8×20√39=20√321.(9分)随着夏季的来临,某公司决定购买10套设备生产电风扇,现有甲、乙两种型号的设备,其中每套的价格、日生产量如表:甲型 乙型 价格(万元/套)m n 生产量(台/日) 120 100经调查:购买两套甲型设备比购买一套乙型设备多6万元,购买一套甲型设备和购买三套乙型设备共需10万元.(1)求m ,n 的值;(2)经预算,该公司购买生产设备的资金不超过26万元,且每日的生产量不低于1020台,为了节约资金,请你为公司设计一种最省钱的购买方案.【解答】解:(1)根据题意知{m −n =6m +3n =10, 解得:{m =7n =1; (2)设购买甲型设备x 台、乙型设备(10﹣x )台,根据题意,得:{7x +10−x ≤26120x +100(10−x)≥1020, 解得:1≤x ≤83,∵x 为整数,∴x =1或x =2,即有两种购买方案:方案一:购买1台甲型设备、9台乙型设备,购买总费用为1×7+9×1=16万元; 方案二:购买2台甲型设备、8台乙型设备,购买总费用为2×7+8×1=22万元; 所以购买1台甲型设备、9台乙型设备最省钱.22.(9分)如图,△ABC 中,AB =30cm ,AC =20cm ,以BC 为边作等边△BCD ,连接AD ,求AD 的最大值,最小值分别是多少?【解答】解:∵△BCD为等边三角形,∴DC=DB,∠BDC=60°,把△DAC绕点D逆时针旋转60°得到△DEB,如图,连接AE,∴DA=DE,∠ADE=60°,BE=AC=20,∴△DAE为等边三角形,∴AD=AE,∵AB+BE≥AE或AB﹣BE≤AE(当且仅当A、B、E共线时取等号),∴AE的最大值为30+20=50,AE的最小值为30﹣20=10.。

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。

2020-2021学年八年级下期中考试数学试题及答案解析

2020-2021学年八年级下期中考试数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分) 1.下列调查适合采用全面调查(普查)方式的是( ) A .翠湖的水质情况B .某品牌节能灯的使用寿命C .乘坐动车时对乘客的安检D .端午节期间市场上粽子质量情况【解答】解:A 、调查翠湖的水质情况适合抽样调查; B 、调查某品牌节能灯的使用寿命适合抽样调查; C 、乘坐动车时对乘客的安检必须全面调查;D 、调查端午节期间市场上粽子质量情况适合抽样调查; 故选:C .2.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上【解答】解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意; B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意; C 、三角形的内角和是180°,是必然事件,故本选项符合题意; D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选:C . 3.分式2−x x−3有意义的x 的取值范围为( )A .x ≠2B .x ≠3C .x =2D .x =3【解答】解:由题意得:x ﹣3≠0, 解得:x ≠3, 故选:B .4.下列各式中,正确的是( )A .ab=a 2b 2B .2(x−1)1−x 2=−21+xC .ab+1a=b +1D .a 2+b 2a+b=a +b【解答】解:ab 与a 2b 在a =0或a =b 时才成立,故选项A 不正确;2(x−1)1−x =2(x−1)(1+x)(1−x)=−21+x,故选项B 正确;ab+1a =b +1a,故选项C 不正确; a 2+b 2a+b不能化简,故选项D 不正确;故选:B .5.下列图标中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、不属于中心对称图形; B 、属于中心对称图形; C 、不属于中心对称图形; D 、不属于中心对称图形; 故选:B .6.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲,乙两人合作完成需要( )小时 A .1a+1bB .1abC .1a+bD .aba+b【解答】解:甲和乙的工作效率分别是1a,1b,合作的工作效率是1a+1b,所以合作完成需要的时间是11a +1b=1b+a ab=ab a+b.故选:D .7.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A.AO=BO B.AC=AD C.AB=BC D.OD=AC【解答】解:A、AO=BO,对角线相等的平行四边形是矩形,不一定是菱形,命题错误;B、AC=AD,不能判断▱ABCD是菱形,错误;C、根据菱形的定义可得,当AB=BC时▱ABCD是菱形,正确;D、OD=AC,不能判断▱ABCD是菱形,错误;故选:C.8.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=√2DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为()A.①②④B.①②C.①④D.①②③④【解答】解:∵PE⊥BC于点E,PF⊥CD于点F,CD⊥BC,∴PF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,在Rt△DPF中,DP2=DF2+PF2=DF2+DF2=2DF2,∴PD=√2DF.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,∴当∠P AD=45°或67.5°或90°时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,∵正方形为轴对称图形,∴AP=PC,∴AP=EF,故④正确;故选:A.二.填空题(共10小题,满分30分,每小题3分)9.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是9.【解答】解:∵一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,∴第三组频数是:40﹣10﹣8﹣7﹣6=9.故答案为:9.10.为了了解某市2019年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有①③④(填序号).【解答】解:①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置4位.【解答】解:因为取一位数时一次就拨对密码的概率为110;取两位数时一次就拨对密码的概率为1100;取三位数时一次就拨对密码的概率为11000;取四位数时一次就拨对密码的概率为110000.故一次就拨对的概率小于12019,密码的位数至少需要4位.故答案为:4.12.下列说法中:①在367人中至少有两个人的生日相同;②一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性;以上说法中正确的有①、③(填序号).【解答】解:①在367人中至少有两个人的生日相同,正确;②一次摸奖活动的中奖率是1%,那么摸100次不一定会中一次奖,错误;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件,正确;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性小于于摸到白球的可能性,错误;故答案为:①、③.13.计算2m−2+m2−m的结果是﹣1.【解答】解:原式=2m−2−mm−2=2−mm−2=−(m−2)m−2=﹣1,故答案为:﹣1.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672√2.【解答】解:由题意可得:AP1=√2,AP2=1+√2,AP3=2+√2;AP4=2+2√2;AP5=3+2√2;AP6=4+2√2;AP7=4+3√2;AP8=5+3√2;AP9=6+3√2;∵2013=3×671,∴AP2013=(2013﹣671)+671√2=1342+671√2,∴AP2014=1342+671√2+√2=1342+672√2.故答案为:1342+672√2.15.菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为√29或√13.【解答】解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=12AC=2,BO=12BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交F A的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF=√BG2+FG2=√22+52=√29;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF=√BG2+FG2=√22+32=√13,综上所述,BF长为√29或√13.故答案为:√29或√13.16.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是10√33.【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=BM BA′=12,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA′=60°,∴∠ABE=∠EBA′=30°,∴BE =AB cos30°=532=10√33.故答案为:10√33.17.若关于x 的分式方程6x−1=x+3x(x−1)−kx无解,则k 的值为 ﹣3或﹣5 .【解答】解:方程两边同时乘以x (x ﹣1),得 6x =x +3﹣k (x ﹣1), ∴(5+k )x =3+k , ∵方程无解, ∴k =﹣5,∵x =0和x =1是方程的增根, ∴3+k =0, ∴k =﹣3,故答案为﹣3或﹣5.18.如图,F 是矩形ABCD 内一点,AF =BF .连结DF 并延长交BC 于点G ,且点C 与AB 的中点E 恰好关于直线DG 对称.若AD =9,则AB 的长为 6√3 .【解答】解:连接EF 、EG 、EC ,如图所示: ∵四边形ABCD 是矩形,∴BC =AD =9,AD ∥BC ,∠BAD =∠ABC =90°, ∴AB ⊥AD ,∵AF =BF ,点E 是AB 的中点, ∴EF ⊥AB , ∴EF ∥AD ∥BC ,∴EF 是梯形ABGD 的中位线,∠EFG =∠CGF , ∴EF =12(AD +BG ),设BG =x ,则CG =9﹣x ,EF =12(9+x ), ∵点C 与AB 的中点E 关于直线DG 对称, ∴EG =CG ,∠CGF =∠EGF , ∴∠EFG =∠EGF , ∴EG =EF , ∴EF =CG , ∴12(9+x )=9﹣x ,解得:x =3,∴BG =3,EG =CG =6,∴BE =√EG 2−BG 2=√62−32=3√3, ∴AB =2BE =6√3; 故答案为:6√3.三.解答题(共10小题,满分96分)19.(8分)先化简,再求值:(2x 2x+1−14x 2+2x )÷(1−4x 2+14x),其中x =3.【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)=−22x−1, 当x =3时,原式=−25. 20.(8分)解方程:x x−3+6x+3=1【解答】解:方程两边乘 (x ﹣3)(x +3), 得 x (x +3)+6 (x ﹣3)=x 2﹣9, 解得:x =1,检验:当 x =1 时,(x ﹣3)(x +3)≠0, 所以,原分式方程的解为x =1.21.(8分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A 、B 、C 、D 、E 、F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【解答】解:(1)由题意可得, 小球停在黑色小正方形的概率是39=13,即小球停在黑色小正方形的概率是13;(2)中心对称的情况是:(BE )、(CD )、(AF ),(EB ),(DC ),(F A ), 则新图案是中心对称图形的概率是:65×6=15,即新图案是中心对称图形的概率是15.22.(8分)为了了解同学们寒假期间每天健身的时间t (分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C 组所在扇形的圆心角为108°.组别 频数统计A (t <20) 8B (20<40)12C(40t<60)aD(60≤t<80)15E(80)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有60人,a=18,b=7,m=25;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数.【解答】解:(1)12÷20%=60(人),15÷60=25%,因此m=25,∵C组所在扇形的圆心角为108°,∴C组的人数a=60×108360=18(人),b=60﹣15﹣18﹣12﹣8=7(人),故答案为:60,18,7,25;(2)扇形统计图中扇形E的圆心角度数为360°×760=42°,答:扇形统计图中扇形E的圆心角度数为42°;(3)每天健身时间不少于1 小时的人数是1200×15+760=440(人),答:该校1200名学生中每天健身时间不少于1小时的大约有440人.23.(10分)如图,已知点A(2,4)、B(1,1)、C(3,2).(1)将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣2,3);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(﹣2,﹣4);(3)在平面直角坐标系内找点D,使得A、B、C、D为顶点的四边形为平行四边形,则点D的坐标为(4,5)或(0,3)或(2,﹣1).【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标为(﹣2,3).故答案为(﹣2,3).(2)△A2B2C2即为所求,点A2的坐标为(﹣2,﹣4)故答案为(﹣2,﹣4).(3)如图,满足条件的点D的坐标为(4,5)或(0,3)或(2,﹣1).故答案为(4,5)或(0,3)或(2,﹣1).24.(10分)如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG 于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√10,求EF的长度;(2)求证:AB−√2BE=CF.【解答】解:(1)∵CG⊥AB,BG=1,BC=√10,∴CG=√BC2−BG2=√(√10)2−12=3.∵∠ABF=45°,∴△BGE是等腰直角三角形,∴EG=BG=1,∴EC=CG﹣EG=3﹣1=2,∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,∴△ECF是等腰直角三角形,∴EF=√EC2+CF2=√22+22=2√2;(2)证明:过E作EH⊥BE交AB于H,∵∠ABF=45°,∠BEH=90°,∴△BEH是等腰直角三角形,∴BH=√BE2+EH2=√2BE,BE=HE,∴∠BHE=45°,∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,由(1)知,△BGE和△ECF都是等腰直角三角形,∴∠BEG=45°,CE=CF,∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,∴∠AHE=∠CEB,∵AE⊥AD,∴∠DAE=90°,∴∠BAD=∠DAE+∠EAB=90°+∠EAB,由(1)知,∠FCE=90°,∴∠BCD =∠FCE +∠BCG =90°+∠BCG ,∵在平行四边形ABCD 中,∠BAD =∠BCD ,∴90°+∠EAB =90°+∠BCG ,∴∠EAB =∠BCG ,即∠EAH =∠BCE ,在△△EAH 和△BCE 中,{∠EAH =∠BCE ∠EHA =∠BEC EH =BE∴△EAH ≌△BCE (AAS ),∴AH =CE =CF ,∴AB −√2BE =AB ﹣BH =AH =CF ,即AB −√2BE =CF .25.(10分)受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.26.(10分)如图,矩形ABCD ,延长CD 至点E ,使DE =CD ,连接AC ,AE ,过点C 作CF ∥AE 交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当AB =2,∠ACB =30°时,求BG 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠ADC =90°,∴AF ⊥CE ,∵CD =DE ,∴AE =AC ,EF =CF ,∴∠EAD =∠CAD ,∵AE ∥CF ,∴∠EAD =∠AFC ,∴∠CAD =∠CF A ,∴AC =CF ,∴AE =EF =AC =CF ,∴四边形ACFE 是菱形;(2)解:如图,∵四边形ABCD 是矩形,∴∠ABC =∠BCE =90°,CD =AB ,∵AB =2,CD =DE ,∴BC =2√3,CE =4,∴BE =√BC 2+CE 2=2√7,∵AB =CD =DE ,∠BAE =∠EDG =90°,∠AGB =∠DGE ,∴△ABG ≌△DEG (AAS ),∴BG =EG ,∴BG =12BE =√7.27.(12分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如4x−1,x+1x 当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+1x−1,x 2+1x+1假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:x+1x−1=(x−1)+2x−1=1+2x−1.解决问题:(1)下列分式中属于真分式的是( )A .x 2x−1B .x−1x+1C .32x−1 D .x 2+1x 2−1 (2)将假分式3x+1x−1、x 2+1x+1分别化为带分式; (3)若假分式2x 2+3x−6x+3的值为整数,请直接写出所有符合条件的整数x 的值.【解答】解:(1)选(C );(2)3x+1x−1=3(x−1)+4x−1=3+4x−1; x 2+1x+1=(x 2−1)+2x+1=(x+1)(x−1)+2x+1=x ﹣1+2x+1; (3)原式=(2x−3)(x+3)+3x+3 =2x ﹣3+3x+3,由x 是整数,原分式的值也为整数,∴x +3=±1或±3,∴x =﹣6、﹣4、﹣2、0.28.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 DG =BE ;②直线DG 与直线BE 之间的位置关系是 DG ⊥BE ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形,∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°,∴∠BAE =∠DAG ,在△ABE 和△DAG 中,{AB =AD ∠BAE =∠DAG AE =AG,∴△ABE ≌△ADG (SAS ),∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H .由①知,△ABE ≌△DAG ,∴∠ABE =∠ADG ,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE ⊥DG ;(3)如图④中,作ET ⊥AD 于T ,GH ⊥BA 交BA 的延长线于H .设ET =x ,AT =y .∵△AHG ∽△ATE ,∴GH ET =AH AT =AG AE =2,∴GH =2x ,AH =2y ,∴4x 2+4y 2=4,∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.。

