半导体元器件的基本知识

合集下载

半导体器件基础课件(PPT-73页)精选全文完整版

半导体器件基础课件(PPT-73页)精选全文完整版

有限,因此由它们形成的电流很小。
电子 技 术
注意:
1、空间电荷区中没有载流子。
2、空间电荷区中内电场阻碍P 区中的空穴、N 区中的电子(
都是多子)向对方运动(扩散 运动)。
所以扩散和漂移这一对相反的运动最终达到平衡, 相当于两个区之间没有电荷运动,空间电荷区的厚 度固定不变。
电子 技 术
二、PN 结的单向导电性
电子 技 术
1. 1 半导体二极管的结构和类型
构成:实质上就是一个PN结
PN 结 + 引线 + 管壳 =
二极管(Diode)
+
PN
-
符号:P
N
阳极
阴极
分类:
按材料分 按结构分
硅二极管 锗二极管 点接触型 面接触型 平面型
电子 技 术
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
电子 技 术
半导体中存在两种载流子:自由电子和空穴。 自由电子在共价键以外的运动。 空穴在共价键以内的运动。
结论:
1. 本征半导体中电子空穴成对出现,且数量少。 2. 半导体中有电子和空穴两种载流子参与导电。 3. 本征半导体导电能力弱,并与温度有关。
电子 技 术
2、杂质半导体
+4
一、N 型半导体
电子 技 术
三、课程特点和学习方法
本课程是研究模拟电路(Analog Circuit)及其 应用的课程。模拟电路是产生和处理模拟信号的电路。 数字电路(Digital Circuit)的知识学习由数字电子技 术课程完成。
本课程有着下列与其他课程不同的特点和分析方 法。
电子 技 术

