华理概率论习题5答案
概率论与数理统计习题册 第五章 答案
![概率论与数理统计习题册 第五章 答案](https://img.taocdn.com/s3/m/c753f395daef5ef7ba0d3ca3.png)
P{X
>
4500}
=1−
P{X
≤
4500}
= 1 − Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
≈ 1− Φ(1.01) = 1− 0.8413 = 0.1587
(2) P{4400
<
X
<
4500} = Φ⎜⎜⎝⎛
4500 − 4475 612.5
⎟⎟⎠⎞
−
Φ⎜⎜⎝⎛
4400 − 4475 612.5
E( Xi ) = 10× 0.4 + 9× 0.3 + 8× 0.2 + 7 × 0.05 + 6× 0.05 = 8.95 ,
D( Xi
)
=
E
(
X
2 i
)
−
( EX i
)2
=1.225 ,
设总分为 X ,则 X ~ N (500 × 8.95, 500 ×1.225) ,即 X ~ N (4475, 612.5) . 因此
n
∑ 解 设有 n 个数相加,X i 分别为每个数的舍入误差。记 X = Xi ,E( Xi ) = 0 , i =1
16
∑ D( Xi )
=
1 12
由定理一知,随机变量 Z
=
k =1
Xi − n⋅0 n / 12
近似地服从正态分布 N (0,1)
(1) 所求概率
P{ X ≤ 15} = P{−15 ≤ X ≤ 15} = P{ −15 < X < 15 } 55 55 55
P{| Xn − a |< 0.1} ≥ 0.95 的 n 的最小值应不小于自然数
15华工概率论与数理统计第五、六章作业答案
![15华工概率论与数理统计第五、六章作业答案](https://img.taocdn.com/s3/m/7f93bcd708a1284ac8504351.png)
概率论第五章答案 5.1 解:因 E[ X + Y ] = E[ X ] + E[Y ] = 0
故 P ( X + Y ≥ 6) = P ( X + Y − E[ X + Y ] ≥ 6) ≤
Var[ X + Y ] 36
而 Var[ X + Y ] = Var[ X ] + Var[Y ] + 2 cov( X , Y )
∑
9
因
* 8S 9
2
σ
2
~ χ 2 (8)
X 10 − X 10 σ 3( X 10 − X ) 3 所以 T = 服从 t (8) 分布 . = *2 *2 S9 10 8S 9
σ2
8
X 6.7 解:由题意知 2 = i ~ χ 2 (4) . σ i =6 σ Z3
∑
σ
Z1
因 {X n } 是独立同分布的随机变量序列,且
2 2 Var[ X n ] = E[ X n ] − (E[ X n ]) ⇒ E[ X n ] = 10 2
故 {Yn }是独立同分布的随机变量序列,且
E[Yn ] = E[ X 32n−2 + X 3n−1 X 3n ] = E[ X 32n−2 ] + E[ X 3n−1 ]E[ X 3n ]
E[ X i ] = 0 ,Var[ X i ] = 0.0075 .
因 P (48 ≤ Y60 ≤ 52) = P 48 ≤ 50 +
60
∑X
i =1
i
≤ 52
= P (−2 ≤
∑X
2020年春华南理工大学线性代数与概率统计随堂练习答案
![2020年春华南理工大学线性代数与概率统计随堂练习答案](https://img.taocdn.com/s3/m/2066a6a6c850ad02df8041b6.png)
第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C第五章随机变量及其分布·5.1 随机变量及其分布函数1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52)中任意取出5,求抽到2红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。
概率论与数理统计第五章习题参考答案
![概率论与数理统计第五章习题参考答案](https://img.taocdn.com/s3/m/4dda2c8c680203d8ce2f2447.png)
F = S甲2 ~ F (4,4) S乙2
由
P⎪⎨⎧ ⎪⎩
S甲2 S乙2
<
F 1−
0.05
(4,4)
U
2
S甲2 S乙2
>
F0.05
2
(4,4)⎪⎬⎫ ⎪⎭
=
0.05
查表得: F0.05 (4,4) = 9.6,
2
F 1−
0.05
2
(4,4)
=
1 F0.025 (4,4)
=
0.1042
,
故拒绝域为 (0, 0.142) U (9.6, + ∞) .
54 67 68 78 70 66 67 70 65 69 问患者与正常人的脉搏有无显著差异(患者的脉搏可视为服从正态分布。α = 0.05 ) 解:设患者的脉搏为 X , 计算其样本均值与样本方差分别为 x = 67.4, s = 5.93
在检验水平α = 0.05 下,检验假设 H 0 : µ = µ0 = 72 H1 : µ ≠ µ0 = 72
问两台机器的加工精度是否有显著差异(α = 0.05 )?
解:在检验水平α = 0.05 下,检验假设 H 0 : µ1 = µ 2
H1 : µ1 ≠ µ2
因为
µ1,µ
2,σ
12,σ
2 2
均未知,且不知
σ
12与σ
2 2
是否相等,
故先检验假设 H 0′
:
σ
2 1
=
σ
2 2
,
H
1′
:
σ
2 1
≠
σ
2 2
。
H1 : µ1 ≠ µ2
当假设 H 0 为真时,取检验统计量
华理概率论习题5答案-2012
![华理概率论习题5答案-2012](https://img.taocdn.com/s3/m/ff76a8f94693daef5ef73de3.png)
ac cov( X , Y ) ac DX DY
XY
4. 设两个随机变量 , , E 2, E 4, D 4, D 9, 0.5 ,求
E (3 2 2 2 3) 。
解
E (3 2 2 2 3) 3E ( 2 ) 2 E ( ) E ( 2 ) 3 =3 D ( E ) 2 2cov( , ) EE D ( E ) 2 3 68
=max( , ) 的分布函数 F ( z ) 等于
A. max{F ( z ), F ( z )} B. F ( z ) F ( z )
( B )
1 C. [ F ( z ) F ( z )] 2 二. 填空:
已知 ~ N (0 ,1) ,
1 3
D. F ( z ) F ( z ) F ( z ) F ( z )
B. 独立的充分条件,但不是必要条件 D. 不相关的充分条件,但不是必要条件 )
3.
对于任意两个随机变量 X 和 Y ,若 E ( XY ) E ( X ) E (Y ) ,则 (B A) D( XY ) D( X ) D(Y ) C) X 和 Y 独立
B) D( X Y ) D( X ) D(Y ) D) X 和 Y 不独立0.25 0.15
0.15 0.2 0.15
1.05 E 0 .5 E 0.25 E max( , ) _______, 1.2 E ______, ____, sin ( ) _______, 2
0.36 Dmax( , ) _______ 。
三. 计算题: 1. 已知二维随机变量 ( , ) 的联合概率分布为
华理概率论习题答案(精品).doc
![华理概率论习题答案(精品).doc](https://img.taocdn.com/s3/m/ddc676931711cc7930b716bf.png)
华东理工大学概率论与数理统计作业簿(第五册)学院______________ 专业_______________ 班级 ________________学号____________ 姓名_____________ 任课教师 ____________第十九次作业一.填空题:1.在一批垫圈中随机抽取10个,测得它们的厚度(单位:mm)如下:1.23, 1.24, 1.26, 1.29, 1.20, 1.32, 1.23, 1.23, 1.29, 1.28 用矩估计法得到这批垫圈的数学期望“的估计值//=_x = l .257 —,标准差cr的估计值$= s”_[ = 0.037_。
二.计算题:1.设总体X服从泊松分布P(2), (X】,X»…,X”)为样本,分别用矩估计法和极大似然法求参数2的估计量/。
解:矩估计法,因为X ~ P(2),所以总体平均值EX = 2 ,一 1 n_ 1 n而样本平均值x所以2 = x=-yx,;n ,=i n ,=i极大似然法,设(X],X2,…,X”)的一组观测值为(“2,…,X”),似然函数L(2) = FT P(x = X,.) = FT —取对数,得In 厶(2) = -nA. + (x; In 2 - In x;!),i=l令气◎_” + ]£廿0,解得:i = l£x.=-;da2幺n幺故<9的极大似然估计量为:i = x o^)=fl/(x,) = ^flx,^ i=l i=l2. 设总体歹服从几何分布P(X =x) = p(l-pY-1 (x = l,2,…),(X”X2,…,X”)为 X 的样本。
(1) 求未知参数p 的矩法估计;(2)求未知参数p 的极大似然估计。
解: ⑴由于g 〜Ge(p),因此砖=丄,由矩法原则可知E^ = X,故p-X. PX(2) 设样本(X 1,X 2,---,X n )的一组观测值为01,勺,…,x”),由于总体为离散型, 因此似然函数 L(p) = Y[P(X i =x .) = p n (l-p^X!~n ,Z = 1取对数,得In L(p) = nlnp + (工二%, -njln(l-p),上式两端关于p 求导,令di"厶(卩)=工+工日兀—”=0, dp p 1-p 解上式,得丄+ ― p =~^ O p 1- p X3. 设总体总体X 的密度函数为/Xx) JP + D 汽其中<9>-1是0, 其他未知参数,(X],X2,…,X”)是来自总体的样本,分别用矩估计法和极大似然法求 9的估计量。
概率论第五章习题解答(全)
![概率论第五章习题解答(全)](https://img.taocdn.com/s3/m/d512612331126edb6f1a102e.png)
10 ) 1 0.90 n 12
即
(
10 ) 0.95 ,查表得 (1.64) 0.95 n 12
n 443 。
令
10 1.64 ,解得 n 12
即最多可有 443 个数相加,可使得误差总和的绝对值小于 10 的概率不小于 0.90。 4、 设各零件的重量都是随机变量, 它们相互独立, 且服从相同的分布, 其数学期望为 0.5kg, 圴方为 0.1kg,问 5000 只零件的总重量超过 2510kg 的概率是多少? 解 设每只零件的重量为 X i , i 1, 2, ,5000 ,由独立同分布的中心极限定理知
100
i
, 则 X b(100, 0.9) 。 由德莫弗――拉普拉斯定理知,
X 100 0.9 近 100 0.9 0.1
2 10000 i 1
X
i
索赔总金额不超过 2700000 美元的概率
P{ X 2700000} 1` P{ X 270000}
10000
1 P{
X
i 1
i
280 10000
800 100
2700000 2800000 } 80000
10000
1 P{
2 2
X
i 1
16
i
,
于是随机变量
Z
Xi n
i 1
16
2 n
X
i 1
16
i
1600
10000 16
X 1600 近似的服从 N (0,1) 400
P{ X 1920} P{
X 1600 1920 1600 X 1600 } P{ 0.8} 400 400 400 X 1600 1 P{ 0.8} 1 (0.8) = 1 0.7881 0.2119 . 400
华南理工大学概率论-04-05含答案
![华南理工大学概率论-04-05含答案](https://img.taocdn.com/s3/m/da02758d83d049649b66581e.png)
所求真值μ的0.95的置信区间为[1816.23, 1833.77](单位:℃)-------10分
解答与评分标准
一.1.(D)、2.(D)、3.(A)、4.(C)、5.(C)
二.1.0.85、2.n=5、3. =29、4. 0.94、5. 3/4
(1) 4个球全在一个盒子里;
(2)恰有一个盒子有2个球.