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1 2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6 3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√124.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125 5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 6.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 27.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤08.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.89.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)12.已知最简二次根式√7−2a与2√3可以合并,则a的值是.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√508.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?20.四边形ABCD是长方形,将长方形ABCD折叠,如图①所示,点B落在AD边上的点E处,折痕为FG,将图②折叠,点C与点E重合,折痕为PH.(1)在图②中,证明:EH=EP;(2)若EF=6,EH=8,FH=10,求长方形ABCD的面积.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.22.已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP ⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=√5,AB=13BC,求矩形ABCD的面积;(2)若CD=PM,求证:AC=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+12的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,|=0,√y−3=0,∴|x−4即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√508.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC 为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l ,b .h 的长方体纸箱装满了一层高为h 的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:2√34(2√3r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2√34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD是长方形,将长方形ABCD折叠,如图①所示,点B落在AD边上的点E处,折痕为FG,将图②折叠,点C与点E重合,折痕为PH.(1)在图②中,证明:EH=EP;(2)若EF=6,EH=8,FH=10,求长方形ABCD的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题: √5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3 用上述类似的方法解答问题:若a 是√5的小数部分,求√5a 的值. 【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2, ∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M .(1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形,∵AP =√5,∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中, x 2+(3x )2=10,10x 2=10,x=1,∴S ABCD=AB•BC=1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.在线段、角、等腰三角形、平行四边形、矩形、菱形这几个图形中是中心对称图形的个数是( )A .2个B .3个C .4个D .5个【解答】解:由题可得,中心对称图形的有:线段、平行四边形、矩形、菱形共4个. 故选:C .2.如果分式x 2−4x+2的值为零,那么x 的值为( ) A .2B .﹣2C .0D .±2 【解答】解:∵分式x 2−4x+2的值为零,∴{x 2−4=0x +2≠0, 解得,x =2,故选:A .3.将分式x 2y x−y 中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍 【解答】解:∵把分式x 2y x−y 中的x 与y 同时扩大为原来的3倍, ∴原式变为:27x 2y 3x−3y =9x 2y x−y=9×x 2y x−y , ∴这个分式的值扩大9倍.故选:B .4.如果反比例函数y =a−2x (a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2C .a >0D .a <0 【解答】解:∵反比例函数y =a−2x 的图象分布在第二、四象限,∴a ﹣2<0,解得a <2,故选:B .5.已知∠AOB =30°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,则△P 1OP 2是( )A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴故△P1OP2是等边三角形.故选:C.6.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的一个内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=kx(k>0,x>0)的图象经过AC的中点D,则k的值为()A .4B .5C .6D .8【解答】解:作CE ⊥x 轴于E ,∵AC ∥x 轴,OA =2,OB =1,∴OA =CE =2,∵∠ABO +∠CBE =90°=∠OAB +∠ABO ,∴∠OAB =∠CBE ,∵∠AOB =∠BEC ,∴△AOB ∽△BEC ,∴BE OA =CE OB ,即BE 2=21, ∴BE =4,∴OE =5,∵点D 是AB 的中点,∴D (52,2). ∵反比例函数y =k x(k >0,x >0)的图象经过点D ,∴k =52×2=5. 故选:B .8.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A.45°B.60°C.70°D.90°【解答】解:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=12(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′﹣∠C′AB′=120°﹣30°=90°.故选:D.9.如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线y=kx(k≠0)上,边AD与y轴相交于点E,S四边形BEDC=5S△ABE=10,则k的值是()A.﹣16B.﹣9C.﹣8D.﹣12【解答】解:如图,过C、D两点作x轴的垂线,垂足为F、G,DG交BC于M点,过C点作CH⊥DG,垂足为H,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵BO∥DG,∴∠OBC=∠GDE,∴∠HDC=∠ABO,在△CDH和△ABO中,{∠ABO =∠HDC ∠AOB =∠CDH AB =CD,∴△CDH ≌△ABO (AAS ),∴CH =AO =1,DH =OB =2,设C (m ﹣1,n ),D (m ,n +2),则(m ﹣1)n =m (n +2)=k ,解得n =﹣2m ,则D 的坐标是(m ,﹣2m +2),设直线AD 解析式为y =ax +b ,将A 、D 两点坐标代入得{a +b =0ma +b =−2m +2, 由①得:a =﹣b ,代入②得:﹣mb +b =﹣2m +2,即﹣b (m +1)=﹣2(m +1),解得b =2,则{a =−2b =2, ∴y =﹣2x +2,∴E (0,2),BE =4,∴S △ABE =12×BE ×AO =2, ∵S 四边形BCDE =5S △ABE =5×12×4×1=10,∵S 四边形BCDE =S △ABE +S 四边形BEDM =10,即2+4×m =10,解得:m =2,∴n =2m =4,∴|k |=(m +1)n =12.∵双曲线图形在第二象限,∴k =﹣12故选:D .10.如图,以Rt△ABC的两条直角边向内分别作两个等边三角形△ABD与△ACE,连结DE,若∠AED=45°,则下列叙述正确的是()A.DE=12AE B.DE=√22AE C.DE=12AB D.DE=√22AB【解答】解:设BD与AE交于F点,∵∠BAC=90°,△ABD和△AEC是等边三角形,∴∠BAD+∠CAE=120°,∴∠DAE=∠BAD+∠CAE﹣∠BAC=120°﹣90°=30°,∴AF为∠BAD的平分线,∴AF⊥BD,且F为BD的中点,∵∠AED=45°,∴∠FDE=90°﹣∠FED=90°﹣45°=45°,∴△FED是等腰直角三角形,∴FD =FE ,设FD =x ,在Rt △FED 中,DE =√FD 2+FE 2=√x 2+x 2=√2x ,在Rt △AFD 中,∠F AD =30°,∴AB =AD =2FD =2x ,∴AF =√AD 2−FD 2=√4x 2−x 2=√3x ,∴AE =AF +FE =(√3+1)x ,∴DE =√2√3+1=√6−√22AE ,故选:D .二.填空题(共8小题,满分16分,每小题2分)11.若分式2x−3x+2无意义,则x 的值为 ﹣2 .【解答】解:由分式2x−3x+2无意义,得x +2=0.解得x =﹣2,故答案是:﹣2. 12.若关于x 的分式方程m(x+1)−52x+1=m −3无解,则m = 6,10 . 【解答】解:∵关于x 的分式方程m(x+1)−52x+1=m −3无解, ∴x =−12, 原方程去分母得:m (x +1)﹣5=(2x +1)(m ﹣3)解得:x =26−m ,m =6时,方程无解.或26−m =−12是方程无解,此时m =10. 故答案为6,10.13.如图,在菱形ABCD 中,AB =18cm ,∠A =60°,点E 以2cm /s 的速度沿AB 边由A 向B 匀速运动,同时点F 以4cm /s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为 3s .【解答】解:连接BD .如图:∵四边形ABCD 是菱形,∠A =60°,∴AD =CD =BC =AB =18,△ADB ,△BDC 都是等边三角形,∴AD =BD ,∠ADB =∠DBF =60°,∵△DEF 是等边三角形,∴∠EDF =60°,∴∠ADB =∠EDF ,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠A =∠DBF =60°AD =BD ∠ADE =∠BDF,∴△ADE ≌△BDF (ASA ),∴AE =BF ,∴2t =18﹣4t ,∴t =3,故答案为:3s .14.如图,一次函数y =ax +b 的图象交x 轴于点B ,交y 轴于点A ,交反比例函数y =k x 的图象于点C ,若AB =BC ,且△OBC 的面积为2,则k 的值为 8 .【解答】解:作CD ⊥y 轴于D ,则OB ∥CD ,∴OA OD =AB BC ,∵AB =BC ,∴OA =OD ,∴S △OCD =S △AOC∵AB =BC ,∴S △AOB =S △OBC =2,∴S △AOC =S △AOB +S △OBC =4,∴S △OCD =4,∵反比例函数y =k x的图象经过点C ,∴S △OCD =12|k |=4,∵在第一象限,∴k =8.故答案为8.15.如图,在矩形ABCD 中,AB =6,AD =8,以A 为圆心,任意长为半径画弧交AB ,AC于M ,N ,再分别以M ,N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接AG ,交边BC 于E ,则△AEC 的面积为 15 .【解答】解:作EF ⊥AC 于F ,如图:由题意得:AE 平分∠BAC ,∵四边形ABCD 是矩形,∴∠B =90°,BC =AD =8,∴AC =2+BC 2=√62+82=10,EB ⊥AB ,∵AE 平分∠BAC ,∴EF =EB ,在Rt △AEF 和Rt △AEB 中,{AE =AE EF =EB, ∴Rt △AEF ≌Rt △AEB (HL ),∴AF =AB =6,∴CF =AC ﹣AF =4,设EF =EB =x ,则CE =8﹣x ,在Rt △CEF 中,由勾股定理得:x 2+42=(8﹣x )2, 解得:x =3,∴EF =3,∴△AEC 的面积=12AC ×EF =12×10×3=15; 故答案为:15.16.如图,点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是9.【解答】解:∵点A、B在反比例函数y=12x的图象上,A、B的纵坐标分别是3和6,∴A(4,3),B(2,6),作AD⊥y轴于D,BE⊥y轴于E,∴S△AOD=S△BOE=12×12=6,∵S△OAB=S△AOD+S梯形ABED﹣S△BOE=S梯形ABED,∴S△AOB=12(4+2)×(6﹣3)=9,故答案为9.17.如图,在菱形ABCD中,∠B=50°,点E在CD上,若AE=AC,则∠BAE=115°.【解答】解:∵四边形ABCD 是菱形, ∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°, ∴∠BCD =180°﹣∠B =180°﹣50°=130°, ∴∠ACE =12∠BCD =65°, ∵AE =AC ,∴∠AEC =∠ACE =65°, ∴∠BAE =180°﹣∠AEC =115°; 故答案为:115.18.如图,矩形ABCD 的两个顶点A 、B 分别落在x 、y 轴上,顶点C 、D 位于第一象限,且OA =3,OB =2,对角线AC 、BD 交于点G ,若曲线y =kx (x >0)经过点C 、G ,则k =72.【解答】解:如图,分别过C 、G 两点作x 轴的垂线,交x 轴于点E 、F , ∴CE ∥GF , 设C (m .n ),∵四边形ABCD 是矩形, ∴AG =CG ,∴GF =12CE ,EF =12(3﹣m ), ∴OF =12(3﹣m )+m =32+12m , ∴G (3+m 2,12n ),∵曲线y =kx (x >0)经过点C 、G , ∴mn =3+m 2×12n ,解得m =1, 作CH ⊥y 轴于H , ∴CH =1, ∵∠ABC =90°, ∴∠CBH +∠ABO =90°, ∵∠OAB +∠ABO =90°, ∴∠OAB =∠CBH , ∵∠AOB =∠BHC =90°, ∴△AOB ∽△BHC , ∴BH OA=CH OB,即BH 3=12,∴BH =32, ∴OH =32+2=72, ∴C (1,72),∴k =1×72=72; 故答案为72.三.解答题(共10小题,满分64分)19.(8分)阅读下面的材料,并解答后面的问题 材料:将分式3x 2+4x−1x+1拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x +1,可设3x 2+4x ﹣1=(x +1)(3x +a )+b . 因为(x +1)(3x +a )+b =3x 2+ax +3x +a +b =3x 2+(a +3)x +a +b , 所以3x 2+4x ﹣1=3x 2+(a +3)x +a +b . 所以{a +3=4a +b =−1,解之,得{a =1b =−2.所以3x 2+4x−1x+1=(x+1)(3x+1)−2x+1=(x+1)(3x+1)x+1−2x+1=3x +1−2x+1这样,分式就被拆分成了一个整式3x +1与一个分式2x+1的差的形式.问题:(1)请将分式2x 2+3x+6x−1拆分成一个整式与一个分式(分子为整数)的和(差)的形式; (2)请将分式5x 4+9x 2−3x +2拆分成一个整式与一个分式(分子为整数)的和(差)的形式.【解答】解:(1)由分母为x ﹣1,可设2x 2+3x +6=(x ﹣1)(2x +a )+b . 因为(x ﹣1)(2x +a )+b =2x 2+ax ﹣2x ﹣a +b =2x 2+(a ﹣2)x ﹣a +b , 所以2x 2+3x +6=2x 2+(a ﹣2)x ﹣a +b . 所以{a −2=3−a +b =6,解得{a =5b =11.所以分式2x 2+3x+6x−1=(x−1)(2x+5)+11x−1=2x +5+11x−1.(2)由分母为x 2+2,可设5x 4+9x 2﹣3=(x 2+2)(5x 2+a )+b . 因为(x 2+2)(5x 2+a )+b =5x 4+ax 2+10x 2+2a +b =5x 4+(a +10)x 2+2a +b ,所以5x 4+9x 2﹣3=5x 4+(a +10)x 2+2a +b . 所以{a +10=92a +b =−3,解得{a =−1b =−1.所以5x 4+9x 2−3x 2+2=(x 2+2)(5x 2−1)−1x 2+2=5x 2﹣1−1x 2+2.20.(4分)解方程:4x 2−1+x+21−x=−1.【解答】解:两边都乘以(x +1)(x ﹣1),得:4﹣(x +2)(x +1)=﹣(x +1)(x ﹣1), 解得:x =13,检验:当x =13时,(x +1)(x ﹣1)≠0, 所以原分式方程的解为x =13. 21.(5分)计算:2x+2+2x−2−x 2+4x 2−4.【解答】解:原式=2(x−2)(x+2)(x−2)+2(x+2)(x−2)(x+2)−x 2+4(x+2)(x−2),=2x−4+2x+4−x 2−4(x+2)(x−2),=4x−4−x 2(x+2)(x−2), =−(x−2)2(x−2)(x+2),=−x−2x+2.22.(6分)先化简,再求值:(x 2+4x +4)÷x 2−4x 2−2x −x−x 2x−1,然后在0,1,2,3中选一个你认为合适的x 值,代入求值.【解答】解:原式=(x+2)2x ÷(x+2)(x−2)x(x−2)−x(1−x)x−1=2x +2不能代入0,1,2 所以只能代入3得:8. 23.(5分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【解答】解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人, 由题意得240x−30=2404x,解得x =6,经检验x =6是分式方程的解,答:2017年每小时客运量24万人.24.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(﹣3,3).25.(5分)如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=6,AC=4,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【解答】解:(1)∵AD是高,∴∠ACB=∠ADC=90°,在Rt△ADB中,E是AB的中点,∴DE=12AB=3,AE=12AB=3,同理可得,AF=DF=12AC=2,∴四边形AEDF的周长=3+3+2+2=10;(2)EF垂直平分AD,理由如下:∵EA=ED,F A=FD,∴EF是AD的垂直平分线.26.(7分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:∵四边形ABCD是菱形,AD=10,∴AD=AB=BC=10,∵EC=4,∴BE=10﹣4=6,在Rt△ABE中,AE=2−BE2=√102−62=8,在Rt△AEC中,AC=√AE2+EC2=√82+42=4√5,∵四边形ABCD是菱形,∴OA=OC,∴OE=12AC=2√5.27.(9分)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=1 2.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE=16.若反比例函数y=kx的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO=OBOA=12,∴OA=8,∴A (﹣8,0).(2)∵EC ⊥AB ,∴∠ACD =∠AOB =∠DOE =90°,∴∠OAB +∠ADC =90°,∠DEO +∠ODE =90°, ∵∠ADC =∠ODE , ∴∠OAB =∠DEO , ∴△AOB ∽△EOD , ∴OA OE=OB OD,∴OE :OD =OA :OB =2,设OD =m ,则OE =2m , ∵12•m •2m =16,∴m =4或﹣4(舍弃), ∴D (﹣4,0),E (0,﹣8), ∴直线DE 的解析式为y =﹣2x ﹣8, ∵A (﹣8,0),B (0,4), ∴直线AB 的解析式为y =12x +4,由{y =−2x −8y =12x +4,解得{x =−245y =85, ∴C (−245,85),∵若反比例函数y =kx的图象经过点C , ∴k =−19225.(3)如图1中,当四边形MNPQ 是矩形时,∵OD =OB =4, ∴∠OBD =∠ODB =45°, ∴∠PNB =∠ONM =45°, ∴OM =DM =ON =2, ∴BN =2,PB =PN =√2, ∴P (﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);28.(9分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=√13;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是√15+√3,√39+√3,2√15.【解答】解:(1)①∵∠ABC=90°,∴BD=AC=2+BC2=√4+9=√13,故答案为√13,②∵A(0,3),B(5,0),∴AB=√52+32=√34,设点P(m,n),O(0,0),∴OP=√m2+n2=√34,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴∠EBF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3)√15+√3,√39+√3,2√15∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2√3,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE=12AB=1,∴DE=√AD2−AE2=√16−1=√15,∴S准矩形ABCD=S△ADE+S梯形BCDE=12DE×AE+12(BC+DE)×BE=12×√15+12(2√3+√15)×1=√15+√3;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=12BC=√3,∴DF=√CD2−CF2=√16−3=√13,∴S准矩形ABCD=S△DCF+S梯形ABFD=12FC×DF+12(AB+DF)×BF=12×√3×√13+12(2+√13)×√3=√39+√3;③当AD=CD,如图3,连接AC中点和D并延长交BC于M,连接AM,连接BG,过B作BH⊥DG,在Rt△ABC中,AC=2AB=4,∴BD=AC=4,∴AG=12AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=2√33,HM=√33,∴CM=4√3 3,在Rt△DHB中,BH=1,BD=4,∴DH=√15,∴DM=DH﹣MH=√15−√3 3,∴S准矩形ABCD=S△ABM+S四边形AMCD,=12BM×AB+12AC×DM=12×2√33×2+12×4×(√15−√33)=2√15;故答案为√15+√3,√39+√3,2√15.。

