2018Multisim仿真-无线电能传输项目设计

合集下载

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计
无线调频接收机是一种用于接收无线电信号的电子设备。

它可以接收并解调来自无线
电发射器的调频信号,并将其转换为最初的模拟信号。

在本文中,我们将介绍如何使用Multisim软件来设计一个无线调频接收机。

我们需要选择合适的接收频率。

根据需要,我们可以选择接收任何频率范围内的信号。

在Multisim中,我们可以使用信号发生器模块来模拟无线电发射器的输出信号。

设置信号发生器的频率为所需接收信号的频率。

然后,我们需要添加一个调频解调器模块来解调接收到的调频信号。

在Multisim中,我们可以使用解调器模块来实现这个功能。

将解调器模块连接到信号发生器的输出端,并
将其输出连接到示波器模块。

这样,我们就可以在示波器上观察到解调后的信号。

在设计完成后,我们可以使用Multisim的仿真功能来验证设计的正确性。

通过观察示波器和扬声器上的信号,我们可以确定接收机是否正确接收并解调无线电信号。

使用Multisim软件可以方便快捷地设计和模拟无线调频接收机。

根据需要选择合适的接收频率,添加调频解调器、滤波器和放大器模块,最后通过仿真功能验证设计的正确性。

通过这种方法,我们可以更好地了解无线调频接收机的工作原理,并进行相关的研究和开发。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机在现代通信系统中拥有广泛的应用。

本文将介绍以Multisim为工具进行无线调频接收机设计的方法和步骤。

首先,需要选定一个频段进行接收机的设计。

通常情况下,无线电频段被分为VHF(30MHz-300MHz)、UHF(300MHz-3GHz)和毫米波(3GHz以上)等几个大类。

本文选定VHF 频段作为设计目标。

接着,我们需要确定接收机的基本组成部分,包括前置放大器、混频器、中频放大器、限幅器、解调器等。

设计过程可以分为以下几步。

1.前置放大器的设计前置放大器的主要作用是将接收天线接收到的微弱信号放大,以提高后续电路的信噪比。

在这里,我们选择使用共射放大器电路。

首先,确定前置放大器的增益。

一般来说,增益要求不宜过高,一般取5~20dB为宜。

在Multisim中,可以通过选择不同的电阻、电容和晶体管参数,调整电路的增益。

2.混频器的设计混频器是将接收到的高频信号和本地振荡器产生的信号混合产生中频信号的电路。

在这里,我们选择使用单边带抑制混频器。

单边带抑制混频器的主要优点是只产生一条副载波,从而节省频带和功率。

混频器电路主要由多个二极管组成。

在Multisim中,我们可以通过调整二极管的参数,如电流和反向电压等,来改变混频器的性能。

中频放大器主要是将混频器输出的中频信号进一步放大,以便后续信号处理。

在Multisim中,我们可以选择使用共射放大器或共基放大器电路。

中频放大器还可以配合BPF(带通滤波器)或BPF+CIC(带通滤波器+余弦插值滤波器)实现选频和滤波功能。

BPF可以将不感兴趣的频段滤除,而CIC可以降低信号采样率,以满足后续数字信号处理的要求。

解调器的作用是将中频信号解调成基带信号。

在无线调频接收机中,解调器一般采用移相解调或Foster-Seeley解调电路。

移相解调是指将中频信号与本地振荡器产生的相位相差为90度的信号相乘,得到其幅度和相位信号。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频(FM)接收机是一种用于接收电台发出的调频信号的无线电设备。

在本文中,我们将介绍如何使用Multisim进行无线调频接收机的设计。

首先,我们需要确定调频信号的频率范围。

例如,我们可以选择从88 MHz到108 MHz 的频率范围,这是广播电台的常见频段。

然后,我们需要选择适当的电路元件。

在FM接收机中,至少需要下列元件:天线、放大器、混频器、滤波器和解调器。

天线用于接收调频信号。

一般来说,需要使用一支能够接收指定频率范围内信号的射频天线。

然后,信号被送到放大器进行放大以增强信号质量。

接下来,我们将信号传递到混频器,以将信号转换为中频信号。

这一步骤的目的是使信号的频率下降到能够处理的范围。

在混频器中,我们需要使用一个能够将射频和本振信号混合的二极管。

然后,我们需要使用滤波器来去掉不需要的杂波,只保留中频带宽内的信号。

一般来说,需要使用一个精细的带通滤波器来达到这一目的。

最后,我们需要使用解调器来将频率调制信号转换为基带信号。

解调器需要使用一个专用的芯片来完成该任务。

芯片通常包含一个鉴定器、一个解调器、一个限幅器和一个滤波器。

通过Multisim,我们可以轻松地进行这些设备的设计和调试,以确保它们能够正确运行。

使用Multisim进行电路仿真可以减少实际制造的成本和风险,使我们更快地得到想要的结果。

在设计FM接收机时,还需要考虑其他因素,例如信噪比和灵敏度。

这些因素可通过调整电路参数和增加附加电路来优化。

一旦调试完成,我们就可以将设计转换为实际的PCB 电路板,并进行实际测试和验证。

总之,使用Multisim设计无线调频接收机是一项很有挑战性的任务,但它可以为我们提供一个强大而可靠的工具,以快速轻松地开发出高品质的FM接收机。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种用来接收调频信号的设备,它可以将无线电信号转换成声音或者数字信号。

