jpos_examples

合集下载

jps方法论

jps方法论

jps方法论JPS方法论:寻找最短路径的高效算法JPS(Jump Point Search)方法论是一种用于寻找最短路径的高效算法。

它通过利用路径的连续性和对称性,在搜索过程中跳过一些无关紧要的节点,从而大大减少了搜索的时间复杂度。

本文将介绍JPS方法论的原理及其在实际应用中的优势。

一、JPS方法论的原理JPS方法论的核心思想是在搜索过程中寻找跳跃点,即从当前节点出发,跳过一些无关紧要的节点,直接寻找下一个重要的节点。

这些重要的节点被称为Jump Point,它们具有特殊的性质:在无障碍的情况下,从Jump Point出发沿着某个方向前进,直到遇到阻塞或边界才会停下。

为了寻找Jump Point,JPS方法首先进行传统的A*搜索,按照启发式函数计算节点的优先级,选取最优节点进行扩展。

当遇到阻塞或边界时,JPS方法会检查当前节点的邻居节点,通过分析邻居节点和当前节点的关系,确定是否存在Jump Point。

如果存在Jump Point,JPS方法会将其加入到搜索队列中,并对其进行进一步的搜索。

二、JPS方法论的优势1. 减少搜索空间:JPS方法通过跳跃点的引入,可以跳过大量的无关紧要的节点,从而减少搜索的节点个数,提高搜索的效率。

2. 更快的搜索速度:由于JPS方法减少了搜索空间,相比传统的A*搜索,它可以更快地找到最短路径。

3. 适用于大规模地图:JPS方法适用于各种规模的地图,无论是小型迷宫还是大型城市地图,都能够有效地找到最短路径。

4. 可扩展性强:JPS方法可以与其他路径规划算法相结合,形成更加强大的路径规划系统,满足不同应用场景的需求。

三、JPS方法论的应用领域1. 游戏开发:JPS方法可以用于游戏中的AI路径规划,例如实时策略游戏中的单位移动、角色扮演游戏中的寻路等。

2. 物流配送:JPS方法可以用于优化物流配送路线,减少送货时间和成本。

3. 路线规划:JPS方法可以用于导航系统中的路线规划,帮助用户快速找到最优路径。

开源代码simple_pjsua代码解读

开源代码simple_pjsua代码解读

开源代码simple_pjsua代码解读简介:开源代码simple_pjsua是一个基于PJSIP库的简单SIP用户代理应用程序。

本文将对simple_pjsua代码进行解读,介绍其主要功能和实现原理。

一、功能介绍simple_pjsua是一个SIP用户代理应用程序,可以实现SIP协议的基本功能,包括注册、呼叫、接听、挂断等。

它提供了一个简单的命令行界面,用户可以通过命令来操作SIP通信。

二、代码结构simple_pjsua的代码结构清晰,主要包括以下几个文件:1. main.c:程序的入口文件,包含了主函数和一些全局变量的定义。

2. pjsua_app.c:定义了SIP用户代理的初始化、注册、呼叫等功能的实现。

3. pjsua_app.h:定义了SIP用户代理的相关结构体和函数的声明。

4. pjsua_cmd.c:定义了命令行界面的实现,包括命令的解析和执行。

5. pjsua_cmd.h:定义了命令行界面的相关结构体和函数的声明。

三、实现原理1. 初始化在main函数中,首先调用pjsua_app_init函数进行SIP用户代理的初始化。

该函数会创建一个pjsua_app_t结构体,并调用pjsua_create函数创建一个PJSUA库实例。

然后,通过pjsua_config结构体设置一些配置参数,如SIP服务器地址、端口号等。

最后,调用pjsua_init函数初始化PJSUA库。

2. 注册在pjsua_app_register函数中,首先创建一个pjsua_acc_config结构体,并设置一些注册参数,如用户名、密码、SIP服务器地址等。

然后,调用pjsua_acc_add函数将该账号添加到PJSUA库中。

最后,调用pjsua_acc_set_default函数将该账号设置为默认账号。

3. 呼叫在pjsua_app_call函数中,首先创建一个pjsua_call_setting结构体,并设置一些呼叫参数,如呼叫的目标地址、媒体参数等。

yocto poky recipe 语法

yocto poky recipe 语法

yocto poky recipe 语法yocto poky recipe 语法是开发嵌入式系统的一种方法,它提供了一种简化和标准化的方式来构建和定制 Linux 发行版。