半导体器件的原理和应用

半导体器件的原理和应用

半导体器件的原理和应用近年来,随着信息技术的飞速发展,半导体器件逐渐成为支撑现代社会的重要组成部分。

从智能手机到电子游戏机,从电脑到工业自动化,半导体器件的应用范围越来越广泛,其快速的发展也为人们的生活带来了极大的便利。

半导体器件的原理半导体器件是一种能够控制电流的电子元器件,它们的原理基于半导体物理学。

半导体物理学的核心是固体中电子和空穴的扩散,其基本原理和经典电动力学不同。

在半导体中,电子和空穴处于不同的能级上,而且互相之间也会发生相互作用。

这使得电子和空穴在半导体中无法像在金属中那样自由运动。

半导体器件通过控制这些电子和空穴的行为来控制电流的流动。

具体而言,半导体器件可以通过引入掺杂(即将另一种物质添加到半导体中)来改变半导体中电子和空穴的数量和能级分布,以及控制半导体的电阻和导电性。

此外,半导体器件中常常还包含了能够在电场或电压下工作的微小电容器和微型电感器等,并通过将它们与控制晶体管相结合,从而实现了电子设备中的各种功能。

半导体器件的应用半导体器件在通信、信息处理、能源、军事、航天、工业控制等领域发挥着深远的影响。

下面我们将分别介绍几种常见的半导体器件及其应用:1. 整流器整流器是一种将交流电(AC)变成直流电(DC)的装置,其原理是利用半导体器件的电流单向导电特性。

整流器广泛应用于电源、无线电、反向深度充电等领域。

2. 逆变器逆变器是一种将直流电转换成交流电的器件,广泛应用于交流电动驱动器、升压电源、电网与太阳能等电力系统。

3. 晶体管晶体管是半导体器件中最重要的器件之一,它是从真空管器件机械框架中发展出来的。

晶体管的应用范围非常广泛,包括各种计算机、音频设备、消费类电器和通信设备,以及电子储存器等领域。

此外,晶体管还被广泛地用于模拟电路和数字电路中。

4. 光电器件光电器件使用半导体材料的光电效应来将光信号转换为电信号或将电信号转换为光信号。

光电器件包括光电二极管、光敏电阻、光电晶体管和光伏电池等,广泛应用于光通信、光电子计算、显示器和太阳能电池等领域。

半导体元器件基础知识

半导体元器件基础知识

PN结
在同一块半导体基片的两边分别形成N型和P型 半导体,它们的交界面附近会形成一个很薄的空间
电荷区,称其为PN结。
PN结的形成过程如图所示。
P区
N区
耗尽层空 P 间电荷区 N
扩散运动方向
自建场
(a)
(b)
(a)多子扩散示意图;(b)PN结的形成
PN结的单向导电性
PN结正向偏置——导通 给PN结加上电压,使电压的正极接P区,负极接N区
(1)共发射极接法(简称共射接法)。共射接法是以基极为输 入端的一端,集电极为输出端的一端,发射极为公共端,如下图(a) 所示。
(2)共基极接法(简称共基接法)。共基接法是以发射极为输 入端的一端,集电极为输出端的一端,基极为公共端,如下图(b) 所示。 (3)共集电极接法(简称共集接法)。共集接法是以基极为输入端 的一端,发射极为输出端的一端,集电极为公共端,如下图(c)所 示。
+4
+4
+4
由于热激发而产 生的自由电子
+4
+4
+4
自由电子移走
后留下的空穴
+4
+4
+4
P型半导体的共价键结构
在P型半导体中,原来的晶体仍会产生电 子—空穴对,由于杂质的掺入,使得空穴数目 远大于自由电子数目,成为多数载流子(简称 多子),而自由电子则为少数载流子(简称少 子)。因而P型半导体以空穴导电为主。
阳极 引线
N型锗片
阴极 引线
金属触丝 (a)
外壳
铝合金小球
阳极引线PN结N型硅 Nhomakorabea金锑合金
底座
(b) 阴极引线
半导体二极管的结构及符号 (a)点接触型结构;(b)面接触型结构;
阳极 阴极 引线 引线

半导体的基本知识

半导体的基本知识

第1章半导体的基本知识1.1半导体及PN结半导体器件是20世纪中期开始发展起来的,具有体积小、重量轻、使用寿命长、可靠性高、输入功率小和功率转换效率高等优点,因而在现代电子技术中得到广泛的应用。

半导体器件是构成电子电路的基础。

半导体器件和电阻、电容、电感等器件连接起来,可以组成各种电子电路。

顾名思义,半导体器件都是由半导体材料制成的,就必须对半导体材料的特点有一定的了解。

1.1.1半导体的基本特性在自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体三大类。

通常将很容易导电、电阻率小于10*Q?cm的物质,称为导体,例如铜、铝、银等金属材料;将很难导电、电阻率大于1010Q cm的物质,称为绝缘体,例如塑料、橡胶、陶瓷等材料;将导电能力介于导体和绝缘体之间、电阻率在10°Q?cm-1010Q cm范围内的物质,称为半导体。

常用的半导体材料是硅(Si)和锗(Ge)。

用半导体材料制作电子元器件,不是因为它的导电能力介于导体和绝缘体之间,而是由于其导电能力会随着温度的变化、光照或掺入杂质的多少发生显著的变化,这就是半导体不同于导体的特殊性质。