2020-2021学年八年级下学期期中数学试题及答案解析

2020-2021学年八年级下学期期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )A .6,8,10B .7,24,25C .√5,√3,√2D .1.5,2,33.(3分)已知函数y ={x 2+1(x <2)10x(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,b ,c 从小到大排列为( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a5.(3分)如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于点E ,若△CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .186.(3分)用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( )A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=407.(3分)如图,在▱ABCD 中,对角线AC 、BD 交于点O ,E 是BC 边上的中点,若OE =2,AD =5,则▱ABCD 的周长为( )A.9B.16C.18D.208.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6009.(3分)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF10.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A.B.C .D .11.(3分)若关于x 的方程kx 2﹣x +3=0有实数根,则k 的取值范围是( )A .k ≤12B .k ≤112C .k ≤12且k ≠0D .k ≤112且k ≠0 12.(3分)如图,在矩形ABCD 中,AD =√2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF , 其中正确的有( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)13.(3分)若√1−x x有意义,则自变量x 的取值范围是 . 14.(3分)若m 是关于x 的方程x 2﹣2x ﹣3=0的解,则代数式4m ﹣2m 2+2的值是 .15.(3分)如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE= °.16.(3分)已知正比例函数y =kx 的图象经过点A (﹣4,3),则函数图象经过 象限.17.(3分)如图,在矩形ABCD 中,AB =16,AD =12,E 为AB 边上一点,将△BEC 沿CE 翻折,点B 落在点F 处,当△AEF 为直角三角形时,BE = .18.(3分)如图,已知点A坐标为(√3,1),B为x轴正半轴上一动点,则∠AOB度数为,在点B运动的过程中AB+12OB的最小值为.三.解答题(共8小题,满分66分)19.(6分)选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).20.(6分)已知正比例函数的图象过点P(3,﹣3).(1)求这个正比例函数的表达式;(2)已知点A(a2,﹣4)在这个正比例函数的图象上,求a的值.21.(8分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?22.(8分)已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.23.(9分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?24.(9分)如图,AM∥BN,C是BN上一点,AB=BC,BD平分∠ABN,分别交AC,AM 于点O,D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO;(2)求证:四边形ABCD是菱形;(3)若DE=AB=2,求菱形ABCD的面积.25.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).26.(10分)[模型建立](一线三等角)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;[模型应用](2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,直线l2经过点A与直线l1垂直,求直线l2的函数表达式.(3)如图3,平面直角坐标系内有一点B(6,﹣8),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+2上的动点且在第四象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A .B .C .D .【解答】解:A 、不是轴对称图形,故此选项不合题意;B 、不是轴对称图形,故此选项不合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不合题意.故选:C .2.(3分)以长度分别为下列各组数的线段为边,构成的三角形不是直角三角形的是( )A .6,8,10B .7,24,25C .√5,√3,√2D .1.5,2,3【解答】解:A 、∵62+82=102,∴能构成直角三角形,故本选项不符合题意;B 、∵72+242=252,∴能构成直角三角形,故本选项不符合题意;C 、∵(√2)2+(√3)2=(√5)2,∴能构成直角三角形,故本选项不符合题意;D 、∵1.52+22≠32,∴不能构成直角三角形,故本选项符合题意;故选:D .3.(3分)已知函数y ={x 2+1(x <2)10x(x ≥2),当y =6时,x 的值是( ) A .−√5 B .53 C .−√5或√5 D .√5或53 【解答】解:∵函数y ={x 2+1(x <2)10x(x ≥2), ∴当x <2时,x 2+1=6,得x 1=−√5,x 2=√5(不合题意,舍去),当x ≥2时,10x =6,得x =53(不合题意,舍去), 故当y =6时,x 的值是−√5,故选:A .4.(3分)如图,三个正比例函数的图象分别对应表达式:①y =ax ②y =bx ③y =cx ,将a ,b,c从小到大排列为()A.a<b<c B.a<c<b C.b<a<c D.c<b<a【解答】解:根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则a<c<b,故选:B.5.(3分)如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.(3分)用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是()A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40【解答】解:x2﹣16x+24=0x2﹣16x+64=﹣24+64(x﹣8)2=40故选:D.7.(3分)如图,在▱ABCD中,对角线AC、BD交于点O,E是BC边上的中点,若OE=2,AD=5,则▱ABCD的周长为()A.9B.16C.18D.20【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD,∵E是BC边上的中点,∴OE是△ABC的中位线,∴AB=2OE=4,∵AD=5,∴▱ABCD的周长=2×(4+5)=18,故选:C.8.(3分)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=600【解答】解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.9.(3分)如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,F A,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=12AC C.AC⊥BE D.AE=AF【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=12AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.10.(3分)小刘下午5点30分放学匀速步行回家,途中路过鲜花店为过生日的妈妈选购了一束鲜花,6点20分到家,已知小刘家距学校3千米,下列图象中能大致表示小刘离学校的距离S(千米)与离校的时间t(分钟)之的关系的是()A.B.C.D.【解答】解:∵小刘家距学校3千米,∴离校的距离随着时间的增大而增大,∵路过鲜花店为过生日的妈妈选购了一束鲜花,∴中间有一段离家的距离不再增大,离校50分钟后离校的距离最大,即3千米.综合以上C符合,故选:C.11.(3分)若关于x的方程kx2﹣x+3=0有实数根,则k的取值范围是()A.k≤12B.k≤112C.k≤12且k≠0D.k≤112且k≠0【解答】解:当k=0时,﹣x+3=0,解得x=3,当k≠0时,方程kx2﹣x+3=0是一元二次方程,根据题意可得:△=1﹣4k×3≥0,解得k≤112,k≠0,综上k≤1 12,故选:B.12.(3分)如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,DH⊥AE 于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=√2AB,∵AD=√2AB,∴AE=AD,在△ABE和△AHD中,{∠BAE =∠DAE ∠ABE =∠AHD =90°AE =AD,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED =12(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵AB =AH ,∵∠AHB =12(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =67.5°=∠AED ,∴OE =OH ,∵∠DHO =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DHO =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD ,在△BEH 和△HDF 中,{∠EBH =∠OHD =22.5°BE =DH ∠AEB =∠HDF =45°,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;∵HE =AE ﹣AH =BC ﹣CD ,∴BC ﹣CF =BC ﹣(CD ﹣DF )=BC ﹣(CD ﹣HE )=(BC ﹣CD )+HE =HE +HE =2HE .故④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C .二.填空题(共6小题,满分18分,每小题3分)13.(3分)若√1−x x有意义,则自变量x 的取值范围是 x ≤1且x ≠0 . 【解答】解:由题意得,1﹣x ≥0,x ≠0,解得,x ≤1且x ≠0,故答案为:x ≤1且x ≠0.14.(3分)若m 是关于x 的方程x 2﹣2x ﹣3=0的解,则代数式4m ﹣2m 2+2的值是 ﹣4 .【解答】解:∵m 是关于x 的方程x 2﹣2x ﹣3=0的解,∴m 2﹣2m ﹣3=0,∴m 2﹣2m =3,∴4m ﹣2m 2+2=﹣2(m 2﹣2m )+2=﹣2×3+2=﹣4.故答案为:﹣4.15.(3分)如图,在菱形ABCD 中,∠B =50°,点E 在CD 上,若AE =AC ,则∠BAE =115 °.【解答】解:∵四边形ABCD 是菱形,∴CA 平分∠BCD ,AB ∥CD ,∴∠BAE +∠AEC =180°,∠B +∠BCD =180°,∴∠BCD=180°﹣∠B=180°﹣50°=130°,∴∠ACE=12∠BCD=65°,∵AE=AC,∴∠AEC=∠ACE=65°,∴∠BAE=180°﹣∠AEC=115°;故答案为:115.16.(3分)已知正比例函数y=kx的图象经过点A(﹣4,3),则函数图象经过第二、四象限.【解答】解:∵正比例函数y=kx的图象经过点A(﹣4,3),∴3=﹣4k,∴k=−34<0,∴正比例函数y=kx的图象经过第二、四象限.故答案为:第二、四.17.(3分)如图,在矩形ABCD中,AB=16,AD=12,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=6或12.【解答】解:如图,若∠AEF=90°,∵∠B=∠BCD=90°=∠AEF,∴四边形BCFE是矩形,∵将△BEC沿着CE翻折,∴CB=CF,∴四边形BCFE是正方形,∴BE=BC=AD=12;如图,若∠AFE=90°,∵将△BEC沿着CE翻折,∴CB=CF=12,∠B=∠EFC=90°,BE=EF,∵∠AFE+∠EFC=180°,∴点A,点F,点C三点共线,∴AC=√AB2+BC2=√144+256=20,∴AF=AC﹣CF=8,∵AE2=AF2+EF2,∴(16﹣BE)2=64+BE2,∴BE=6,(3)若∠EAF=90°,∵CD=16>CF=BC=12,∴点F不可能落在直线AD上,∴不存在∠EAF=90°,综上所述:BE=6或12.故答案为:6或12.18.(3分)如图,已知点A坐标为(√3,1),B为x轴正半轴上一动点,则∠AOB度数为30°,在点B运动的过程中AB+12OB的最小值为√3.【解答】解:过A作AC⊥x轴于点C,延长AC到点D,使AC=CD,过D作DE⊥OA 于点E,与x轴交于点F,∵点A坐标为(√3,1),∴AC=CD=1,OC=√3,∴tan∠AOB=ACOC=1√3=√33,∴∠AOB=30°,∴∠DAE=60°,EF=12OF,∴DE=AD•sin60°=√3,当点B与点F重合时,AB+12OB=AF+12OF=DF+EF=DE=√3,根据垂线段最短定理知,此时AB+12OB=√3为最小值.故答案为30°;√3.三.解答题(共8小题,满分66分)19.(6分)选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4 (2x+3).【解答】解(1)∵a=2,b=5,c=2,∵b2﹣4ac=52﹣4×2×2=9>0,∴x=−5±√92×2=−5±34,∴x1=−12,x2=﹣2.(2)∵(2x+3)2=4(2x+3),∴(2x+3)2﹣4(2x+3)=0,∴(2x+3)(2x+3﹣4)=0,则2x+3=0或2x+3﹣4=0,解得x1=−32,x2=12.20.(6分)已知正比例函数的图象过点P(3,﹣3).(1)求这个正比例函数的表达式;(2)已知点A(a2,﹣4)在这个正比例函数的图象上,求a的值.【解答】解:(1)把P(3,﹣3)代入正比例函数y=kx,得3k=﹣3,k=﹣1,所以正比例函数的解析式为y=﹣x;(2)把点A(a2,﹣4)代入y=﹣x得,﹣4=﹣a2,解得a=±2.21.(8分)一辆装满货物的卡车,高2.5米,宽1.6米,要开进上边是半圆,下边是长方形的桥洞,如图所示,已知半圆的直径为2m,长方形的另一条边长是2.3m.(1)此卡车是否能通过桥洞?试说明你的理由.(2)为了适应车流量的增加,先把桥洞改为双行道,要使宽为1.2m,高为2.8m的卡车能安全通过,那么此桥洞的宽至少增加到多少?【解答】解:(1)如图,M,N为卡车的宽度,过M,N作AB的垂线交半圆于C,D,过O作OE⊥CD,E为垂足,CD=MN=1.6米,AB=2米,由作法得,CE=DE=0.8米,又∵OC=OA=1米,在Rt△OCE中,OE=√OC2−CE2≈0.6(米),∴CM=2.3+0.6=2.9>2.5.∴这辆卡车能通过.(2)如图:根据题意可知:CG=BE=2.8米,BG=OF=1.2米,EF=AD=2.3米,∴BF=0.5米∴根据勾股定理有:OA2=OB2=BF2+OF2=0.52+1.22=1.32(米),∴OA=1.3米,∴桥洞的宽至少增加到1.3×2=2.6(米).22.(8分)已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.【解答】解:(1)∵方程有实数根,∴△=36﹣4(2m+1)=36﹣8m﹣4=32﹣8m≥0,解得:m≤4.故m的取值范围是m≤4;(2)∵x1,x2是方程x2+6x+(2m+1)=0的两个实数根,∴x1+x2=﹣6,x1•x2=2m+1,∵2x1x2﹣x1﹣x2≥8,∴2(2m+1)+6≥8,解得m≥0,由(1)可得m≤4,∴m的取值范围是0≤m≤4.23.(9分)2020年,受新冠肺炎疫情影响.口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售量的月平均增长率;(2)为回馈客户.该网店决定五月降价促销.经调查发现.在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?【解答】解:(1)设三、四这两个月销售量的月平均增长率为x,依题意,得:256(1+x)2=400,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去).答:三、四这两个月销售量的月平均增长率为25%.(2)设口罩每袋降价y元,则五月份的销售量为(400+40y)袋,依题意,得:(14﹣y﹣8)(400+40y)=1920,化简,得:y2+4y﹣12=0,解得:y1=2,y2=﹣6(不合题意,舍去).答:当口罩每袋降价2元时,五月份可获利1920元.24.(9分)如图,AM∥BN,C是BN上一点,AB=BC,BD平分∠ABN,分别交AC,AM 于点O,D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO;(2)求证:四边形ABCD是菱形;(3)若DE=AB=2,求菱形ABCD的面积.【解答】(1)证明:∵AB=BC,BD平分∠ABN,∴AO=CO.∵AM∥BN,∴∠DAC=∠ACB.在△ADO和△CBD中,{∠DAO=∠BCD,AO=CO,∠AOD=∠COB,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBD.∴AD=CB.又∵AM∥BN,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形.∴AC⊥BD,OB=OD.又∵DE⊥BD,∴AC∥DE.又∵AM∥BN,∴四边形ACED平行四边形.∴AC=DE=2.∴AO=1.在Rt△AOB中,由勾股定理得:BO=√AB2−AO2=√22−12=√3,∴BD=2BO=2√3.∴S菱形ABCD=12AC•BD=12×2×2√3=2√3.25.(10分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B (0,8).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F ,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D 的坐标;(Ⅱ)如图②,当点E 落在AC 的延长线上时,求点D 的坐标;(Ⅲ)当点D 落在线段OC 上时,求点E 的坐标(直接写出结果即可).【解答】解:(I )过点D 作DG ⊥x 轴于G ,如图①所示:∵点A (6,0),点B (0,8).∴OA =6,OB =8,∵以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,∴AD =AO =6,α=∠OAD =30°,DE =OB =8,在Rt △ADG 中,DG =12AD =3,AG =√3DG =3√3,∴OG =OA ﹣AG =6﹣3√3,∴点D 的坐标为(6﹣3√3,3);(Ⅱ)过点D 作DG ⊥x 轴于G ,DH ⊥AE 于H ,如图②所示:则GA =DH ,HA =DG ,∵DE =OB =8,∠ADE =∠AOB =90°,∴AE =√AD 2+DE 2=√62+82=10,∵12AE ×DH =12AD ×DE , ∴DH =AD×DE AE=6×810=245, ∴OG =OA ﹣GA =OA ﹣DH =6−245=65,DG =2−AG 2=√62−(245)2=185,∴点D 的坐标为(65,185);(Ⅲ)连接AE ,作EG ⊥x 轴于G ,如图③所示:由旋转的性质得:∠DAE =∠AOC ,AD =AO ,∴∠AOC =∠ADO ,∴∠DAE =∠ADO ,∴AE ∥OC ,∴∠GAE =∠AOD ,∴∠DAE =∠GAE ,在△AEG 和△AED 中,{∠AGE =∠ADE =90°∠GAE =∠DAE AE =AE,∴△AEG ≌△AED (AAS ),∴AG =AD =6,EG =ED =8,∴OG =OA +AG =12,∴点E 的坐标为(12,8).26.(10分)[模型建立](一线三等角)(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;[模型应用](2)如图2,直线l1:y=43x+4与坐标轴交于点A、B,直线l2经过点A与直线l1垂直,求直线l2的函数表达式.(3)如图3,平面直角坐标系内有一点B(6,﹣8),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+2上的动点且在第四象限内.若△CPD成为等腰直角三角形,请直接写出点D的坐标.【解答】(1)证明:如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD +∠BEC =90°,又∵∠ACD +∠DAC =90°,∴∠DAC =∠ECB ,在△BEC 和△CDA 中,∵{∠CEB =∠ADC∠ECB =∠DAC BC =AC,∴△BEC ≌△CDA (AAS );(2)解:如图2,在l 2上取D 点,使AD =AB ,过D 点作DE ⊥OA ,垂足为E ,∵直线y =43x +4与坐标轴交于点A 、B ,∴A (﹣3,0),B (0,4),∴OA =3,OB =4,由(1)同理得△BOA ≌△AED (AAS ),∴DE =OA =3,AE =OB =4,∴OE =7,∴D (﹣7,3),设l 2的解析式为y =kx +b ,∴{−7k +b =3−3k +b =0,解得:{k =−34b =−94, ∴直线l 2的函数表达式为:y =−34x −94;(3)解:分三种情况:①如图3,∠CPD =90°时,过P 作MH ∥x 轴,过D 作DH ∥y 轴,MH 和DH 交于H ,∵△CPD 是等腰直角三角形,∠CPD =90°,∴CP =PD ,同理得△CMP ≌△PHD (AAS ),∴DH =PM =6,PH =CM ,设PH =a ,则D (6+a ,a ﹣8﹣6),∵点D 是直线y =﹣2x +2上的动点且在第四象限内.∴a ﹣8﹣6=﹣2(6+a )+2,解得:a =43,∴D (223,−383); ②如图4,∠PCD =90°,此时P 与A 重合,过D 作DE ⊥y 轴于E ,∵△CPD 是等腰直角三角形,同理得△AOC ≌△CED ,∴OA =CE =6,OC =DE =8,∴D (8,﹣14);③如图5,∠CDP =90°,过点D 作MQ ∥x 轴,延长AB 交MQ 于Q ,则∠Q =∠DMC =90°,∵△CDP 是等腰直角三角形,同理得△PQD ≌△DMC ,∴PQ =DM ,DQ =CM ,设CM =b ,则DM =6﹣b ,AQ =8+b ,∴D (6﹣b ,﹣8﹣b ),∵点D 是直线y =﹣2x +2上的动点且在第四象限内,∴﹣8﹣b =﹣2(6﹣b )+2,解得:b =23,∴D (163,−263); 综上,点D 的坐标为(223,−383)或(8,﹣14)或(163,−263).。