在本文中,我们将介绍 yocto poky recipe 语法的基本概念和用法,并提供一些实际示例来帮助读者更好地理解和应用这种语法。

让我们来了解一下 yocto poky recipe 是什么。

在 yocto poky 中,recipe 是用于构建软件包的一种描述文件。

它包含了软件包的源代码、编译选项、安装目录等相关信息,以及构建软件包所需的其他依赖项。

通过编写 recipe 文件,我们可以告诉 yocto poky 如何构建和定制特定的软件包。

yocto poky recipe 文件使用 BitBake 语言编写,它是一种基于Python 的领域特定语言(DSL)。

BitBake 提供了一套丰富的语法和函数,用于描述软件包的构建过程。

下面是一个简单的 yocto poky recipe 文件的示例:```SUMMARY = "Hello World Example"DESCRIPTION = "A simple hello world program"LICENSE = "MIT"LIC_FILES_CHKSUM = "file://LICENSE;md5=abcd1234"SRC_URI = "file://hello.c"do_compile() {${CC} ${CFLAGS} hello.c -o hello}do_install() {install -d ${D}${bindir}install -m 0755 hello ${D}${bindir}}FILES_${PN} += "${bindir}/hello"```在这个示例中,我们定义了软件包的基本信息,包括名称、描述和许可证。

dpdk examples 解释

dpdk examples 解释

文章标题:深入解析DPDK示例代码1. DPDK简介DPDK(Data Plane Development Kit)是一个开源项目,旨在加速数据包的处理和转发。

它提供了优化的数据包处理框架和库,使网络应用程序能够以极低的延迟和高吞吐量运行。

DPDK的核心特点包括零拷贝技术、大页内存和硬件加速等。

在网络功能虚拟化(NFV)和软件定义网络(SDN)等领域,DPDK被广泛应用。

2. DPDK例子代码概述DPDK提供了丰富的例子代码,涵盖了从简单的入门示例到复杂的网络应用程序的各个方面。

这些例子代码包括了初始化DPDK环境、数据包收发、网络协议栈、数据包过滤和统计等功能。

通过学习和理解这些例子代码,可以帮助开发人员更好地掌握DPDK的使用方法和性能优化技巧。

3. DPDK例子代码详解在学习DPDK例子代码时,我们可以先从简单的例子开始,逐步深入了解其原理和实现方式。

以下是一些常见的DPDK例子代码,以及它们的功能和重要实现细节:3.1 初始化DPDK环境在DPDK中,初始化DPDK环境是非常重要的一步。

例子代码中会展示如何初始化EAL(Environment Abstraction Layer)环境,包括设置内存通道、初始化设备等。

通过分析这部分代码,可以了解DPDK环境初始化的必要步骤和注意事项。

3.2 数据包收发数据包的收发是网络应用程序的核心功能之一。

DPDK提供了高效的数据包收发接口,能够实现数据包的快速接收和发送。

例子代码中会展示如何初始化网卡、设置接收队列和发送队列,以及进行数据包的收发操作。

通过学习这部分代码,可以深入了解DPDK数据包收发的原理和实现方式。

3.3 网络协议栈DPDK包含了基本的网络协议栈实现,能够支持TCP/IP协议栈、UDP 协议栈等。

例子代码中会展示如何使用DPDK的网络协议栈进行网络通信,并进行一些简单的网络应用开发。

通过分析这部分代码,可以更好地理解DPDK网络协议栈的实现原理。

jpda算法的主要步骤

jpda算法的主要步骤

jpda算法的主要步骤
JPDA算法是一种常用的软件测试算法,主要用于检测软件中的缺陷和错误。

该算法主要包括以下几个步骤:
第一步:设置(Job Setup)
在开始测试之前,需要先设置测试环境,包括创建测试用例、准备测试数据、设置软件运行环境等。

这一步是测试成功的关键,需要确保测试环境与实际运行环境一致,以保证测试结果的准确性。

第二步:运行(Job Execution)
在设置好测试环境之后,需要按照测试用例的要求,运行软件并进行监控。

在运行过程中,需要实时记录软件的各种运行数据,包括但不限于内存使用情况、CPU占用率、线程状态等。

这些数据将作为后续分析的重要依据。

第三步:故障检测(Job Detection)
在软件运行完毕后,需要对运行数据进行分析,查找可能存在的缺陷和错误。

这一步需要具备一定的软件故障检测能力,能够通过分析运行数据,发现潜在的问题。

第四步:记录与分析(Joblogging and Analysis)
在故障检测完成后,需要对发现的问题进行记录,并进行分析。

通过对问题的分析,可以找出问题的根本原因,并制定相应的修复方案。

同时,也需要对测试过程和结果进行总结,为后续的测试工作提供参考。

总体来说,JPDA算法主要包含设置、运行、故障检测和记录与分析四个步骤。

通过这四个步骤,可以有效地检测软件中的缺陷和错误,提高软件的质量和可靠性。

在实际应用中,需要根据具体情况进行调整和优化,以获得更好的测试效果。

Jpcap 使用指南

Jpcap 使用指南

Jpcap 使用指南Keita Fujii原文出自:/kfujii/jpcap/doc/tutorial/index.html引言本文描述了如何使用Jpcap开发应用软件。