1热敏性所谓热敏性就是半导体的导电能力随着温度的升高而迅速增加。

半导体的电阻率对温度的变化十分敏感。

例如纯净的锗从20C升高到30C时,它的电阻率几乎减小为原来的1/2。

而一般的金属导体的电阻率则变化较小,比如铜,当温度同样升高10C时,它的电阻率几乎不变。

2、光敏性半导体的导电能力随光照的变化有显著改变的特性叫做光敏性。

一种硫化铜薄膜在暗处其电阻为几十兆欧姆,受光照后,电阻可以下降到几十千欧姆,只有原来的1%自动控制中用的光电二极管和光敏电阻,就是利用光敏特性制成的。

而金属导体在阳光下或在暗处其电阻率一般没有什么变化。

3、杂敏性所谓杂敏性就是半导体的导电能力因掺入适量杂质而发生很大的变化。

在半导体硅中,只要掺入亿分之一的硼,电阻率就会下降到原来的几万分之一。

电气基础(半导体元器件)3

电气基础(半导体元器件)3
2、电子在基区的扩散和复合过程: 由于基区很薄,其多数载流子空穴浓度 很低,所以从发射极扩散过来的电子只有很 少一部分和基区空穴复合,剩下的绝大部分 都能扩散到集电结边缘。 3、集电区收集从发射区扩散过来的电子过 程: 由于集电结反向偏置,可将从发射区 扩散到基区并到达集电区边缘的电子拉入 集电区,从而形成较大的集电极电流IC。
半导体器件
晶体管的种类很多,按照频率分,有高频管、低频管;按照功 率分,有小、中、大功率管;按用途不同分为放大管和开关管;按 照半导体材料分,有硅管、锗管等等。晶体管的符号如图所示:
硅管热稳定性好,多数为NPN型;锗管受温度 影响大,多数为PNP管。
半导体器件
• 2、三极管的电流放大作 IC 用
PN结的“正偏导通,反偏阻断”称为其单向 导电性质,这正是PN结构成半导体器件的基础。
半导体器件
• 3.2半导体二极管
1. 二极管的结构和类型
一个PN结加上相应的电极引线并用管壳封装起来,就构成了 半导体二极管,简称二极管,接在P型半导体一侧的引出线称为阳 极;接在N型半导体一侧的引出线称为阴极。 半导体二极管按其结构不同可分为点接触型和面接触型两类。 点接触型二极管 PN 结面积很小,因而结电容小,适用于高频 几百兆赫兹下工作,但不能通过很大的电流。主要应用于小电流的 整流和高频时的检波、混频及脉冲数字电路中的开关元件等。 面接触型二极管PN结面积大,因而能通过较大的电流,但其结 电容也小,只适用于较低频率下的整流电路中。
(3)饱和区:发射结正向偏置,集电结正向偏置
iB>0,uBE>0,uCE≤uBE
iC iB
半导体器件
• 4、三极管的主要参数
1、电流放大倍数β :iC= β iB 2、极间反向电流iCBO、iCEO:iCEO=(1+ β )iCBO 3、极限参数 (1)集电极最大允许电流 ICM:下降到额定值的2/3时所允 许的最大集电极电流。 (2)反向击穿电压U(BR)CEO:基极开路时,集电极、发射极间 的最大允许电压:基极开路时、集电极与发射极之间的最大允许 电压。为保证晶体管安全工作,一般应取:

半导体行业专业知识-wafer知识

半导体行业专业知识-wafer知识

半导体行业专业知识-wafer知识半导体行业中的基本元器件是晶体管、二极管、场效应管、电阻、电容等,其中以晶体管为代表。

晶体管是一种能够控制电流的元器件,也是现代电子技术的基础之一。

晶体管是由p型半导体和n型半导体组成的,这些半导体在一个共同的单晶硅片中制成,这个单晶硅片就是wafer。

Wafer(圆片)是单晶硅片的俗称,是制造半导体器件的基础。

Wafer的种类有很多,如:直径125mm、150mm、200mm、300mm等。

在生产过程中,需要将晶体管等元器件在wafer上加工出来。

进一步,wafer上的晶体管等元器件需要经过电测试、工艺修正、包装等步骤,才能成为可实际使用的电子产品。

换句话说,wafer是半导体制造的基石。

制造wafer的方式通常是从多晶硅开始。

多晶硅是由小晶粒组成的晶体,其中尚含有杂质。

先将多晶硅置于炉中,并加热至一定温度使其融化然后凝结,并在此过程中控制加入杂质的数量与质量。

由于杂质会改变硅的电子特性,因此控制其数量与质量对于晶圆的电子性能有重大的意义。

在制造过程中,生产厂需对wafer表面进行多次加工,以便制造出所需的电子元器件。

在加工之前,需要对wafer进行光洁度处理,以使其表面的污垢和缺陷最小化。

接下来,需要在wafer上涂上光刻胶并通过光刻过程来形成具体的电路。

光刻胶是一种光敏感树脂,在涂刷后可以通过紫外光曝光获得所需的芯片图案。

完成光刻后,接下来就是wafer刻片阶段,将不需要的区域和多余的金属等程深度刻蚀掉,具体步骤包括干法刻蚀和液共刻蚀,以及对已经完成刻蚀的部分进行清洗和光敏胶的去除等。