在现代通信系统中,无线调频接收机的设计是非常重要的,它可以用于无线电台、无线通信、广播等领域。

本文将介绍基于Multisim的无线调频接收机设计。

Multisim是一款由美国国家仪器(NI)公司开发的用于电子电路仿真和原型设计的软件。

它提供了丰富的元器件库和强大的仿真功能,可以帮助工程师们进行各种电路设计与验证。

利用Multisim,我们可以设计并验证无线调频接收机的电路,以确保其性能和稳定性。

在设计无线调频接收机时,需要考虑到接收机的频率范围、频率选择、信号放大、解调等多个方面的问题。

接下来,我们将详细介绍基于Multisim的无线调频接收机设计。

我们需要确定无线调频接收机的工作频率范围。

在设计中,我们选择100MHz~500MHz范围内的调频信号。

接着,我们需要设计频率选择器和射频放大器。

频率选择器可以用来滤除非目标频率的信号,而射频放大器可以用来增强目标信号的幅度。

在Multisim中,我们可以利用其丰富的元器件库,选择合适的电感、电容和晶体管等元器件进行设计和仿真。

我们需要设计接收机的中频放大器和解调器。

中频放大器可以用来增强射频信号的幅度,并将其转换成中频信号;解调器可以用来将中频信号解调成原始信号。

在Multisim中,我们可以利用其模拟电路分析模块,对中频放大器和解调器进行仿真和分析,以确保其性能和稳定性。

通过以上设计和仿真,我们可以得到一套完整的无线调频接收机电路设计。

接下来,我们可以将设计结果导出到PCB设计软件中,进行布局和布线,并最终制作出真实的电路原型。

通过不断的调试和优化,我们最终可以得到一个高性能、高稳定性的无线调频接收机。

基于Multisim的无线调频接收机设计可以帮助工程师们快速有效地进行无线调频接收机设计与验证。

通过充分利用Multisim的强大功能和丰富资源,我们可以设计出高性能、高稳定性的无线调频接收机,为现代通信系统的发展做出贡献。

基于MATLAB和ModelSim的软件无线电课程实验设计

基于MATLAB和ModelSim的软件无线电课程实验设计

Value Engineering 0引言高校专业课程的教学内容应紧密跟踪专业领域的新技术新方法。

目前,3G 技术已投入商用,作为电子信息工程专业的大学生,应建立起3G 技术的基本概念,掌握3G 中关键技术的基本原理,毕业后才能迅速投入电子通信领域的工作。

软件无线电(SDR ,Software Defined Radio )技术是解决3G 标准不统一等问题的关键技术,因而高校开设软件无线电课程,普及软件无线电基本理论显得十分必要。

然而,软件无线电理论较抽象,有大量的公式,学生不知道这些公式在实际工程中如何使用,因而不能保持足够的学习兴趣,也不利于学生的理解吸收。

为此,有必要精心设计实验课程,通过实验现象帮助学生理解有关理论。

由于高校的软件无线电教学主要目的是普及基本理论,因此,实验过程以软件仿真为主。

笔者对软件无线电课程的仿真实验内容进行了研究,基于MATLAB 和ModelSim 软件,训练学生用易懂的编程语言实现理论公式,并观察以图形为主的仿真结果。

实践表明,实验内容大大提高了学生的学习兴趣,加强了理论教学的效果。

1实验内容软件无线电的架构如图1所示。

图中的可编程处理器部分是软件无线电课程讨论的重点。

目前,软件无线电平台中的可编程处理器通常包括两种:FPGA 芯片与DSP 芯片。

其中DSP 芯片主要负责完成各类通信算法,FPGA 芯片主要承担数字混频器与数控振荡器的功能。

本文所研究的实验内容针对软件无线电理论基础知识,大部分功能可以由FPGA 实现。

归纳起来,主要有[1]:①A/D/A 技术;②CIC 滤波器;③HB 滤波器;④FIR 滤波器分布式结构;⑤FIR 滤波器的多相结构;⑥数控振荡器等。

可以通过MATLAB 语言与VHDL 语言对以上各个知识点进行编程进行仿真实验。

限于篇幅,本文对其中的CIC 抽取滤波器的仿真实验进行了详尽的描述。

软件无线电接收机中,经过高速ADC 得到的数据速率很高。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种电子设备,用于接收无线电信号,并将其转换为音频信号,在通信、广播和其他应用中广泛应用。