四.(本题10分)设随机变量ξ的分布密度为
(1)求常数A; (2)求P(ξ<1);(3)求ξ的数学期望.
五.(本题10分)设二维随机变量(ξ,η)的联合分布是
η=1
η=2
η=4
η=5
ξ=0
0.05
0.12
0.15
0.07
ξ=1
0.03
0.10
概率论试题(2004-2005学年第一学期)(含答案)
一.单项选择题(每小题3分,共15分)
1.设事件A和B的概率为 则 可能为()
(A) 0; (B) 1; (C) 0.6;(D) 1/6
2.从1、2、3、4、5这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为()
(A) ; (B) ;(C) ;(D)以上都不对
3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为()
(A) ; (B) ; (C) ; (D)以上都不对
4.某一随机变量的分布函数为 ,则F(0)的值为()
(A) 0.1; (B) 0.5;(C) 0.25; (D)以上都不对
5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为()
大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答
![大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答](https://img.taocdn.com/s3/m/7fe15bd9ed630b1c59eeb5fa.png)
件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求: (1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.解 (1)X 的可能值为0,1,2,3,所以X 的概率分布为()()333360,1,2,3k kC C P X k k C -=== 即 X 0 1 2 3P120 920 920 120因此199130123202020202EX =⨯+⨯+⨯+⨯= (2)设A ={从乙箱中任取一件产品是次品},根据全概率公式有(){}{}30191921310202062062064k P A P X k P A X k =====⨯+⨯+⨯+⨯=∑三、(12)某保险公司对一种电视机进行保险,现有9000个用户,各购得此种电视机一台,在保险期内,这种电视机的损坏率为0.001,参加保险的客户每户交付保险费5元,电视机损坏时可向保险公司领取2000元,求保险公司在投保期内:(1)亏本的概率;(2)获利不少于10000元的概率。
解 101,2,,9000i i i i ξ⎧⎨⎩=第台电视机坏设=第台电视机正常9000900011{1}0.001{0}0.9990.0010.00099999i i i i iii i P P E D E D ξξξξξξ=========≈∑∑保险公司亏,则电视机坏的台数: >9000*5/2000=22.5900090009000122.51(4.5)0i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫>=>=-Φ≈⎨⎬⎩⎭⎪⎭∑∑∑ 保险公司获利不少于10000元,则电视机坏的台数:<(9000*5-10000)/2000=17.5900090009000117.5(2.83)(3)(2)(2)(2.832)0.97720.021450.830.99532i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫<=<=Φ⎨⎬⎩⎭⎪⎭Φ-Φ=Φ+-=+⨯=-∑∑∑四、(15分)设二维随机变量(),X Y 的概率分布为 YX -1 0 1-1 a 0 0.2 0 0.1 b 0.21 0 0.1 c其中a 、b 、c 为常数,且X 的数学期望0.2EX =- ,{}000.5P Y X ≤≤= ,记Z X Y =+.求: (1) a 、b 、c 的值; (2)Z 的概率分布律; (3){}P X Z =.解 (1)由概率分布的性质可知, 0.61a b c +++=,即0.4a b c ++=. 由0.2EX =-,可得0.1a c -+=-.再由{}{}{}0,00.1000.500.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,解得0.3a b +=.解以上关于a 、b 、c 的三个方程可得, 0.2,0.1,0.1a b c ===. (2)Z 的所有可能取值为-2,-1,0,1,2.则{}{}21,10.2P Z P X Y =-==-=-={}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-={}{}{}{}01,11,10,00.3P Z P X Y P X Y P X Y ===-=+==-+==={}{}{}11,00,10.3P Z P X Y P X Y ====+=== {}{}21,10.1P Z P X Y =====所以Z 的概率分布为Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1(3) {}{}000.10.10.10.2P X Z P Y b ====++=+=.五、(15分)设随机变量X 的概率密度为()110210 2 40 X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩当当其他令2Y X =,(),F x y 为二维随机变量(),X Y 的分布函数.求:(1)Y 的密度函数()Y f y ; (2) ()cov ,X Y ; (3) 1,42F ⎛⎫- ⎪⎝⎭.解 (1)Y 的分布函数为(){}{}2Y F y P Y y P X y =≤=≤当0y ≤时, ()()0,0Y Y F y f y ==. 当01y <<时,(){{}{00Y F y P X P X P X =≤≤=≤<+≤≤=()Y f y =当14y ≤<时,(){}{11002Y F y P X P X =-≤<+≤≤=()Y f y =当4y ≥时,()()1,0Y Y F y f y ==. 所以Y 的概率密度为()01140 Y y f y y <<⎪=≤<⎪⎩当当其他(2) ()0210111244X EX xf x dx xdx xdx +∞-∞-==+=⎰⎰⎰()022211546X EY EX x f x dx x dx +∞-∞-====⎰⎰()023********248X EXY EX x f x dx x dx x dx +∞-∞-===+=⎰⎰⎰故 ()2cov ,3X Y EXY EX EY =-⋅=(3) 2111,4,4,4222F P X Y P X X ⎛⎫⎧⎫⎧⎫=≤-≤=≤-≤⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭1111,22212224P X X P X P X ⎧⎫⎧⎫⎧⎫=≤-≤≤=-≤≤-=-≤≤-=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭六、(2学分) (10分) 设随机变量X 与Y 独立,其中X 的概率分布为12~0.30.7X ⎛⎫ ⎪⎝⎭而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .解 设()F y 是Y 的分布函数,则由全概率公式可知,U X Y =+的分布函数为(){}G u P X Y u =+≤{}{}0.310.72P X Y u X P X Y u X =+≤=++≤={}{}0.3110.722P Y u X P Y u X =≤-=+≤-=由于X 与Y 独立,得(){}{}()()0.310.720.310.72G u P Y u P Y u F u F u =≤-+≤-=-+-因此,U 的概率密度为()()()()()()0.310.720.310.72g u G u F u F u f u f u '''===-+-=-+-七、(2学分)(10分)已知男子中有5%是色盲患者,女子中有0.25%是色盲患者,若从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解 设A {{抽到一名男性};B {{抽到一名女性};C {{抽到一名色盲患者},由全概率公式得11()(|)()(|)()5%0.25% 2.625%22P C P C A P A P C B P B =+=⨯+⨯=1()()(|)5% 2.5%2P AC P A P C A ==⨯=由贝叶斯公式得()20(|)()21P AC P A C P C ==八、(2学分)(16分)(1)设()12,,, 2n X X X n ≥为独立同分布的随机变量,且均服从()0,1N ,记X =121n i i X n -=∑,() 1,2,,i i Y X X i n =-=. 求:{}10n P Y Y +≤.(2)袋中有a 只红球,b 只白球,c 只黑球。
东华理工大学概率论与数理统计练习册答案
![东华理工大学概率论与数理统计练习册答案](https://img.taocdn.com/s3/m/8671a80dcc17552707220893.png)
第一章 概率论的基本概念一、选择题1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C )4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容.5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D ) 注:由C 得出A+B=Ω.7. 答案:(C )8. 答案:(D ) 注:选项B 由于11111()1()1()1()1(1())nnnnni i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω.10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365rr r rC r PP A ⋅==,故365()1365rrP P A =-.11.答案:(C ) 12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明A B C ⊂,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ⋃=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P A B P A B P A B P A B P B P B P B P B P A B P B P B P A P B P A B P B P B P A B P B P B P A P B P A B P B P B P A B P A B P B P B P A P B P B P B P A B P B -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()P B P A B P A P B -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P AB =,因此P(A|B)=()00()()P AB P B P B ==.15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B ) 解:所求的概率为()1()1()()()()()()()11111100444161638P A B C P A B C P A P B P C P AB P BC P AC P ABC =-⋃⋃=---+++-=---+++-=注:0()()0()0ABC AB P ABC P AB P ABC ⊂⇒≤≤=⇒=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++.二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC 或AB BC AC 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 8.1/4解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+ 由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======,2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解. 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=.11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P .求A ,B ,C 至少有一个发生的概率。
东华理工大学概率统计练习册答案
![东华理工大学概率统计练习册答案](https://img.taocdn.com/s3/m/f8f2ef89b9d528ea81c779c3.png)