不仅解释了在Jpcap中定义的功能以及类,而且也通过一些程序代码实例对如何使用Jpcap来设计程序进行了全面的阐述。

最新的版本可以在/kfujii/jpcap/doc/tutorial/index.html找到。

Jpcap简介Jpcap是源自于Java应用的一个开源类库,主要用于捕获、发送网络数据包。

它提供以下功能:●捕获末加工的原始数据包。

●保存捕获到的数据包到本地文件,从本地文件读出先前捕获的数据包。

●自动分辨数据包的类型并产生相应的Java类(如:Ethenet、IPv4、IPv6、ARP/RARP、TCP、UDP和ICMP包)。

●根据用户在程序代码中指定的过滤规则过滤数据包。

●向网络发送各种数型的数据包利用Jpcap包能够开发以下几种类型的应用程序:●网络以及协议的分析器●网络监听器●网络流量记录器●网络流量发生器●用户级的网桥、路由●网络入侵检测系统●网络扫描器●网络安全工具箱Jpcap捕获、发送数据包是独立于主机协议(如:TCP/IP)的,这也就意味着Jpcap不能阻塞、过滤或操纵由宿主机上其他程序产生的网路流量。

因此它不支持诸如:流量调节器、QoS schedulers以及个人防火墙这一类应用。

Jpcap使用指南1.获取网络接口列表要想从网络中捕获数据包,第一件必须要做的事就是获取本机的网络接口列表。

Jpcap 提供了方法JpcapCaptor.getDeviceList()完成这个任务,该方法返回一组NetworkInterface对象。

NetworkInterface接口对象包含了对应网络接口的一些信息,例如:名称、描述、IP以及MAC地址以及数据链路层名称和描述。

例一:获取网络接口列表以及网络接口基本信息2.打开网络接口一旦有了网络接口列表就可以从选定用于捕获数据包的网络接口,可以使用方法JpcapCaptor.openDevice()来打开网络接口。

JumpPointSearch(JPS)算法总结与实现(附Demo)

JumpPointSearch(JPS)算法总结与实现(附Demo)

JumpPointSearch(JPS)算法总结与实现(附Demo)关于这篇⽂章第⼀次翻阅A星算法的⽂章,是为了弄清楚A星在游戏开发中的地位。

当是在脑海中没有形成它的算法模型,也苦于没有⼀个⾃定义轨迹且⼜能展⽰每⼀步的细节的demo,于是⾃⼰动⼿写了⼀个测试demo。

后来⼜因为效率的问题接触到了JPS,于是⼜实现了⼀版JPS的逻辑,后分别整理成⽂章发布。

这期间⼤约经历了⼀个⽉时间,这段时间有很多⼈给我讲,这些内容⽹上有很多,没必要费那么⼤的功夫。

但~我觉得,做⼀个领域的研究要有锱铢必较的⼼态,这才是做程序开发本该有的素养。

从市场的⾓度来想,这个⾏业会不断的有新鲜⾎液注⼊,所以翻阅的需求就⼀直存在,能否被看到可能只是⼀个概率的问题。

但~在其他⽅⾯,我也收获了很多,⽐如个⼈⽹站的建⽴,博客的编辑发布,以及找到了适合⾃⼰写博⽂的⼯具链……关于Jump Point SearchJps,Jump Point Search,跳点搜索,也有⼈称之为“拐点寻路”。

Jps可追溯到2011年,由两位澳⼤利亚的教授提出,有兴趣的可以翻阅⼀下原作者论⽂,Jps在A Star算法模型的基础之上,优化了搜索后继节点的操作。

A星的处理是把周边能搜索到的格⼦,加进OpenList,然后在OpenList中弹出最⼩值……。

JPS也是这样的操作,但相对于A星来说,JPS操作OpenList的次数很少,它会先⽤⼀种更⾼效的⽅法来搜索需要加进OpenList的点,然后在OpenList中弹出最⼩值……先看两个图来对A星和JPS的差异有个简单的认识。

M.Time 表⽰操作 openset 和 closedset 的时间G.Time 表⽰搜索后继节点的时间A*⼤约有 58%的时间在操作 openset 和 closedset,42%时间在搜索后继节点JPS ⼤约 14%时间在操作 openset 和 closedset,86%时间在搜索后继节点。