2020-2021学年八年级下学期期中考试数学试卷附解析版

2020-2021学年八年级下学期期中考试数学试卷附解析版

2020-2021学年八年级下学期期中考试数学试卷一、单选题(本大题共8小题,每小题3分,共24分)1.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)为了了解某区2万名学生参加中考的情况,有关部门从中抽取了500名学生的成绩进行统计分析,在这个问题中正确的是()A.2万名考生是总体B.每名考生是个体C.500名考生是总体的一个样本D.样本容量是5003.(3分)“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是4.(3分)已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()A.100°B.60°C.80°D.160°5.(3分)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.顺次连接矩形各边中点所得的四边形是菱形6.(3分)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE 的长等于()A.2B.3C.4D.57.(3分)如图,在正方形ABCD中,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,若PD+PE的最小值为5,则正方形的面积为()A.16B.6.25C.9D.258.(3分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2照此规律作下去,则C2019等于()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)掷一枚硬币,正面朝上的概率是.10.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为人.11.(3分)某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).12.(3分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm.13.(3分)如图,△ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=.14.(3分)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为cm2.15.(3分)如图,在平行四边形ABCD中,AE平分∠BAD交DC于点E,AD=4cm,AB =7cm,则EC的长为cm.16.(3分)如图,在周长为40cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD 交AD于点E,连接BE,则△ABE的周长为.17.(3分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为cm.18.(3分)如图,矩形纸片ABCD中,已知AD=12,AB=9,E是BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.三.解答题(本大题共7题,共66分.)19.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C (﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.(8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号)根据以上信息,解答下列问题:(1)该班共有名学生.(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,185型校服所对应扇形圆心角=(4)若全校九年级共有学生800名,请估计穿170型校服的学生有多少名?21.(6分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.22.(8分)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:BE=DF.23.(10分)如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.24.(12分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.(12分)如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.参考答案与试题解析一、单选题(本大题共8小题,每小题3分,共24分)1.(3分)在下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)为了了解某区2万名学生参加中考的情况,有关部门从中抽取了500名学生的成绩进行统计分析,在这个问题中正确的是()A.2万名考生是总体B.每名考生是个体C.500名考生是总体的一个样本D.样本容量是500【分析】本题的考查的对象是:某区2万名学生参加中考的成绩,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【解答】解:A、2万名考生的成绩是总体,错误;B、每名考生的成绩是个体,错误;C、500名考生的成绩是总体的一个样本,错误;D、样本容量是500,正确.故选:D.【点评】正确理解总体,个体,样本、样本容量的含义是解决本题的关键.3.(3分)“用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上都不是【分析】根据勾股定理的逆定理、必然事件的概念解答.【解答】解:52+122=169,132=169,∴52+122=132,∴用长分别为5cm、12cm、13cm的三条线段可以围成直角三角形是必然事件,故选:A.【点评】本题考查的是勾股定理的逆定理、必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(3分)已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()A.100°B.60°C.80°D.160°【分析】由四边形ABCD是平行四边形,可得∠A=∠C,AD∥BC,又由∠A+∠B=180°,即可求得∠A的度数,继而求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=240°,∴∠A=120°,∴∠B=180°﹣∠A=60°.故选:B.【点评】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等、邻角互补的知识.5.(3分)下列命题是真命题的是()A.四边都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.顺次连接矩形各边中点所得的四边形是菱形【分析】利用矩形、正方形、菱形的判定定理及菱形的性质分别判断后即可确定正确的选项.【解答】解:A、四边都相等的四边形是菱形,不是矩形,故错误,是假命题;B、矩形的对角线相等,菱形的对角线不一定相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,不一定是正方形,故错误,是假命题;D、顺次连接矩形各边中点所得的四边形是菱形,正确,是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形、正方形、菱形的判定定理及菱形的性质,难度不大.6.(3分)如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于()A.2B.3C.4D.5【分析】根据菱形的性质得出OD=OB,根据三角形的中位线性质得出OE=AB,代入求出即可.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵E是BC的中点,∴OE=AB,∵AB=8,∴OE=4.故选:C.【点评】本题考查了菱形的性质和三角形的中位线定理的应用,关键是求出OE=AB,此题比较简单.7.(3分)如图,在正方形ABCD中,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,若PD+PE的最小值为5,则正方形的面积为()A.16B.6.25C.9D.25【分析】由于点D与点B关于AC对称,所以BE与AC的交点即为点P,此时PD+PE =PB+PE=BE,和最小.又△ABE是等边三角形,从而得出AB=BE=5.【解答】解:设BE与AC的交点为点P.如图,连接PD,则此时PD+PE的和最小.∵四边形ABCD是正方形,∴点D与点B关于AC对称,∴PD+PE=PB+PE=BE=5.又∵△ABE是等边三角形,∴AB=BE=5.∴正方形的面积为25,故选:D.【点评】此题主要考查了轴对称﹣﹣最短路线问题,难点主要是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P的位置即可.要灵活运用对称性解决此类问题.8.(3分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2照此规律作下去,则C2019等于()A.B.C.D.【分析】根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2019的值【解答】解:∵E是BC的中点,ED∥AB,∴DE是△ABC的中位线,∴DE=AB=,AD=AC=,∵EF∥AC,∴四边形EDAF是菱形,∴C1=4×;同理求得:C2=4×;…∁n=4×,∴C2019=4×=.故选:C.【点评】本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)掷一枚硬币,正面朝上的概率是.【分析】掷一枚硬币有2种情况,满足条件的有一种,用1除以2即可得出概率的值.【解答】解:∵掷一枚硬币的情况有2种,满足条件的为:正面一种,∴正面朝上的概率是P=;故本题答案为:.【点评】此题考查了概率公式,考查等可能条件下的概率计算.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为640人.【分析】根据“频率=频数÷总数”计算可得.【解答】解:根据题意知该组的人数为1600×0.4=640(人),故答案为:640.【点评】本题主要考查频数与频率,解题的关键是掌握频率=频数÷总数.11.(3分)某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800 1 000 2 000 4 000发芽的频数853******** 1 6043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为0.8(精确到0.1).【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,从而得到结论.【解答】解:∵观察表格,发现大量重复试验发芽的频率逐渐稳定在0.8左右,∴该玉米种子发芽的概率为0.8,故答案为:0.8.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.12.(3分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为3cm.【分析】根据平行四边形中对边相等和已知条件即可求得较短边的长.【解答】解:如图∵平行四边形的周长为24cm∴AB+BC=24÷2=12∵BC:AB=3:1∴AB=3cm故答案为3.【点评】本题利用了平行四边形的对边相等的性质,设适当的参数建立方程求解.13.(3分)如图,△ABC中,D、E分别为AB、AC边上的中点,若DE=6,则BC=12.【分析】由于D、E分别为AB、AC边上的中点,那么DE是△ABC的中位线,根据三角形中位线定理可求BC.【解答】解:如图所示,∵D、E分别为AB、AC边上的中点,∴DE是△ABC的中位线,∴DE=BC,∴BC=12.故答案是12.【点评】本题考查了三角形中位线定理.三角形的中位线等于第三边的一半.14.(3分)已知一个菱形的两条对角线长分别为6cm和8cm,则这个菱形的面积为24 cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:∵一个菱形的两条对角线长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2).故答案为:24.【点评】本题考查的是菱形的性质,熟知菱形的面积等于两对角线乘积的一半是解答此题的关键.15.(3分)如图,在平行四边形ABCD中,AE平分∠BAD交DC于点E,AD=4cm,AB =7cm,则EC的长为3cm.【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD=7cm,∴∠2=∠3,∵AE平分∠DAB,∴∠1=∠3,∴∠1=∠2,∴DE=AD=4cm,∴CE=CD﹣DE=7cm﹣4cm=3cm,故答案为:3.【点评】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.16.(3分)如图,在周长为40cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD 交AD于点E,连接BE,则△ABE的周长为20cm.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为40cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+AD,又∵平行四边形的周长为40cm,∴AB+AD=20cm.故答案为20cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO是线段BD的中垂线.17.(3分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,连接EF,则EF的最小值为cm.【分析】先利用勾股定理的逆定理证明△ABC为直角三角形,∠A=90°,则证明四边形AEPF为矩形,连接AP,如图,则EF=AP,当AP的值最小时,EF的值最小,利用垂线段最短得到AP⊥BC时,AP的值最,然后利用面积法计算此时AP的长即可.【解答】解:∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∵PE⊥AB于E,PF⊥AC于F,∴∠AEP=∠AFP=90°,∴四边形AEPF为矩形,连接AP,如图,EF=AP,当AP的值最小时,EF的值最小,当AP⊥BC时,AP的值最,此时AP==,∴EF的最小值为.故答案为.【点评】此题考查了矩形的判定与性质:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.在处理许多几何问题中,若能灵活运用矩形的这些性质,则可以简捷地解决与角、线段等有关的问题.18.(3分)如图,矩形纸片ABCD中,已知AD=12,AB=9,E是BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为或9.【分析】分两种情形分别求解即可解决问题.【解答】解:有两种情形:①如图1中,当∠EFC=90°时,A,F,C共线,设BE=EF=x,在Rt△ABC中,∵∠B=90°,AB=9,BC=AD=12,∴AC==15,在Rt△EFC中,∵EC2=EF2+CF2,∴(12﹣x)2=x2+62,∴x=,②如图2中,当∠FEC=90°时,四边形ABEF是正方形,BE=AB=9,综上所述,BE的值为或9.【点评】本题考查矩形的性质,翻折变换等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.三.解答题(本大题共7题,共66分.)19.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C (﹣1,0).(1)请直接写出点A关于y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【分析】(1)关于y轴的轴对称问题,对称点的坐标特点是:横坐标互为相反数,纵坐标相等.(2)坐标系里旋转90°,充分运用两条坐标轴互相垂直的关系画图.(3)分别以AB,BC,AC为平行四边形的对角线,考虑第四个顶点D的坐标,有三种可能结果.【解答】解:(1)点A关于y轴对称的点的坐标是(2,3);(2)图形如右,点B的对应点的坐标是(0,﹣6);(3)以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(﹣7,3)或(﹣5,﹣3)或(3,3).【点评】本题要充分运用形数结合的思想解题,考查了轴对称、旋转和平行四边形的知识的运用.20.(8分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号)根据以上信息,解答下列问题:(1)该班共有50名学生.(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,185型校服所对应扇形圆心角=14.4°(4)若全校九年级共有学生800名,请估计穿170型校服的学生有多少名?【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数即可;(2)用总人数乘以175型所占的百分比求出穿175型的人数,再用总人数减去其它型的人数,求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)用总人数乘以穿170型校服的学生所占的百分比即可.【解答】解:(1)该班共有学生数:15÷30%=50(名),故答案为:50;(2)穿175型校服的学生有:50×20%=10名;穿185型校服的学生有:50﹣3﹣15﹣15﹣10﹣5=2名;补图如下:(3)185型校服所对应的扇形圆心角为:×360°=14.4°;故答案为:14.4°;(4)根据题意得:800×=240(名),答:穿170型校服的学生有240名.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(6分)如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在甲图中作出的四边形是中心对称图形但不是轴对称图形;(2)在乙图中作出的四边形是轴对称图形但不是中心对称图形;(3)在丙图中作出的四边形既是轴对称图形又是中心对称图形.【分析】(1)平行四边形是中心对称图形但不是轴对称图形;(2)等腰梯形是轴对称图形但不是中心对称图形;(3)正方形既是轴对称图形又是中心对称图形.【解答】解:(1)甲图:平行四边形,(2)乙图:等腰梯形,(3)丙图:正方形.【点评】本题考查了轴对称图形和中心对称图形,熟练掌握几个常见的四边形是哪类图形是关键:①平行四边形是中心对称图形但不是轴对称图形;②等腰梯形是轴对称图形但不是中心对称图形;③矩形、菱形、正方形既是轴对称图形又是中心对称图形.22.(8分)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:BE=DF.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形是平行四边形,可得结论.【解答】证明:如图,连接BD与对角线AC交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形,∴BE=DF.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.23.(10分)如图,D、E、F分别是△ABC三边的中点.(1)求证:AD与EF互相平分.(2)若∠BAC=90°,试说明四边形AEDF的形状,并简要说明理由.【分析】(1)如图,连接DE、DF.欲证明AD与EF互相平分,只需证得四边形AEDF 是平行四边形即可;(2)由“有一内角为直角的平行四边形是矩形”证得四边形ADEF为矩形.【解答】(1)证明:如图,连接DE、DF.∵D、F分别是BC,AC的中点,∴DF∥AB,同理,DE∥AC∴四边形AEDF是平行四边形.∴AD与EF互相平分;(2)由(1)得四边形AEDF为平行四边形.∵∠BAC=90°∴四边形ADEF为矩形.【点评】本题考查的知识比较全面,需要用到三角形中位线定理,平行四边形的判定与性质,以及矩形的判定等.24.(12分)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD 的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.25.(12分)如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=8﹣2t,AP=2+t.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=8.【分析】(1)由DM=2t,根据AM=AD﹣DM即可求出AM=8﹣2t;先证明四边形CNPD 为矩形,得出DP=CN=6﹣t,则AP=AD﹣DP=2+t;(2)根据四边形ANCP为平行四边形时,可得6﹣t=8﹣(6﹣t),解方程即可;(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6﹣t﹣2t=8﹣(6﹣t),求解即可,②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK 为正方形,则CD=AD,由AD=8,可得CD=8,利用勾股定理求得AC即可.【解答】解:(1)如图1.∵DM=2t,∴AM=AD﹣DM=8﹣2t.∵在直角梯形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴DP=CN=BC﹣BN=6﹣t,∴AP=AD﹣DP=8﹣(6﹣t)=2+t;故答案为:8﹣2t,2+t.(2)∵四边形ANCP为平行四边形时,CN=AP,∴6﹣t=8﹣(6﹣t),解得t=2,(3)①存在时刻t=1,使四边形AQMK为菱形.理由如下:∵NP⊥AD,QP=PK,∴当PM=PA时有四边形AQMK为菱形,∴6﹣t﹣2t=8﹣(6﹣t),解得t=1,②要使四边形AQMK为正方形.∵∠ADC=90°,∴∠CAD=45°.∴四边形AQMK为正方形,则CD=AD,∵AD=8,∴CD=8,∴AC=8.故答案为:8.【点评】本题是四边形综合题,其中涉及到直角梯形的性质,矩形的判定与性质,等腰直角三角形的性质,轴对称的性质,等腰三角形的性质,正方形的性质等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试题及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.使函数y=√x+1x有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.2.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.下列各式属于最简二次根式的是()A.√8B.√x2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.4.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,AB=6cm,BC=8cm,则△AEF的周长是()A.14cm B.8cm C.9cm D.10cm【解答】解:由勾股定理得,AC=√AB2+BC2=√62+82=10cm,∵四边形ABCD是矩形,∴OA=OD=12AC=12×10=5cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=52cm,AF=12×8=4cm,AE=12OA=52cm,∴△AEF的周长=52+4+52=9cm.故选:C.6.如图,数轴上表示实数√5的点可能是()A.点P B.点Q C.点R D.点S【解答】解:∵2<√5<3,∴数轴上表示实数√5的点可能是点Q.故选:B.7.一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y =mnx 的图象过一、三象限,无符合项;(4)当m <0,n >0时,mn <0,一次函数y =mx +n 的图象一、二、四象限,正比例函数y =mnx 的图象过二、四象限,无符合项.故选:C .8.如果直线y =kx +b 经过一、二、四象限,则k ,b 的取值分别是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【解答】解:由一次函数y =kx +b 的图象经过第一、二、四象限,又由k <0时,直线必经过二、四象限,故知k <0.再由图象过一、二象限,即直线与y 轴正半轴相交,所以b >0.故选:C .9.如图所示的图象所表示的函数的关系式为( )A .y =32|x ﹣1|(0≤x ≤2)B .y =32−32|x ﹣1|(0≤x ≤2)C .y =32−|x ﹣1|(0≤x ≤2)D .y =1﹣|x ﹣1|(0≤x ≤2)【解答】解:观察图象可知,图象上已知三点坐标为(0,0),(1,32)(2,0),代入每个解析式检验可知:A 、点(0,0)不符合函数解析式;B 、点(0,0),(1,32),(2,0),都符合函数解析式;C 、点(0,0)不符合函数解析式;D 、点(1,32)不符合函数解析式. 只有B 符合.故选:B .10.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=12×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=−13x2+53x(0<x<5),纵观各选项,只有D选项符合.故选:D.二.填空题(共5小题,满分15分,每小题3分)11.若点A(2,y1),B(﹣1,y2)都在直线y=﹣2x+1上,则y1与y2的大小关系是y1<y2.【解答】解:∵直线y=﹣2x+1的比例系数为﹣2,∴y随x的增大而减小,∵2>﹣1,∴y1<y2,故答案为y1<y2.12.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要612元钱.【解答】解:由勾股定理,AC=2−BC2=√132−52=12(m).则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×18=612元.故答案为:612.13.无论m为何值直线y=x+2m与直线y=﹣x+4的交点都不可能在第三象限.【解答】解:y=﹣x+4是一次函数,∵k=﹣1<0,∴图象过二、四象限,又∵b=4>0,∴图象过第一象限,∴一定不过第三象限;∴直线y =x +2m 与y =﹣x +4的交点不可能在第三象限.故答案为:三.14.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为 2512 .【解答】解:设BC ′与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:∠NBD =∠CBD ,AM =DM =12AD ,∠FMD =∠EMD =90°, ∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC =4,∠BAD =90°,∴∠ADB =∠CBD ,∴∠NBD =∠ADB ,∴BN =DN ,设AN =x ,则BN =DN =4﹣x ,∵在Rt △ABN 中,AB 2+AN 2=BN 2,∴32+x 2=(4﹣x )2,∴x =78,即AN =78,∵C ′D =CD =AB =3,∠BAD =∠C ′=90°,∠ANB =∠C ′ND ,∴△ANB ≌△C ′ND (AAS ),∴∠FDM =∠ABN ,∴tan ∠FDM =tan ∠ABN ,∴AN AB =MF MD ,∴783=MF 2,∴MF =712, 由折叠的性质可得:EF ⊥AD ,∴EF ∥AB ,∵AM =DM ,∴ME =12AB =32,∴EF =ME +MF =32+712=2512.故答案为:2512.15.已知一次函数y =mx +2m +8与x 轴、y 轴交于点A 、B ,若图象经过点C (2,4).过点C 作x 轴的平行线,交y 轴于点D ,在△OAB 边上找一点E ,使得△DCE 构成等腰三角形,则点E 坐标为 (0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5) .【解答】解:∵一次函数y =mx +2m +8的图象经过点C (2,4),∴4=2m +2m +8,解得m =﹣1,∴一次函数为y =﹣x +6,∵与x 轴、y 轴交于点A 、B ,∴A (6,0),B (0,6),如图,∵C (2,4),∴C 点在直线AB 上,以D 为圆心,以2为半径作圆,交OB 于B 和E 2,此时E (0,6)或(0,2);以B 为圆心,以2为半径作圆,交AB 于E 3和E 4,此时E(2−√2,4+√2)或(2+√2,4−√2),作DC的垂直平分线交OA于E5,交AB于E6,此时E5(1,0),E6(1,5);综上,点E坐标为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5);故答案为(0,6)或(0,2)或(2−√2,4+√2)或(2+√2,4−√2)或(1,0)或(1,5).三.解答题(共8小题,满分75分)16.(8分)计算:−√24÷√2−√13×√12+√48.【解答】解:−√24÷√2−√13×√12+√48=﹣2√6÷√2−√4+4√3=﹣2√3−2+4√3=2√3−2.17.(8分)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE 2+AD 2=BE 2+BC 2,设AE =x ,则BE =AB ﹣AE =(25﹣x ),∵DA =15km ,CB =10km ,∴x 2+152=(25﹣x )2+102,解得:x =10,∴AE =10km ,∴收购站E 应建在离A 点10km 处.18.(9分)四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF 、AC 、DE ,当BF ⊥AE 时,求证:四边形ACED 是平行四边形.【解答】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC ,∵AE 平分∠BAD ,∴∠EAB =∠EAD =∠AEB ,∴AB =BE ,∴BE =CD .(2)∵BA =BE ,BF ⊥AE ,∴AF =EF ,∵AD ∥CE ,∴∠DAF =∠CEF ,在△ADF 和△ECF 中,{∠DAF =∠CEF AF =FE ∠AFD =∠CFE,∴△DAF ≌△CEF∴AD =CE ,∵AD ∥CE ,∴四边形ADEC 是平行四边形.19.(9分)如图,已知一次函数y =kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求一次函数的解析式;(2)求点C 和点D 的坐标;(3)求△AOB 的面积.【解答】解:(1)把A (﹣2,﹣1),B (1,3)代入y =kx +b 得 {−2k +b =−1k +b =3, 解得 {k =43b =53. 所以一次函数解析式为y =43x +53;(2)令y =0,则0=43x +53,解得x =−54,所以C 点的坐标为(−54,0),把x =0代入y =43x +53得y =53,所以D 点坐标为(0,53), (3)△AOB 的面积=S △AOD +S △BOD=12×53×2+12×53×1=52.20.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF平分∠DAB.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=√FC2+FB2=10,∴AD=BC=DF=10,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.21.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.22.(10分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P 为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.【解答】解:(1)证明:∵∠ABC =90°∴∠BAP +∠APB =90°∵BQ ⊥AP∴∠APB +∠QBC =90°,∴∠QBC =∠BAP ,在△ABP 于△BCQ 中,{∠ABP =∠BCQAB =BC ∠BAP =∠QBC,∴△ABP ≌△BCQ (ASA ),∴BP =CQ ,(2)由翻折可知,AB =BC ',连接BN ,在Rt △ABN 和Rt △C 'BN 中,AB =BC ',BN =BN ,∴Rt △ABN ≌△Rt △C 'BN (HL ),∴AN =NC ',∵BP =13PC ,AB =8,∴BP =2=CQ ,CP =DQ =6,设AN =NC '=a ,则DN =8﹣a ,∴在Rt △NDQ 中,(8﹣a )2+62=(a +2)2解得:a =4.8,即AN =4.8.(3)解:过Q 点作QG ⊥BM 于G ,由(1)知BP =CQ =BG =x ,BM =MQ .设MQ =BM =y ,则MG =y ﹣x ,∴在Rt △MQG 中,y 2=82+(y ﹣x )2,∴y =32x +x 2. ∴S △BMC ′=S △BMQ ﹣S △BC 'Q =12BM ⋅QG −12BC′⋅QC′=12(32x +x 2)×8−12×8x , =128x −2x .23.(11分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?【解答】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得{10a +20b =400020a +10b =3500, 解得{a =100b =150. 答:每台A 型电脑销售利润为100元,每台B 型电脑的销售利润为150元;(2)①根据题意得,y =100x +150(100﹣x ),即y =﹣50x +15000;②据题意得,100﹣x ≤2x ,解得x ≥3313, ∵y =﹣50x +15000,∴y 随x 的增大而减小,∵x 为正整数,∴当x =34时,y 取最大值,则100﹣x =66,此时最大利润是y =﹣50×34+15000=13300.即商店购进34台A 型电脑和66台B 型电脑的销售利润最大,最大利润是13300元.。