第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B) B.P(A-B)=P(A)-P(B)C. )()(B A P B A P-= D.P(A+B)=P(A)+P(B) 4.设A,B 为随机事件,则下列各式中不能恒成立的是( ).A.P(A -B)=P(A)-P(AB)B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ).A .0)(≥AB P B.1)(≤AB PC.P(A+B)=P(A)+P(B)D.P(A-B)≤P(A)6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生8.(1,2,,)i A i n =为一列随机事件,且12()0n P A A A >,则下列叙述中错误的是( ).A.若诸iA 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A PA ===--∑∏C.若诸iA 相互独立,则11()()nni i i i P A P A ===∏D.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P9.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ).A.21B. b a +1C. b a a +D. b a b+ 10.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r个人中至少有某两个人生日相同的概率为( ).A.r rP 3651365-B. rrr C 365!365⋅ C.365!1r - D. r r 365!1- 11.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ).A.C AUB与 B. B A -与CC. C AC 与D. C AB 与12.当事件A 与B 同时发生时,事件C 也随之发生,则( ).A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P CP A B =13.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ).A. A 与B 不相容B. A 与B 相容C. A 与B 不独立D. A 与B 独立14.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的是( ).A.P(A|B)=0B.(|)()P AB P A =C.()()()P A B P A P B =D.P(B|A)>015.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B. 21C. 52D. 3216.已知11()()(),()0,()(),416P A P B P CP A BP A C P B C ======则事件A,B,C 全不发生的概率为( ).A. 81B. 83C. 85D. 8717.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ).A. 12053B. 199C. 12067D. 191018.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ).A.135B. 4519C. 157D. 301919.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ).A. 21B. 31C. 75D. 71答:1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C ) 4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容. 5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=. 6. 答案:(D ) 注:由C 得出A+B=Ω. 7. 答案:(C ) 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nnnnni i i i ii i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω.10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r rrC r P PA ⋅==,故365()1365rr P P A =-. 11.答案:(C ) 12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ⊂, 故()()PA B P C ≤;而()()()()1,P A B P A P B P A B ⋃=+-≤ 故()()1()()P A P B P A B P C +-≤≤.13.答案:(D ) 解:由(|)()1PAB PA B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()PA B PA B PA B PA B PB PB PB PB PA B PB PB PA PB PA B PB PB PA B PB PB PA PB PA B PB PB PA B PA BPB PB PAPB PB PBPA B PB -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()PB PA B PAPB -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P A B =,因此P(A|B)=()0()()P A B P B P B ==.15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638PA B C PA B C PA PB PC PA B PB C PA C PA B C =-⋃⋃=---+++-=---+++-=注:0()()0()0A B C A B P A B C P A B P A B C ⊂⇒≤≤=⇒=.17.答案:(A )解:用A 表示事件“取到白球”,用B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用B 表示事件“取到第i 类箱子”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++.二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω .2.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .3.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .4.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )= .5.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (A B )= .6.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (A B )= .7.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .8.设两两相互独立的三事件A 、B 和C 满足条件:φ=ABC,21)()()(<==C p B p A p ,且已知 169)(=C B A p ,则______)(=A p .9.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .10.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 . 11.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .12.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .答:1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;A B C A B C A B C A B C A B C 或A BB CA C 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3; 若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A BP A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7. 5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P A B P A B P A +=,所以()()()0.60.30.3P A B P A B P B =-=-=.6.0.6解:由题设P (A )=0.7,P (A B )=0.3,利用公式A B A B A +=知()()()P A B P A P A B =-=0.7-0.3=0.4,故()1()10.40.6P A B P A B =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P A B CP A B C P A B C P AP BP CP A BP B CP A CP A B C ==-=-++---+=-+=.8.1/4解:因为()()()()()()()()P A B C P A P B P C P A B P B C P A C P A B C =++---+由题设22()()(),()()()(),()()()()P A P B P C P A C P A P C P A P A B P A P B P A ======,2()()()(),()0P B C P B P C P A P A B C ===,因此有293()3()16PA P A =-,解得P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解.10.11260 解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=.11.3/7解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P A C P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P A C P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
概率论课后习题答案1~7章
![概率论课后习题答案1~7章](https://img.taocdn.com/s3/m/cdd9aacfda38376baf1faeb8.png)
习题一1. 略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3. 略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB). 【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0, P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8. 对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P(A1)=517=(17)5 (亦可用独立性求解,下同)(2)设A2={五个人生日都不在星期日},有利事件数为65,故P(A2)=5567=(67)5(3) 设A3={五个人的生日不都在星期日}P(A3)=1-P(A1)=1-(17)59. 略.见教材习题参考答案.10.一批产品共N件,其中M件正品.从中随机地取出n件(n<N).试求其中恰有m件(m≤M)正品(记为A)的概率.如果:(1)n件是同时取出的;(2)n件是无放回逐件取出的;(3)n件是有放回逐件取出的.【解】(1)P(A)=C C/Cm n m nM N M N--(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N种,n次抽取中有m次为正品的组合数为C m n种.对于固定的一种正品与次品的抽取次序,从M件正品中取m件的排列数有P m M种,从N-M件次品中取n-m件的排列数为P n mN M--种,故P(A)=C P PPm m n mn M N MnN--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P(A)=C CCm n mM N MnN--可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N种取法,故所有可能的取法总数为N n种,n次抽取中有m次为正品的组合数为C m n种,对于固定的一种正、次品的抽取次序,m次取得正品,都有M种取法,共有M m种取法,n-m次取得次品,每次都有N-M种取法,共有(N-M)n-m种取法,故()C ()/m m n mnnP A M N M N-=-此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为()C 1mn mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1)1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3)2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率. 【解】(1)223151115()()22232p C ==(2)1342111C ()()22245/325p ==16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】4111152222410C C C C C 131C 21p =-=18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB p B A P A ===(2)()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.50.05200.50.050.50.002521⨯==⨯+⨯21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+-0.70.510.70.60.54-==+-24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球} 由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知 (1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27. 在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28. 某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率. 