在现代无线通信领域,无线调频接收机已成为必不可少的设备之一。

本文将介绍如何使用Multisim软件设计并模拟一个基本的无线调频接收机。

我们将从理论上讨论无线电接收机的工作原理,并使用Multisim软件进行模拟实现。

1. 无线调频接收机的工作原理无线调频接收机的主要工作原理是将无线电信号从天线中捕获并将其转换为与之同步的局部振荡器信号。

该局部振荡器信号经过混频器和滤波器处理,输出中频信号。

该中频信号经过放大器和解调器处理后,最终输出音频信号。

为了设计无线调频接收机,我们需要将其分为几个基本模块。

这些模块包括:1)射频放大器:在此模块中,我们使用同轴电缆将输入无线电信号传送到接收机中。

然后,它将无线电信号放大,并将其发送到混频器。

2)混频器:在此模块中,我们将输出由射频放大器产生的信号(RF信号)与局部振荡器的输出(LO信号)混合在一起,产生中频信号。

3)中频放大器:中频放大器被设计用来增加中频信号的振幅。

这使得中频信号更容易处理和解调。

4)解调电路:解调器被设计用来将经过放大的中频信号转换为音频信号。

解调器主要将信号的振幅分离并复制到一个新的音频载波上。

5)音频输出电路:这个模块被设计用来将解调后的信号从解调器输出,输出的信号可以连接到扬声器或其他音响设备。

在Multisim模拟前,我们需要确定接收机的一些关键参数。

这些参数包括:1)局部振荡器频率:这是我们将用来混合RF信号的频率,通常在300kHz-1.2GHz之间。

2)射频信号频率:这是我们要接收的无线电信号的频率,可以从天线上接收到。

4)混频器和放大器的增益:这是我们需要使用的两个关键参数,混频器和放大器的增益应设定为满足设计规格的最小值。

根据以上参数和电路设计原理,我们可以开始使用Multisim软件实现无线调频接收机的模拟。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种广泛应用于通信领域的设备,它能够通过接收无线电信号并转换成可供人们理解的信息。

在当今日益发展的通信技术中,无线调频接收机的设计变得愈发重要。

本文将介绍一种基于Multisim的无线调频接收机设计。

Multisim是一款由美国国家仪器公司推出的集成电路设计软件,它可以帮助工程师们进行电子电路的设计、仿真和分析。

在本设计中,我们将利用Multisim软件来搭建一个无线调频接收机。

设计的重点是保证接收机的高灵敏度、低噪声和良好的抗干扰性能。

我们要明确无线调频接收机的基本原理。

无线调频接收机通过天线接收到的无线电信号,经过放大、滤波、解调等过程,将信号转换成可供人们理解的信息。

在本设计中,我们将主要关注接收机的前端部分,包括信号的放大和滤波。

接下来,我们将从以下几个方面介绍基于Multisim的无线调频接收机设计:1. 天线和射频放大器2. 射频滤波器3. 中频放大器和检波器4. 输出滤波器和音频放大器首先是天线和射频放大器。

在接收机的前端,天线负责接收到的无线电信号,并将其输入到射频放大器中。

射频放大器起到放大信号的作用,同时也需要具备一定的抗干扰能力。

在Multisim软件中,我们可以选择合适的射频放大器模型,并进行参数配置和性能仿真。

接下来是射频滤波器。

由于天线接收到的信号中可能包含多种频率成分,需要通过滤波器来对信号进行初步的频率分离。

在Multisim中,我们可以设计并调整滤波器的频率响应曲线,以满足接收机对不同频率信号的需求。

接着是中频放大器和检波器。

经过射频滤波器的处理,信号进入中频放大器,进一步放大信号以便后续处理。

随后信号经过检波器解调成基带信号,在Multisim中我们可以模拟中频放大器和检波器的工作过程,并分析其性能指标。

通过以上设计过程,我们可以得到一套基于Multisim的无线调频接收机设计方案。

该设计方案具备高灵敏度、低噪声和良好的抗干扰性能,能够满足无线通信中对接收机性能的要求。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线通信技术在现代通信网络中扮演着至关重要的角色。

无线调频调制是用于高频信号传输的最常见技术之一。

无线调频接收机是接收无线电信号的设备,其性能直接决定了无线通信系统的可靠性和高效性。

在本文中,我们将介绍一个基于Multisim的无线调频接收机的设计。

设计目标无线调频接收机主要由三个部分组成:前置放大器,中频放大器和解调器。

其设计目标是实现以下性能:1. 输入信号的频率范围为100 MHz到1 GHz。

2. 电路的增益不小于40 dB,在整个频率范围内保持稳定。

3. 前置放大器和中频放大器的输入和输出阻抗匹配良好,以确保最大功率传输。

4. 解调器能够提供高品质的音频输出,并保持良好的抑制性能。

电路设计前置放大器前置放大器的主要任务是放大输入信号,并将其转换为中频信号。

我们采用了一个BFR93A双极晶体管作为前置放大器。

该晶体管具有高增益和低噪声等优点,是前置放大器设计的理想选择。

为了确保良好的匹配性能,我们采用了一只Helical Antenna作为输入部件,它是一个螺旋构造的天线。

该天线具有高效的扫描性能和低环境影响,适用于频率范围在100 MHz到1 GHz之间的应用。

中频放大器中频放大器的主要任务是进一步放大信号,并使其达到解调器所需的电平。

我们采用了一个JFET(Junction Field-Effect Transistor)作为中频放大器。

该晶体管具有高输入阻抗,低噪声和稳定性能。

此外,JFET还具有较低的交叉调制,这使其成为中频放大器的另一理想选择。

解调器解调器的主要任务是将调频信号转换为基带音频信号。

我们采用了一个单端AM解调器电路。

该解调器利用了一个慢放电电容器,它在一个音频信号被截取的同时,利用一个运放进行了同步检测。

实现我们利用Multisim来模拟和测试设计的无线调频接收机。

通过模拟和测试,我们确定了输入输出的频率、增益和阻抗匹配性能,并优化了电路的设计。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计引言:在现代通信系统中,无线调频接收机是一种十分重要的设备,它能够接收并解调调频信号以提取原始信息。