jp聚类算法

jp聚类算法

JP(Joint Projection)聚类算法是一种基于相似度图的聚类算法。

它通过计算对象之间的相似度,并创建相似度图,然后找出图中的连通分支来进行聚类。

JP聚类算法的基本步骤如下:
1. 计算相似度图:首先,计算所有对象之间的相似度,并使用这些相似度创建一个相似度图。

这个图中的每个节点代表一个对象,每个边表示两个对象之间的相似度。

2. 稀疏化相似度图:为了减少计算的复杂性和避免噪声的影响,可以对相似度图进行稀疏化处理。

具体来说,可以设置一个阈值,只保留相似度大于这个阈值的边。

3. 找出连通分支:在稀疏化后的相似度图上,可以找出连通分支,每个连通分支就代表一个聚类。

JP聚类算法的优点包括:
1. 可以处理不同大小、形状和密度的簇;
2. 对高维数据效果良好,尤其擅长发现强相关对象的紧致簇;
3. 可以删除处理噪声和离群点。

然而,JP聚类算法也存在一些缺点:
1. 算法可能分裂真正的簇,或者合并本应该分开的簇;
2. 并非所有的对象都被聚类(剩下的对象可以添加到已有的簇中);
3. 与其他聚类算法一样,选择好的参数值可能是一个挑战。

yocto poky recipe 语法

yocto poky recipe 语法

yocto poky recipe 语法Yocto Poky Recipe 语法详解引言:Yocto Poky是一个用于构建嵌入式Linux系统的开源框架,它基于BitBake构建工具和OpenEmbedded构建系统。

在Yocto Poky中,Recipe是构建一个软件包的核心部分。

本文将详细介绍Yocto Poky Recipe的语法和使用方法。

一、Recipe的基本结构1. SUMMARY:SUMMARY字段是Recipe的摘要,用于简要描述软件包的功能。

它通常出现在生成的manifest文件中,方便用户快速了解软件包的用途。

2. DESCRIPTION:DESCRIPTION字段用于详细描述软件包的功能和特性。

在Recipe中,可以使用多行字符串来描述软件包的详细信息,以便用户更好地了解软件包的用途和功能。

3. LICENSE:LICENSE字段用于指定软件包的许可证类型。

在Yocto Poky中,许可证是非常重要的,因为它决定了软件包是否可以被包含在生成的嵌入式Linux系统中。

Yocto Poky提供了多种许可证类型供用户选择,如GPL、MIT、BSD等。

4. SRC_URI:SRC_URI字段用于指定软件包源代码的下载地址。

在Yocto Poky中,可以通过SRC_URI字段将软件包源代码从网络上下载到本地进行编译。

用户可以指定多个下载地址,用于备份或指向不同的版本。

5. DEPENDS:DEPENDS字段用于指定软件包的依赖关系。

在Yocto Poky中,软件包之间可能存在依赖关系,一个软件包可能依赖于其他的软件包。

通过使用DEPENDS字段,用户可以明确指定软件包的依赖关系,以保证软件包的正确构建和运行。

6. PV和PR:PV字段用于指定软件包的版本号,PR字段用于指定软件包的修订版本号。

PV和PR字段共同构成软件包的完整版本号。

二、Recipe的高级特性1. Patching:在Yocto Poky中,Recipe可以通过使用Patch文件对软件包进行修改和定制。

ー分析

ー分析

機械学習によるデータ分析
機械学習手法の分類
記述的学習と予測的学習 教師なし学習と教師付き学習
記述的学習は、データに潜む規則性、パターンの抽出を目 指す。記述統計学に相当する。
クラスタリング 相関ルールマイニング OLAP 一貫性制約条件の発見
予測的学習は、目的とするクラスを他のクラスから識別する ためのルールの抽出を目指す。推測統計学に相当する。
* θ = arg max p ( x n |θ p ( ) ) θ θ
*ベイズの定理 ベイズの定理
p( x n |θ p( ) ) θ n p( | x ) = θ p( x n )
より導出。 より導出。 導出
具体例:最尤推定
画鋲が表になる確率を考える。まず試行としてn=10回投げ てみたところ、x=3回が表であった。なお、確率モデルは二 x n− x 項分布 n C x p (1 − p ) に従うものとする。この場合、pが パラメタとなっているので、これを変化させて確率が最大のも のを選ぶ。 C3 (0.25) 3 (0.75) 7 =0.2503 (例)p=0.25 のとき 10 C3 (0.3) 3 (0.7) 7 =0.2668 p=0.30 のとき 10 p=0.35 のとき10 C 3 (0.35) 3 (0.65) 7=0.2522 …. *対数尤度関数Lを用いた場合、微分してL’=0とおくことで最 小(尤度関数における最大値)を求めることができる。
日本では、圧倒的に正統派が主流である。しかし、アメリカでは、勢力は拮抗 している。 ベイス統計は、AI手法との相性が良いので、診断システムなどでよく用いら れる。 さらに、ベイジアンネットワークの基本になっている。
ベイズの定理

GSpan-频繁子图挖掘算法

GSpan-频繁子图挖掘算法

GSpan-频繁⼦图挖掘算法GSpan频繁⼦图挖掘算法,⽹上有很多相关的介绍,中⽂的⼀些资料总是似是⽽⾮,讲的不是很清楚(感觉都是互相抄来抄去,,,基本都是⼀个样,,,),仔细的研读了原论⽂后,在这⾥做⼀个总结。