【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29. 某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得()()(|)(|)()()(|)()(|)()P AD P A P D A P A D P D P A P D A P B P D B P C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30. 加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31. 设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为(0.8)0.1n ≤故 n ≥11 至少必须进行11次独立射击.32. 证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】(|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835. 已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1)3101100C (0.35)(0.65)0.5138kk k k p -===∑(2)10102104C (0.25)(0.75)0.2241k k k k p -===∑36. 一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1)111p n =-(2)23!(3)!,3(1)!n p n n -=>-(3)12(1)!13!(2)!;,3!!n n p p n n n n --''===≥38. 将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率 【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====,24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42. 将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此213319()1()()181616P A P A P A =--=--=或12143323C C C 9()416P A ==43. 将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率. 【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44. 掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45. 设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246. 证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得 ()(),()()P AC P BC P C P C ≥即有()()P AC P BC ≥同理由(|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率. 【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A nn P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j n n kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n nn n n n--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+ 111(1)C (1)n n k nn n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知(),()m nP B P B m n m n==++1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrr m m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
华南理工大学概率论和数理统计课后答案
![华南理工大学概率论和数理统计课后答案](https://img.taocdn.com/s3/m/9b6e470254270722192e453610661ed9ad5155d1.png)
第一章1-1(1)Ω={1,2,3,4,5,6};(2)Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)};(3)Ω={3,4,5,6,7,8,9,10};(4)用数字1代表正品,数字0代表次品,则Ω={(0,0),(1,0,0),(0,1,0),(1,1,0,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)}.1-2 (1)A为随机事件;B为不可能事件;C为随机事件;D为必然事件;(2)、(3)、(4)、(5)均为随机事件.1-3 (1)A;(2)ABC;(3)A B C;(4)ABC;(5) .ABC ABC ABC1-4 (1)ABC;(2)ABC ABC ABC;(3)ABC;(4)或;(5)ABC ABC ABC ABC ABC ABC ABCABC A B CABC;(6)A B C ABC ABC ABC ABC ABC ABC ABC或或ABC.1-5 (1)买的是1985年以后出版的英文版物理书;(2)在“书店所有物理书都是1985年以后出版的且是英文版”这一条件下,ABC A=.1-6 (1)、(4)、(5)、(6)、(7)正确,其余均不正确.1-7 若需要测试7次,即前6次恰好取出2个次品,还有一个次品在第7次取出,故有246C C A次.而在10个中取出7个共有710A种取法.376设 A ={测试7次},故2463767101()8C C A P A A == 1-8 设 A ={能开门},从6把钥匙中任取2把共有 26C 种取法,故2611()15P A C == . 1-9 设 A ={拨号不超过3次就能接通电话},则191981()0.3101091098P A =+⨯+⨯⨯= 设 B ={若记得最后一位是奇数时,拨号不超过3次就能接通电话},则141431()0.6554543P B =+⨯+⨯⨯= 1-10 设 A ={恰有2人的生日在同一个月份},则21114121110455()12144C C C C P A == .1-11 将五个数字有放回地抽取,出现的结果有 35125= 种. 三个数字不同的取法有335360C A = 种,故 60()0.48125P A == ; 三个数字不含1或5,即每次只能在2、3、4中进行抽取,共有3327=种取法,故 27()0.216125P A == ; 三个数字5出现两次,即有 213412C C = 种取法,故12()0.096125P C == .1-12 设 A ={指定的3本书恰好放在一起},10本书的排列方法共有10!种,而指定的3本书的排列方法有3!种,剩下的7本书与指定的3本书这一整体的排列有8!种,故3!8!1()10!15P A == 1-13 (1)21134339()416C C C P A ==;(2)341()416P B == . 1-14 从10个人中任选3个人共有310C 种方法.(1)设 A ={最小号码是5},当最小号码是5时,在 610 之间还有地两个号码,即有 25C 种方法,故253101()12C P A C ==(2)设 B ={最大号码是5},当最大号码是5时,在14 之间还有两个号码,即有 24C 种方法,故243101()20C P B C ==1-15 (1)112211661()9C C P A C C == ;(2)1111244211664()9C C C C P B C C +== . 1-16 (1) 22261()15C P A C == ;(2)1124268()15C C P A C == .1-17 (1)设 A ={样品中有一套优质品、一套次品},则11844210056()825C C P A C ==; (2)设 B ={样品中有一套等级品、一套次品},则1112421008()825C C P B C == ;(3)设 C ={退货},则2112496412210076()825C C C C P C C ++==; (4)设D ={该批货被接受},则2118484122100749()825C C C PD C +==; (5)设E ={样品中有一套优质品},则1184162100224()825C C P E C ==. 1-18 (1)设 A ={恰有5张黑体,4张红心,3张方块,1张梅花},则5431131313131352()C C C C P A C = (2)设 B ={恰有大牌A,K,Q,J 各一张而其余为小牌},则111194444361352()C C C C C P B C = 1-19 设A ={至少有两张牌的花色相同},则 3112113441134354()0.562C C C C C P A C +==第二章2-1 (1)()()()()0.50.40.10.8;P A B P A P B P AB =+-=+-=(2)()0.1(|)0.25;()0.4P AB P A B P B === (3)()0.1(|)0.2;()0.5P AB P B A P A === (4)()()()0.50.12(|)0.66671()10.43()P AB P A P AB P A B P B P B --====≈--2-2 因为A B 、是独立事件,所以有()()(),()()(),()()()P AB P A P B P AB P A P B P AB P A P B ===(1)()()()(|)0.3;()()P AB P A P B P A B P B P B === (2)()1()1()()10.70.40.72;P A B P A B P A P B =-=-=-⨯=(3)()()()(|)0.4;()()P AB P A P B P B A P A P A === (4)()()()(|)0.7()()P AB P A P B P A B P B P B === 2-3 因为AB A A B ⊆⊆ ,所以()()()P AB P A P A B ≤≤又因为()()()()P A B P A P B P AB =+- ,所以()()()()()P AB P A P A B P A P B ≤≤≤+当A B ⊂时,第一个不等式中的等号成立; 当B A ⊂时,第二个不等式中的等号成立; 当AB =∅时,第三个不等式中的等号成立. 2-4 证明 (())()()()(P A B C P A CB CP A CP B C PA CBC ==+- (()())()()P A P B P C P A B P C=+- (()()())(P A P B P A B P C =+- ()()P A B P C= ()()()()()()P ABC P A P B P C P AB P C ==(())()()()()P A B C P ABC P A P B P C -==()()()()P A B P C P A B P C ==- 所以,A B A B AB - 、、分别与C 独立2-5 设A ={射手击中目标},1A ={第一次击中目标},2A ={第二次击中目标},3A ={第三次击中目标}.有题意可知,0.6100k=,即60k =; 1112233()()()(|)()(|)()(|)P A P A P A P A A P A P A A P A P A A =+++6060600.60.40.410.832150150200⎛⎫=+⨯+⨯-⨯= ⎪⎝⎭ 2-6 设1A ={投掷两颗骰子的点数之和为偶数},设2A ={投掷两颗骰子的点数之和为奇数},1B ={点数和为8},2B ={点数和为6}(1)1166111111113333111665()5(|)()18C C P A B P B A C C C C P A C C ===+;(2)11662222111133332116662()12(|)()18C C P A B P B A C C C C P A C C ⨯===+;(3)116622222116662()12(|)21()21C C P A B P A B P B C C ⨯=== 2-7 设A ={此密码能被他们译出},则141421()0.6553534P A =+⨯+⨯⨯= 2-8 1110101101()1(|),1()10C C P AB P B A P A C === 1110101110101()1(|)6()6C C P AB P A B P B C C === 2-9 设A ={第一次取得的全是黄球},B ={第二次取出黄球、白球各一半},则5552010155103025()0.1,(|)C C C P A P B A C C ===所以 5551015201052530()()(|)C C C P A B P A P B A C C ==2-10 设1A ={第一次取得的是黄球},2A ={第二次取得的是黄球},3A ={第三次取得的是白球},则1111213121112(),(|),(|)b b ca ab a bc a b cC C C P A P A A P A A A C C C ++++++===所以 12312131()()(|)(|)P A A A P A P A A P A A A= 1111112b b c a a b a b c a bcC C CC C C ++++++=2b b c aa b a b c a b c+=+++++2-11 设A ={这批货获得通过},B ={样本中恰有一台次品},A ={这批空调设备退货};D ={第一次抽的是合格品},E ={第二次抽的是合格品}(1)67661474()()(|);70691610P A P D P E D ==⨯= (2)673367134()()(|)()(|);706970691610P B P D P E D P D P E D =+=⨯+⨯=(3)136()1()1610P A P A =-=2-12 设A ={选出的产品是次品},1B ={产品是由 厂生产},B ={选出的产品是正品}(1)118241300042();3000C P A C +== (2)11811182418(|);42C P B A C +==(3)117821117821761782(|)2958C P B B C +==2-13 设A ={检验为次品},B ={实际为正品}(1)()5%90%95%1%0.0545P A =⨯+⨯=; (2)()(|)95%1%(|)0.1743()0.0545P B P A B P B A P A ⨯===2-14 设A ={这位学生选修了会计},B ={这位学生是女生} (1)()()(|)0.66%0.036P AB P B P A B ==⨯=;(2)()()(|)0.490%0.36P AB P B P A B ==⨯=; (3)((())()()P A P A B B P AB P AB =+=+)()(|)()(|)P B P A B P B P AB =+ 0.66%0.410%0.