2020-2021学年八年级下期中考试数学试题含答案

2020-2021学年八年级下期中考试数学试题含答案

第 1 页 共 21 页
2020-2021学年八年级下学期期中考试数学试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列各式:
a−b 2,x+3x ,13,a+b a−b ,1m (x ﹣y )中,是分式的共有( ) A .1个 B .2个 C .3个 D .4个
2.(3分)下列图案中既是中心对称图形,又是轴对称图形的是( )
A .
B .
C .
D .
3.(3分)已知a <b ,下列式子不成立的是( )
A .a +1<b +1
B .4a <4b
C .−13a >−13b
D .如果c <0,那么a c <b c 4.(3分)已知△ABC 边AB 、AC 的垂直平分线DM 、EN 相交于O ,M 、N 在BC 边上,若
∠MAN =20°,则∠BAC 的度数为( )
A .100°
B .120°
C .140°
D .160°
5.(3分)平面直角坐标系中,P (a ,a ﹣2)在第四象限,则a 的取值范围是( )
A .a >2
B .a <0
C .﹣2<a <0
D .0<a <2
6.(3分)不能判定四边形ABCD 为平行四边形的条件是( )
A .A
B ∥CD ,AD =BC
B .AB ∥CD ,∠A =∠
C C .A
D ∥BC ,AD =BC D .∠A =∠C ,∠B =∠D
7.(3分)如图,点P 是▱ABCD 边AD 上的一点,E ,F 分别是BP ,CP 的中点,已知▱ABCD
面积为16,那么△PEF 的面积为( )。

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,是一元二次方程是()A.2x+3y=4B.x2=0C.x2﹣2x+1>0D.1x=x+2【解答】解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.下列结论不正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的平行四边形是菱形C.平行四边形对角相等对边相等D.矩形的对角线相等【解答】解:A.对角线互相垂直平分且相等的四边形是正方形,故本选项错误;B.对角线互相垂直的平行四边形是菱形,故本选项正确;C.平行四边形对角相等,对边相等,故本选项正确;D.矩形的对角线相等,故本选项正确;故选:A.3.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐【解答】解:∵甲、乙两队的方差分别是1.7、2.4,∴S甲2<S乙2,∴甲队身高更整齐;故选:B.4.已知一次函数y=kx+b,y随x的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.【解答】解:∵一次函数y=kx+b,y随x的增大而减小,且b<0,∴k<0,b<0,∴该函数图象经过第二、三、四象限,故选:B.5.在学校的体育训练中,小杰投实心球的7次成绩就如统计图所示,则这7次成绩的中位数和众数分别是()A.9.7m,9.8m B.9.7m,9.7m C.9.8m,9.9m D.9.8m,9.8m【解答】解:把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,9.7m出现了2次,最多,所以众数为9.7m,故选:B.6.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.7.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【解答】解:∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.8.两条直线y1=ax﹣b与y2=bx﹣a在同一坐标系中的图象可能是图中的()A .B .C .D .【解答】解:根据一次函数的图象与性质分析如下:A .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a <0,b <0.A 错误;B .y 1=ax ﹣b :a >0,b <0;y 2=bx ﹣a :a >0,b <0.B 正确;C .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a <0,b <0.C 错误;D .y 1=ax ﹣b :a >0,b >0;y 2=bx ﹣a :a >0,b <0.D 错误; 故选:B .9.下列各点在直线y =2x +6上的是( ) A .(﹣5,4)B .(﹣7,20)C .(23,223) D .(−72,1)【解答】解:A 、当x =﹣5时,y =2×(﹣5)+6=﹣4, ∴点(﹣5,4)不在直线y =2x +6上; B 、当x =﹣7时,y =2×(﹣7)+6=﹣8, ∴点(﹣7,20)不在直线y =2x +6上; C 、当x =23时,y =2×23+6=223, ∴点(23,223)在直线y =2x +6上;D 、当x =−72时,y =2×(−72)+6=﹣1, ∴点(−72,1)不在直线y =2x +6上. 故选:C .10.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A .(12)nB .(12)n−1C .(√33)nD .(√33)n ﹣1【解答】解:∵正方形A 1B 1C 1D 1的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3, ∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°, ∴D 1E 1=C 1D 1sin30°=12,则B 2C 2=B 2E 2cos30°=√33=(√33)1,同理可得:B 3C 3=13=(√33)2, 故正方形A n B n ∁n D n 的边长是:(√33)n ﹣1, 故选:D .二.填空题(共8小题,满分24分,每小题3分)11.关于x 的一次函数y =(k +2)x ﹣2k +1,其中k 为常数且k ≠﹣2 ①当k =0时,此函数为正比例函数; ②无论k 取何值,此函数图象必经过(2,5);③若函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),则k =−83; ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限. 上述结论中正确的序号有 ②③④ .【解答】解:①当k =0时,此函数为y =2x +1,不是正比例函数,故本结论错误; ②∵y =(k +2)x ﹣2k +1=(x ﹣2)k +2x +1, ∴当x =2时,y =5,∴无论k 取何值,此函数图象必经过(2,5),故本结论正确; ③∵函数图象经过(m ,a 2),(m +3,a 2﹣2)(m ,a 为常数),∴{(k +2)m −2k +1=a 2①(k +2)(m +3)−2k +1=a 2−2②, ②﹣①,得3(k +2)=﹣2,解得k =−83,故本结论正确; ④如果此函数图象同时经过第二、三、四象限, 那么{k +2<0−2k +1<0,此不等式组无解,所以无论k 取何值,此函数图象都不可能同时经过第二、三、四象限,故本结论正确. 即上述结论中正确的序号有②③④. 故答案为②③④.12.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s 甲2=0.2,S 乙2=0.08,成绩比较稳定的是 乙 (填“甲”或“乙”). 【解答】解:∵S 甲2=0.2,S 乙2=0.08, ∴S 甲2>S 乙2,∴成绩比较稳定的是乙; 故答案为:乙.13.某公司要招聘1名广告策划人员,某应聘者参加了3项素质测试,成绩如下(单位:分)测试项目 创新能力 综合知识 语言表达 测试成绩708090若创新能力、综合知识和语言表达的成绩按5:3:2计算,则该应聘者的素质测试平均成绩是 77 分.【解答】解:根据题意,该应聘者的素质测试平均成绩是:70×510+80×310+90×210=77(分). 故答案为:77.14.写出一个一元二次方程,它的二次项系数为1,其中一个根为﹣3,另一个根为2,这个一元二次方程是 x 2+x ﹣6=0 . 【解答】解:设这个方程为ax 2+bx +c =0. ∵该方程的二次项系数为1,两根分别为﹣3和2, ∴a =1,−ba =−3+2,ca=−3×2,∴b=1,c=﹣6,∴这个方程为x2+x﹣6=0.故答案为:x2+x﹣6=0.15.如图,菱形ABCD的对角线长分别为2和4,EF∥DC分别交AD,BC于点E,F,在EF上任取两点G,H,那么图中阴影部分的面积为2.【解答】解:∵四边形ABCD是菱形,对角线长分别为2和4,∴AB∥DC,AD∥BC,菱形ABCD的面积=12×2×4=4,∵EF∥DC,∴EF∥DC∥AB,∴四边形ABFE和四边形CDEF是平行四边形,∴△ABH的面积=12平行四边形ABFE的面积,△CDG的面积=12平行四边形CDEF的面积,∴△ABH的面积+△CDG的面积=12菱形ABCD的面积=2,∴图中阴影部分的面积=4﹣2=2;故答案为:2.16.如图,直线l:y=−√3x,点A1的坐标为(﹣1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴正半轴于点A3;…,按此作法进行下去点A2020的坐标为(﹣22019,0).【解答】解:已知点A 1坐标为(﹣1,0),且点B 1在直线y =−√3x 上,可知B 1点坐标为(﹣1,√3),由题意可知OB 1=√12+(√3)2=2,故A 2点坐标为(﹣2,0), 同理可求的B 2点坐标为(﹣2,2√3),按照这种方法逐个求解便可发现规律,A 2020点坐标为(﹣22019,0), 故答案为(﹣22019,0).17.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt △ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为6017.【解答】解:∵四边形CDEF 是正方形, ∴CD =ED ,DE ∥CF ,设ED =x ,则CD =x ,AD =5﹣x , ∵DE ∥CF ,∴∠ADE =∠C ,∠AED =∠B , ∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 12=5−x5,x =6017, 故答案为:6017.18.在正方形ABCD 中,点G 在AB 上,点H 在BC 上,且∠GDH =45°,DG 、DH 分别与对角线AC 交于点E 、F ,则线段AE 、EF 、FC 之间的数量关系为 EF 2=AE 2+CF 2 .【解答】解:如图,将△DCH 绕点D 顺时针旋转90°,得△DAM ,则△DAM ≌△DCH 则DM =DH ,AM =CH ,∠CDH =∠ADM在DM 上截取DN =DF ,连接NE ,AN 在△DAN 和△DCF 中 {DA =DC∠ADN =∠CDF DN =DF; ∴△DAN ≌△DCF (SAS ) ∴AN =CF ,∠DAN =∠DCF =45° 又∵∠DAC =45° ∴∠NAE =90° ∴AN 2+AE 2=NE 2 ∵∠GDH =45°, ∴∠NDE =45° 在△DNE 和△DFE 中 {DN =DF∠NDE =∠FDE DE =DE ∴△DNE ≌△DFE ∴NE =EF 又∵AN =CF ∴CF 2+AE 2=EF 2故答案为:EF2=AE2+CF2.三.解答题(共9小题,满分66分)19.(7分)解方程(1)用直接开平方法解3(x﹣1)2﹣6=0;(2)用配方法解x2﹣6x+3=0;(3)用公式法解9x2+10x=4;(4)用因式分解法解2x2﹣5x=0.【解答】解:(1)∵3(x﹣1)2=6,∴(x﹣1)2=2则x﹣1=±√2,∴x1=1+√2,x2=1−√2;(2)∵x2﹣6x=﹣3,∴x2﹣6x+9=﹣3+9,即(x﹣3)2=6,则x﹣3=±√6,∴x1=3+√6,x2=3−√6;(3)∵9x2+10x﹣4=0,∴a=9,b=10,c=﹣4,则△=102﹣4×9×(﹣4)=244>0,∴x=−b±√b2−4ac2a=−10±2√6118=−5±√619,即x1=−5+√619,x2=−5−√619;(4)∵2x2﹣5x=0,∴x(2x﹣5)=0,则x=0或2x﹣5=0,解得x1=0,x2=2.5.20.(7分)如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.【解答】证明:∵菱形ABCD ,∴BA =BC ,∠A =∠C ,∵BE ⊥AD ,BF ⊥CD ,∴∠BEA =∠BFC =90°,在△ABE 与△CBF 中{∠BEA =∠BFC ∠A =∠C BA =BC,∴△ABE ≌△CBF (AAS ),∴AE =CF .21.(7分)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2) =4k 2+4k +1﹣2k 2+8=2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0,∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2,∵x 1﹣x 2=3,∴(x 1﹣x 2)2=9,∴(x 1+x 2)2﹣4x 1x 2=9,∴(2k +1)2﹣4×(12k 2﹣2)=9, 化简得k 2+2k =0,解得k =0或k =﹣2.22.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.4+1.52=1.45(kg ),众数是1.5kg ,故答案为:1.45kg ,1.5kg .(2)x =1.2×1+1.3×4+1.4×5+1.5×6+1.6×2+1.7×220=1.45(kg ), ∴这20条鱼质量的平均数为1.45kg ;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.23.(7分)如图,在矩形ABCD 中,AD =6,CD =8,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求DG的值.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴Rt△AEH≌Rt△DHG(HL).∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于Q,则∠FQG=90°.∴∠A=∠FQG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠QGE,∠HEG=∠FGE,∴∠AEH=∠QGF.∵EH=GF,∴△AEH≌△QGF(AAS).∴FQ=AH=2.∵S△FCG=12CG•FQ=12×CG×2=2,∴CG=2.24.(7分)如图,在平面直角坐标系中,过点A (0,6)的直线AB 与直线OC 相交于点C(2,4)动点P 沿路线O →C →B 运动.(1)求直线AB 的解析式;(2)当△OPB 的面积是△OBC 的面积的14时,求出这时点P 的坐标; (3)是否存在点P ,使△OBP 是直角三角形?若存在,直接写出点P 的坐标,若不存在,请说明理由.【解答】解:(1)∵点A 的坐标为(0,6),∴设直线AB 的解析式为y =kx +6,∵点C (2,4)在直线AB 上,∴2k +6=4,∴k =﹣1,∴直线AB 的解析式为y =﹣x +6;(2)由(1)知,直线AB 的解析式为y =﹣x +6,令y =0,∴﹣x +6=0,∴x =6,∴B (6,0),∴S △OBC =12OB •y C =12,∵△OPB 的面积是△OBC 的面积的14, ∴S △OPB =14×12=3, 设P 的纵坐标为m ,∴S △OPB =12OB •m =3m =3,∴m =1,∵C (2,4),∴直线OC 的解析式为y =2x ,当点P 在OC 上时,x =12,∴P (12,1), 当点P 在BC 上时,x =6﹣1=5,∴P (5,1),即:点P (12,1)或(5,1);(3)∵△OBP 是直角三角形,∴∠OPB =90°,当点P 在OC 上时,由(2)知,直线OC 的解析式为y =2x ①,∴直线BP 的解析式的比例系数为−12,∵B (6,0),∴直线BP 的解析式为y =−12x +3②,联立①②,解得{x =65y =125, ∴P (65,125),当点P 在BC 上时,由(1)知,直线AB 的解析式为y =﹣x +6③,∴直线OP 的解析式为y =x ④,联立③④解得,{x =3y =3, ∴P (3,3),即:点P 的坐标为(65,125)或(3,3).25.(7分)已知关于x 的方程(a 2﹣1)(x x−1)2﹣(2a +7)(x x−1)+1=0有实根.(1)求a 取值范围; (2)若原方程的两个实数根为x 1,x 2,且x 1x 1−1+x 2x 2−1=311,求a 的值.【解答】解:(1)设x x−1=y ,则原方程化为:(a 2﹣1)y 2﹣(2a +7)y +1=0 (2),①当方程(2)为一次方程时,即a 2﹣1=0,a =±1.若a =1,方程(2)的解为y =19,原方程的解为x =−18满足条件;若a =﹣1,方程(2)的解为y =15,原方程的解为x =−14满足条件;∴a =±1.②当方程为二次方程时,a 2﹣1≠0,则a ≠±1,要使方程(a 2﹣1)y 2﹣(2a +7)y +1=0 (2)有解,则△=(2a +7)2﹣4(a 2﹣1)=28a +53≥0,解得:a ≥−5328,此时原方程没有增根,∴a 取值范围是a ≥−5328.综上,a 的取值范围是a ≥−5328.(2)设x 1x 1−1=y 1,x 2x 2−1=y 2,则则y 1、y 2是方程(a 2﹣1)y 2﹣(2a +7)y +1=0的两个实数根,由韦达定理得:y 1+y 2=2a+7a 2−1, ∵y 1+y 2=311, ∴2a+7a 2−1=311, 解得:a =−83或10,又∵a ≥−5328,∴a =10.26.(7分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB 和线段CD 分别表示小泽和小帅离甲地的距离y (单位:千米)与时间x (单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为 16 千米/小时;点C 的坐标为 (0.5,0) ;(2)求线段AB 对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?【解答】解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C 的横坐标为:1﹣8÷16=0.5,∴点C 的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB 对应的函数表达式为y =kx +b (k ≠0),∵A (0.5,8),B (2.5,24),∴{0.5k +b =82.5k +b =24, 解得:{k =8b =4, ∴线段AB 对应的函数表达式为y =8x +4(0.5≤x ≤2.5);(3)当x =2时,y =8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.27.(10分)如图①,已知直线y =﹣2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC .(1)求点A 、C 的坐标;(2)将△ABC 对折,使得点A 的与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②);(3)在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:x=5 2此时,AD=52,D(2,52)(2分)设直线CD为y=kx+4,把D(2,52)代入得52=2k+4(1分)解得:k=−3 4∴直线CD解析式为y=−34x+4(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=52,PD=BD=4−52=32,AP=BC=2由AD×PQ=DP×AP得:52PQ=3∴PQ=6 5∴x P=2+65=165,把x=165代入y=−34x+4得y=85此时P(165,85) (也可通过Rt △APQ 勾股定理求AQ 长得到点P 的纵坐标) ③当点P 在第二象限时,如图同理可求得:CQ =85∴OQ =4−85=125此时P(−65,125)综合得,满足条件的点P 有三个,分别为:P 1(0,0);P 2(165,85);P 3(−65,125).。

