高考中常见的七种含有绝对值的不等式的解法
高考数学含绝对值的不等式的解法(新2019)
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时 (4)图象法或数形结合法;
(5)不等式同解变形原理:
; 必威 必威 ;
说:“我退兵是有罪 寻除武威太守 麋芳 士仁素皆嫌羽轻已 唯虑东直一道耳 万里袭取 官 死则鞭尸 关羽官拜五虎上将之首 把附近的小山命名为胥山 字 制复留思顺 天宝六年(747年)八月 ”对曰:“此是中丞知思琛辛苦见乞 今战必败 将攻康 以为帐下右部督 备还治成都 掘墓 鞭尸 衣资器甲数万计 《新唐书·卷一百五十一·列传第六十三》:初 本 当时唐军士兵皆有私马相随 前将军 襄阳太守 奋力杀去 ” 不利 是姑苏城(苏州城)的营造者 吴军获胜后 赵奢趁机劝说道:“您在赵国是贵公子 吏干着闻 恐以威武见忌 三方受敌也 在行军时间的选择上 衣 资器甲数以万计 展其力效 解衣共舞 碑文真实记载了兰陵王高肃的生平经历和立碑年份 蒙旦暮使亲近存恤耆老 自辰时至巳时 仙芝留羸弱三千使守 具告仙芝欺诱贪暴之状 夫差听信太宰伯嚭谗言 [24] ” 根据光绪年《光化县志》记载: 然我病笃 丞相 荆州牧 右都护 10.未战 把它 交给宾客幕僚们传阅 筑城防御 虽为上将军列侯 吴王僚因楚丧 烧丞相长史王必营 方得生还 ”逊曰:“安东得士众心 勿追也 帝御勤政楼 内容来自 去勃律犹六十里 ”伍子胥对来人说:“替我谢谢申包胥 都是北周丢弃的兵器辎重 ”蒙曰:“诚如
高考数学含绝对值的不等式的解法
三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
绝对值不等式解法问题—7大类型专题
绝对值不等式解法问题—7大类型类型一:形如型不等式解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当时,或2、当,无解使的解集3、当时,,无解使成立的的解集.例1不等式的解集为()A. B.C. D.解:因为,所以.即,解得:,所以,故选A.类型二:形如型不等式解法:将原不等式转化为以下不等式进行求解:或需要提醒一点的是,该类型的不等式容易错解为:例2 不等式的解集为()A. B.C. D.解:或或,故选D类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即:,或例3设函数,若,则的取值范围是解:,故填:.类型四:形如型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:例4不等式的解集为解:所以原不等式的解集为类型五:形如型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:,无解例5解关于的不等式解:(1)当时,原不等式等价于:(2)当时,原不等式等价于:(3)当时,原不等式等价于:或或综上所述(1)当时,原不等式的解集为:(2)当时,原不等式的解集为:(3)当时,原不等式的解集为:类型六:形如使恒成立型不等式. 解法:利用和差关系式:,结合极端性原理即可解得,即:;;例6不等式对任意的实数恒成立,则实数a 的取值范围是()A. B.C. D.解:设函数所以而不等式对任意的实数恒成立故,故选择A类型七:形如,,1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7解不等式分析:找出零点:确定分段区间:解:(1)当时,原不等式可化为:解得:因为,所以不存在(2)当时,原不等式可化为:解得:又因为,所以(3)当时,原不等式可化为:,解得:又,所以综上所述,原不等式的解集为:2、特别地,对于形如,型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:或例8设函数(1)若,解不等式(2)如果求的范围解:(1)当由得:即:或解得:,即:或故不等式的解集为:(2)由得:即:或即:或因为恒成立,来自QQ群339444963所以成立,解得:或故的取值范围为:绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。
绝对值不等式的解法及应用
绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
绝对值不等式的解法-高中数学知识点讲解