=⨯+⨯= 2-15 设A ={此人被诊断为患肺癌},B ={此人确实患肺癌}(1)()98%3%(|)0.7519;()98%3%97%1%P AB P B A P A ⨯===⨯+⨯(2)()(|)3%2%(|)0.0001;2%3%97%99%()P B P A B P B A P A ⨯===⨯+⨯ (3)对于被检查者,若被查出患肺癌,可不必过于紧张,还有约25%的可能没有患肺癌,可积极准备再做一次检查.对地区医疗防病结构而言,若检查结果是未患肺癌,则被检查者基本上是没有患肺癌的. 2-16 设A ={收到信息为0},B ={发送信息为0},则有(0.7(10.02)0.30.010.689P A =⨯-+⨯=)(0.7(10.02)0.686P AB =⨯-=)所以 (0.686686(|()0.689689P AB P B A P A ==))=2-17 设1A ={这批计算机是畅销品},2A ={这批计算机销路一般},3A ={这批计算机是滞销品},B ={试销期内能卖出200台以上}.根据题意有123()0.5,()0.3,()0.2P A P A P A === 123(|)0.9,(|)0.5,(|)0.3P B A P B A P B A ===(1)1111112233()((|(|)()((|((|((|P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++)))))))) 0.50.90.726;0.50.90.30.50.20.1⨯==⨯+⨯+⨯ (2)22()0.15(|)0.242;()0.62P A B P A B P B === (3)33()0.02(|)0.032;()0.62P A B P A B P B === (4)33(|)1(|)10.0320.968P A B P A B =-=-=2-18 设A ={硬币抛掷出现正面},i B ={硬币是第i 个硬币} (i =1,2,3,4,5),B ={抛掷又出现字面}(1)125()()()()P A P AB P AB P AB =+++112255()(|)()(|)()(|)P B P A B P B P A B P B P A B =+++ 11111311101;545254552=⨯+⨯+⨯+⨯+⨯= (2)11()(|)0()P AB P B A P A ==, 2211()145(|)1()102P AB P B A P A ⨯===, 3311()125(|)1()52P AB P B A P A ⨯=== , 4431()345(|)1()102P AB P B A P A ⨯===,551()25(|)1()52P AB P B A P A === ;(3)1111332()0010.75104521045P B =⨯+⨯+⨯+⨯+⨯=2-19 设1A ={一人击中},2A ={两人击中},3A ={三人击中},B ={飞机被击落}.根据题意有1()0.40.5(10.7)0.60.50.30.60.50.70.36,P A =⨯⨯-+⨯⨯+⨯⨯= 2()0.40.5(10.7)0.40.50.370.60.50.70.41,P A =⨯⨯-+⨯⨯+⨯⨯= 3()0.40.50.70.14,P A =⨯⨯=123(|)0.2,(|)0.6,(|)1P B A P B A P B A ===所以 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.360.20.410.60.141=⨯+⨯+⨯= 2-20 设A ={这批元件能出厂},则495()(4%0.0596%0.99)0.050.999999P A ⎛⎫=⨯+⨯+⨯+⨯+ ⎪⎝⎭4940.050.999898⎛⎫⨯+⨯ ⎪⎝⎭0.8639= 2-21 (1)设A ={这批产品经检验为合格品},则1205124175()0.960.060.960.060.960.063252516162222P A ⎛⎫=⨯⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭0.757= (2)设B ={产品真是合格品},则12012170.960.960.96()3251622(|)0.982()0.757P AB P B A P A ⎛⎫⨯⨯+⨯+⨯ ⎪⎝⎭===第三章3-1 根据题意可知{}()1x a x aP X x F x a x b b ax b ≤⎧⎪-⎪<==<≤⎨-⎪>⎪⎩当当当3-2 根据题意可知00()1012x f x x ≤⎧⎪=⎨<≤⎪⎩当 当所以 001(){}1211x F x P X x x x x ≤⎧⎪⎪=<=<≤⎨⎪>⎪⎩当当0当3-3 根据题意可知011126(){}223313x x F x P X x x x ≤-⎧⎪⎪-<≤⎪=<=⎨⎪<≤⎪⎪>⎩当当当当3-4 设X ={取到的次品的个数}.(1)取出后放回:1144115516{0}25C C P X C C === ,1111144111558{1}25C C C C P X C C +=== 111111551{2}25C C P X C C === 因此,取得的次品数的分布列为X 0 1 2P 1625 825 125(2)取出后不放回:114311543{0}5C C P X C C ===, 1111144111542{1}5C C C C P X C C +===因此取得的次品数的分布列为 X 0 1P 35 253-5 当X k =时,说明前1k -次失败,第k 次成功,因而1{}(1)k P X k p p -==- (1,2,)k = 3-6 (1)放回袋中的情况:512161{0}243C P X C ⎛⎫=== ⎪⎝⎭, 111111422225111116666610{1}243C C C C C P X C C C C C C === ,111112442225111116666640{2}243C C C C C P X C C C C C C ===, 111113444225111116666680{3}243C C C C C P X C C C C C C === , 111114444425111116666680{4}243C C C C C P X C C C C C C ===, 111115444445111116666632{5}243C C C C C P X C C C C C C === . 因此红球个数的分布列为X 0 1 2 3 4 5P1243 10243 40243 80243 80243 32243(2)不放回袋中的情况:223524562{3}3C P P P X P ===, 114524561{4}3C P P P X P ===.因此红球个数的分布列为X 3 4P23 133-7 {1}0.9P X ==, {2}0.10.90.09P X ==⨯=,{3}0.10.10.90P X ==⨯⨯=,{4}0.10.10.10.90P X ==⨯⨯⨯=, {5}0.10.10.10.1P X ==⨯⨯⨯=因此,X 1 2 3 4 5P 0.9 0.09 0.009 0.0009 0.00013-8 由题意知,1~8000000,2000000X B ⎛⎫ ⎪⎝⎭,由于8000000n =较大,12000000p =很小,故二项分布可用4np λ==的泊松分布近似代替,则有44{}!k P X k e k -==3-9 设X ={废品的件数},1000,0.0063n p ==可用泊松近似公式( 6.3)np λ==得所求概率为6 6.36.3{6}0.166!P X e -==≈3-10 设X ={单位时间内纱线被扯断的次数},由题意可知,~(800,0.005)X B ,则(1)448004800{4}(0.005)(0.995)0.195367P X C -===;(2)108008000{10}(0.005)(0.995)0.997160i i i i P X C -=≤==∑.3-11 设X ={该单位患有这种疾病的人数},5000,0.001n p ==,可用泊松近似公式(5)np λ==得所求概率为5505{5}1{5}1!k k P X P X e k -=>=-≤=-∑10.00670.03370.08420.140=----- 0.38404=3-12 设X ={在同一时刻向总机要外线的分机数},则~(300,0.30)X B ,在同一时刻至少有13台分机向总机要外线的时候不能满足.可用泊松近似公式得所求概率为13909{13}0.92615!k k P X e k -=≤==∑3-13 这分布不是离散的,因为X 的分布函数不是阶梯型的,也不是连续的(在x =1处是跳跃的).3-14 由连续型随机变量概率密度分布的性质可知:2()111A x dx dx A x ϕπ+∞+∞-∞-∞==⇒=+⎰⎰因此 1A π=121111{11}[arctan1arctan(1)]0.51P X dx x ππ--<<==--=+⎰3-150002010211()()022411224x xx x xxe dxx F x x dx e dx dx x e dx dx x ϕ-∞-∞-∞-∞⎧≤⎪⎪⎪==+<≤⎨⎪⎪+>⎪⎩⎰⎰⎰⎰⎰⎰当当当化简得10211()022412xex F x x x x ⎧≤⎪⎪⎪=+<≤⎨⎪>⎪⎪⎩当当当3-16 (1)因为()F x 在(,)-∞+∞上的左连续性,所以(1)1F A == ,则200()0111x F x x x x ≤⎧⎪=<≤⎨⎪>⎩当当当(2)对分布函数求导得分布密度函数为201()()0x x x F x ϕ<<⎧'==⎨⎩当其他(3) 0.70.3{0.30.7}20.4P X xdx <<==⎰.3-17 (1)0.0151001.5{100}1{100}10.0150.223xP X P X edx e ---∞>=-≤=-==⎰(2)0.0150.015{}1{}10.0150.1xx x P X x P X x edx e ---∞>=-≤=-=<⎰因此ln 0.1153.50.015x >-=. 3-18 由题意可知1030()30x f x ⎧≤≤⎪=⎨⎪⎩当其他 10012{10}1{10}1303P X P X dx ≥=-<=-=⎰3-19 由题意可知212(1)01()0x x x x ϕ⎧-<<=⎨⎩当其他 120.8{0.8}12(1)0.0272P X x x dx >=-=⎰120.9{0.9}12(1)0.0037P X x x dx >=-=⎰3-20 (1){ 2.2}(2.2)0.9861P X φ<==; (2){ 1.76}1(1.76)0.0392P X φ>=-=;(3){0.78}1(0.78)0.2177P X φ<-=-=;(4){ 1.55}{1.55 1.55}2(1.55)10.8788P X P X φ<=-<<=-=; (5){ 2.5}{ 2.5}{ 2.5}22(2.5)0.0124P X P X P X φ>=<-+>=-=. 3-21 1,4μσ=-= .(1)()2.441{ 2.44}0.860.80514P Y φφ+⎛⎫<=== ⎪⎝⎭;(2)1{ 1.5}1{ 1.5}1(0.125)0.54988P Y P Y φφ⎛⎫>-=-≤-=--== ⎪⎝⎭;(3) 2.81{ 2.8}(0.45)1(0.45)0.32644P Y φφφ-+⎛⎫<-==-=-= ⎪⎝⎭;(4)4141{4}{44}44P Y P Y φφ+-+⎛⎫⎛⎫<=-<<=- ⎪ ⎪⎝⎭⎝⎭()()1.25(10.75)0.6678φφ=--=; (5)2151{52}44P Y φφ+-+⎛⎫⎛⎫-<<=- ⎪ ⎪⎝⎭⎝⎭()()0.75[11]0.6147φφ=--=;(6)2101{11}{2}{0}144P Y P Y P Y φφ++⎛⎫⎛⎫->=>+<=-+ ⎪ ⎪⎝⎭⎝⎭0.8253=.3-22 设A ={一次测量中误差的绝对值不超过30}.(1)由题意可知,2~(20,40)X N ,20,40μσ==,则(){30}{3030}(0.25)( 1.25)P A P XP X φφ=≤=-≤≤=-- (0.25)(1.25)10.φφ=+-= (2)设Y 表示3次独立重复测量中事件A 发生的次数,则~(3,0.4931)Y B{1}1{1}1{0}P Y P Y P Y ≥=-<=-=331(10.4931)0.87C =--=3-23 首先求出电子管的损坏概率为150150201001001()03P x dx dx x ϕ==+=⎰⎰设Y ={电子管损坏的个数},则1~(3,)3Y B .(1)0303118{0}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭; (2)333111{3}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 3-24 设A ={生产的零件合格},2~(50,0.75)X N ,50,0.75μσ==,则(){50 1.550 1.5}P A P X =-≤≤+501.55050501.550{}0.750.750.75X P ---+-=≤≤(2)(2)2(2)10.φφφ=--=-= 3-25 强度2~(200,18)X N .