1. GSpan频繁⼦图挖掘算法:总的思想是,先⽣成频繁树,再在频繁树的基础上,⽣成频繁⼦图,满⾜最⼩⽀持度,满⾜最⼩DFS编码的所有频繁⼦图。

GraphGen.输⼊:图集GD,最⼩⽀持度阈值 min_sup;输出:频繁⼦图集合FG.(1) 扫描图集并找到图集GD 中所有频繁边;(2) 删除所有⾮频繁边;(3) E→{GD中所有频繁边};(4) 将E 中的边按 DFS 编码顺序(后⽂中有介绍)和频率的降序进⾏排列;(5) T→NULL; /*T为频繁⼦树集合*/(6) t→e1; /*E中的第 1 条边作FTGen的初始值*/(7) FTGen(D,t,E,T); /*频繁树⽣成算法*/(后⽂中有介绍)(8) 将集合T 中的元素按节点数与 DFS 编码顺序进⾏排序;(9) FG→T;(10) for T 中的每棵树(11) g→t;(12) E‘{e是频繁边,且e 是内边(后⽂中有介绍),并能在图集中找到(g<>e)};(13) for E' 中的每条边(14) E' →E‘ - e;(15) g→g<>e;(16) if g ≠ min(g) then break;(17) if FG中⽆g 的同构⼦图 then FG <— FG‘ ∪ g;(18) endfor;(19) endfor;(20) return FG;GraphGen 分为 3 个部分,算法 2 给出了这种算法的细节.算法在第 1 部分(第 1 ⾏~第 6 ⾏)对图集GD进⾏预处理.作为图挖掘的基础,必须从图集中提取出必要的信息,如频繁边集、频繁节点集等.在这⼀部分中,GraphGen 扫描图集GD并得到频繁边集,将频繁边集按频率递减与 DFS 编码值递增的顺序进⾏排列,供算法进⼀步计算。

局部放电信号特征的提取

局部放电信号特征的提取

局部放电信号特征的提取局部放电信号特征的提取摘要在局部放电量的实际测量中,测量的准确性经常会受到外界⼲扰的影响。

如何正确判断局放脉冲和⼲扰脉冲成为⼀个重要环节。

如何全⾯掌握设备内部局放的信息来进⾏绝缘诊断也⼀直是很多学者和现场试验⼈员研究的⽅向。

本⽂介绍了⼀种⽤于正确区分局部放电脉冲和⼲扰脉冲,准确测量局部放电量,并能够分析局放发⽣过程中所记录的各种信息的图形分析⽅法。

⽂章的第⼀章,作者从局部放电的产⽣、危害、⼀般测试⽅法以及测试技术的新发展等⽅⾯概述了⼀些基础知识。

⽂章的第⼆、三、四章,作者从图形分析⽅法的原理、具体实现和现场应⽤等⾓度,全⾯阐述了这种新的局部放电测试⽅法。

⽂章最后,作者对全⽂进⾏了总结,并展望了今后的⼯作。

关键词: 局部放电;图形分析;应⽤Characteristic Extraction of Partial DischargeSignalAbstractWhen measur the amount of partial discharge, the accuracy of measurement is varied constantly by outer interference. It's important to distinguish partial discharge pulse from interference pulse. So how to judge insulation quality according to partial discharge information became the study direction of many scholars and site personnel. A graphic analysis method is introduced in the paper, which can distinguish partial discharge pulse from interference pulse and measure the amount of partial discharge accurately, analyze all kinds of graphic that is recorded during the process of partial discharge. In chapter one, some fundamental knowledge of partial discharge is discussed. In chapter two、three and four. The new measurement is elaborated in the principle of graphic analysis and site application. In the end, the author summarized, and out looked the future.Keywords;Partial discharge ;Graphic analysis;Application摘要 (I)Abstract................................................................................................................................. II 1绪论 (1)1.1课题的背景 (1)1.1.1局部放电定义及其产⽣原因 (2)1.1.2局部放电的危害 (3)1.2 局部放电的测试⽅法 (4)1.2.1 ⾮电测法 (4)1.2.2电测法 (4)1.3局放测试技术的新发展 (5)1.3.1傅⽴叶变换 (5)1.3.2⾃适应滤波 (5)1.3.3 专⽤滤波器 (6)1.3.4 ⼩波变换 (6)2局部放电的测量 (8)2. 1⼯频电压下的局部放电 (8)2.2局部放电的参数 (9)3图形分析⽅法及其实现 (11)3.1局部放电测试的图形分析⽅法 (11)3.2 图形分析⽅法的硬件实现 (15)3.3图形分析⽅法的软件实现 (16)4图形分析⽅法的应⽤ (17)4.1 局部放电脉冲的图形分析 (17)4.2局部放电测量中的⼲扰图形分析 (22)4.3图形分析在局部放电现场测量中的应⽤ (28)4.3.1 局部放电测量中的电晕图形 (28)4.3.2 局放图形的分析 (30)4.3.3 图形分析⽅法在绝缘判断中的应⽤扩展 (33)4.3.4图形分析⽅法应⽤中的遗留问题 (35)结论 (38)参考⽂献 (39)致谢 (40)1绪论1.1 课题的背景对电⼒设备进⾏在线检测是具有重⼤现实意义和应⽤前景的前沿课题,对提⾼电⼒系统的安全性和运⾏⽔平有巨⼤的作⽤。