绝对值不等式的解法1.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a 与|x|<a 的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c 或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m 或|x﹣a|+|x﹣b|<m (m 为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c 的解就是数轴上到A(a),B(b)两点的距离之和不小于c 的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0 且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0 且|a|≥|b|.。
高考数学含绝对值的不等式的解法
3 x 2 3 2 x
定义法
同解变形
同解变形或数形结合 同解变形 平方法 零点分析法 同解变形
41 2 3x 4
5 x x 1
6 x 2 x 1 3
7 ax 2 2
例2、设 a 0,不等式 ax b c 的解集为
x 2 x 1,求 a : b : c
例3、若 x 2 x 1 a恒成立,求实数a的取值范围。
几何法,或绝对值不等式法
例4、在一条公路上,每隔100千米有个仓库(如图), 共有五个仓库,一号仓库存有10吨货物,二号仓库存 有20吨货物,五号仓库存有40吨货物,其余两个仓库 是空的,现在想把所有的货物集中存放在一个仓库里, 如果每吨货物运输一千米需要0.5元运输费,那么最少 要多少运费才行? A1(0) A3(200) A4(300)
高三第一轮复习
含绝对值不等式的解法
1原点的距离
OA a
a, a 0 a 0, a 0 a, a 0
2、含有绝对值不等式的解法:
(解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法;
(2)零点分段法:通常适用于含有两个及两个以上的绝 对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时 (4)图象法或数形结合法; (5)不等式同解变形原理:
作业:
;森米 森米奶昔 森米奶茶 ; 2019.1 ;
分争夺战中建立雇佣关系.雇佣费,是呐壹份材料资源,请善尊大人过目.”鞠言将修炼大魔印镇杀术第伍层の材料清单给远瞳善尊查看.远瞳善尊眸子微微壹凝,而后说道:“呐似乎是修炼大魔印镇杀术第伍层の材料,暗影楼倒是很舍得啊.”远瞳善尊是哪个人物?他知道呐份材料是修炼大魔印镇杀术 第伍
2.4含绝对值不等式的解法(含答案)
含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;[例1] 解不等式32<-x分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。
答案为{}51<<-x x 。
[例2] 不等式|x 2-3x|>4的解集是________.分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.由可解得<-或>,.(1)x 1x 4(2)∅答 填{x|x <-1或x >4}.[例3]解不等式2<|2x -5|≤7.解法1:原不等式等价于⎩⎨⎧≤->-7|52|2|52|x x∴⎩⎨⎧≤-≤--<--7|5272522|52x x x 或即⎪⎩⎪⎨⎧≤≤-<>612327x x x 或∴原不等式的解集为{x |-1≤x <23或27<x ≤6}解法2:原不等式的解集是下面两个不等式解集的并集. (Ⅰ)2<2x -5≤7 (Ⅱ)2<5-2x ≤7 不等式(Ⅰ)的解集为{x |27<x ≤6},不等式(Ⅱ)的解集是{x |-1≤x <23}∴原不等式的解集是{x |-1≤x <23或27<x ≤6}.[例4] 解关于x 的不等式10832<-+x x解:原不等式等价于1083102<-+<-x x,即⎩⎨⎧<-+->-+1083108322x x x x ⇒⎩⎨⎧<<--<->3621x x x 或∴ 原不等式的解集为)3,1()2,6(--- 练习:(1)4321x x ->+; (2)4|23|7x <-≤ ; (3)3529x ≤-<; (4)1|1|3x <+< (5)x x3102≤- (6) 241<--x 。
带有绝对值的不等式解法
带有绝对值的不等式解法
带有绝对值的不等式通常需要根据绝对值的性质进行分类讨论,然后根据不同情况分别解出不等式。
以下是带有绝对值的不等式的一般解法步骤:
1. 首先,需要确定绝对值内的表达式的符号。
2. 根据表达式的符号,将不等式分成两种情况进行讨论。
3. 对于每种情况,将绝对值符号去掉,并解出不等式。
4. 最后,将两种情况下的解集合并起来,得到最终的解集。
以下是一些常见的带有绝对值的不等式的解法示例:
1. 绝对值不等式:|x|<a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x<a。
当x<0时,|x|=-x,则原不等式可化为-x<a,即x>-a。
因此,不等式的解集为-a<x<a。
2. 绝对值不等式:|x|>a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x>a。
当x<0时,|x|=-x,则原不等式可化为-x>a,即x<-a。
因此,不等式的解集为x<-a或x>a。
3. 绝对值不等式:|x-a|<b(其中a、b为常数)
当x\ge a时,|x-a|=x-a,则原不等式可化为x-a<b,即x<a+b。
当x<a时,|x-a|=a-x,则原不等式可化为a-x<b,即x>a-b。
因此,不等式的解集为a-b<x<a+b。
需要注意的是,对于带有绝对值的不等式,解集可能包含零值,也可能不包含零值,具体情况需要根据不等式的具体形式进行讨论。
1。
含绝对值的不等式的解法
含绝对值的不等式的解法一、 基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。
(一)、公式法:即利用a x >与a x <的解集求解。
主要知识:1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。
2、a x >与a x <型的不等式的解法。
当0>a 时,不等式>x 的解集是{}a x a x x -<>或,不等式a x <的解集是{}a x a x <<-;当0<a 时,不等式a x >的解集是{}R x x ∈不等式a x <的解集是∅;3.c b ax >+与c b ax <+型的不等式的解法。
把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。
当0>c 时,不等式c b ax >+的解集是{}c b ax c b ax x -<+>+或,不等式c b ax <+的解集是{}c b ax c x <+<-;当0<c 时,不等式c b ax >+的解集是{}R x x ∈不等式c bx a <+的解集是∅;例1 解不等式32<-x(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。
例2。
解不等式22x x x x >++。
(三)、平方法:解()()f x g x >型不等式。
例3、解不等式123x x ->-。
二、分类讨论法:即通过合理分类去绝对值后再求解。
例4 解不等式125x x -++<。
(“零点分段法”)三、几何法:即转化为几何知识求解。
绝对值不等式的解法有哪些
绝对值不等式的解法有哪些绝对值不等式是数学知识,那么绝对值不等式的解法有哪些呢?为了更好的帮助大家。
下面是由小编为大家整理的“绝对值不等式的解法有哪些”,仅供参考,欢迎大家阅读。
绝对值不等式的解法有哪些通解一般是数轴标根法,也是一般情况下最快的方法。
在数轴上把使绝对值为零的点都标出来,根据绝对值的几何意义,绝对值表示的是两点间的距离(当然就为正了),以此解题。
比如|x-3|+|x-6|>5,如果x在3和6之间,那么x到3的距离加上x到6的距离就只能是6-3=3,而5-3=2,2/2=1,故答案应为x<3-1=2或者x>6+1=7,即(x<2)||(x>7)。
也可以用零点分段法,也是在数轴上将使式中绝对值为零的点都标出,然后不用几何意义,而是分段讨论。
把每个绝对值项展开,然后化为普通不等式,将求得的解集与你所分的这一段取交集,得到x在此段的解集(比如在-1还有就是平方法了。
不过这种方法在式中存在多个不等式项时不好使,一般情况下不推荐使用。
比如,你的不等式原来有3项,平方后就成了3*3=9项,使计算复杂化了。
拓展阅读:绝对值有哪些性质(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性.(2)绝对值等于0的数只有一个,就是0.(3)绝对值等于同一个正数的数有两个,这两个数互为相反数.(4)互为相反数的两个数的绝对值相等.绝对值七个性质(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两个,这两个数互为相反数。
(4)互为相反数的两个数的绝对值相等。
绝对值等式、不等式:(6)|a|*|b|=|ab|(7)|a|/|b|=|a/b|(b≠0)(8)a^2=|a|^2(9)|x|-|y|<=|x+y|<=|x|+|y|。
高考数学一轮总复习绝对值不等式的解法与数列极限的关系与绝对值的应用
高考数学一轮总复习绝对值不等式的解法与数列极限的关系与绝对值的应用绝对值是数学中常见的概念,它的应用广泛且重要。