除了这些基本操作以外,还需要针对性的加工wafer,定制各种不同的电子芯片,最终将它们与其他元器件组装在一起,形成具体的电子设备。

需要指出的是,在整个半导体产业链中,wafer是最基础的组成部分。

尽管其并不直接参与到电子设备的生产过程中,但是其质量对系统整体电子性能的影响非常大。

华大半导体181页PPT基础知识培训——常用半导体器件讲解

华大半导体181页PPT基础知识培训——常用半导体器件讲解
有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
另有一类物质的导电特性处于导体和绝缘体 之间,称为半导体,如锗、硅、砷化镓和一些 硫化物、氧化物等。
((112--22
半导体的导电机理不同于其它物质,所 以它具有不同于其它物质的特点。比如: 热敏性、光敏性、掺杂性。
当受外界热和光的作用时,它的导 电能力明显变化。
((118--88
硅和锗的共价键结构
+4表示除 去价电子 后的原子
+4
+4
+4
+4
共价键共 用电子对
((119--99
形成共价键后,每个原子的最外层电 子是八个,构成稳定结构。
+4
+4
+4
+4
共价键有很强的结合力, 使原子规则排列,形成晶体。
共价键中的两个电子被紧紧束缚在共价键 中,称为束缚电子,常温下束缚电子很难脱 离共价键成为自由电子,因此本征半导体中 的自由电子很少,所以本征半导体的导电能 力很弱。
(1) 最大整流电流IF (2) 反向击穿电压VBR和最大反向工作电压VRM
(3) 反向电流IR
(4) 最高工作频率 fM
((114--74477
补充参数:
(电信专业)
(5)最大整流电流 IOM
二极管长期使用时,允许流过二极管的最大正
向平均电流。
——注意与IF的关系
(6) 正向压降VF
(7) 极间电容CB、 CD
半导体和N型半导体,经过载流子的扩散, 在它们的交界面处就形成了PN结。
((112--12211
PN结处载流子的运动
漂移运动
P型半导 体
---- - - ---- - -

1.1半导体器件的基础知识

1.1半导体器件的基础知识

第1章半导体器件半导体器件是现代电子技术的重要组成部分,是构成各种电子电路的核心,常用的半导体元器件有二极管、晶体管、场效应管等。

半导体元器件由半导体材料制成,因此,学习电子技术应首先了解半导体材料的特性,这将有助于对半导体元器件的学习、掌握和应用。

1.1 半导体器件的基础知识1.1.1 半导体材料导电能力介于导体与绝缘体之间的物质称为半导体,这类材料大都是三、四、五价元素,主要有:硅、锗、磷、硼、砷、铟等,他们的电阻率在10-3~107欧.厘米。

半导体材料的广泛应用,并不是因为它们的导电能力介于导体与绝缘体之间,而是它们具有一些重要特性:1)当半导体受到外界光和热的激发(本征激发)时,其导电能力发生显著的变化;2)若在半导体中加入微量的杂质(不同的半导体)后,其导电能力显著的增加;半导体的这些特点取决于这类物质的化学特性。

绝对纯净的硅、锗、磷、砷、硼、铟叫做本征半导体。

1.1.2 本征半导体1)半导体的化合价物质的化学和物理性质都与物质的价电子数有密切的关系,半导体材料大都是三、四、五价元素。

硅、锗(四价)、磷、砷(五价)、硼、铟(三价)。

2)化学键物质化学键分离子键、共价键和金属键三种,半导体物质的化学键都属于共价键的晶体结构,同时它们的键长一般很长,故原子核对价电子的束缚力不象绝缘物质那样紧,当价电子获得一定的能量后,就容易挣脱原子核的束缚成为自由电子。

+4+4+4+4+4+4+4+4+4+41.化学特性①共有价电子挣脱原子核的束缚成为自由电子;可见半导体中的载流子有两种,即自由电子(●)和空穴(○)。

本征半导体的载流子是由本征激发而产生的,其自由电子与空穴是成对出现,即有一个自由电子,就一定有一个空穴,故称电子空穴对。

由于空穴带正电,容易吸引邻近的价电子来填补,从而形成了共有价电子的运动,这种运动无论从效果上,还是从现象上,都好象一个带正电的空穴在移动,它不同于自由电子的运动,故称之为空穴运动。