一种大规模并行程序模型的检测方法

一种大规模并行程序模型的检测方法
的执行环境 , Jv 程序 中逐渐增加与这 两个任务线程不相 在 aa
JF 是一个显式状态(xl is t 模 型检测工具 ,它能 P e pi t t e c —a ) 检测 Jv 语 言编写 的程序 ,其模块结构如图 1 aa 所示。
d a l c e ae r a s Th sd sg v i h tt p c x l s o n e l e d l h c n f a g — c l r gr swi n y s met r a si e d o k r lt d t e d . i e i n a o dst e sae s a e e p o i n a d r a i smo e e ki g o r e s ae p o a t o l o h e d h z c l m h n d a l c . h u s i t o sa s r po e p i z h f c e c fs mu a i n r n i g b v n i e e twe g t O l e t r a sa c d n e d o ks A e r t meh d i lo p o s d t o tmi e t ee i c O i i n y o i l t u n n y gi i g d f r n i h st i h e d c or i g o v
结果 。
关健诃 :JF工具 ;并行程序 ;运行信息 ;D t R c 算法 ; 发式搜索 P a - ae a 启
Ch c i g M e h d 0 r e s a eCo c r e t o r m o e e k n t o fLa g -c l n u r n Pr g a M d l
执行 。用 D t R c a -ae算法收集警告信息 ,引导程序模型检测工具只对死锁相 关线 程进行模 型检测 ,避 免了状态 空间爆炸 ,实现 了对大规模 a

Example_4_-_SMP_PSC'

Example_4_-_SMP_PSC'

EXAMPLE 4 –槽(罐,釜)和固体百分数控制描述这个例子描述 METSIM 固体百分数控制的能力在一儲槽中加水稀适沙水混合物. 控制加水量以得到所需的固体百分含量. .问题解决1.点Model Parameters Button . 以下窗口出现.A. 点Project进入下一窗口. 填入项目名称等.B.点Calc Options Tab然后点物料平衡旁边的合子.C.点Calc Parameters Tab然后填入质量和时间Mt/Hr..2.点COMP Menu然后点 "DBAS Component Database".A.点COMP Menu然后点"DBAS Component Database".一个窗口出现,现示原素周期表. 选择化合物所需要的原素, H, O 和Si. 然后点从components 中选择固体化合物SiO2 和液体化合物H2O.B.从Comp Menu 点"ICPL Insert Phase Labels on Component Names".2.点Screen Object Button "GEN"然后点 SMP.A.物流1 and 2 是进料, 物流 3是出料.B.填入物流名子.填入进料物流数值..物流1 –混合物1,000 Mt/Hr化合物分析固体SiO2 1 (Meaning 100%) 液体H2O 1 (Meaning 100%) 固体百分数50% 物流2- Water100 Mt/Hr Component AssaysAqueous H2O 1 (Meaning 100%)填入单元操作数据.A. SMP 数据是公制, so ME is set to 0.B.设计儲槽, so the calculation option, CO is set to 1.C.停留时间是30分钟. RT.D.不填其它参数工艺控制使用一个PSC - Percent Solids Control固体百分数控制器来调节水流量以控制产品中40%固体百分量, 使用的数值功能表达方式VPCS SN. SN 是要调节的物流. PSC 需要输入的数据是:ID OP SN PS40% Solids 2 2 0.4存盘常存盘和在计算前存盘.计算后可以读结果了.30 分钟的停留时间, 儲槽的尺寸是D = 3 米, 高67 米让 METSIM 再计算并输入以下数据;D1 = 8 Inside Length/Diameter in MetersD2 = 0 for a circular sump in MetersHT= ? Let the program calculate this value.再计算儲槽的高是10.35 米.SMP - Sump ExampleWith PSC ControlCASE DEFINITIONProject Information:Owner : Location : Title : Example 4 - Sump ExampleCase : With Percent Solids ControlPurpose : Training Number :Engineer : Logo File: Modeller : Revision : AData Storage File Name : Example4.SFWMass Balance Option : ONUnits of Mass : metric tonneUnits of Time : hourFLOWSHEET DATANO OPR UNIT PROCESS IS1 IS2 IS3 IS4 IS5 IS6 INV OS1 OS2 OS3 OS4 OS5 OS61 SEC SECTION 0 0 0 0 0 0 0 0 0 0 0 0 02 SMP SUMP 2 1 0 0 0 0 03 0 0 0 0 0FLOWSHEET UNIT OPERATION DATA1 SEC SECTIONOP 1 EN 10 ME 0 NO 0 KW 0 HP 02 SMP SUMPOP 2.000000 KW 0.000000 NB 0.000000 D2 0.000000 HL 0.000000ME 0.000000 HP 0.000000 RT 30.000000 HT 10.350226 SZ 469.993599NO 1.000000 UE 0.000000 BT 0.000000 TA 0.000000 LV 0.500000KM 0.000000 JP 0 0 0 FR 0.000000 FB 1.000000 QO 0.000000KF 1.150000 CO 1.000000 D1 8.000000 CB 0.000000 SF 0 0 0 0NO. STREAM MT/HR-SI MT/HR-LI MT/HR-TC---+--------------+--------+--------+--------1 Slurry Feed 500.0000 500.0000 1000.0002 Water Feed 0.0000 250.0000 250.0003 Slurry Product 500.0000 750.0000 1250.000NO. STREAM PCS SG-SI SG-LI SG-TC---+--------------+--------+-------+-------+-------1 Slurry Feed 50.00000 2.6500 0.9983 1.45022 Water Feed 0.00000 0.0000 0.9983 0.99833 Slurry Product 40.00000 2.6500 0.9983 1.3298。