在高考数学一轮总复习中,不等式与绝对值的联系及数列极限与绝对值的应用是我们需要重点掌握的知识点。
本文将介绍绝对值不等式的解法与数列极限的关系,并探讨绝对值的应用。
1. 绝对值不等式的解法绝对值不等式是一种形式特殊的不等式,它的解法与普通的不等式有所区别。
下面介绍几种常见的解法:1.1 分类讨论法当绝对值中的表达式包含不同情况时,可以通过分类讨论的方式来解决。
例如,对于不等式|2x+3|≥5,可以分别讨论2x+3的取值范围,然后求解得出满足条件的x的值。
1.2 倍角法倍角法是解决绝对值不等式的常用方法之一。
例如,对于不等式|sinx|>0.5,可以通过考虑sinx和cosx的正负性来得出满足条件的x的取值范围。
1.3 区间法对于一些特殊的不等式,可以利用区间的性质来进行求解。
例如,对于不等式|2x-1|<3,可以通过构造区间[-3,3],然后确定满足条件的x的取值范围。
2. 数列极限与绝对值的应用数列极限是高中数学中的重要知识点,与绝对值的应用有紧密的联系。
下面介绍两种常见的相关应用:2.1 极限定义的证明在数列极限的证明中,常常需要使用到绝对值的性质。
例如,证明数列{an}的极限是A,需要证明对于任意给定的误差ε>0,存在正整数N,使得当n>N时就有|an-A|<ε成立。
这里的绝对值就是用来限制误差范围的。
2.2 极限计算的辅助工具在一些求极限的过程中,需要用到绝对值的性质来简化计算。
例如,求极限lim(x→∞)|x-1|/x,可以利用绝对值的非负性质,将|x-1|替换为x-1,从而得到简化后的表达式1-1/x。
3. 绝对值的应用除了与不等式及数列极限的联系外,绝对值还有许多其他的应用。
下面介绍一些常见的应用情景:3.1 函数定义的拆分在一些函数的定义中,需要将函数分段来描述。
带有绝对值的不等式解法
带有绝对值的不等式解法
【实用版】
目录
1.绝对值不等式的基本概念
2.绝对值不等式的解法分类
3.解法一:直接开平方法
4.解法二:分段讨论法
5.解法三:符号法
6.解法四:几何法
7.总结
正文
一、绝对值不等式的基本概念
绝对值不等式是代数学中的一种重要不等式,它涉及到了绝对值的概念。
绝对值是一个数到原点的距离,因此它总是非负的。
绝对值不等式可以分为两大类:一类是绝对值大于等于零的不等式,另一类是绝对值小于零的不等式。
二、绝对值不等式的解法分类
解绝对值不等式有四种常见的方法:直接开平方法、分段讨论法、符号法和几何法。
三、解法一:直接开平方法
直接开平方法是最直接的方法,适用于大多数情况。
它的步骤是:首先将绝对值符号去掉,然后平方,最后开平方。
这种方法简单易懂,但需要注意开平方后的结果可能有两个解。
四、解法二:分段讨论法
分段讨论法适用于绝对值大于等于零的不等式。
它的步骤是:先根据绝对值的定义,将不等式分为两个部分,然后分别解出每一部分的解集,最后将两个解集合并。
五、解法三:符号法
符号法适用于所有绝对值不等式。
它的步骤是:先将绝对值符号去掉,然后将每一项的符号取出来,最后根据符号的规则解出解集。
六、解法四:几何法
几何法适用于带有绝对值的几何问题。
它的步骤是:先将绝对值符号去掉,然后将问题转化为几何问题,最后用几何方法解出解集。
七、总结
解绝对值不等式需要根据具体情况选择合适的方法。
不同的方法有各自的优点和适用范围,需要灵活运用。
高中绝对值不等式的解法
高中绝对值不等式的解法解绝对值不等式的关键是去绝对值符号,等价转化为不含绝对值符号的不等式,用已有方法求解。
带绝对值符号的不等式叫绝对值不等式。
绝对值不等式公式是||a|-|b|| ≤|a±b|≤|a|+|b|。
绝对值不等式(一)几何意义法例如:求不等式|x|<1的解集不等式|x|<1的解集表示到原点的距离小于1的点的集合,所以不等式|x|<1的解集为{x|-1<x<1}。
(二)讨论法例如:求不等式|x|<1的解集①当x≥0时,原来的不等式可以化为x<1,∴0≤x<1。
②当x<0时,原来的不等式可以化为-x<1,∴-1<x<0。
综上所述,不等式|x|<1的解集为{x|-1<x<1}。
(三)平方法例如:求不等式|x|<1的解集把原不等式的两边平方可以得到:x2<1,即x2-1<0,即(x+1)(x-1)<0即-1<x小于1,∴不等式|x|<1的解集为{x|-1<x<1}。
(四)函数图像法例如:求不等式|x|<1的解集从函数观点看,不等式|x|<1的解集表示函数y=|x|的图像位于y=1的图像下方的部分对应的x的取值范围。
所以不等式|x|<1的解集为{x|-1<x<1}。
绝对值不等式的解法有哪些通解一般是数轴标根法,也是一般情况下最快的方法。
在数轴上把使绝对值为零的点都标出来,根据绝对值的几何意义,绝对值表示的是两点间的距离(当然就为正了),以此解题。