物理学中的半导体元器件原理

物理学中的半导体元器件原理

物理学中的半导体元器件原理半导体元器件是现代电子产业的重要组成部分,其中最具代表性的是晶体管、二极管和集成电路等。

这些元器件在现代电子技术中发挥着重要的作用,被广泛应用于计算机、通信、音视频等领域。

那么,它们的基本原理是什么呢?这篇文章将从物理学的角度探讨半导体元器件的原理。

第一部分:半导体基础知识半导体是指导电性介于导体和绝缘体之间的物质,具有一些特殊的电学性质。

半导体材料中,某些元素的原子晶格存在空位或缺陷,或者在其晶格中掺入一些杂质原子,从而形成半导体材料。

半导体的导电性与其电子能级结构有关。

在半导体材料中,电子可能会占据不同的能级,其中最低的能级称为价带,最高的能级称为导带。

通常情况下,价带中的电子处于芯层原子的电场束缚之下,而不自由运动;而导带中则没有束缚,电子可以自由运动。

当半导体材料受到一定的能量激发,如光子或热能,导带内的电子就可以跃迁至价带内,将其电导率提高。

这种情况下,半导体称为“n型半导体”。

如果掺杂进杂质原子使材料生成微键,并增加占据导带的电子,则称为“p型半导体”。

第二部分:二极管的原理二极管是一种简单的半导体元器件,由p型半导体和n型半导体组成,能够实现单向电流的导通。

二极管的特点是:在正向偏置下,p区域中和n区域中的电子就会发生大规模的扩散,进而形成一个漂移电流;而在反向偏置下,无法形成漂移电流,因此电流极小,由此实现了单向导通。

简单来说,二极管的工作原理是靠材料特性,即p和n型半导体接触时,会在界面处产生电势垒。

在正向偏置下,这些电子穿越电势垒,进入p区域中,并与p区的空穴复合产生光子和热能;在反向偏置下,由于电子无法穿越电势垒,因此电流极小,达到了单向导通的效果。

第三部分:晶体管的原理晶体管是一种具有放大和开关功能的半导体器件,由三个区域组成,即发射区、基区和集电区,分别对应p-n-p型或n-p-n型半导体管。

晶体管的原理是利用反向偏置形成的p-n陡斜电势垒来操纵涉及三区域电势平衡的电流传导。

第一章常用半导体器件 (2)

第一章常用半导体器件 (2)

Cb
• d
S
式中ε是介质常数,S是PN结的面积,d是PN结的宽度。
❖ 扩散电容Cd
Cd是PN结正向电压变化时, 多数载流子在扩散过程中积累 引起的。反向偏置时,以扩散 电容Cd为主。
PN结正偏时,多数载流子扩 散到对方成为对方区域中的“少 子” (称为“非平衡少子”)这 些少子在正偏电压变化时,也有 堆积与泄放的过程。
+4
+4
+4
电流是电子电流和空穴电流之和,
(而导体只有自由电子导电)。
图 1.1.2 电子-空穴对的产生和空穴的移动
在本征半导体中不断地进行着激发与复合 两种相反的过程, 当温度一定时, 两种状态 达到动态平衡,即本征激发产生的电子-空穴对, 与复合的电子-空穴对数目相等,这种状态称为 动态平衡状态(热平衡)。 半导体中自由 电子和空穴的多少分别用浓度(单位体积中载 流子的数目)ni和pi来表示。处于热平衡状态 下的本征半导体,其载流子的浓度是一定的, 并且自由电子的浓度和空穴的浓度相等。
第一章 常用半导体器件
1.1 半导体的基本知识 1.2 半导体二极管 1.3 双极型晶体管 1.4 场效应管
有关半导体的基本概念
• 本征半导体、杂质半导体 • 施主杂质、受主杂质 • N型半导体、P型半导体 • 自由电子、空穴 • 多数载流子、少数载流子
§ 1.1 半导体基础知识
自然界的物质按其导电能力可分为导体、半导 体和绝缘体三类。常用的半导体材料有硅(Si)和 锗(Ge)。半导体导电能力介于导体和绝缘体之间。
1.2.4. 二极管的等效电路
(a)理想二极管
(b)正向导通时端电压为常量 (c)正向导通时端电压与电流成线性关系
图1.2.4由伏安特性折线化得到的等效电路

半导体知识基础培训

半导体知识基础培训
半导体知识基础培训涵盖了诸多关键领域。首先,对常用术语进行了详细解释,如组装图、轴向引线元件、单端引线元件等,这些都是半导体行业中的基础概念。进一步地,培训深入探讨了印刷电路板(PCB)的不同类型,包括单面板、双面板以及层板,并解释了如焊盘、元件面、焊接面等关键概念。此外,对于元件的符号与极性也进行了阐述,强调了极性元件插入电路板时的定向重要性。在工艺方面,培训涉及了金属化孔、连接孔的应用,以及焊接过程中可能出现的空焊、假焊、冷焊垫损伤、板面污染等也进行了讲解。这些内容共同构成了半导体相关专业培训课程的核心,旨在帮助学员建立坚实的行业知识基础,提升实际操作技能。