无线调频接收机的设计需要兼顾灵敏度、抗干扰性、频谱效率等指标,因此需要进行精心的设计和测试。

Multisim是一款功能强大的电子电路仿真软件,可以帮助工程师们在设计电路时进行仿真和测试,提高效率和降低成本。

本文将以Multisim 为工具,介绍一种基于Multisim的无线调频接收机设计方案。

无线调频接收机的基本原理:无线调频接收机由天线、射频前端、中频处理、解调器和数字处理等部分组成。

其基本原理是通过天线接收调频信号,并经过射频前端的放大和滤波后进入中频处理单元,最终通过解调器提取原始信息。

在这个过程中,灵敏度、抗干扰性和频谱效率是设计的关键指标。

基于Multisim的无线调频接收机设计:1. 射频前端设计:在无线调频接收机中,射频前端起着放大和滤波的作用,是整个接收机的重要组成部分。

在Multisim中,可以利用各种模拟元件和射频模型来搭建射频前端电路,并通过仿真分析其放大和滤波性能。

可以通过Multisim中的RF模块来模拟射频信号的传输和放大过程,验证射频前端的设计效果。

2. 中频处理设计:中频处理单元需要对射频信号进行混频和滤波处理,将其转换为中频信号,并进行放大和滤波。

在Multisim中,可以使用混频器、滤波器和放大器等模块来搭建中频处理电路,并对其进行仿真测试。

通过Multisim的信号分析功能,可以验证中频处理单元的性能和稳定性。

3. 解调器设计:解调器是无线调频接收机中的核心部分,其性能直接影响到接收机的解调效果和信息提取能力。

在Multisim中,可以利用数模混合技术搭建解调器电路,并通过仿真分析其解调性能。

可以利用Multisim中的数字信号处理模块来模拟解调过程,并评估解调器的性能。

4. 整体系统调试:在设计完成各个部分的电路之后,可以将它们组合在一起构成完整的无线调频接收机系统,并在Multisim中进行整体系统的调试和测试。

(完整word版)multisim 电路仿真 课程设计

(完整word版)multisim 电路仿真 课程设计

4.1 仿真设计1、用网孔法和节点法求解电路。

如图4.1-1所示电路:3Ω(a)用网孔电流法计算电压u的理论值。

(b)利用multisim进行电路仿真,用虚拟仪表验证计算结果。

(c)用节点电位法计算电流i的理论值。

(d)用虚拟仪表验证计算结果。

解:电路图:(a)i1=2 解得 i1=25i2-31-i3=2 i2=1i3=-3 i3=-3 u=2 v(b)如图所示:(c)列出方程4/3 U1- U2=2 解得 U1=3 v U2=2 v2A1Ω_+_+u1Ω2V-3A图4.1-1i2U 1- U 2=2 i=1 A结果:计算结果与电路仿真结果一致。

结论分析:理论值与仿真软件的结果一致。

2、叠加定理和齐次定理的验证。

如图4.1-2所示电路:(a)使用叠加定理求解电压u 的理论值;(b)利用multisim 进行电路仿真,验证叠加定理。

(c)如果电路中的电压源扩大为原来的3倍,电流源扩大为原来的2倍,使用齐次定理,计算此时的电压u ;(d)利用multisim 对(c )进行电路仿真,验证齐次定理。

电路图:(a ) I 1=27 I 2-2 I 1- I 3=03 I 3- I 2-2 I 4=0 解得 U 1=7(V ) I 4=-3 U 1U 1=2(I 1- I 2)如图所示电压源单独作用时根据网孔法列方程得:3 I 1-2 I 2- I 3=4 I 2=-3 U 27 I 3 - I 1=0 解得 U 2=9(V ) U 2=4-2 I 3所以 U= U 1+ U 2=16(V ) (b )如图所示。

2Ω 1Ω 2Ω 4Ω 2A 3u + 4V - + u-图4.1-2(c)根据齐次定理,U=2U1+3U2=14+27=41 v(d)结果:理论值与仿真电路计算的值一样。

结论分析:齐次定理和叠加定理成立。

三、替代定理的验证。

(a)求R上的电压u和电流I的理论值;(b)利用multisim进行电路仿真,分别用相应的电压源u和电流源I替代电阻R,分别测量替代前后支路1的电流i1和支路的电压u2,验证替代定理。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种电子设备,用于接收无线电信号并转换成可用的音频或数字信号。