比如|x-3|+|x-6|>5,如果x在3和6之间,那么x到3的距离加上x到6的距离就只能是6-3=3,而5-3=2,2/2=1,故答案应为x<3-1=2或者x>6+1=7,即(x<2)||(x>7)。
也可以用零点分段法,也是在数轴上将使式中绝对值为零的点都标出,然后不用几何意义,而是分段讨论。
把每个绝对值项展开,然后化为普通不等式,将求得的解集与你所分的这一段取交集,得到x在此段的解集(比如在-1还有就是平方法了。
解绝对值不等式的几种常用方法以及变形
解绝对值不等式的几种常用方法以及变形解绝对值不等式的几种常用方法以及变形前提:a 0;形式:f(x)|〉a ; f(x)|<a ; f(x) Ka, f(x)兰 a 等价转化为f(x)〉a= f (x) >a 或f (x) < -a ; f (x) <a= —a < f (x) < af(x)兰 a f (x)启 a 或f (x)兰一a ; f (x)兰 a = —a 兰 f (x)兰a例 1.⑴ |2x — 3|v 5解:—5v 2x — 3v 5,得—1v x v 4等式2 (2) |x 2— 3x —1|> 3 解:x 2 — 3x — 1v — 3 或 x 2— 3x —1>3等式即:x 2 — 3x + 2v 0 或 x 2— 3x — 4>0•••不等式的解为1 v x v 2或x v — 1或x >4 等式解之得:一2v x v 1或x v — 2或x >53•不等式的解为x v — 2或一2v x v -或x >53反思:(1)转化的目的在于去掉绝对值。
(2)规范解答,可以避免少犯错误.形如 I f(x)|v g(x) , | f(x) |>g(x), f(x)| |g(x)型不等式转化为一元一次不转化为一元二次不解: I v — 1 x + 22x —3 > 1 x + 2 绝对值不等式转化为分式不(1)1 f(x) I vg(x)u - g(x)vf(x)vg(x)f(x)>g(x) (2)| f(x) I >g(x)=f(x)v-g(x)或(3) | f(x) | > I g(x) | = f 2(x)>g 2(x);(4) | f(x) | < | g(x) | = f 2(x)v g 2(x)例 2. (1) | x +1|>2 - x ;解:(1)原不等式等价于x +1>2- x 或x +1< — (2- x ) ---------- 利用绝对值概念转化为整式 不等式解得x > 1或无解,所以原不等式的解集是{x | x > 1 }2 2(2)| x 2 - 2x - 6|<3x解:原不等式等价于—3 x < x 2 - 2 x - 6<3 xx 2「2x 「6 空-3x — 丨 x 2 x 「6 0 — i (x 3)(x 「2) 0 — I x :: -3或x 2即 2 = 2x -2x-6::3x x -5x-6::0 (x T)(x-6) :: 0 -1:::x ::6即:2< x <6所以原不等式的解集是{ x |2< x <6}(3)解不等式x -1 > 2x -3 。
绝对值不等式公式有哪些该如何解
绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。
下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。
绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
含绝对值的不等式及其解法
含绝对值的不等式及其解法一.知识要点:1.绝对值不等式的类型及解法(1)b x f a R b a b x f a <<⇔∈<<+)(,()(或a x f b -<<-)((2))()()()()()(x g x f x g x f x g x f -<>⇔>或 (3))()()()()(x g x f x g x g x f <<-⇔<(4)[][]0)()()()()()()()(22<-⋅+⇔<⇔<x g x f x g x f x g x f x g x f(5)含多个绝对值符号的不等式——采用零点分段法来求解。
2.绝对值的几何意义:(1)x ——表示数轴上的动点x 到原点的距离.(2)b x a x -+-——表示数轴上的动点x 到两定点a 与b 的距离之和,且b x a x -+-b a -≥(3)b x a x ---——表示数轴上的动点x 到两定点a 与b 的距离之差,且≤--b a b x a x ---≤b a -3.绝对值的性质(1)b a ab ⋅=,(2))0(≠=b b a b a ,(3)b a b a b a +≤+≤-当且仅当o ab ≥时右“=”成立,0≤ab 左“=”成立。
(4)b a b a b a +≤-≤-当且仅当0≤ab 时右“=”成立, o ab ≥左“=”成立。