半导体电子元器件基本知识

半导体电子元器件基本知识

半导体电子元器件基本知识四、光隔离器件光耦合器又称光电耦合器,是由发光源和受光器两部分组成。

发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。

常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。

受光器引出的管脚为输出端。

光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。

光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。

具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。

如在:高压开关、信号隔离转换、电平匹配等电路中。

光隔离常用如图:五、电容有电解电容、瓷片电容、涤纶电容、纸介电容等。

利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。

电解电容是有极性的(有+、-之分)使用时注意极性和耐压。

电路原理图一般用C1、C2、C?等表示。

半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。

导电能力介于导体和绝缘体之间的物质称为半导体。

具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。

PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。

PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。

一、二极管将PN结加上相应的电极引线和管壳就成为半导体二极管。

P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。

二极管正向导通特性(死区电压):硅管的死区电压大于0。

5V,诸管大于0。

1V。

用数字式万用表的二极管档可直接测量出正极和负极。

利用二极管的单向导电性可以组成整流电路。

将交流电压变为单向脉动电压。

PN结及半导体基础知识

PN结及半导体基础知识

什么是PN结及半导体基础知识在我们的日常生活中,经常看到或用到各种各样的物体,它们的性质是各不相同的。

有些物体,如钢、银、铝、铁等,具有良好的导电性能,我们称它们为导体。

相反,有些物体如玻璃、橡皮和塑料等不易导电,我们称它们为绝缘休(或非导体)。

还有一些物体,如锗、硅、砷化稼及大多数的金属氧化物和金属硫化物,它们既不象导体那样容易导屯,也不象绝缘体那样不易导电,而是介于导体和绝缘体之间,我们把它们叫做半导体。

绝大多数半导体都是晶体,它们内部的原子都按照一定的规律排列着。

因此,人们往往又把半导体材料称为晶体,这也就是晶体管名称的由来(意思是用晶体材料做的管子)。

物体的导电性能常用电阻率来表示。

所谓电阻率,就是某种物体单位长度及单位截面积的体积内的电阻值。

电阻率越小,越容易导电;反之,电阻率越大,越难导电。

导体、绝缘体的电阻率值随温度的影响而变化很小。

但温度变化时,半导体的电阻率变化却很激烈;每升高1℃,它的电阻率下降达百分之几到百分之几十。

不仅如此,当温度较高时,整体电阻甚至下降到很小,以致变成和导体一样。

在金属或绝缘体中,如果杂质含量不超过干分之一,它的电阻率变化是微不足道的。

但半导体中含有杂质时对它的影响却很大。

以锗为例,只要含杂质一千万分之一,电阻率就下降到原来的十六分之一。

锗是典型的半导体元素,是制造晶体管的一种常用材料(注:当前的半导体元器件生产以硅Silicon材料为主)。

现以锗为例来说明如何会在半导体内产生电流、整流性能和放大性能我们知道,世界上的任何物质都是由原了构成的。

原子中间都有一个原子核和者围绕原子核不停地旋转酌电子。

不同元素的原子所包含的电子数目是不同的。

蔗原子的原子核周围有32个电子,围绕着原子核运动。

原子核带有正电荷.电子带有负电荷;正电荷的数量刚好和全部电子的负电荷数量相等,所以在平时锗原子是中性的。

电子围绕原子核运动,和地球围绕太阳远行相似。

在核的引力作用下,电子分成几层按完全确定的轨道运行,而且各层所能容纳的电子数日也有一定规律。

第6章半导体器件的基本特性

第6章半导体器件的基本特性

A
DA DB
F
+3V
B

0V
-12V
例2:
D2 D1
求:UAB
3k 12V
6V
两个二极管的阴极接在一起 A + 取 B 点作参考点,断开二极 UAB 管,分析二极管阳极和阴极 – B 的电位。
V1阳 =-6 V,V2阳=0 V,V1阴 = V2阴= -12 V UD1 = 6V,UD2 =12V ∵ UD2 >UD1 ∴ D2 优先导通, D1截止。 若忽略管压降,二极管可看作短路,UAB = 0 V 流过 D2 的电流为 12 I D2 4mA 在这里, D2 起 3 钳位作用, D1起 D1承受反向电压为-6 V 隔离作用。
本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出 现两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流 自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复 合。在一定温度下,载流子的产生和复合达到动态 平衡,半导体中载流子便维持一定的数目。 注意: (1) 本征半导体中载流子数目极少, 其导电性能很差; (2) 温度愈高, 载流子的数目愈多,半导体的导电性 能也就愈好。所以,温度对半导体器件性能影响很大。
2
N型半导体和 P 型半导体
掺入三价元素 空穴 掺杂后空穴数目大量 增加,空穴导电成为这 种半导体的主要导电方 式,称为空穴半导体或 P型半导体。 在 P 型半导体中空穴是多 数载流子,自由电子是少数 载流子。
Si
Si
Si B–
Si
硼原子 接受一个 电子变为 负离子
无论N型或P型半导体都是中性的,对外不显电性。
第六章 半导体器件的基本特性