本文基于National Instruments公司的Multisim软件,介绍如何设计一个简单的无线调频接收机。

首先,需要了解一些电子元件的基本原理。

调频是一种模拟信号调制方式,可以用一个VCO(压控振荡器)产生一定频率范围内的正弦波信号,然后将待调制信号与VCO的信号相加,形成频率偏移的载波信号。

这个载波信号包含原始信号的信息,可以通过解调还原出原始信号。

在Multisim中,可以使用电路模型代替实际元件,完成电路设计。

我们需要使用一些基本元件,如电容、电阻、二极管和晶体管等。

首先,设计一个VCO电路。

我们选择CD4046B是一个CMOS相锁环,它可以用作VCO。

将引脚10和11连接到电源VCC,引脚8连接到地GND,引脚14连接到RC滤波电路的输入。

在这里,我们将电容和电阻组成一个RC滤波器,用于帮助过滤杂波。

可以选择适当的电容和电阻值,以获得预期的截止频率。

接下来,设计一个前置放大器,用于放大载波信号并将其传输到解调器。

此处选择NPN晶体管2N3904作为前置放大器。

将晶体管引脚1连接到电源VCC,引脚3连接到地GND,引脚2和引脚4分别连接到VCO输出和解调器的输入。

这里建议使用反向二极管连接到VCO 输出和晶体管基极,以防止VCO电压超过晶体管的最大额定值。

最后,设计解调器电路。

需要选择合适的解调器类型,将载波信号解调回原始信号。

这里使用了一个简单的调幅解调器电路,使用二极管整流器和RC滤波器过滤高频噪声。

将解调器输出连接到扬声器或其他音频设备,以便听取音频信号。

在Multisim中模拟电路行为,并调整元件参数以获得最佳性能。

完成此步骤后,可以制作实际的电路板,并使用示波器等测试仪器进行测试和调试。

总结来说,基于Multisim的无线调频接收机设计是一个非常有趣和有效的学习和实践电子技术的方法。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种能够接收调频信号并将其转换成基带信号的设备。

它在无线通信系统中扮演着重要的角色,能够接收到来自发射机的调频信号,并将其解调成数字信号,以便后续的处理和解码。

本文将介绍基于Multisim的无线调频接收机的设计,包括其原理、设计步骤和仿真结果。

Multisim是一款由美国国家仪器公司(National Instruments)开发的电子电路仿真软件,它能够模拟各种电路的工作原理和性能,通过Multisim,我们能够设计和优化各种类型的电路,包括无线调频接收机。

让我们来看一下无线调频接收机的工作原理。

调频接收机通常由天线、射频放大器、混频器、中频放大器、解调器等部分组成。

当调频信号通过天线输入到接收机中时,首先经过射频放大器进行放大,然后进入混频器,与局部振荡器产生的信号混频,得到中频信号。

接下来,中频信号通过中频放大器进行放大,再经过解调器解调成基带信号,最终输出到数字处理部分进行后续的处理。

接下来,我们来构建一个基于Multisim的无线调频接收机的设计。

我们需要准备各个部分的电路元件,包括天线、射频放大器、混频器、中频放大器、解调器等。

然后,按照无线调频接收机的工作原理,将这些电路元件连接起来,形成整个接收机的电路设计。

在Multisim中,我们可以选择合适的电路元件,并通过连接线将它们连接起来,然后设置各个电路元件的参数,包括输入输出阻抗、增益、频率等。

接着,我们可以进行仿真,观察无线调频接收机的工作状态,包括输入输出信号的波形、频谱图等。

在进行仿真过程中,我们可以对接收机的各个部分进行调整,比如调节放大器的增益、混频器的局部振荡频率等,以优化整个接收机的性能。

通过不断地调整和仿真,我们可以得到一个性能优异的无线调频接收机设计。

我们来分析一下通过Multisim进行仿真得到的无线调频接收机的设计结果。

通过仿真,我们可以观察到接收机的输入输出波形,得到其工作状态和性能指标,比如增益、带宽、信噪比等。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一个通过调制解调的方式将无线信号转换为音频信号的电路,广泛应用于无线电通信系统中。