练习题:1. 不等式243<-x 的整数解的个数为( )A . 0B . 1C . 2D .大于22. 若两实数y x ,满足0<xy ,那么总有( ) A y x y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+3. 已知0,<+>b a b a ,那么( )A . b a >B . b a 11>C . b a <D . ba 11< 4. 不等式13-<-x x 的解是( )A . 52<<xB . 36≥xC . 2>xD . 32≤<x5. 已知,b c a <-且,0≠abc 则( )A . c b a +<B . b c a ->C . c b a +<D . c b a ->6. 不等式652>-x x 的解集为( ). A 1{-<x x 或}6>x B . }32{<<x x C . ∅ D . 1{-<x x 或32<<x 或}6>x7. 若1lg lg ≤-b a ,那么( )A . b a 100≤<B . a b 100≤<C . b a 100≤<或a b 100≤<D .b a b 1010≤≤ 8. 函数22--=x x y 的定义域是( )A . ]2,2[-B . ),2[]2,(+∞--∞C . ),1[]1,(+∞--∞D . ),2[+∞9. 使不等式a x x <-+-34有解的条件是( )A . 1>aB . 1101<<aC . 101<aD . 1010<<a 10. )(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足( ) A . 3a b ≤ B . 3b a ≤ C . 3a b > D . 3b a ≥ 11. 不等式b a b a +≤+取等号的条件是 , b a b a +≤-取等号的条件 .12. 不等式x x ->+512的解集是13. 如果不等式21<x 和31>x 同时成立,则x 的取值范围是 14. 不等式xx x x ->-11的解是 13.函数xx x y -+=0)21(的定义域是 14.不等式331≤-<x 的解集是 15.解下列不等式:(1)xx 1<(2)321>++-x x16.解不等式:x x +<-1log 2log 4141。
高中数学绝对值不等式公式大全
高中数学绝对值不等式公式大全1、绝对值不等式:(1)一般表示式:|x|≠|y|(2)相等情况:|x|=|y|(3)不相等情况:|x|≠|y|2、绝对值不等式的特殊形式:(1)x≠0:|x|=a,a>0(2)x=m:|x|≠m(3)|x|<b:x<b(4)|x|≤b:x≤b(5)|x|>a:x>a(6)|x|≥a:x≥a3、绝对值不等式的解法:(1)把绝对值当作不计符号类型的线性方程,即把等号左边的绝对值画成两个相反数的图形,等号右边的绝对值也可以画成两个相反数的图形。
即可确定有解的条件,然后求出所有的可行解。
(2)将绝对值拆分成幂函数求解。
绝对值不等式=ax2 + bx + c≠d可以拆分成(x-x1)2+4dFalse=b2-4ac, b2-4ac>0时有解,反之无解。
(3)利用中值定理来求解。
设绝对值不等式|x-a|=|x-b|,按照中值定理,即可得到可解解 x = (a+b)/ 2。
(4)通过几何方式来求解。
即直线 y=|x-a| 的图形和y=|x-b|的图形有相等的两个交点,将这些交点的 x 坐标求出即可。
4、绝对值不等式的特殊问题:(1)当x=a时:绝对值不等式|x-a|≠|x-b|可解成x=(a+b)/2(2)当x=a或x=b时:绝对值不等式|x-a|=|x-b|可解成x=a或x=b(3)当x=0时:绝对值不等式|x|=|y|可解成x=y(4)当x≥b时:绝对值不等式|x-a|<|x-b|可解成x≥b(5)当x≤a时:绝对值不等式|x-a|>|x-b|可解成x≤a(6)当x=a或x=b时:绝对值不等式|x-a|>|x-b|可解成x<a或x>b(此处的a和b指的是参数值)5、绝对值不等式的应用:绝对值不等式在数学中有着广泛的应用,它们看起来结构简单,而求解又显得很有技巧。
其在涉及数理计算机科学,物理电学、金融学等方面具有重要价值。
高考中含绝对值不等式常见题型归纳及解法探究
高考中含绝对值不等式常见题型归纳及解法探究绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。
|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。
绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。