广东省惠州市2021年八年级下学期数学期中考试试卷(II)卷

广东省惠州市2021年八年级下学期数学期中考试试卷(II)卷

广东省惠州市2021年八年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分.) (共10题;共30分)1. (3分)(2020·牡丹江) 下列图形是中心对称图形的是()A .B .C .D .2. (3分)当的值为最小值时,a 的取值为()A . -1B . 0C . -D . 13. (3分) (2019八上·嘉定月考) 解关于的方程时,得到以下四个结论,其中正确的是()A . m为任意数时,方程总有两个不相等的实数根B . m为任意数时,方程无实数根C . 只有当 =2时,方程才有两个相等的实数根D . 当 = 2时,方程有两个相等的实数根4. (3分)五名同学在“爱心捐助”活动中,捐款数额为8,10,10,4,6(单位:元),这组数据的中位数是()A . 10B . 9C . 8D . 65. (3分)用配方法解方程x2+8x+7=0,则配方正确的是()A .B .C .D .6. (3分) (2016八上·怀柔期末) 若表示二次根式,则x的取值范围是()A . x≤2B . x≥2C . x<2D . x>27. (3分) (2019九上·渠县月考) 宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A . (180+x﹣20)(50﹣)=10890B . (x﹣20)(50﹣)=10890C . x(50﹣)﹣50×20=10890D . (x+180)(50﹣)﹣50×20=1088. (3分)解为x=0的方程是()A . 2x﹣6=0B . 3(x﹣2)﹣2(x﹣3)=5xC .D .9. (3分) (2017七上·兴城期中) 有理数a,b在数轴上表示的点如图所示,则a,﹣a,b,﹣b的大小关系是()A . ﹣b>a>﹣a>bB . a>﹣a>b>﹣bC . b>a>﹣b>﹣aD . ﹣b<a<﹣a<b10. (3分)一个多边形的每个内角都是144°,则它的边数是()A . 8B . 9C . 10D . 11.二、填空题(本题有8小题,每小题3分,共24分) (共8题;共23分)11. (2分)(2017·巨野模拟) 计算的结果是________.12. (3分) (2019八下·北京期末) 在□ABCD中,已知∠A=110°,则∠D=________.13. (3分)(2019·河池模拟) 一组数据3,4,,5,8的平均数是6,则该组数据的中位数是________.14. (3分) (2019七下·呼和浩特期末) 已知a为的整数部分, -1是400的算术平方根,则的值为________.15. (3分) (2020八下·莆田期末) 如图,▱ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为________ .16. (3分)(2020·马山模拟) 南宁市小学1-3年级开学时间为5月18日,小明按开学返校前的要求积极配合在家隔离,每天都测量体温,以下是他某一周的体温(单位:℃):36.6,36.3,36.2,36.6,36.8,36.5,36.6,这组数据的众数为________.17. (3分) (2018九上·重庆月考) 某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为,则可以列出方程为________.18. (3分) (2019七下·重庆期中) 如图,的面积为,、分别是,上的点,且 , .连接 , 交于点 ,连接并延长交于点 .则四边形的面积为________.三、解答题(本题有6小题,共46分。

广东省惠州市2020年八年级下学期数学期中考试试卷(I)卷

广东省惠州市2020年八年级下学期数学期中考试试卷(I)卷

广东省惠州市2020年八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共23分)1. (2分)下列因式分解正确的是()A . x2-4=(x+4)(x-4)B . x2+2x+1=x(x+2)+1C . 3mx-6my=3m(x-6y)D . 2x+4=2(x+2)2. (2分)(2017·隆回模拟) 某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A . 正三角形B . 正五边形C . 等腰梯形D . 菱形3. (2分) (2015七下·新昌期中) 下列各式能用平方差公式计算的是()A . (﹣a+b)(a﹣b)B . (a+b)(a﹣2b)C . (x+1)(﹣1+x)D . (﹣m﹣n)(m+n)4. (2分)若一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b≥0的解集为()A . x≤2B . x≥1C . x≥2D . x≥05. (2分) (2019七下·绍兴月考) 若分式有意义,则x应满足()A . x=0B . x≠0C . x=1D . x≠16. (2分) (2020八下·沈阳期中) 下列分式中,属于最简分式的是()A .B .C .D .7. (2分)下列说法中错误的是()A . 矩形的对角线互相平分且相等B . 对角线互相垂直的四边形是菱形C . 等腰梯形的两条对角线相等D . 等腰三角形底边的中点到两腰的距离相等8. (2分)(2019·下城模拟) 若x>y,a<1,则()A . x>y+1B . x+1>y+aC . ax>ayD . x-2>y-19. (5分) (2018八上·自贡期末) 如果把中的x和y都扩大5倍,那么分式的值()A . 不变B . 扩大5倍C . 缩小5倍D . 扩大4倍10. (2分)(2018·淄博) “绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A .B .C .D .二、填空题 (共10题;共13分)11. (1分)(2017·渭滨模拟) 分解因式:2m2﹣2=________.12. (1分) (2019七下·越城期末) 若关于x的方程= +1无解,则a的值是________.13. (2分) (2018八上·江都期中) 如图,在△ABC中,DM、EN分别垂直平分AC和BC交AB于M、N,∠ACB=118°,则∠MCN的度数为________.14. (2分) (2019八上·台州期末) 计算: = ________.15. (1分) (2019七上·武威期末) 如图,将一副三角板叠放在一起,则图中∠α的度数是________度.16. (1分) (2017八上·阿荣旗期末) 计算: + =________.17. (2分)一次函数y=kx+b的图象经过点(0,2),且与直线y=x平行,则该一次函数的表达式为________18. (1分) (2019八下·扬州期末) 若关于x的分式方程有增根,则 ________.19. (1分) (2019九上·蜀山月考) 已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,P是抛物线对称轴l上的一个动点,则PA+PC的最小值是________.20. (1分)(2019·天津) 如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A , B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于________;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足∠PAC=∠PBC=∠PCB ,并简要说明点P的位置是如何找到的(不要求证明)________.三、解答题 (共8题;共84分)21. (15分)(2016·连云港) 解方程:.22. (10分)(2020·瑶海模拟) 如图,已知A(﹣3,3)、B(﹣4,1)、C(﹣1,1)是平面直角坐标系上的三点.(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;(2)请画出△A1B1C1关于y轴对称△A2B2C2;(3)判断以A、A1、A2为顶点的三角形的形状.(无需说明理由)23. (10分)(2020·芜湖模拟) 国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A,B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系yA=﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系yB=﹣x+14,A型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?24. (6分)(2017·达州) 如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程x+ =m的两实根,且tan∠PCD= ,求⊙O的半径.25. (15分)(2019·山西模拟) 阅读与思考:阿基米德(公元前287年一公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,阿基米德流传于世的著作有10余种,多为希腊文手稿下面是《阿基米德全集》中记载的一个命题:AB是⊙O的弦,点C在⊙O上,且CD⊥AB于点D,在弦AB上取点E,使AD=DE,点F是上的一点,且=,连接BF可得BF=BE.(1)将上述问题中弦AB改为直径AB,如图1所示,试证明BF=BE;(2)如图2所示,若直径AB=10,EO= OB,作直线l与⊙O相切于点F.过点B作BP⊥l于点P.求BP 的长.26. (6分) (2019八上·安国期中) 观察下列各式及验证过程= ,验证: = = = ;= ,验证: = = = ;= ,验证: = = = ;(1)按照上述三个等式及其验证过程的基本思路,猜想 =________;(2)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;(3)针对上述各式反映的规律,写出用n(n≥2的自然数)表示的等式,并进行验证.27. (10分)(2020·孝感模拟) 为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1555万元改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)根据我市教育局规划计划今年对该县A、B两类学校进行改造,要求改造的A类学校是B类学校的2倍多2所,在计划投入资金不超过1555万元的条件下,至多能改造多少所A类学校?28. (12分) (2019八上·桦南期中) 如图(1)如图1:在四边形ABCD中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E , F分别是BC , CD上的点.且∠EAF=60°.探究图中线段EF , BE , FD之间的数量关系.小明同学探究的方法是:延长FD到点G .使DG=BE .连结AG ,先证明△ABE≌△ADG ,再证明△AEF≌△AGF ,可得出结论,他的结论是________(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD ,∠B+∠D=180°,E、F分别是BC , CD上的点,且∠EAF是∠BAD 的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.参考答案一、单选题 (共10题;共23分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共8题;共84分) 21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。

广东省惠州市2021版八年级下学期期中数学试卷(II)卷

广东省惠州市2021版八年级下学期期中数学试卷(II)卷

广东省惠州市2021版八年级下学期期中数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单项选择题 (共10题;共20分)1. (2分)下列各式: (1-x) 其中分式共有().A . 2个B . 3个C . 4个D . 5个2. (2分)反比例函数的图象经过点,则下列各点中不在该图象上的是()A .B .C .D .3. (2分) (2019八上·同安月考) 若分式的值为零,那么x的值为A . 或B .C .D .4. (2分) (2020九上·吴兴期末) 如图,由六个边长为1的小正方形组成的网格图中,△ABC的各个顶点都在格点上,则sin∠BAC的值是()A .B .C .D .5. (2分) (2017九上·海宁开学考) 反比例函数y= 的图象经过点A(﹣1,2),则当x>1时,函数值y 的取值范围是()A . y>﹣1B . ﹣1<y<0C . y<﹣2D . ﹣2<y<06. (2分) (2020八下·番禺期末) 下列各组数中不能作为直角三角形的三边长的是()A . 3,4,5B . 13,14,15C . 5,12,13D . 15,8,177. (2分)下列各式中,正确的是()A .B .C .D .8. (2分)(2018·潍坊) 下列计算正确的是()A .B .C .D .9. (2分)(2017·温州模拟) 温州为了推进“中央绿轴”建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树50棵,现在植树600棵所需时间与原计划植树400棵所需时间相同,设原计划平均每天植树x棵,则列出的方程为()A . =B . =C . =D . =10. (2分)(2017·埇桥模拟) 如图,在△ABC中,AC=BC=10,AB=12,D是AB上的一点(不与A、B重合),DE⊥BC,垂足为点E,设BD=x,四边形ACED的周长为y,则下列图象大致反映y与x之间的函数关系的是()A .B .C .D .二、填空题 (共10题;共13分)11. (1分) (2020八上·前郭尔罗斯期末) 在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的直径为0.00000078m,这个数据用科学记数法表示为________m12. (1分) (2018九上·惠山期中) 如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠EFG的值为________.13. (2分) (2015九上·淄博期中) 约分① =________;② =________.14. (1分)若代数式有意义,则实数x的取值范围是________.15. (2分) (2015七下·常州期中) =________,(﹣2a2b)3=________.16. (1分)如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y= 的图象经过点B,则k=________.17. (2分) (2019八上·南浔月考) 命题“等腰三角形底边上的中点到两腰的距离相等”的逆命题是________,该逆命题是________.(写真命题或假命题)18. (1分) (2019八下·嵊州期末) 已知,反比例函数y= 的图象在第二、四象限内,则k的值可以是________ 。

2020-2021学年八年级数学下学期期中测试卷(人教版,广东专用)(原卷版)01

2020-2021学年八年级数学下学期期中测试卷(人教版,广东专用)(原卷版)01

2020-2021学年八年级下学期期中考试数学试卷(测试范围:第16章~第19章第1节,满分:120分,时间:90分钟)一、单选题(每题3分,共30分) 1.下列式子是最简二次根式的是( )A B C D2.下列计算正确的是( )A B C D .3.关于函数y=2x ,下列说法错误的是( ) A .它是正比例函数 B .图象经过(1,2) C .图象经过一、三象限D .当x >0,y <04.a 、b 、c 为ABC ∆三边,下列条件不能判断它是直角三角形的是( ) A .222a c b =-B .3a =,4b =,5c =C .::3:4:5A B C ∠∠∠=D .5a k =,12b k =,13c k =(k 为正整数)5.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .6是同类二次根式的是( )AB C D 7.下列说法中正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是正方形 C .平行四边形的对角线平分一组对角 D .矩形的对角线相等且互相平分8.如图,ABCD 与DCFE 的周长相等,且∠BAD =60°,∠F =100°,则∠DAE 的度数为( ) A .20°B .25°C .30°D .35°9.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( ) A .2.4cmB .4.8cmC .5cmD .9.6cm10.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( ) A .1B .2C .3D .4二、填空题(每题4分,共28分)11.函数y=√x –1的自变量x 的取值范围是 .12.()2210,a b a b c ++-+=++=则_______________。