半导体行业必备知识

半导体行业必备知识

半导体行业必备知识半导体是指一种导电性能介于导体和绝缘体之间的材料。

半导体被广泛地应用于电脑、手机、电视等电子产品中,成为现代电子产业的基础。

因此,半导体行业的发展越来越受到关注。

以下是半导体行业必备知识:1. 常见半导体元件半导体行业中常见的元件有:二极管、三极管、晶体管、场效应晶体管、可控硅等。

其中,二极管是最基本、最重要的半导体元件之一,晶体管是半导体器件中应用最广泛的器件。

2. 硅片制造过程硅片是半导体工业的主要材料之一。

硅片制造过程需要经过切割、成形、清洗等一系列过程。

硅片制造过程的精密程度决定了芯片制造的精密程度。

牢记硅片制造过程中的每个细节是半导体行业中不可或缺的知识。

3. 电路设计半导体行业需要掌握电路设计,电路设计是把电子元器件按照一定方式连接起来,形成所需功能的过程。

电路设计需要在保证功能的基础上,注重电路的稳定性和可靠性。

电路设计是半导体行业的核心知识之一。

4. 物理原理要想深入理解半导体行业,必须掌握一些与物理息息相关的知识。

了解半导体内部的电子结构、波特图、PN结、电阻电容等物理概念,有助于更好地理解半导体的本质和应用。

5. 产业链结构半导体产业链包括芯片制造、封装测试、电子产品制造等多个环节。

芯片制造是半导体产业链的核心,封装测试环节是半导体产业链中其中一个重要环节。

掌握半导体行业的产业链结构,对了解半导体行业的组织结构和发展趋势具有重要意义。

在现代科技和经济的发展趋势下,半导体行业愈发繁荣。

学习半导体行业的必备知识对找到优秀的职业机会以及实现个人职业发展大有裨益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

iD / mA 90C
60
20C
40
20 –25
0 0.4
uD / V
– 0.02
温度升高,正向特性向左移动,反向特性向下移动
T 升高时,由本征激发产生的少子浓度增加,导致 PN结内建电位差UB减小。
二极管的主要参数
第 1 章 半导体二极管
iD IF
U (BR) URM O
uD
1. IF — 最大整流电流(最大正向平均电流) 2. URM — 最高反向工作电压,为 U(BR) / 2 3. IRM — 反向电流(越小单向导电性越好) 4. fM — 最高工作频率(超过时单向导电性变差)
多数载流子:自由电子 少数载流子:空穴
n>>p
2.P型半导体
在本征半导体中掺 入少量三价元素原子, 称为空穴型半导体或P 型半导体。
多数载流子:空穴 少数载流子:自由电子
p>>n
(三)PN结
将P型和N型半导体采用特殊工艺制造成半导体半导体内有一 物理界面,界面附近形成一个极薄的特殊区域,称为PN结。
变厚
-+ -+ -+ -+
内电场被被加强,多 子的扩散受抑制。少 子漂移加强,但少子 数量有限,只能形成
较小的反向电流。+ N
内电场
外电场
R
E
三、二极管的构成及类型
1.构成 PN结+管壳+引线
2.类型
正极 引线
N 型锗片 负极 引线
外壳
触丝
点接触型
正极 负极 引线 引线
P N
P 型支持衬底
集成电路中平面型
4. 动态电阻 rZ几 几十 rZ = UZ / IZ
越小稳压效果越好。
5.2 晶体管
一. 基本结构
NPN型
集电极
发射极
C NP N E
基极 B
符号: C IC
B NPN
IB E
IE
PNP型
集电极
发射极
PN P
C
E
基极
B
C B
IB E
IC
PNP
IE
结构特点:
集电区: 面积最大
集电结 基极 B
共价键中的两个电子被紧紧束缚在共价键中,称为 束缚电子,常温下束缚电子很难脱离共价键成为自 由电子,因此本征半导体中的自由电子很少,所以 本征半导体的导电能力很弱。
(二)杂质半导体
在本征半导体中掺入微量的 杂质元素,成为杂质半导体。
1.N型半导体
在本征半导体中掺入少量 五价元素原子,称为电子型半 导体或N型半导体。
5.1 半导体二极管
一、半导体材料 导电能力介于导体和绝缘体之间的物质称为 半导体。 主要材料是硅(Si)和锗(Ge)。 半导体具有某些特殊性质:如光敏、热敏及 掺杂特性。(导电能力)
1.1 半导体器件及其特性
二、半导体的类型
(一)本征半导体 完全纯净的半导体(纯度在99.999%)
(二)杂质半导体 在本征半导体中惨入其他的微量元素
稳压二极管 1.符号和特性
符号 工作条件:反向A
O IZminuZ/V IZ IZmax
2.主要参数
1. 稳定电压 UZ 流过规定电流时稳压管两端的反向电压值。
2. 稳定电流 IZ 越大稳压效果越好,小于 Imin 时不稳压。
3. 最大工作电流 IZM 最大耗散功率 PZM P ZM = UZ IZM
铝合金 小球
正极引线 PN 结
N型锗
金锑 合金
负极引线
底座
面接触型
阳极A
阴极K
二极管符号
四、二极管的伏安特性
iD /mA
0 U Uth iD = 0
U (BR) IS
反 向
反向特性 O