(1)18020010{180}1{180}10.8665189P X P X φφ-⎛⎫⎛⎫>=-≤=-== ⎪ ⎪⎝⎭⎝⎭(2)强度不低于150MPa 的概率为()150200{150}1{150}1 2.770.997218P X P X φφ-⎛⎫≥=-<=-== ⎪⎝⎭3-26 由题意可知X -3 -2 0 1 21X -- 2 1 -1 -2 -32X 9 4 0 1 4P18 14 18 13 16所以1X --的分布列为1X -- 2 1 -1 -2 -3 P 18 14 18 13 162X 的分布列为2X 0 1 4 9P18 13 512 183-27 由23(0,1)()0(0,1)xx x x ϕ⎧∈=⎨∉⎩当当知300()0111x F x x x x ≤⎧⎪=<<⎨⎪≥⎩当当当.(1)令21Y X =-+,Y 的分布函数为(){}{21}Y F x P Y x P X x =<=-+<1211()2xx P X x d x ϕ--∞-⎧⎫=>=-⎨⎬⎩⎭⎰ 当1012x -≤<时312201()1312xY x F x x dx --⎛⎫=-=- ⎪⎝⎭⎰, 所以 221131()32222Y x x f x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当102x-<时,12()0xx dx ϕ--∞=⎰,此时,1x >,()1Y F x =;当112x-≤时12()1xx dx ϕ--∞=⎰此时,1x ≤-,()0Y F x = .因此 3011()111211Y x x F x x x ≤-⎧⎪-⎪⎛⎫=--<≤⎨ ⎪⎝⎭⎪⎪>⎩当当当23111()220Y x x f x ⎧-⎛⎫-<≤⎪ ⎪=⎨⎝⎭⎪⎩当其他 (2)设2Y X = ,Y 的分布函数为2(){}{}()Y F x P Y x P X x x t d t=<=<=<1> ,即1x >时,()1Y F x =;当01<≤,即01x <≤时,23/2()3Y F x t dt x==,所以1/23()2Y f x x =;0=,即0x =时,()0Y F x =.因此 3/200()0111Y x F x xx x ≤⎧⎪=<≤⎨⎪>⎩当当当 1/2301()2Y xx f x ⎧<≤⎪=⎨⎪⎩当其他 3-28 当0x >时,(){}{}{ln }X Y F x P Y x P e x P X x =<=<=<2222l n l n()/2()/2xx t a t a dt e dt σσ-----∞-∞==⎰22(ln )/2()0()00x a Y Y dF x x x dx x σϕ--⎧=>⎪=⎨⎪≤⎩当当3-29 1/331/3(){}{}{}()x Y F x P Y x P X x P X x t dt ϕ-∞=<=<=<=⎰2/31/3()1()()3Y Y dF x x x x dx ϕϕ-==令()1x ϕ=代入上式可得2/3101()3Y xx x ϕ-⎧<≤⎪=⎨⎪⎩当其他 3-30 /2/2(){}{2ln }{}x e x t Y F x P Y x P X x P X e e dt λλ-=<=<=<=⎰因此/2/2/2/211()22x x x e x e Y f x e e e λλλλ--==()x -∞<<+∞第四章4-1X 1 2 3Y1 0 16 1122 16 16 163 112 164-2 4352410{,}i j i jC C C P X i Y j C --=== 4-3 由于11(,)14RAf x y dxdy Axydxdy A xdx ydy +∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰, 故4A =,代入密度函数,得401,01(,)0xy x y f x y <<<<⎧=⎨⎩当其他所以 112300111{,}42336P X Y xdx ydy <<==⎰⎰4-4 (1)当0X >且0Y >时,()0(,)(1)(1)xyu v x y F x y du e dv e e -+--==--⎰⎰;当00x y <<或时,(,)0F x y =.所以 (1)(1)0,0(,)0x ye e x y F x y --⎧--<<+∞<<+∞=⎨⎩当其他(2)由于{(,):0,0,1}D x y x y x y =≥≥+≤,有11()10(,)(,)12xx y DP X Y f x y dxdy dx e dy e --+-===-⎰⎰⎰⎰4-5 由题意可知:14(,)111(,)220x y B f x y ⎧=∈⎪⎪⨯⨯=⎨⎪⎪⎩当其他当12x ≤-或0y ≤时,(,)0F x y =; 当102x -<≤且021y x <≤+时,102(,)42(21)x y y F x y dudv y x y -==--⎰⎰;当102x -<≤且21y x >+时,212102(,)42(21)x x F x y dudv x +-==+⎰⎰; 当0x >且01y <≤时,102(,)42(1)xyy F x y dudv y y -==-+⎰⎰;当0x >且1y >时,(,)1F x y =.因此 2100212(21)00212(,)12(21)02122(1)001101x y y x y x y x F x y x x y x y y x y x y ⎧≤-≤⎪⎪⎪-+-<≤<≤+⎪⎪=⎨⎪+-<≤>+⎪⎪-><≤⎪>>⎪⎩当或当且当且当且当且4-61{0}6P X ==, 7{0}12P Y ==, 5{1}12P X =-=,1{1}3P Y ==, 5{2}12P X ==, 11{}312P Y ==. 4-7 由于()(,)X f x f x v dv +∞-∞=⎰,得1(,)(,)0x y Df x y ∈⎧=⎨⎩当其他当[0,1]x ∈时,220()122xX f x dv x -==-⎰;当[0,1]x ∉时,()0X f x =.因此 2201()0X x x f x -<<⎧=⎨⎩当其他当[0,2]y ∈时,2201()1(2)2yY f y du y -==-⎰;当[0,2]y ∉时,()0Y f y =.因此 1102()2Y y y f y ⎧-≤≤⎪=⎨⎪⎩当其他 4-8 由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰ 当0x >时,0()x v x X f x e dv e +∞---==⎰;当0y >时,0()u y y Y f y e du e +∞---==⎰.因此 0()00x X e x f x x -⎧>=⎨≤⎩当当, 0()00y Y e y f y y -⎧>=⎨≤⎩当当4-9 由题意可知1X 0 12X0 0.1 0.81 0.1 0 4-10 由于1X -1 0 12X-1 0 140 14 0 141 0140 4-11 (1)由于(34)(34)(,)112x y x yRAf x y dxdy Ae dxdy A dx e dy +∞+∞+∞+∞-+-+-∞-∞====⎰⎰⎰⎰⎰⎰, 故12A =.(2)当0x <或0y <时,(,)0F x y =; 当00x y <<且时,(34)340(,)12(1)(1)x yu v x y F x y e dudv e e -+--==--⎰⎰.故 34(1)(1)0,0(,)0x y e e x y F x y --⎧-->>=⎨⎩当其他(3)34(34)9160{03,04}12(1)(1)x y P X Y dx e dy e e -+--<≤<≤==--⎰⎰4-12 由题意可知1(,)(,)20x y D f x y ⎧∈⎪=⎨⎪⎩当其他当10x -≤<时,111()12x X x f x dv x +--==+⎰; 当01x ≤≤时,111()12x X x f x dv x -+-==-+⎰. 故 110()1010X x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩当当其他 4-13 (1)11111111118812121216161616a ⎛⎫⎛⎫⎛⎫+++++++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故14a =. (2)1{}4P Xi ==(1,2,3,4i =, 25{1}48P Y ==,13{2}48P Y ==,27{3}48P Y ==,3{4}48P Y ==.(3)111125{}48121648P XY ==+++=. 4-14 由联合分布函数的性质可知 (1)(,)()()122F A B C ππ+∞+∞=++=,(,)()()022F A B C ππ-∞-∞=--=,(,)()(a r c t a n )023yF y A B C π-∞=-+=,(,)(a r c t a n )()022x F x A B C π-∞=+-=,故21A π=,2Bπ=,2C π=.(2)21(,)arctan arctan 2223x y F x y πππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭, 2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++. (3)222262()(4)(9)(4)X f x dy x y x ππ+∞-∞==+++⎰,222263()(4)(9)(9)Y f y dx x y y ππ+∞-∞==+++⎰4-15 (1)由于122002(,)()13f x y dxdy x Cxy dxdy C +∞+∞-∞-∞=+=+=⎰⎰⎰⎰,故13C=. (2)当00x y <<或时,(,)0F x y =; 当1,2x y >>时,(,)1F x y =;当01,02x y ≤≤≤≤时,232200111(,)()3312xyF x y du u uv dv x y x y =+=+⎰⎰;当01,2x y ≤≤>时,223200121(,)()333xF x y du u uv dv x x =+=+⎰⎰当1,02x y >≤≤时,12200111(,)()3312yF x y du u uv dv y y =+=+⎰⎰.故 3223220001101,0231221(,)01,233111,0231211,2x y x y x yx y F x y x x x y y y x y x y <<⎧⎪⎪+≤≤≤≤⎪⎪⎪=+≤≤>⎨⎪⎪+>≤≤⎪⎪>>⎪⎩当或当当当当(3)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰,当[0,1]x ∈时,222012()233X f x x xy dy x x ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,1]x ∉时,()0X f x =.故 22201()3X x x x f x ⎧+≤≤⎪=⎨⎪⎩当其他当[0,2]y ∈时,120111()336Y f y x xy dx y ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,2]y ∉时,()0Y f y =.故 1102()360Y y y f y ⎧+≤≤⎪=⎨⎪⎩当其他(4)由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =,故 26201,02(|)20x xyx y f x y y ⎧+≤≤≤≤⎪=+⎨⎪⎩当其他故 301,02(|)62x yx y f y x x +⎧≤≤≤≤⎪=+⎨⎪⎩当其他 4-16 由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =, (1)当0x >时,(2)20()22x y x X f x e dy e +∞-+-==⎰;当0y >时,(2)0()2x y y Y f y e dx e +∞-+-==⎰.故 2|20,0(|)0x X Y e x y f x y -⎧>>=⎨⎩当其他|0,0(|)0y Y X e x y f y x -⎧>>=⎨⎩当其他(2)21(2)0012{2,1}{2|1}{1}x y ydx e dyP X Y P XY P Y edy-+-≤≤≤≤==≤⎰⎰⎰14541111e e e e e -------+==--. 4-17 (1)由于()1X f x = (01)x <<|1(|)1Y X f y x x=- (01,1)x x y <<<<故 101,1(,)10x x y f x y x⎧<<<<⎪=-⎨⎪⎩当其他 (2)由于01()(,)l n (1)1yY f y f x y d x d x y x+∞-∞===---⎰⎰故l n (1)01()0Y y y f y --<<⎧=⎨⎩当其他 (3)11121{()1}l n 21yy P X Y d yd x x-+>==-⎰⎰ 4-18X Y 与相互独立的充要条件是ij i j p p p = (1,2;1,2,3)i j ==,因此有{1,3}{1}{3}P X Y P X P Y =====1111169181818B ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭{2,3}{2}{3}P X Y P X P Y =====11318A B B B ⎛⎫⎛⎫=+++= ⎪⎪⎝⎭⎝⎭解得21,99A B ==. 4-19 (1)由0.5()0.5()(,)0.251x xu v x X F x f u v dvdu e dvdu e +∞+∞-+--∞-∞-∞-∞===-⎰⎰⎰⎰故 0.510()00x X e x F x x -⎧->=⎨≤⎩当当同理可得0.510()00y Y e y F y y -⎧->=⎨≤⎩当当(2)0.5()20.250,0(,)(,)0x y e x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩当其他当0x >时,0.5()0.50()(,)0.250.5x v x X f x f x v dv e dv e +∞+∞-+--∞===⎰⎰;当0x ≤时,()0X f x =.故 0.50.50()00x X e x f x x -⎧>=⎨≤⎩当当同理可得0.50.50()00y Y e y f y y -⎧>=⎨≤⎩当当(3)由于(,)()()X Y f x y f x f y =,故X Y 、相互独立. (4)0.5()0.10.10.1{0.1,0.1}0.25x y P XY dy e dx e +∞+∞-+->>==⎰⎰.4-20 (1)由于1001(,)()12x f x y dxdy dx C x y dy C +∞+∞-∞-∞=+==⎰⎰⎰⎰,故2C=.