本文将介绍基于Multisim软件的无线调频接收机的设计过程。

设计流程如下:1. 选择合适的电子元件在设计无线调频接收机之前,要选择合适的电子元件,包括放大器、滤波器、混频器、局部振荡器、解调器、声音放大器等。

这些元件在无线调频接收机的电路中发挥着不同的作用,需要有选择地搭配使用。

2. 电路图设计在选定电子元件后,需要根据它们的使用要求设计电路图。

在Multisim软件中,可以直观地查看每个元件的电路图,然后将它们依次连接在一起。

设计时要注意每个元件之间的连线和布局,保证电路的稳定性和可靠性。

3. 模拟仿真设计好电路图后,可以使用Multisim软件进行模拟仿真。

通过输入模拟信号,可以在电路中模拟无线信号的传播和接收过程,观察不同元件之间的作用以及整个电路的性能表现。

4. 优化调整通过模拟仿真的结果,可以对电路进行优化调整。

例如,调整局部振荡频率或解调器参数,改进信号处理的效果;调整放大器的增益或滤波器的带宽,提高电路的灵敏度和抗干扰能力。

5. 实际测试在电路调整好后,可以将电路实际制作并进行测试。

通过与模拟仿真结果的对比,确定电路性能是否符合要求,根据需要进行进一步的调整。

无线调频接收机的设计需要注意的几个方面:1. 信号频率范围根据实际需求,选择合适的信号频率范围。

在设计电路时,需要根据接收信号频率范围调整局部振荡器参数,保证接收信号的准确解调。

2. 抗干扰能力无线调频接收机要在复杂的电磁环境中接收和处理信号,抗干扰能力是评价电路性能的重要指标。

在电路设计时,可以使用抗干扰滤波器、混频器和解调器等元件,以提高电路的抗干扰能力。

3. 系统灵敏度无线调频接收机的灵敏度是指在接收信号功率越强的情况下,接收或解调的信号质量越好。

灵敏度的高低关系到接收距离、音频质量等方面,因此需要在电路设计中充分考虑。

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计

基于Multisim的无线调频接收机设计无线调频接收机是一种可以接收调频信号的电子设备,广泛应用于无线通信系统中。

它能够接收不同频率的无线信号,并将其转换为可供后续处理的基带信号。

基于Multisim 的无线调频接收机设计是一项关于利用Multisim软件来构建和测试无线调频接收机的实验性工作。

本文将介绍基于Multisim的无线调频接收机设计的相关理论知识和实验步骤。

一、无线调频接收机的基本原理无线调频接收机是一种接收调频信号的无线电设备。

在无线通信系统中,调频调制是一种常见的调制方式,它通过改变载波频率来传输信息。

无线调频接收机的基本原理是接收来自天线的无线信号,并通过解调电路将其转换为基带信号。

基带信号经过后续处理可以得到原始信号的信息。

二、Multisim软件介绍Multisim是由National Instruments开发的一款用于电子电路仿真的软件。

它能够模拟各种电子电路的工作情况,并可用于教学、研究和工程设计。

Multisim软件提供了丰富的元件库和仿真功能,能够帮助工程师和科研人员快速高效地设计和验证电路方案。

1. 信号接收和解调电路设计在Multisim中选择适当的元件(如天线、滤波器、放大器、混频器、解调器等)进行电路设计。

根据实际情况,确定合适的频率范围和信号调制方式。

然后连接各个元件,并进行仿真分析,验证电路设计的可行性和稳定性。

2. 信号处理和滤波设计接收到的调频信号经过解调后,需要进行信号处理和滤波。

在Multisim中,可以选择合适的数字信号处理器(DSP)和滤波器进行电路设计和仿真。

通过调节滤波器参数和信号处理算法,优化信号质量和抑制干扰。

3. 效果验证和性能分析设计好无线调频接收机电路后,需要对其性能进行验证和分析。

在Multisim中可以进行各种实验和参数测试,评估接收机的灵敏度、带宽、抗干扰能力等性能指标。

通过实验结果,可以对接收机进行调整和改进,以满足实际应用需求。

2018Multisim仿真-无线电能传输项目设计

2018Multisim仿真-无线电能传输项目设计

无线电能传输项目设计一 预备知识(一)项目设计的目的:(1)在实践中对现代电工技术的理论知识做进一步巩固;(2)锻炼对综合运用能力。

(二)实验内容和要求:在不采用专用器件(芯片)的前提下,设计一个非接触供电系统。

原理电路如下图所示,实现对小型电器供电或充电等功能。

(三)要求用仿真软件对电路进行验证,使其满足以下功能:(1)供电部分输入36V 以下的直流电压,具有向多台电器设备非接触供电的 功能。

(2)在输出功率≥1W 的条件下,转换效率≥15%,最大输出功率≥5W 。

(3)设计报告必须包括建模仿真结果(4)利用multisim 生成PCB 板D 功放AC/DC 耦合线圈耦合线圈 振荡器 充电电路电源二无线电能传输技术(一)无线能量传输技术介绍根据电能传输原理,可将 WPT 技术分为三种:射频或微波 WPT、电磁感应式 WPT、电磁共振式 WPT,下面分别予以介绍。

1微波无线能量传输所谓微波 WPT,就是以微波(频率在 300MHz-300GHz 之间的电磁波)为载体在自由空间无线传输电磁能量的技术。

利用微波源将电能转变为微波,由天线发射,经长距离的传播后再由天线接收,最后经微波整流器等重新转换为电能使用。

微波频率传输所具备的“定向、可穿透电离层”等特性,使得该能量传送方式早在20世纪60年代初期就受到人们的关注,并在远程甚至超距能量传输场合有着重要的应用价值。

微波WPT主要用于如微波飞机、卫星太阳能电站等远距输电场合,其中卫星太阳能电站作为人类应对能源危机的有效策略已成为美国、日本等国大力发展的重要航天项目。

目前,限制微波 WPT 技术进一步发展的主要技术瓶颈在于高效微波整流器件、大功率微波天线以及大功率微波电磁场的生物安全性和生态环境的影响问题。

然而,由于工作频率高、系统效率较低,微波 WPT 并不适合于能量传输距离较短的应用场合。

2电磁感应式无线能量传输电磁感应式 WPT 是基于电磁感应原理,利用原、副边分离的变压器,在较近距离条件下进行无线电能传输的技术。

Multisim仿真教程(wxy)

Multisim仿真教程(wxy)