【转】Isoform

【转】Isoform

【转】Isoform expre...Exon-centric DEDSGseq summary:This programs uses gapped alignments to the genome to generate differential splicing for groups of technical and biological replicates in two treatments. You can't compare just two samples, two samples per group is the minimum.It generates a ranking of differentially spliced genes using their negative binomial statistic which focuses of difference in expression. The NB statistic is provided per gene and per exon. A threshold used in the paper is NB > 5. The program doesn't support reconstruction of isoforms or quantification of specific isoforms, which apparently is computationally harder.I found it easy to get it to run using the example data provided and the instructions. You need to run a preparation step on the gene annotation. Starting from BAM files, you also need to run two preparation steps on each library, first to convert it to BED, and then to get the counts.While the paper clearly says that transcript annotation information is not necessary for the algorithm, you do need to provide a gene annotation file in refFlat format, which the output is based on.The developers are unresponsive so no help is at hand if you get stuck.DEXseq summaryThis is similar to DSGseq and Diffsplice insofar as the isoform reconstruction and quantification are skipped and differential exon expression is carried out. Whereas the other two tools say that they don't need an annotation for their statistics, this program is based on only annotated exons, and uses the supplied transcript annotation in the form of a GFF file.It also needs at least two replicates per group.I found the usage of this program extremely tedious (as a matlab person). To install it you need to also install numpy and HTSeq. For preparing the data (similarly to DSGseq) you need to do a preparation step on the annotations, and another preparation step for every sample separately which collects the counts (both using python scripts). Then you switch to R, where you need to prepare something called an ExonCountSet object. To do this you need to first make a data.frame R object with the files that come out of the counting step. Yo also need to define a bunch of parameters in the R console. Then you can finally run the analysis. Despite the long instructional PDF, all this is not especially clear, and it's a rather tedious process compared to the others I've tried so far. In the end, I ran makeCompleteDEUAnalysis, and printed out a table of the results. I tried to plot some graphics too, but couldn't because "semi-transparency is not supported on this device". However, there's an extremely useful function that creates a browsable HTML directory with the graphics for all the significant genes. If anyone wants a copy of the workflow I used, send me a message, trying to figure it out might take weeks, but after you get the hang of it, this program is really useful.DiffSplice summaryThis is a similar approach for exon-centric differential expression to DEXseq and DSGseq (no attempt to reconstruct or quantify specific isoforms). Also supports groups of treatments, minimum 2 samples per group. The SAM inputs and various rather detailed parameters are supplied in two config files. I found this very convenient. In the data config file you can specify treatment group ID, individual IDs, and sample IDs, which determine how the shuffling in their permuation test is done. It was unclear to me what the sample IDs are (as opposed to the individual ID).DiffSplice prefers alignments that come from TopHat or MapSplice because it looks for the XS (strand) tag which BWA doesn't create. There's no need to do a separate preparation step on the alignments. However, if you want you can separate the three steps of the analysis using parameters for selective re-running. This program is user friendly and the doc page makes sense.On the downside, when the program has bad inputs or stops in the middle there's no errors or warnings - it just completes in an unreasonably short time and you get no results.Diffsplice appears to be sensitive to rare deviations from the SAM spec, because while I'm able to successfully run it on mini datasets, the whole datasets are crashing it. I ran Picard's FixMateInformation and ValidateSamFile tools to see if they will make my data acceptable (mates are fine, and sam files are valid! woot), but no dice. It definitely isn't due to the presence of unaligned reads.SplicingCompass summary:SplicingCompass would be included together with DEXseq, DiffSplice, and DSGseq, insofar as it's an exon-centric differential expression tool. However, unlike DEXseq and DSGseq, it provides novel junctions as well. Unlike DiffSplice, it does use an annotation. The annotation + novel detection feature of this program is pretty attractive.This is an R package, though as far as i can tell, it's not included in bioconductor. Personally I find it tedious to type lines upon lines of commands into R, and would much prefer to supply a configuration file and run one or a few things on the command line. Alas. Here, at least the instructions are complete, step by step, and on a "for dummies" level. Great.This tool is based on genome alignments. You basically