(2)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰当[0,1]x ∈时,20()2()3x X f x x y dy x =+=⎰;当[0,1]x ∉时,()0X f x =.故 2301()0X x x f x ⎧≤≤=⎨⎩当其他当[0,1]y ∈时,12()2()123Y yf y x y dx y y =+=+-⎰;当[0,1]y ∉时,()0Y f y =.故 212301()0Y y y y f y ⎧+-≤≤=⎨⎩当其他(3)当01x y ≤≤≤时,有(,)2()f x y xy =+, 22()()3(123)X Y f x f y x y y =+-可见,(,)()()X Y f x y f x f y ≠,所以X Y 与并不相互独立. (4)11201{1}2()3y yP XY dy x y dx -+≤=+=⎰⎰.4-21 (1)由于X Y 与相互独立,故()0,0(,)()()0x y X Y e x y f x y f x f y -+⎧>>==⎨⎩当其他 (2)110{1|0}{1}1x P X Y P X e dx e --≤>=≤==-⎰.第五章5-1 (1)1111210(1)12666EX =⨯+⨯+⨯+-⨯=,222211117210(1)26663EX =⨯+⨯+⨯+-⨯=,11(21)(221)(211)(201)26E X -+=-⨯+⨯+-⨯+⨯+-⨯+⨯11(2(1)1)166+-⨯-+⨯=-; (2)224()3DX EX EX =-=,()X σ==.5-2 (1)00;kk k k qEX kpq pq q p∞∞=='⎛⎫=== ⎪⎝⎭∑∑(2)2222221000kk k k k k k k EXk pq pqk qpq q pq kq ∞∞∞∞--====''⎛⎫===+ ⎪⎝⎭∑∑∑∑200k k k k pq q pq q ∞∞=='''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑222q qp p=+2222222q q q q q DX p p p p p=+-=+5-3 (1)1()02xEX xf x dx x e dx +∞+∞--∞-∞===⎰⎰;(2)22201()2(3)22x DX EX EX x e dx +∞-=-==Γ=⎰. 5-4 (1)0(1)1EXp p p =⨯-+⨯=, 0(1)1EY p p p =⨯-+⨯=;(2)由于20(1)1EX p p p =⨯-+⨯=,20(1)1EY p p p =⨯-+⨯=;22()(1)DX EX EX p p =-=-,22()(1)DY EY EY p p =-=-;(3)由于00(1)11EXY p p p =⨯⨯-+⨯⨯=,故2cov(,)(1)X Y EXY EX EY p p p p =-⋅=-=-.5-5222()()2g t E X t EX tEX t =-=-+, ()220dg t t EX dt=-=, 因此,tEX =,即t EX =时,()g t 达到最小值为DX .5-6 当2Y X =时,022x EYxe dx +∞-==⎰;当3XYe-=时,3014x x EYe e dx +∞--==⎰. 5-7 222()/2(ln 2)/2xx u a EY a dx a eμσσ+∞---∞==⎰ 22()DY EY EY =-222222()/2(l n 2)/222l n 2l n2()()(1)xx u a u a a a e d x a ea e e μσσσσ+∞---∞=-=-⎰ 5-8 由于12102()23EX x x dx x dx ϕ+∞-∞===⎰⎰, (5)20()y EY y y dy ye dy ϕ+∞+∞---∞==⎰⎰6=,且X Y 与相互独立,所以有2643EXY EX EY =⋅=⨯=, 220(+)+633E X Y EX EY ==+=5-9 证明)0E Y E E X E X==-=22221()()1DY EY EY E E X EXDX=-==-=5-10 证明)XYρ===()()0E X E X Y E Y⇒--=()0E X Y Y E X X E Y E X E Y⇒-⋅-⋅+⋅=E X Y E X E Y⇒-⋅=()2c o v(,)D X Y D X D Y X Y D X D Y⇒+=++=+5-15 (1)由于2200(,)sin()x y dxdy A x y dxdyππϕ+∞+∞-∞-∞=+⎰⎰⎰⎰2c o s c o s2A x x d xππ⎡⎤⎛⎫=-+-⎪⎢⎥⎝⎭⎣⎦⎰21A==,故12A=.(2)22200011sin()cos cos2224 EX x x y dxdy x x x x dxπππππ⎡⎤⎛⎫=+=++=⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰,由于X Y与相互对称,故有4EY EXπ==;2 222222200011sin()[sin cos]22282 EX x x y dxdy x x x x dxπππππ=+=+=+-⎰⎰⎰22222()22824162DX EX EXπππππ⎛⎫=-=+--=+-⎪⎝⎭由于X Y与相互对称,故有22162DYππ=+-.(3)222000112sin()sin cos222EXY xy x y dxdy x x x dxππππ-⎛⎫=+=+⎪⎝⎭⎰⎰⎰22π-=2cov(,)1162X Y EXY EX EY ππ=-⋅=-+-2211622162XYππρππ-+-==+- 5-12 二维随机变量(,)X Y 的联合分布函数为1(,)(,)0x y Af x y ∈⎧=⎨⎩当其他12(1)12(1)000012,33x x EX xdydx EY ydydx --====⎰⎰⎰⎰12(1)0016x EXY xydydx -==⎰⎰. 5-13 设抽到次品所需要次数为X ,则X 服从下列分布:X 1 2 3 k P2n 221n n n -⋅- 23212n n n n n --⋅⋅-- 2(2)(3)()(1)(2)(1)n n n k n n n n k ------- 即2{}1n k P Xk n n -==⋅-,因此 11112{}1n n k k n k EX k P X k k n n --==-=⋅==⋅⋅-∑∑1121121(2)3n n k k n kn k n n --==+⎛⎫=-= ⎪-⎝⎭∑∑122121n k n k EX k n n -=-=⋅⋅-∑11231121(1)(2)6n n k k k n k n n n n --==⎛⎫=-=+ ⎪-⎝⎭∑∑221()(1)(2)18DX EX EX n n =-=+- 5-15 (1)11005(2)12EX x x y dydx =--=⎰⎰, 512EY EX ==.1122001(2)4EX x x y dydx =--=⎰⎰, 2214EY EX == 2211()144DX DY EX EX ==-=11001(2)6EXY xy x y dydx =--=⎰⎰2151cov(,)612144X Y EXY EX EY ⎛⎫=-⋅=-=- ⎪⎝⎭5()2cov(,)36D X Y DX DY X Y +=++=(2)103()(2)2X f x x y dy x =--=-⎰, 103()(2)2Y f y x y dx y =--=-⎰可见,()()(,)X Y f x f y f x y ≠,所以两者不独立.111441111144XYρ-===-故两者相关. 5-16(5)5()22y X f x xedy x +∞--==⎰, 1(5)(5)0()2y y Y f y xe dx e ----==⎰可见,()()(,)X Y f x f y f x y =,故两者独立.1(5)054y EXY xye dydx +∞--==⎰⎰5-17 两台仪器无故障时间的密度分布为1511150()0x e x f x -⎧>=⎨⎩当其他, 2522250()0x e x f x -⎧>=⎨⎩当其他联合密度函数为125()121212250,0(,)()()0x x e x x f x x f x f x -+⎧>>==⎨⎩当其他设无故障工作时间为12y x x =+,则联合分布函数为1125()5512210(,)()2551y y x x x y y F x x F y e dx dx ye e --+--===--+⎰⎰5()()25y df y F y e y dy-==所以密度函数为5250()0y e y y f y -⎧>=⎨⎩当其他 2502255yEY y edy +∞-==⎰, 235062525y EY y e dy +∞-==⎰ 262225525DY ⎛⎫=-= ⎪⎝⎭5-18 根据题意有()EX P A =, ()EY P B =, ()EXY P AB ={1}()P XY P AB ==, {0}1()P XY P AB ==-已知0XYρ=,所以cov(,)0X Y =,即cov(,)()()()0X Y EXY EX EY P AB P A P B =-⋅=-=故()()()P AB P A P B =.事件A B 与相互独立,由事件的独立性定理可得:A ,A ,B ,B 两两相互独立,即{11}{1}{1}P X Y P X P Y =====, {10}{1}{0}P X Y P X P Y =====, {01}{0}{1}P X Y P X P Y =====, {00}{0}{0}P X Y P X P Y =====,因此,X Y 和相互独立.5-19 已知11~0,,~0,22X N Y N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由正态分布的性质可知:()1D X Y DX DY -=+=, ()0E X Y -=故()()~0,1XY N -,令Z X Y=-,则()~0,1ZN .22()zE Z z e dz+∞--∞==⎰22222()()()()1D Z EZE Z DZ EZ E Zπ=-=+-=-⎡⎤⎡⎤⎣⎦⎣⎦第六章6-1 设11nn iiY Xn==∑,再对n Y利用契比雪夫不等式:{}1222222nii nnn nD XDY nP Y EYn nεεεε=→∞⎛⎫⎪⎝⎭-≥≤=≤−−−→∑故{}n X服从大数定理.6-2 设出现7的次数为X,则有()~10000,0.1,1000,900X B E X n p D X===由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015XP X P--⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-311,212i iEX DX==由中心极限定理可知,10110iX-⨯∑,所以101011616110.136i ii iP X P X==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X,则.100,100==DXEX.由棣莫佛-拉普拉斯定理可得()0228.021100100120}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DXEXXPXP。
概率论5考研真题答案解析
![概率论5考研真题答案解析](https://img.taocdn.com/s3/m/468c015849d7c1c708a1284ac850ad02df800777.png)
概率论5考研真题答案解析概率论是数学中的一个重要分支,广泛应用于科学、工程、金融等各个领域。
对于考研学子来说,概率论是必考的科目之一。
在考试中,常常会出现一些难题,需要我们运用所学的概率论知识进行分析和解答。
本文将对概率论5考研真题的答案进行详细解析,帮助考生更好地掌握概率论知识。
题目一:已知一个随机试验有5个等可能的结果,记为A1、A2、A3、A4、A5,A是A1事件与A2事件的和事件,B是A1事件与A3事件的和事件,C是A2事件与A4事件的和事件,D是A3事件与A5事件的和事件,求事件B与事件C相互独立的概率。
解析一:设事件A1发生的概率为P(A1),事件A2发生的概率为P(A2),以此类推。
根据题意,我们可以计算事件B与事件C的概率。
首先,事件B是A1事件与A3事件的和事件,即B=A1∪A3。
由概率论的加法公式可知,P(B)=P(A1)+P(A3)。
同理,事件C是A2事件与A4事件的和事件,即C=A2∪A4。
所以,P(C)=P(A2)+P(A4)。
题目中要求事件B与事件C相互独立的概率,即P(B∩C)=P(B)×P(C)。
根据题意,我们需要计算出P(B∩C)的概率。
事件B∩C表示事件B与C同时发生的概率,即B和C的交集。
根据概率论的乘法公式可知,P(B∩C)=P(B)×P(C|B)。
P(C|B)表示在事件B发生的条件下,事件C发生的概率。
根据题意,B发生意味着A1和A3同时发生,因此P(C|B)=P(A2∪A4|A1∪A3)。
根据概率论的条件概率公式可知,P(C|B)=P(A2∪A4∩(A1∪A3))/(P(A1∪A3))。
由于A1、A2、A3、A4、A5是等可能的结果,所以P(Ai)=1/5,其中i=1, 2, 3, 4, 5。
因此,P(A2∪A4∩(A1∪A3))=P(A2∩A1∪A2∩A3∪A4∩A1∪A4∩A3)=P(A2∩A 1)+P(A2∩A3)+P(A4∩A1)+P(A4∩A3)。
概率论第五章习题答案
![概率论第五章习题答案](https://img.taocdn.com/s3/m/e7f4733f31126edb6e1a100c.png)
ˆ = min(x , x ,L, x ) 。 然函数 L 取得最大值,从而知 θ 1 2 n
16.设总体 X 的概率分布为
X
0
1
2θ (1 − θ )
2
3
P
θ2
θ2
1 − 2θ
其中 θ
1 (0 < θ < ) 是未知参数,利用总体 X 的如下样本值 3,1,3,0,3,1,2, 2
3,求 θ 的矩估计值和极大似然估计值。
2 答案与提示:由于 X ~ N ( 3} = 0.1336
3.设 X 1 , X 2 , L , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