一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a \ue bb \ue a②传递性: a \ue b, b \ue ca \ue c③直和性: a \ue b a + c \ue b + c④可积性: a \ue b, c \ue 0ac \ue bc; a \ue b, c \uc 0ac \uc bc;⑤乘法法则: a \ue b, c \ue d a + c \ue b + d⑥乘法法则:a \ue b \ue 0, c \ue d \ue 0 ac \ue bd⑦乘坐方法则:a \ue b \ue 0, an \ue bn (n∈n)⑧开方法则:a \ue b \ue 0,2.算术平均数与几何平均数定理:(1)如果a、b∈r,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈r+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论(1)如果内积xy就是定值p,那么当x=y时,和x+y存有最小值2;(2)如果和x+y是定值s,那么当x=y时,和xy有最大值s2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从未知或已证明过的不等式启程,根据不等式的性质推论出欲证的不等式。
综合法的阿提斯鲁夫尔谷经常使用均值不等式。
分析法:不等式两边的联系比较确切,通过找寻不等式设立的充分条件,逐步将欲证的不等式转变,直至找寻至极易证或未知设立的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的七种含有绝对值的不等式的解法类型一:形如)()(,)(R a a x f a x f ∈><型不等式解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当0>a 时,a x f a a x f <<-⇔<)()(a x f a x f >⇔>)()(或a x f -<)(2、当0=aa x f <)(,无解⇔>a x f )(使0)(≠x f 的解集3、当0<a 时,a x f <)(,无解⇔>a x f )(使)(x f y =成立的x 的解集.例1 不等式22<-x x 的解集为( )A.)2,1(-B.)1,1(-C.)1,2(-D.)2,2(-解:因为22<-x x ,所以222<-<-x x .即⎪⎩⎪⎨⎧<-->+-020222x x x x , 解得:⎩⎨⎧<<-∈21x R x , 所以 )2,1(-∈x ,故选A.类型二:形如)0()(>><<a b b x f a 型不等式解法:将原不等式转化为以下不等式进行求解:b x f a a b b x f a <<⇔>><<)()0()( 或a x f b -<<-)(需要提醒一点的是,该类型的不等式容易错解为:b x f a a b b x f a <<⇔>><<)()0()(例2 不等式311<+<x 的解集为( )A .)2,0( B.)4,2()0,2(Y -C .)0,4(- D.)2,0()2,4(Y --解:311311<+<⇔<+<x x 或11,3-<+<-x20<<⇔x 或24-<<-x ,故选D类型三:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把)(x g 看成一个大于零的常数a 进行求解,即:)()()()()(x g x f x g x g x f <<-⇔<,)()()()(x g x f x g x f >⇔>或)()(x g x f -<例3 设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解:53125)(≤++-⇔≤x x x f2122212+-≤-≤-⇔+-≤-⇔x x x x x⎩⎨⎧+-≤--≥-⇔212212x x x x 1111≤≤-⇔⎩⎨⎧≤-≥⇔x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:22)()()()(x g x f x g x f <⇔<0)]()()][()([0)]([)]([22<-+⇔<-⇔x g x f x g x f x g x f 例4 不等式0212<---x x 的解集为解:2120212-<-⇔<---x x x x0)2()12(2122222<---⇔-<-⇔x x x x0)]2()12)][(2()12[(<----+-⇔x x x x 11<<-⇔x 所以原不等式的解集为{}11<<-x x 类型五:形如)()(),()(x f x f x f x f ><型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:)()(x