② 时基控制(Time base)
● X轴刻度(s/div):控制示波屏上的横轴,即X轴刻度 (时间/每格) ● X轴偏移(X position):控制信号在X轴的偏移位置 ● 显示方式: Y /T :幅度 / 时间 ,横坐标轴为时间轴,纵坐标轴 为信号幅度 Add:A、B通道幅值相加 B /A :B电压(纵坐标) / A电压 (横坐标) A /B :A 电压 / B电压
晶体管库(Transistors Components) 模拟元件库(Analog Components) TTL元件库(TTL) CMOS元件库(CMOS) 其他数字元件库(Misc Digital Components) 混合芯片库(Mixed Components) 指示器件库(Indicators Components) 其他器件库(Misc Components) 控制器件库(Control Components) 射频器件库(RF Components)
二、基本元件库
● 电阻 ● 电容 ● 电解电容 ● 电感 ● 电位器 ● 可变电容 ● 可变电感 ● 开关 ● 变压器 ● 磁芯 ● 连接器 ● 半导体电阻 ● 封装电阻 ● SMT电容 ● SMT电感 ● 虚拟电阻 ● 虚拟电容 ● 上拉电容 ● 虚拟电感 ● 虚拟电位器 ● 虚拟可变电容 ● 虚拟可变电感 ● 继电器 ● 非线性变压器 ● 无芯线圈 ● 插座 ● 半导体电容 ● SMT电阻 ● SMT电解电容
元件工具栏
电源库 基本元件库 二极管库 晶体管库 模拟元件库 TTL元件库 其他数字元件库 混合芯片库 指示部件库 其他部件库 控制部件库 射频器件库 机电类元件库
COMS元件库
仪器仪表工具栏
从左到右分别是:数字万用表、函数发生器、示 波器、波特图仪、字信号发生器、逻辑分析仪、 瓦特表、逻辑转换仪、失真分析仪、网络分析 仪、频谱分析仪 注:电压表和电流表在指示器件库,而不是仪器 库中选择

无线电力传输仿真共43页文档

无线电力传输仿真共43页文档
无线电力传输仿真
21、没有人陪你走一辈子,所ห้องสมุดไป่ตู้你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无线电能传输项目设计一 预备知识(一)项目设计的目的:(1)在实践中对现代电工技术的理论知识做进一步巩固;(2)锻炼对综合运用能力。

(二)实验内容和要求:在不采用专用器件(芯片)的前提下,设计一个非接触供电系统。

原理电路如下图所示,实现对小型电器供电或充电等功能。

(三)要求用仿真软件对电路进行验证,使其满足以下功能:(1)供电部分输入36V 以下的直流电压,具有向多台电器设备非接触供电的 功能。

(2)在输出功率≥1W 的条件下,转换效率≥15%,最大输出功率≥5W 。

(3)设计报告必须包括建模仿真结果(4)利用multisim 生成PCB 板D 功放AC/DC 耦合线圈耦合线圈 振荡器 充电电路电源二无线电能传输技术(一)无线能量传输技术介绍根据电能传输原理,可将 WPT 技术分为三种:射频或微波 WPT、电磁感应式 WPT、电磁共振式 WPT,下面分别予以介绍。

1微波无线能量传输所谓微波 WPT,就是以微波(频率在 300MHz-300GHz 之间的电磁波)为载体在自由空间无线传输电磁能量的技术。

利用微波源将电能转变为微波,由天线发射,经长距离的传播后再由天线接收,最后经微波整流器等重新转换为电能使用。

微波频率传输所具备的“定向、可穿透电离层”等特性,使得该能量传送方式早在20世纪60年代初期就受到人们的关注,并在远程甚至超距能量传输场合有着重要的应用价值。

微波WPT主要用于如微波飞机、卫星太阳能电站等远距输电场合,其中卫星太阳能电站作为人类应对能源危机的有效策略已成为美国、日本等国大力发展的重要航天项目。

目前,限制微波 WPT 技术进一步发展的主要技术瓶颈在于高效微波整流器件、大功率微波天线以及大功率微波电磁场的生物安全性和生态环境的影响问题。

然而,由于工作频率高、系统效率较低,微波 WPT 并不适合于能量传输距离较短的应用场合。

2电磁感应式无线能量传输电磁感应式 WPT 是基于电磁感应原理,利用原、副边分离的变压器,在较近距离条件下进行无线电能传输的技术。

目前较成熟的无线供电方式均采用该技术,典型的应用包括新西兰国家地热公园的 30kW 旅客电动运输车、Splash power 公司的无线充电器等。

可以看出,无论是小功率的消费类电子产品还是大功率 EV 无线供电系统,电磁感应式 WPT 技术都可有效实现无线供电。

然而,电磁感应式 WPT 仍存在一系列问题:传输距离较短,距离增大时效率急剧下降;传输效率对非接触变压器的原、副边的错位非常敏感等等。

3电磁共振式无线能量传输电磁共振式 WPT,是美国 MIT Solja i 领导的研究小组在 2007 年提出的突破性技术。

他们使用两个固有谐振频率相等的铜线圈(为方便表述,称其为“变压器”),在共振激励条件下(即激励频率等于线圈的固有谐振频率),距离2m 处,成功点亮了一个 60W的灯泡,其中变压器的效率达到了 40%。

压器绕组间错位的敏感度减小,长野日本无线公司给出了原、副边绕组相互垂直的实验图片;此外,利用共振模式对激励频率要求的严格性,可通过合理设置激励频率,向指定电器供电,提高安全性。

然而,目前该方向的研究要么过于理论化,要么为实验研究,缺乏对应用、工程设计有定量指导意义的研究成果,但毋庸置疑,电磁共振式 WPT因为能量的高效耦合将成为 WPT 技术的一个重要研究方向。

综上所述,与非接触感应式充电技术相比,磁耦合谐振式无线能量传输的传输距离更有优势;与电磁波形式的无线能量传输技术相比,磁耦合谐振式无线能量传输具有无敏感的方向性、无辐射等优点。