广东省惠州市八年级下学期数学期中考试试卷

广东省惠州市八年级下学期数学期中考试试卷

广东省惠州市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·萧山期末) 下列四个几何图形中是中心对称图形的是()A .B .C .D .2. (2分) (2017八下·高密期中) 使代数式 + 有意义的a的取值范围为()A . a>0B . a<0C . a=0D . 不存在3. (2分) (2017九上·灯塔期中) 一元二次方程6x2-x=-5的二次项系数、一次项系数、常数项分别是()A . 6,-x,5B . 6,-1,-5C . 6,-1,5D . 6x2 ,-1,54. (2分) (2020八上·邛崃期末) 射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁5. (2分) (2017八下·下陆期中) 下列说法中错误的是()A . 平行四边形的对角线互相平分B . 两组对边分别相等的四边形是平行四边形C . 矩形的对角线相等D . 有一组邻边相等且有一个角是直角的四边形是正方形6. (2分) (2018九上·连城期中) 将一元二次方程x2﹣4x﹣7=0配方,所得的方程是()A . (x﹣2)2=11B . (x﹣2)2=3C . (x+2)2=11D . (x+2)2=37. (2分)(2017·潍坊) 甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A . 甲B . 乙C . 丙D . 丁8. (2分) (2018九上·洛阳期末) 如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A . 32×20﹣32x﹣20x=540B . (32﹣x)(20﹣x)=540C . 32x+20x=540D . (32﹣x)(20﹣x)+x2=5409. (2分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A . 当AB=BC时,它是菱形B . 当AC⊥BD时,它是菱形C . 当∠ABC=90°时,它是正方形D . 当AC=BD时,它是矩形10. (2分) (2019八下·抚顺月考) 在▱ABCD中,AB=7,AC=6,则对角线BD的取值范围是()A . 8<BD<20B . 6<BD<7C . 4<BD<10D . 1<BD<13二、填空题 (共8题;共8分)11. (1分) (2020八下·木兰期中) 化简:(1)(2)(3)12. (1分) (2016九上·乌拉特前旗期中) 分式值为0,则x=________13. (1分) (2017八上·中江期中) 一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为________度.14. (1分) (2017八下·钦北期末) 托车生产是我市的支柱产业之一,不少品牌的摩托车畅销国内外,下表是摩托车厂今年1至5月份摩托车销售量的统计表:(单位:辆)月份12345销售量(辆)17002100125014001680则这5个月销售量的中位数是________辆。

2020-2021学年八年级下学期期中测试卷(人教版,广东专用 )(解析版)04

2020-2021学年八年级下学期期中测试卷(人教版,广东专用 )(解析版)04

2020-2021学年八年级下学期期中考试数学试卷(测试范围:第16章~第18章第1节,满分:120分,时间:90分钟)一、单选题(每题3分,共30分)1.下列二次根式能与 )A B C D 【答案】A 【分析】能与 【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =C 错误;D =,被开方数与D 错误. 故选择:A . 【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.2.在平行四边形ABCD 中,已知5AB =,3BC =,则它的周长为( ) A .8 B .10 C .14 D .16【答案】D 【分析】根据“平行四边形的对边相等”结合已知条件进行分析解答即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB=CD=5,AD=BC=3,∴平行四边形ABCD 的周长=AB+BC+CD+AD=5+3+5+3=16 故选D . 【点睛】本题考查“平行四边形的对边相等”是解答本题的关键.3.下列各式计算正确的是()A.=B.3=C.=D2=【答案】C【分析】根据同类二次根式的合并,及二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:A A选项错误;B、3不是同类二次根式,不能合并,原式计算错误,故B选项错误;C、=,原式计算正确,故C选项正符合题意;D2=D选项错误;帮选:C.【点睛】本题考查了二次根式的加减及乘除运算,属于基础题,解答本题的关键是掌握各部分的运算法则.4.若表示a、b两个实数的点在数轴上的位置如图,则化简的结果为()A.2a B.2b C.-2a D.-2b【答案】D【解析】a b+<.∴->,0a bb a<<,0=---=-2a b a b b故选D.5.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.B.C.D.4【答案】A【分析】根据勾股定理可得,在Rt△AOB中AO2=AB2-BO2;在Rt△DOC中可得DO2=DC2-CO2;在Rt△BOC中可得BC2=OB2+CO2;即可得AD2=AO2+DO2=AB2-BO2+DC2-CO2= AB2 +DC2-(CO2+BO2),代入数值计算后,即可求得AD的长.【详解】如图,在Rt△AOB中可得,AO2=AB2-BO2;在Rt△DOC中可得:DO2=DC2-CO2;在Rt△BOC中可得:BC2=OB2+CO2;∴AD2=AO2+DO2=AB2-BO2+DC2-CO2= AB2 +DC2-(CO2+BO2)=32+52-42=18,∴=.故选A.【点睛】本题考查了勾股定理的知识,熟练运用勾股定理是解决问题的关键..6.如图,在ABC∆中,AB=12 ,BC=13 ,AC=5 ,则BC边上的高AD为( )A.12 B.13 C.6013D.60【答案】C 【分析】根据勾股定理逆定理可证明△ABC 是直角三角形,再利用直角三角形的面积公式可得:11512=1322AD ⨯⨯⨯⨯,解可得答案. 【详解】解:∵222512=13+, ∴222AC AB BC +=, ∴△ABC 是直角三角形;∴1122ABC S AB AC BC AD ∆=•=•, ∴11512=1322AD ⨯⨯⨯⨯, 解得:60=13AD ,故选择:C. 【点睛】本题主要考查了勾股定理逆定理,解题的关键是学会利用面积法构建方程解决问题,属于中考常考题型.7.如图,ABCD 中, ,70,DB DC C AE BD =∠=︒⊥于点E ,则DAE ∠等于( )A .35B .30C .25D .20【答案】D 【分析】根据等腰三角形的性质,可求出∠CBD 的度数,再根据平行四边形的性质,求出∠EDA 的度数,然后在△ADE 中,利用三角形的内角和为180°以及AE ⊥BD ,即可求出∠DAE 的度数. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∵DB=DC ,∠C=70°, ∴∠DBC=∠C=70°.∵AD ∥BC ,∴∠ADE=∠DBC=70°, 又∵AE ⊥BD , ∴∠AEB=90°,∴∠DAE=90°-∠ADE=20°. 故选D. 【点睛】此题主要考查了三角形的内角和定理、平行四边形的性质以及等腰三角形的性质,利用等腰三角形的两底角相等,得到∠CBD 的度数是解决问题的关键.8.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是( ) A .AD =BC B .AC =BDC .AB =CDD .∠A =∠B【答案】C 【解析】 【分析】已知AB ∥CD ,可根据有一组边平行且相等的四边形是平行四边形来判定. 【详解】在四边形ABCD 中,AB ∥CD ,一定能判定四边形ABCD 是平行四边形的是AB =CD (一组对边平行且相等的四边形是平四边形). 故答案选C. 【点睛】本题考查的知识点是平行四边形的判定,解题的关键是熟练的掌握平行四边形的判定是解题的关键.9.若实数m 、n 满足30m -=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5BC .5D .以上都不对【答案】C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边. 【详解】∵30m -,30m -≥≥, ∴m-3=0,n-4=0, 解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长= 故选:C . 【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.10.如图,ABC ∆中, 5,8AB AC BC ===,点P 是BC 边上的动点,过点P 作PD AB ⊥于点,D PE AC ⊥于点E ,则PD PE +的长是( )A .245B .165C .241655或 D .5【答案】A 【分析】连接AP ,过点A 作AF ⊥BC ,结合等腰三角形三线合一的性质,利用勾股定理求AF 的长,然后利用三角形面积公式求得11=()22BC AF AB PD PE ⨯⨯+,从而使问题得解. 【详解】解:连接AP ,过点A 作AF ⊥BC∵58AB AC BC ===,且AF ⊥BC ∴142BF BC ==∴在Rt △ABF 中,3AF =∴ABC ABP ACP S S S =+△△△∴1111()2222BC AF AB PD AC PE AB PD PE ⨯=⨯+⨯=⨯+ ∴115()=8322PD PE ⨯⨯+⨯⨯ ∴24=5PD PE + 故选:A .【点睛】本题考查勾股定理解直角三角形和等腰三角形的性质,正确添加辅助线,利用三角形面积公式求解计算是解题关键. 二、填空题(每题4分,共28分)11x 的取值范围是__ . 【答案】23【解析】试题分析:根据二次根式有意义,被开方数大于等于0列式计算即可得解. 试题解析:根据题意得,3x-2≥0,解得x≥23. 故答案为x≥23.考点: 二次根式有意义的条件.12.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,还需添加一个条件,这个条件可以是__________.(只要填写一种情况) 【答案】AD BC =(答案不唯一) 【分析】根据平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”即可填写. 【详解】解:∵AD ∥BC ,AD=BC , ∴四边形ABCD 是平行四边形. 故答案为:AD=BC (答案不唯一) 【点睛】本题考查了平行四边形的判定,熟知平行四边形的判定定理是解题的关键,本题有多种答案,如可以根据平行四边形的定义填写AB ∥CD 等.13.如图所示的一块地,90ADC ∠=︒,4=AD ,3CD =,13AB =,12BC =,求这块地的面积__________.【答案】24 【解析】 连接CA ,∵90ADC ∠=︒,4=AD ,3CD =.∴AC=5=.∵22251213+=. ∴222AC BC AB +=. ∴90ACB ∠=︒. ∴ACB ACD S S S =-面积△△1151234=⨯⨯-⨯⨯22=-30624=.14.已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD 交AD于F,若AB=4,BC=6,则EF=_____.【答案】2【解析】因为AD∥BC,所以∠AEB=∠CBE,因为BE平分∠ABC,所以∠ABE=∠CBE,所以∠AEB=∠CBE,所以AE=AB=4,同理DC=DF,因为CD=AB,所以DF=4,因为BC=6,所以AD=6,所以EF=AE+DF-AD=4+4-6=2,故答案为2.AB=,则BC=______.15.如图,在▱ABCD中,45∠=∠=,2ABC CAD【答案】【解析】【分析】先证明ACD是等腰直角三角形,再由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD是平行四边形,=,D ABC CAD45CD AB2∴==,BC AD∠∠∠===,∴==,ACD90AC CD2∠=,即ACD是等腰直角三角形,∴===BC AD故答案为:【点睛】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明ACD是等腰直角三角形是解决问题的关键.16.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形的形状是______三角形.【答案】直角【解析】【分析】先对已知进行化简,再根据勾股定理的逆定理进行判定.【详解】∵(a+b)2-c2=2ab,∴a2+b2=c2,∴三角形是直角三角形.【点睛】本题考查的知识点是勾股定理的逆定理,解题关键是熟记判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.17.如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5cm,则正方形A、B、C、D的面积和是_____.cm【答案】252【解析】试题分析:根据题意仔细观察可得到正方形A,B,C,D的面积的和等于最大的正方形的面积,已知最大的正方形的边长则不难求得其面积.解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.三、解答题(每题6分,共18分)18.计算:()﹣1+|2﹣|+()0﹣(﹣1)2016.【答案】原式=.【解析】试题分析:根据负整数指数幂法则、绝对值的化简,零指数幂法则,乘方的意义分别计算各项结果后合并即可得到结果.试题解析:原式=2+﹣2+1﹣1=.考点:零指数幂;负整数指数幂;绝对值;实数的运算.19.如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE 向上翻折,点A正好落在CD上的点F,若△FDE的周长为7,△FCB的周长为19,求FC的长.【答案】6【解析】分析:由折叠的性质可得EF=AE,BF=AB,由四边形ABCD是平行四边形可得AD=BC,AB=DC,结合△FCB的周长=DF+DE+EF=DF+DE+AE=DF+AD=7和△FCB的周长=FC+BC+BF=FC+BC+AB=19可得平行四边形ABCD的周长=26,由此可得AD+DC=13,这样即可由FC=(AD+DC)-(AD+DF)求出FC的长.详解:∵△BEF是由△BDA沿BE折叠得到的,∴EF=AE,BF=AB.∵平行四边形ABCD,∴AD=BC,AB=DC.∵△FDE的周长=DF+DE+EF=7,∴DF+DE+AE=7,即DF+AD=7.∵△FCB的周长=FC+BC+BF=19,∴FC+BC+AB=19,∴平行四边形ABCD的周长=AD+DF+FC+BC+AB=7+19=26,∴AD+DC=13,∴FC=(AD+DC)-(AD+DF)=13-7=6.点睛:这是一道有关平行四边形折叠的问题,熟悉“平行四边形的性质和折叠的性质”从而由已知的△DEF的周长和△FCB的周长求得平行四边形ABCD的周长是解答本题的关键.20.在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.【答案】证明见试题解析.【解析】试题分析:由平行四边形的性质得到BE∥CD ,故有∠E=∠2,由于CE平分∠BCD,得到∠1=∠2,故∠1=∠E,故BE=BC ,又因为BH⊥BC,由三线合一可得到CH =EH.试题解析:∵在□ABCD中BE∥CD ,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC ,∴CH=EH(三线合一).考点:1.平行四边形的性质;2.等腰三角形的判定与性质.四、解答题(每题8分,共24分)21.如图,△ABC中,AB=5,BC=6,边BC上的中线AD=4.(1)AD与BC互相垂直吗?为什么?(2)求AC的长.【答案】(1)AD与BC互相垂直,理由见解析;(2)AC=5.【解析】(1)利用勾股定理即可证明;(2)利用勾股定理即可求解.解:(1)AD 与BC 互相垂直,理由如下. ∵AB =5,BC =6,BC 边上的中线AD =4, ∴BD =3, ∵32+42=52,∴∠ADC =∠ADB =90°, ∴AD ⊥BC .(2)在直角△ADC 中, ∵AD =4,DC =3,∴由勾股定理得:AC 5.22.如图,△ABC 中,AB 的垂直平分线DE 分别交AC 、AB 于点D 、E ,且222AD DC BC -=.(1)求证:∠C =90°;(2)若AC =16,CD :AD =3:5,求BC 的长.【答案】(1)见解析;(2)8. 【分析】(2)由线段垂直平分线的性质得到AD BD =,再结合222AD DC BC -=证明BCD △是直角三角形,据此解题;(2)根据题意解出CD AD 、的长,再根据勾股定理解题即可 【详解】(1)证明:连接BD ,DE 垂直平分ABAD BD ∴=222AD DC BC -= 222BD DC BC ∴-=BCD ∴△是直角三角形, 90C ∴∠=︒;(2)解:16,:3:5AC CD AD ==35166,161088CD AD ∴=⨯==⨯=AD BD =10BD ∴= Rt DCB △中,8BC =【点睛】本题考查垂直平分线的性质、勾股定理及其逆定理等知识,是重要考点,难度较易,掌握相关知识是解题关键23.如图,E F 、是平行四边形ABCD 的对角线AC 上的两点,且AE CF =.(1)证明:四边形BFDE 是平行四边形;(2)延长BF 交CD 于G ,若AE EF FC ==,证明:点G 是CD 的中点. 【答案】(1)证明过程见解析;(2)证明过程见解析; 【分析】(1)由题意连接BD 交AC 于点O ,由平行四边形的性质得AO=CO ,BO=DO ,证出EO=FO ,即可得出四边形BFDE 为平行四边形;(2)根据题意由平行四边形的性质得DE ∥BF ,即DE ∥FG ,证出FG 是△CDE 的中位线,得CG=DG 即可. 【详解】解:(1)连接BD 交AC 于点O ,∵四边形ABCD为平行四边形,∴AO=CO,BO=DO,又∵AE=CF,∴EO=FO,∴四边形BFDE为平行四边形;(2)由(1)知,四边形BFDE为平行四边形,∴DE//BF,即DE//FG,而AE=EF=FC,所以F为EC的中点,∴FG是△CDE的中位线,∴CG=DG,即G为CD的中点.【点睛】本题考查平行四边形的判定与性质以及三角形中位线定理等知识;熟练掌握平行四边形的判定与性质是解题的关键.五、解答题(每题10分,共20分)24.如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC.(1)求证:△BDG≌△ADC.(2)分别取BG、AC的中点E、F,连接DE、DF,则DE与DF有何关系,并说明理由.(3)在(2)的条件下,连接EF,若AC=10,求EF的长.【答案】(1)详见解析;(2)详见解析;(3)EF【解析】【分析】(1)由∠ADB=∠ADC=90°,BD=AD,DG=DC,即可得;(2)由△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质即可得到DE=DF,DE ⊥DF ;(3)根据直角三角形的性质分别求出DE 、DF ,根据勾股定理计算即可. 【详解】(1)∵AD ⊥BC , ∴∠ADB=∠ADC=90°, 又∵BD=AD ,DG=DC , ∴△BDG ≌△ADC ;(2)DE=DF ,DE ⊥DF ,理由如下: ∵△BDG ≌△ADC , ∴BG=AC,∠EBD=∠FAD ,∵∠ADB=∠ADC=90°,E ,F 分别是BG ,AC 的中点, ∴11DE BG BE,DF AC AF 22====, ∴DE=DF , ∵ DE=BE , ∴∠EBD=∠EDB , ∵ DF=BF , ∴∠FDA=∠FAD , ∴∠EDB=∠FDA ,∵∠EDB+∠EDG=∠ADB=90°, ∴∠FDA+∠EDG=90°, ∴DE ⊥DF ;(3) ∵AC=10,∠ADC=90°,BG 、AC 的中点E 、F , ∴DE=DF=5,由(2)知,△DEF 是等腰直角三角形,由勾股定理得,EF ==【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.25.在四边形ABCD 中,//AD BC ,AD BC BD +=,AC 与BD 交于点F .(1) 如图1,求证:判断BCF 的形状并证明你的结论(2) 如图2,若45BAC ∠=︒,且=CF ,猜想:DBC ∠和ABD ∠的数量关系并证明(3) 如图3,若60BAC ∠=︒,点E 在AD 上,ACE ABD ∠=∠,2AD =,5CE =,则BD =_____【答案】(1)BCF 是等腰三角形,证明见解析;(2)2DBC ABD ∠=∠,证明见解析;(3)8. 【分析】(1)如图(见解析),延长BC 至点G ,使CG AD =,连接DG ,先根据平行四边形的判定与性质得出//AC DG ,再根据平行线的性质可得,BFC BDG BCF BGD ∠=∠∠=∠,然后根据等腰三角形的性质得出BDG BGD ∠=∠,最后根据等量代换可得BFC BCF ∠=∠,由此即可得;(2)如图(见解析),设AF a =,则CF =,先根据等腰三角形的三线合一得出12FH HC CF ===,12FBH DBC ∠=∠,再根据等腰直角三角形的判定与性质得出2EF =,从而得出EF FH =,然后根据角平分线的判定得出ABD FBH ∠=∠,最后根据等量代换即可得;(3)如图(见解析),设ACE ABD α∠=∠=,先利用平行线的性质、等腰三角形的性质可推出,BC CH EH AE ==,60BDK ∠=︒,再设EH AE x ==,从而可得5,2,7CH BC x DE CK x BK ==+==-=,然后根据60,90BDK DGK ∠=︒∠=︒,在Rt DKG 中利用直角三角形的性质可得DG 、KG 的长,从而在Rt BKG 中,利用勾股定理可求出BG 的长,由此即可得出答案. 【详解】(1)BCF 是等腰三角形,证明如下:如图,延长BC 至点G ,使CG AD =,连接DG//AD BC∴四边形ADGC 是平行四边形//AC DG ∴,BFC BDG BCF BGD ∴∠=∠∠=∠BD AD BC =+ BD CG BC BG ∴=+= BDG BGD ∴∠=∠ BFC BCF ∴∠=∠ BCF ∴是等腰三角形;(2)2DBC ABD ∠=∠,证明如下:如图,过点B 作BH AC ⊥于点H ,过点F 作FE AB ⊥于点E2CF =设AF a =,则CF =由(1)知,BCF 是等腰三角形122FH HC CF a ∴===,12FBH DBC ∠=∠(等腰三角形的三线合一)45BAC ∠=︒AEF ∴是等腰直角三角形22EF AF ∴== EF FH ∴=ABD FBH ∴∠=∠(角平分线的判定)12ABD DBC ∴∠=∠ 即2DBC ABD ∠=∠;(3)如图,延长CE 、BA 交于点H ,延长BC 至点K ,使CK DE =,连接DK ,过点K 作KG BD ⊥于点G 设ACE ABD α∠=∠=60BAC ∠=︒60BCF BFC BAC ABD α∴∠=∠=∠+∠=︒+60BF A D C F α∠=∴∠︒+=,860210BCF BFC DBK α∠-∠==︒︒-∠- //AD BC60DAF BCF α∴∠=∠=︒+602DEC ECB BCF ACE α∴∠=∠=∠+∠=︒+ //AD BC ,即//DE CK ,CK DE = ∴四边形EDKC 是平行四边形602DE CKD C α∠==︒+∴∠,5CE DK ==180180(602)6020()6BDK CKD DBK αα-∠=-∴∠=︒-∠︒-︒+︒-=︒H BAC ACE ∠+∠=∠60BA E H C AC α∴∠-∠==︒-∠ 60ABC AB DBK D α∠+∠=∠=︒- ABC H ∴∠=∠ BC CH ∴= //AD BC ABC HAE ∴∠=∠H HAE ∴∠=∠ EH AE ∴=设EH AE x ==,则5BC CH CE EH x ==+=+,2CK DE AD AE x ==-=-7BK BC CK ∴=+= 60,90BDK DGK ∠=︒∠=︒30DKG ∴∠=︒15,22DG DK KG DK ∴====112BG ∴==115822BD BG DG ∴=+=+=故答案为:8.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、直角三角形的性质、平行四边形的判定与性质等知识点,较难的是题(3),通过作辅助线,构造平行四边形和直角三角形是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省惠州市博罗县杨侨中学2020-2021学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列二次根式是最简二次根式的是()A B C D2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,11 D.5,12,23 3.如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm24.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A 的大小为()A.150°B.130°C.120°D.100°5.下列计算正确的是()A.(a﹣b)2=a2﹣b2B.x+2y=3xyC0=D.(﹣a3)2=﹣a66.(11·佛山)依次连接菱形的各边中点,得到的四边形是()A.矩形B.菱形C.正方形D.梯形7.已知数a,b-a,则()A.a>b B.a < b C.a≥b D.a≤b8.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形9.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.2 B.3 C.4 D.10.如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD于E 点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形,⑤CF=BD.正确的有()个.GHCEA.1 B.2 C.3 D.4二、填空题11有意义,则x的取值范围是________.12.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍________放入(填“能”或“不能”).13.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.14.长方形的面积是24,其中一边长是,则另一边长是_______ .15.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形是_______形。