8.设 X 1 , X 2 , L , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2 的极大似然估计。 答案与提示:设 x1 , x 2 , L, x n 为样本 X 1 ,X 2 ,L ,X n 的一组观察值。则似然函数 为
( xi − µ ) 2 2σ
15.设某种元件的使用寿命 X 的概率密度为
⎧2e −2( x −θ ), x > θ , f ( x;θ ) = ⎨ 0 , x θ ≤ ⎩
其中 θ > 0 为未知参数。又设 x1,x 2, L,x n 是 X 的一组样本观察值,求 θ 的极大似然 估计值。 答案与提示: 构造似然函数 L(θ ) = ∏ 2e
第五章 习题参考答案与提示
第五章 数理统计初步习题参考答案与提示
东华理工大学概率论与数理统计练习册答案-61153---副本
![东华理工大学概率论与数理统计练习册答案-61153---副本](https://img.taocdn.com/s3/m/a6dd041b941ea76e59fa0402.png)
全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC 或AB BC AC 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3; 若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7. 5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-=. 6.0.6解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+=. 8.1/4解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+ 由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======,2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得 P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解.10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。
华理概率论习题5答案
![华理概率论习题5答案](https://img.taocdn.com/s3/m/71bc501e7c1cfad6185fa738.png)
华理概率论习题5答案华东理工大学概率论与数理统计 作业簿(第五册)学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________第十三次作业一. 填空题:1. 已知二维随机变量),(ηξ的联合概率分布为ξ0 1120.1 0.150.25 0.20.15 0.15则()_______,),max(_______,)(2sin ____,______,==⎪⎭⎫ ⎝⎛+==ηξηξπηξE E E E ()_______),max(=ηξD 。
2. 设随机变量321,,ξξξ相互独立,1ξ~)6,0(U ,2ξ~)4,0(N ,3ξ~)3(E ,则:)32(321ξξξ+-E = ____4___,)32(321ξξξ+-D = __20_。
二. 选择题:设),N(10~ξ,)4,0(~N η,ηξς+=,下列说法正确的是( B )。
A. )5,0(~N ς B. 0=ςE C. 5=ςD D. 3=ςD05.15.025.02.136.0三. 计算题:1. 设二维随机变量),(ηξ的联合概率密度函数为⎪⎩⎪⎨⎧<<<<+=其他020,20)(81),(y x y x y x p求)(,,ξηηξE E E 。
解:ηξE y y x x x y x y x xp E D==+==⎰⎰⎰⎰67d )(d 81d d ),(202034d )(d 81d d ),()(2020=+==⎰⎰⎰⎰y y x xy x y x y x xyp E Dξη 2. 二维随机变量),(ηξ服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均匀分布,试求)(ηξ+E 和)(ηξ+D 。
解:),(ηξ~2, (,),(,)0, (,),x y G p x y x y G ∈⎧=⎨∉⎩ 1114()2()3y E dy x y dx ξη-+=+=⎰⎰, 11220111()2()6y E dy x y dx ξη-+=+=⎰⎰,2211161()()[()]6918D E E ξηξηξη+=+-+=-=3. 有10个人同乘一辆长途汽车,沿途有20个车站,每到一个车站时,如果没有人下车,则不停车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东理工大学概率论与数理统计 作业簿(第五册)学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________第十三次作业一. 填空题:1. 已知二维随机变量),(ηξ的联合概率分布为则()_______,),max (_______,)(2sin ____,______,==⎪⎭⎫ ⎝⎛+==ηξηξπηξE E E E ()_______),m ax (=ηξD 。
2. 设随机变量321,,ξξξ相互独立,1ξ~)6,0(U ,2ξ~)4,0(N ,3ξ~)3(E ,则:)32(321ξξξ+-E = ____4___,)32(321ξξξ+-D = __20_。
二. 选择题:设),N(10~ξ,)4,0(~N η,ηξς+=,下列说法正确的是( B )。
A. )5,0(~N ς B. 0=ςE C. 5=ςD D. 3=ςD05.15.025.02.136.0三. 计算题:1. 设二维随机变量),(ηξ的联合概率密度函数为⎪⎩⎪⎨⎧<<<<+=其他020,20)(81),(y x y x y x p求)(,,ξηηξE E E 。
解:ηξE y y x x x y x y x xp E D==+==⎰⎰⎰⎰67d )(d 81d d ),(2020 34d )(d 81d d ),()(2020=+==⎰⎰⎰⎰y y x xy x y x y x xyp E Dξη 2. 二维随机变量),(ηξ服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均匀分布,试求)(ηξ+E 和)(ηξ+D 。
解:),(ηξ~2, (,),(,)0, (,),x y G p x y x y G ∈⎧=⎨∉⎩11014()2()3y E dy x y dx ξη-+=+=⎰⎰,11220111()2()6y E dy x y dx ξη-+=+=⎰⎰,2211161()()[()]6918D E E ξηξηξη+=+-+=-=3. 有10个人同乘一辆长途汽车,沿途有20个车站,每到一个车站时,如果没有人下车,则不停车。
设每位乘客在各站下车是等可能的,且各乘客是否下车是相互独立的,求停车次数的数学期望。
解:设1, ,0, ,i i i ξ⎧=⎨⎩第站有人下车第站没人下车则P P i==}0{ξ{10个人在第i 站都不下车}102011⎪⎭⎫⎝⎛-=,从而1020111}1{⎪⎭⎫ ⎝⎛--==i P ξ于是1020111}1{1}0{0⎪⎭⎫ ⎝⎛--==⨯+=⨯=i i i P P E ξξξ,长途汽车停车次数2021ξξξξ+++=Λ,故⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=+++=1020212019120ξξξξE E E E Λ第十四次作业一.填空题:1.已知9,4==ηξD D ,则当12)(=-ηξD 时,____=ξηρ;当4.0=ξηρ时,_______)(=+ηξD 。
2. 设二维随机变量)5.0;4,1;4,1(~),(N ηξ,ηξζ-=,则=),cov(ζξ .二. 选择题:1. 已知随机变量X 与Y 独立同分布,记Y X U +=,Y X V -=,则U 与V 必( D )A. 独立B. 不独立C. 相关D.不相关 2. 设随机变量ξ与η的方差存在且不等于0,则ηξηξD D D +=+)(是ξ与η( C )A. 独立的充要条件B. 独立的充分条件,但不是必要条件C. 不相关的充要条件D. 不相关的充分条件,但不是必要条件1218.172三. 计算题:1. 已知二维随机变量),(ηξ的联合概率分布为(1)求ξηρ;(2) ξ与η是否独立?说明理由。
解:于是,31313442E ξ=⨯+⨯=, 13313012388882E η=⨯+⨯+⨯+⨯=,再由联合分布得33191112338884E ξη=⨯⨯+⨯⨯+⨯⨯=,从而933cov(,)0422ξη=-⋅=, 故0ξηρ=(2)由于3(1)(0)32P P ξη=⋅==, 而(1,0)0P ξη===, 故,ξη不独立.2. 设二维随机变量),(ηξ的联合概率密度函数为⎩⎨⎧<<<=其他0103),(x y x y x p求ξ与η的相关系数。
解: 先分别求出11203310y E dy x ydx ξη==⎰⎰, 1120334y E dy x dx ξ==⎰⎰, 110338y E dy xydx η==⎰⎰,11230335y E dy x dx ξ==⎰⎰, 11220135y E dy xy dx η==⎰⎰,3333cov(,)1048160ξη=-⋅=, 23335480D ξ⎛⎫=-= ⎪⎝⎭, 2131958320D η⎛⎫=-= ⎪⎝⎭,故ξηρ===3. 设二维随机变量),(Y X 的相关系数为XY ρ,而d cY b aX +=+=ηξ,,其中d c b a ,,,为常量,并且已知0>ac ,试证XY ρρξη=。
证明:XY DYDX ac Y X ac d cY D b aX D d cY b aX ρρξη=⋅=+⋅+++=),cov()()(),cov(4. 设两个随机变量ηξ,,5.0,9,4,4,2-====-=ξηρηξηξD D E E ,求)323(22-+-ηξηξE 。
解()()()683)(),cov(2)(33)()(2)(3)323(222222=-+++-+-+-=-+-ηηηξηξξξηξηξηξηξE D E E E D E E E E =第十四次作业一. 选择题:1. 设随机变量ξ密度函数为()p x ,则31ηξ=-的密度函数()p y η为( A )。
A 、11()33y p + B 、13()3y p + C 、1(3(1))3p y + D 、13()3y p - 2. 设随机变量ξ和η相互独立,其分布函数分别为 )(x F ξ与)(y F η,则),max(ηξζ= 的分布函数 )(z F ζ等于 ( B ) A .)}(),(max {z F z F ηξ B. )()(z F z F ηξC .)]()([21z F z F ηξ+ D. )()()()(z F z F z F z F ηξηξ-+二. 计算题 1. 已知随机变量]2,0[~U ξ,求2ξη=的概率密度。
解: ⎩⎨⎧<≥--=⎩⎨⎧<≥≤≤-=≤=00)()(00}{}{)(2y y y F y F y y y y P y P y F ξξηξξ故()⎪⎩⎪⎨⎧<≥--=000)()(21)(y y y p y p yy p ξξη=⎪⎩⎪⎨⎧≤≤其他4041y y2. 设ηξ、 是两个相互独立且均服从正态分布⎪⎭⎫⎝⎛21,0N 的随机变量,求|)(|ηξ-E 。
解: 由已知条件可得:)1,0(~N ηξ-,所以ππππηξ2e 22d e22d e 21|||)(|0222222=-==⋅=-+∞--∞+-∞+∞-⎰⎰x x x x x x x E3. 已知随机变量ηξ、 的概率分布分别为412141}{101i x P =-ξξ2121}{10j y P =ηη而且1}0{==ξηP 。
(1)求ηξ、 的联合概率分布;(2)问ηξ、 是否独立? (3)求), max(ηξζ=的概率分布。
解: 由于(0)1P ξη==,可以得到(1,1)(1,1)0P P ξηξη=-=====,从而1(0,1)(1)2P P ξηη=====, 1(1,0)(1)4P P ξηξ=-===-=,1(1,0)(1)4P P ξηξ=====, (0,0)(0)(0,1)0P P P ξηξξη====-===, 汇总到联合分布列,即(2)由于(,)()()P i j P i P j ξηξη==≠=⋅=,故,ξη不独立. (3)1(0)(1,0)(0,0)4P P P ζξηξη===-=+===, 3(1)(1,1)(0,1)(1,0)(1,1)4P P P P P ζξηξηξηξη===-=+==+==+===4.设随机变量ηξ、 相互独立,其密度函数分别为⎩⎨⎧≤>=⎩⎨⎧<<=-0)(,0101)(y y e y p x x p yηξ其他 求ηξ+ 的概率密度函数。
解: 由,ξη相互独立得联合密度函数为, 01,0,(,)0, ,y e x y p x y -⎧≤≤>=⎨⎩其他密度函数中非零部分对应的(,)x y 落在区域D 中,利用卷积公式,当1z ≥时,1()()(1)z x z p z edx e e ζ---==-⎰,当01z <<时,()0()1zz x z p z e dx e ζ---==-⎰,当0z ≤时,()0p z ζ=,故 (1), 1,()1, 01, 0, 0. z ze e z p z e z z ζ--⎧-≥⎪=-<<⎨⎪≤⎩5. 电子仪器由4个相互独立的部件)4,3,2,1(=i L i 组成,连接方式如图所示。
设各个部件的使用寿命i ξ服从指数分布)1(E ,求仪器使用寿命ζ的概率密度。
1L 3L2L 4L解: 设各并联组的使用寿命为)2,1(=j j η,则},m ax {},,m ax {},,m in{43221121ξξηξξηηηζ=== 由i ξ独立同分布知21,ηη也独立同分布。
现⎩⎨⎧≤>-=-0e 1)(x x x F xξ 所以 ⎩⎨⎧≤>-==-000)e 1()()(22y y y F y F y ξη 从而[][]⎩⎨⎧≤>--=⎪⎩⎪⎨⎧≤>---=--=---000)e 2(e 1000)e 1(11)(11)(22222z z z z z F z F z z z ηζ ⎩⎨⎧≤>--==∴---000)e 2)(e 1(e 4)(2z z z p z z z ζ。