(二)磁耦合谐振式无线能量传输系统1能量传输系统的构成能量传输系统包括电源端与负载端两部分。

电源端包含导线绕制并与电容并联的线圈(源线圈),以及为线圈提供电能的高频电源;相隔一段距离的接收端包含另一个导线绕制并与电容并联的线圈(接收线圈),以及消耗线圈电磁能的负载。

2能量传输系统的工作原理导线绕制的线圈可视为电感与电容相连构成谐振体,谐振体包含的能量在电场与磁场之间以其自谐振频率在空间自由振荡,产生以线圈为中心以空气为传输媒质的时变磁场;与该谐振体相隔一定距离的具有相同谐振频率的谐振体感应磁场,所感应的磁场能同样在电场与磁场之间以其自谐振频率在空间自由振荡,同时两个谐振体之间不断地有磁场能交换,因此产生以两个线圈为中心以空气为媒质的时变磁场。

两谐振体内电场能与磁场能振荡交换的同时谐振体之间也存在着以相同频率振荡的能量交换,即两谐振体组成耦合谐振系统。

三系统方案设计无线供电系统由电源电路、高频振荡电路、高频功率放大电路、发射、接收线圈和高频整流滤波电路五部分组成。

非接触供电系统框架如下图1所示,最后给可充电电池充电。

从无线电路传输的原理上看,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播,要产生电磁波首先要有电磁振荡,电磁波的频率越高其向空间辐射能力的强度就越大,电磁振荡的频率至少要高于100kHZ,才有足够的电磁辐射。

图1 非接触供电系统框图(一)高频振荡电路设计1设计方案方案一:采用LC谐振回路产生所需的频率。

优点是可以产生任意所需载波,缺点是频率稳定度比较低(见图2)。

方案二:采用有源晶振。

有源晶振只要加上电源就可以产生频率稳定的载波。

优点是电路简单,频率稳定。

缺点就是不能产生任意频率的载波(见图3)。

方案论证:本设计对频率没有具体要求,而且无需产生多个频率,所以采用方案二。

而且具有电路简单,频率稳定的有点。

图2 LC谐振回路图3 晶振电路2晶振电路的工作原理晶振是晶体振荡器的简称。

它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。

在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。

高级的精度更高。

有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

晶振在数字电路的基本作用是提供一个时序控制的标准时刻。

数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。

晶振的作用是为系统提供基本的时钟信号。

通常一个系统共用一个晶振,便于各部分保持同步。

有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。

由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。

这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类。

3晶体振荡器仿真图4晶体振荡器仿真经过大概测算,晶体振荡器在输出频率在1.5MHz左右,电路图达到预期目的。

(二)功率放大器设计利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。

因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。

经过不断的电流放大,就完成了功率放大。

1功率放大器原理高频功率放大器用于发射级的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收级可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器是通信系统中发送装置的重要组件。

高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)等。

这几项指标要求是互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。

例如实际中有些电路,防止干扰是主要矛盾,对谐波抑制度要求较高,而对带宽要求可适当降低等。

功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。

放大器的工作状态可分为甲类、乙类和丙类等。

为了提高放大器的工作效率,它通常工作在乙类、丙类,即晶体管工作延伸到非线性区域。

2功率放大器分类功率放大器可分为A类放大器、B类放大器、AB类放大器、D类放大器及T 类放大器等五大类。

A类放大器的主要特点是:放大器的工作点Q设定在负载线的中点附近,晶体管在输入信号的整个周期内均导通。

放大器可单管工作,也可以推挽工作。

由于放大器工作在特性曲线的线性范围内,所以瞬态失真和交替失真较小。

电路简单,调试方便。

但效率较低,晶体管功耗大,功率的理论最大值仅有25%,且有较大的非线性失真。

由于效率比较低现在设计基本上不在再使用。

B类放大器的主要特点是:放大器的静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。

在Vi的正半周期内,Q1导通Q2截止,输出端正半周正弦波;同理,当Vi为负半波正弦波(如图虚线部分所示),所以必须用两管推挽工作。

其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。

即当信号在-0.6V~ 0.6V之间时, Q1 Q2都无法导通而引起的。

所以这类放大器也逐渐被设计师摒弃。

AB类放大器的主要特点是:晶体管的导通时间稍大于半周期,必须用两管推挽工作。

可以避免交越失真。

交替失真较大,可以抵消偶次谐波失真。

有效率较高,晶体管功耗较小的特点。

D类放大器是一种将输入模拟音频信号或PCM数字信息变换成PWM(脉冲宽度调制)或PDM(脉冲密度调制)的脉冲信号,然后用PWM或PDM的脉冲信号去控制大功率开关器件通/断音频功率放大器,也称为开关放大器。

具有效率高的突出优点。

1.具有很高的效率,通常能够达到85%以上。

2.体积小,可以比模拟的放大电路节省很大的空间。

3.无裂噪声接通。

4.低失真,频率响应曲线好。

外围元器件少,便于设计调试。

T类功率放大器的功率输出电路和脉宽调制D类功率放大器相同,功率晶体管也是工作在开关状态,效率和D类功率放大器相当。

它和普通D类功率放大器不同的是:1、它不是使用脉冲调宽的方法,2、它的功率晶体管的切换频率不是固定的,无用分量的功率谱并不是集中在载频两侧狭窄的频带内,而是散布在很宽的频带上,3、T类功率放大器的动态范围更宽,频率响应平坦。

相关文档
最新文档