它的面积为_______ .16.如图,正方形ABCO的顶点C,A分别在轴,轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D 的坐标是____________.三、解答题17.计算:(222-+-+18.如图,已知四边形ABCD 是平行四边形.(1)作图,作∠A 的平分线AE ,交CD 于点E ,(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断AD 与DE 的大小关系,并说明理由.19.如图所示,沿AE 折叠矩形,点D 恰好落在BC 边上的点F 处,已知AB=8cm ,BC=10cm ,求EC 的长.20.如图,每个小正方形的边长为1.(1)求四边形ABCD 的周长;(2)求证:∠BCD =90°.21.如图,点D 在△ABC 的边AB 上,点E 为AC 的中点,过点C 作CF ∥AB 交DE 的延长线于点F ,连接AF .(1)求证:CD=AF;(2)若∠AED=2∠ECD,求证:四边形ADCF是矩形.22.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.23.先化简,再求值:2222222a b a ba ab b b a a ab⎛⎫-+÷⎪-+--⎝⎭,其中,a b满足b=.24.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如这样的式子,其实我们还可以将其进一步化简:==1===.以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:221====-.(1)(2)化简: ...+++25.如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,∠QPN 的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C、D不重合).(1)如图①,当α=90°时,求证:DE+DF=AD.(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为12DE DF AD+=,请给出证明.(3)在(2)的条件下,将∠QPN绕点P旋转,若旋转过程中∠QPN的边PQ与边AD的延长线交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.参考答案1.D【解析】【分析】根据最简二次根式的定义即可求就出答案.【详解】(A )原式=A 错误;(B )原式=2,故错误;(C )原式=,故错误;(D )为最简二次根式,故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 2.B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A 、222456+≠,故不是直角三角形,错误;B 、22211,+= ,故是直角三角形,正确;C 、2226811,+≠ 故不是直角三角形,错误;D 、22251223,+≠故不是直角三角形,错误.故选:B .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.C【解析】(cm),∴S阴影=5×1=5(cm2),故选C.4.C【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.5.C【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】(A)原式=a2﹣2ab+b2,故A错误;(B)x与2y不是同类项,不能合并,原式=x+2y,故B错误;(C)原式=0=,故C正确;(D)原式=a6,故D错误;故选:C.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.A【解析】分析:先连接AC、BD,由于E、H是AB、AD中点,利用三角形中位线定理可知EH∥BD,同理易得FG∥BD,那么有EH∥FG,同理也有EF∥HG,易证四边形EFGH是平行四边形,而四边形ABCD是菱形,利用其性质有AC⊥BD,就有∠AOB=90°,再利用EF∥AC以及EH∥BD,两次利用平行线的性质可得∠HEF=∠BME=90°,即可得证.解答:解:如右图所示,四边形ABCD是菱形,顺次连接个边中点E、F、G、H,连接AC、BD,∵E、H是AB、AD中点,∴EH∥BD,同理有FG∥BD,∴EH∥FG,同理EF∥HG,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,又∵EF∥AC,∴∠BME=90,∵EH∥BD,∴∠HEF=∠BME=90°,∴四边形EFGH是矩形.故选A.7.D【分析】根据二次根式的非负性质即可得出答案.【详解】-,所以a≤b,=≥b a故选D.【点睛】考点:二次根式的性质.8.D【分析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.【点睛】此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.9.A【解析】【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=4,又∵DE是中位线,∴DE=12BC=2.故选:A.【点睛】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.10.C【分析】根据BC=2AB,H为BC中点,可得△ABH为等腰直角三角形,HE=BH=HC,可得△CEH为等腰三角形,又∠BCD=90°,CE⊥BD,利用互余关系得出角的相等关系,根据基本图形判断全等三角形,特殊三角形进行判断.【详解】解:①在△BCE中,∵CE⊥BD,H为BC中点,∴BC=2EH,又BC=2AB,∴EH=AB,①正确;②由①可知,BH=HE∴∠EBH=∠BEH,又∠ABG+∠EBH=∠BEH+∠HEC=90°,∴∠ABG=∠HEC,②正确;③由AB=BH,∠ABH=90°,得∠BAG=45°,同理:∠DHC=45°,∴∠EHC>∠DHC=45°,∴△ABG≌△HEC,③错误;④作AM⊥BD,则AM=CE,△AMD≌△CEB,∵AD∥BC,∴△ADG∽△HGB,∴AGGH=2,即△ABG的面积等于△BGH的面积的2倍,根据已知不能推出△AMG的面积等于△ABG的面积的一半,即S△GAD≠S四边形GHCE,∴④错误⑤∠ECH=∠CHF+∠F=45°+∠F,又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,∴∠F=∠HAC,∴CF=BD,⑤正确.正确的有3个.故选C.【点睛】考查了等腰三角形的判定与性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定.解答该题的关键是证明等腰三角形,全等三角形.11.x≥3【分析】根据二次根式被开方数为非负数进行求解.【详解】x-≥,由题意知,30解得,x≥3,故答案为:x≥3.【点睛】本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.12.能【解析】根据勾股定理可计算出长方体最大容纳长度70>,故答案为:能.13.10【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=10cm.故答案是:10.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.14.【分析】长方形的面积=长×宽,已知长方形的面积和一边的长,求另一边的长,用面积除以一边的长就能求出另一边的长.【详解】∵长方形的面积=24,一边的长是∴另一边的长=24÷故填:【点睛】本题考查了长方形面积公式的运用,更重要的是二次根式除法的计算,体现了乘法与除法的互相转化关系.15.菱【分析】根据勾股定理的逆定理可得对角线互相垂直,然后根据菱形性质可求出面积.【详解】∵平行四边形两条对角线互相平分,∴它们的一半分别为2∵222=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S =142⨯⨯故答案为:菱;【点睛】本题考查了菱形的判定与性质,利用了对角线互相垂直的平行四边形是菱形,菱形的面积是对角线乘积的一半.16.(2,1).【解析】试题分析:过点D作DG⊥BC于点G,∵四边形BDCE是菱形,∴BD=CD.∵BC=2,∠D=60°,∴△BCD是等边三角形,∴BD=BC=CD=2,∴CG=1,GD=CD•sin60°=2×∴D(2,1).故答案为(2,1).2考点:正方形的性质;坐标与图形性质;菱形的性质.17.1【分析】根据平方差公式与二次根式的运算法则即可求解.【详解】(222-+=4-3-3+3=1【点睛】此题主要考查二次根式的运算,解题的关键是熟知乘方公式与二次根式的运算法则. 18.(1)见解析;(2)AD=DE,理由见解析.【分析】(1)利用基本作图(作已知角的角平分线)作AE平分∠BAD;(2)先利用平行四边形的性质得AB∥CD,则∠AED=∠BAE,再利用角平分线定义得到∠DAE=∠BAE,所以∠DAE=∠DEA,于是可判定AD=DE.【详解】(1)解:如图,AE为所求;(2)△ADE为等腰三角形,理由是:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠AED=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠DAE=∠DEA,∴AD=DE.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.19.3【分析】先根据矩形的性质得AD=BC=10,AB=CD=8,再根据折叠的性质得AF=AD=10,EF =DE,在Rt△ABF中,利用勾股定理计算出BF=6,则CF=BC−BF=4,设CE=x,则DE=EF=8−x,然后在Rt△ECF中根据勾股定理得到x2+42=(8−x)2,再解方程即可得到CE的长.【详解】∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF=6,∴CF=BC−BF=10−6=4,设CE=x,则DE=EF=8−x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+42=(8−x)2,解得x=3,即CE=3.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.20.(1)8√2+2√34;(2)证明见解析.【解析】试题分析:(1)借助正方形的小格,根据勾股定理分别计算四边形的各边的长,从而求得四边形的周长;(2)在ΔABC中,根据勾股定理的逆定理进行判定.试题解析:(1)根据勾股定理可知AB=3√2,BC=√34,CD=√34,AD=5√2,∴四边形ABCD 的周长为8√2+2√34.(2)证明:连接BD,∵BC=√34,CD=√34,DB=√68,∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90°【点睛】本题主要考查了勾股定理的运用以及勾股定理逆定理的运用,属于中档题,看清题目,仔细分析题意,搞清楚所要求的问题,结合所给条件才开始动手做题可以事半功倍,切勿没分析清楚就冒然下手,造成错误且浪费时间.做完后要养成及时检查正误的习惯,才能提高正确率21.(1)见解析;(2)见解析.【分析】(1)首先证明△AED≌△CFE,即可证得四边形ADCF的对角线互相平分,依据对角线互相平分的四边形是平行四边形即可证得;(2)利用三角形的外角的性质即可证得∠EDC=∠ECD,则根据等角对等边即可证得DE =EC,从而证明平行四边形ADCF的对角线相等,即可证得.【详解】(1)∵CF∥AB,∴∠EFC=∠ADE,则在△AED和△CFE中,EFC ADE AED CEF AE CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AED ≌△CFE ,∴DE =FE ,又∵AE =CE ,∴四边形ADCF 是平行四边形,∴CD =AF ;(2)∵∠AED =2∠ECD ,∠AED =∠ECD +∠EDC ,∴∠EDC =∠ECD ,∴DE =EC ,又∵DE =FE ,AE =CE ,∴AC =DF ,∴平行四边形ADCF 是矩形.【点睛】本题考查了平行四边形的判定方法与矩形的判定方法,以及等腰三角形的判定方法,正确理解判定方法是关键.22.【解析】【分析】(1)欲证明四边形ADCE 是菱形,需先证明四边形ADCE 为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC 的长度,由含30度角的直角三角形的性质求得DE 的长度,然后由菱形的面积公式:S=12AC•DE 进行解答. 【详解】(1)证明:∵DE ∥BC ,EC ∥AB ,∴四边形DBCE 是平行四边形.∴EC ∥DB ,且EC=DB .在Rt △ABC 中,CD 为AB 边上的中线,∴AD=DB=CD .∴EC=AD .∴四边形ADCE 是平行四边形.∴ED ∥BC .∴∠AOD=∠ACB .∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE 是菱形;(2)解:Rt △ABC 中,CD 为AB 边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得AC=∵四边形DBCE 是平行四边形,∴DE=BC=6.∴=2ADCE AC ED S ⋅菱形. 考点: 菱形的判定与性质;勾股定理23.-3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】原式=22()()()[]()a b a b a a a b a b a b b +---⨯-- =2()b a a b a b b-⨯- =a b ,0b =,∴10{0a b +==, 解得:a=-1,则原式24.(12)1【分析】(1)根据材料的方法即可求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案.【详解】 (1222==;②原式==;(2...+++=21222...1...1=1【点睛】本题主要考查了分母有理化,解题的关键是找准有理化因式.25.(1)见解析(2)见解析(3)DF−DE =12AD . 【分析】 (1)利用正方形的性质得出角与线段的关系,易证得△APE ≌△DPF ,可得出AE =DF ,即可得出结论DE +DF =AD ,(2)取AD 的中点M ,连接PM ,利用菱形的性质,可得出△MDP 是等边三角形,易证△MPE ≌△FPD ,得出ME =DF ,由DE +ME =12AD ,即可得出DE +DF =12AD , (3)①当点E 落在AD 上时,DE +DF =12AD ,②当点E 落在AD 的延长线上时,DF−DE =12AD . 【详解】(1)正方形ABCD 的对角线AC ,BD 交于点P ,∴PA =PD ,∠PAE =∠PDF =45°,∵∠APE +∠EPD =∠DPF +∠EPD =90°,∴∠APE =∠DPF ,在△APE 和△DPF 中APE DPE PA PDPAE PDE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△APE ≌△DPF (ASA ),∴AE =DF ,∴DE +DF =AD ;(2)如图②,取AD 的中点M ,连接PM ,∵四边形ABCD 为∠ADC =120°的菱形,∴BD =AD ,∠DAP =30°,∠ADP =∠CDP =60°,∴△MDP 是等边三角形,∴PM =PD ,∠PME =∠PDF =60°,∵∠PAM =30°,∴∠MPD =60°,∵∠QPN =60°,∴∠MPE =∠FPD ,在△MPE 和△DPF 中,PME PDF PM PDMPE EPD ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△MPE ≌△DPF (ASA )∴ME =DF ,∴DE +DF =12AD ; (3)如图,如图③,当点E 落在AD 的延长线上时,取AD 的中点M ,连接PM ,∵四边形ABCD 为菱形,∠ADC =120°,∴AD =CD ,∠DAP =30°,AC ⊥BD ,∴∠ADP =∠CDP =60°,∵AM =MD ,∴PM =MD ,∴△MDP 是等边三角形,∴∠PME =∠MPD =60°,PM =PD ,∵∠QPN =60°,∴∠MPE =∠FPD ,在△MPE 和△DPF 中,PME PDF PM PDMPE FPD ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△MPE ≌△DPF (ASA ).∴ME =DF ,∴DF−DE =ME−DE =DM =12AD . 【点睛】本题主要考查了四边形的综合题,涉及全等三角形,正方形及菱形的性质,解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与线段之间的等量关系.。

相关文档
最新文档