穿
正向特性
Uth uD /V
死区 电压
Uth = 0.5 V 0.2 V
U Uth
(硅管) (锗管)
iD 急剧上升
位),N区接低电位(负电位)→正偏→正向电流 反向偏置(简称反偏)
PN结反偏:P区接低电位(负电位),N区接高电 位(正电位)。
PN结加正向电压的 情形
PN 结正向偏置
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子
的扩散加强能够形成
较大的扩散电流。
N
_
外电场
R
内电场
E
PN 结反向偏置
_ P
2) IC IB , IC IE
3) IC IB
把基极电流的微小变化能够引起集电极电流较大变
EC
2. 各电极电流关系及电流放大作用
IB(mA) IC(mA) IE(mA)
0
<0.001 <0.001
0.02 0.70 0.72
0.04 0.06 0.08 0.10 1.50 2.30 3.10 3.95 1.54 2.36 3.18 4.05
结论:
1)三电极电流关系 IE = IB + IC
(一)本征半导体
结构特点
现代电子学中,用的最多的半导体是硅和锗, 它们的最外层电子(价电子)都是四个。
Ge
Si
+4表示 除去价电 子后的原

+4
+4
+4
+4
共价键共 用电子对
硅和锗的共价键结构
形成共价键后,每个原子的最外层电子是 八个,构成稳定结构。
+4
+4
+4
+4
共价键有很强的结合力,使原子规 则排列,形成晶体。
1.PN结的形成
漂移运动:载流子在电场作用下的定向运动。 扩散运动:由于浓度差引起的非平衡载流子 的运动。
PN结形成过程分解:
2. PN结的单向导电性
无外接电压的PN结→开路PN结,平衡状态PN结
PN结外加电压时 →外电路产生电流 正向偏置(简称正偏) PN结: PN结外加直流电压V:P区接高电位(正电
第5章 半导体器件的基本知识
5.1 半导体二极管 5.2 晶体管 5.3 晶闸管
考试要求
1.了解半导体二极管单向导电性、伏安特性、 主要参数。
2.会用万用表判别二极管的管脚极性及好坏。 3.理解三极管的电流放大作用。 4.会用万用表判别三极管的管脚及管脚极性。 5.掌握共发射极放大电路的工作原理。 6.理解三极管开关电路的工作原理。
正向压降硅管 (0.6 0.8) V
锗管(0.1 0.3) V
U(BR) U 0 U < U(BR)
iD = IS < 0.1 A(硅) 几十 A (锗) 反向电流急剧增大 (反向击穿)
第 1 章 半导体二极管
反向击穿类型:电击穿— PN 结未损坏,断电即恢复。
温度 影响
–50
热击穿 — PN 结烧毁。
集电极 C
N P N
基区:最薄, 掺杂浓度最低
发射结
E 发射极
发射区:掺 杂浓度最高
二.电流分配和放大原理
1. 三极管放大的外部条件
发射结正偏、集电结反偏
从电位的角度看:
发射结正偏 集电结反偏
NPN VB>VE VC>VB
发射结正偏 集电结反偏
PNP
VB<VE VC<VB
C
N
B
P
RC
N RB
E EB
相关文档
最新文档