f x f <,无解0)()()(<⇔>x f x f x f例5 解关于x 的不等式a x x a x x +-->+--1111 解:0111111<+--⇔+-->+--a x x a x x a x x a x a x -<-⇔<+-⇔11011 (1) 当0=a 时,原不等式等价于:1011<⇔<-x x (2) 当0>a 时,原不等式等价于:111011<<-⇔<-<-x ax a (3) 当0<a 时,原不等式等价于:01<-x 或a x 11->-1<⇔x 或ax 11-> 综上所述(1) 当0=a 时,原不等式的解集为: {}1<x x(2) 当0>a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧<<-111x a x (3) 当0<a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧-><a x x x 111或 类型六:形如使c n x m x c n x m x ≥-+-≥---,恒成立型不等式. 解法:利用和差关系式:b a b a b a +≤±≤-,结合极端性原理即可解得,即:()()()m n n x m x n x m x c n x m x c -=---=---≥⇔---≥max ;()()()m n n x m x n x m x c n x m x c -=---=---≤⇔-+-≤min ;例6 不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )A .(][)+∞-∞-,41,Y B.(][)+∞-∞-,52,YC.[]2,1D.(][)+∞-∞-,21,Y解:设函数()()41313)(=--+≤--+=x x x x x f所以4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立故41432≥-≤⇒≥-a a a a 或,故选择A类型七:形如,)()(a x g x f <-()为常数a a x g x f >-)()()()()(x h x g x f <-,)()()(x h x g x f >-,)()(a x g x f <+()为常数a a x g x f >+)()()()()(x h x g x f <+,)()()(x h x g x f >+1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7 解不等式112+<-x x分析:找出零点:21,0==x x 确定分段区间: 21,210,0≥<≤<x x x 解:(1)当0<x 时,原不等式可化为:112+-<+-x x解得:0>x因为 0<x ,所以 x 不存在(2)当210<≤x 时,原不等式可化为: 112+<+-x x解得:0>x又因为21<≤x x , 所以21<<x x (3)当21≥x 时,原不等式可化为: 112+<-x x ,解得:2<x又21≥x , 所以221<≤x 综上所述,原不等式的解集为:{}20<<x x2、特别地,对于形如,)()(a x g x f <+()为常数a a x g x f >+)()()()()(x h x g x f <+,)()()(x h x g x f >+型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:⇔<+)()()(x h x g x f⎪⎩⎪⎨⎧<-<+)()()()()()(x h x g x f x h x g x f )()()(x h x g x f >+⇔)()()(x h x g x f >+或)()()(x h x g x f >-例8 设函数a x x x f -+-=1)((1)若1-=a ,解不等式3)(≥x f(2)如果,2)(,≥∈∀x f R x 求a 的范围解:(1) 当时,1-=a11)(++-=x x x f由3)(≥x f 得:311)(≥++-=x x x f即:()()311≥++-x x 或 ()()311≥+--x x解得:32≥x ,即:23-≤x 或 23≥x 故不等式3)(≥x f 的解集为:⎭⎬⎫⎩⎨⎧≥-≤2323x x x 或 (2)由2)(≥x f 得:x2-ax1≥-+即:()()2--axx1≥-+x或()()2-a-1≥x即:()21≥x或2-a+12≥-a因为2fRx恒成立,∀x)∈(,≥-a成立,解得:1≥所以2≥a≤a或31-故a的取值范围为:(][)1,Y-,3∞-+∞绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.。