have to run Tophat, because the inputs are both bam files and junction.bed files which Tophat provides. A downside is that you basically have to use the GTF annotation that they provide which is based on UCSC ccds genes. If you want to use ensembl or something else, you meed to email the developer for an untested procedure that might get you a useable annotation at the end (directly using an ensembl GTF doesn't work).Another problem is that I got no significant exons at the end of the analysis:>sc=initSigGenesFromResults(sc,adjusted=TRUE,threshold=0.1)Error in order(df[, pValName]) : argument 1 is not a vectorI'm still unsure as to whether this is due to some mistake or because this tool is extremely conservative.Transcriptome based reconstruction and quantificationeXpress summary:This program can take a BAM file in a stream, or a complete SAM or BAM file.It produces a set of isoforms and a quantification of said isoforms. There is no built in differential expression function (yet) so they recommend inputting the rounded effective counts that eXpress produces into EdgeR or DEGSeq. No novel junctions or isoforms are assembled.I used bowtie2 for the alignments to the transcriptome. Once you have those, using eXpress is extremely simple and fun. There's also a cloud version available on Galaxy, though running from the command line is so simple in this case I don't see any advantage to that. Definite favorite!SailFish summary:This program is unique insofar as it isn't based on read alignment to the genome or the transcriptome. It is based on k-mer alignment, which is based on a k-merized reference transcriptome. It is extremely fast. The first, indexing step took about 20 minutes. This step only needs to be run once per reference transcriptome for a certain k-mer size. The second, quant step took from 15 minutes to 1.5 hours depending on the library. The input for the quant step is fastq's as opposed to bam files. No novel junctions or isoforms are assembled.Like eXpress, there is no built in differential expression function. I used the counts from the non-bias-corrected (quant.sf) output file as inputs for DESeq and got reasonable results.The method is published on arXiv, and has been discussed in Lior Pachter's blog. According to the website the manuscript has been submitted for publication. The program is quite user friendly.RSEM +EBSeq summary:This also generates isoforms and quantifies them. It also needs to be followed by an external cont-based DE tool - they recommend EBSeq, which is actually included in the latest RSEM release, and can be run from the command line easily.RSEM can't tolerate any gaps in your transcriptome alignment, including the indels bowtie2 supports. Hence, you either need to align ahead of time with bowtie and input a SAM/BAM, or use the bowtie that's built into the RSEM call and input a fsta/fastq. For me this was unfortunate because we don't keep fastq files on hand (only illumina qseq files) which bowtie doesn't take as inputs. However, it does work! I successfully followed the instructions to execute EBSeq, which is conveniently included as an RSEM function, and gives intelligible results. Together, this workflow is complete.An advantage of RSEM is that it supplies expression relative to the whole transcriptome (RPKM, TPM) and, if supplied with a transcript-to-gene mapping, it also supplies relative expression of transcripts within genes (PSI). ie. transcript A comprises 70% of the expression of gene X, transcript B comprises 20 %, etc. MISO is the only other transcript-based program, as far as I know, that provides this useful information.BitSeq summary:This, like DEXSeq, is an R bioconductor package. I found the manual a lot easier to understand than DEXSeq.They recalculate the probability of each alignment, come up with a set of isoforms, quantify them, and also provide a DE function. In this way, it is the most complete tool I've tried so far, since all the other tools have assumed, skipped, or left out at least one of these stages. Also, BitSeq automatically generates results files, which is useful for people that don't know R. One annoying thing is that (as far as I know) you have to use sam files.For running BitSeq I used the same bowtie2 alignments to the transcriptome as for eXpress. You need to run the function getExpression on each sample separately. Then you make a list of the result objects in each treatment group and run the function getDE on those.Genome based reconstruction and quantificationiReckon summary:iReckon generates isoforms and quantifies them. However, this is based on gapped alignment to the genome (unlike eXpress, RSEM and BitSeq which are based on alignments to the transcriptome). It doesn't have a built in DE function, so each sample is run separately.This tool is a little curious because it requires both a gapped alignment to the genome, and the unaligned reads in fastq or fasta format with a reference genome. Since it requires a BWA executable, it's doing some re-alignment. iReckon claims to generate novel isoforms with low false positives by taking into consideration a whole slew of biological and technical biases.One irritating thing in getting the program running is that you need to re-format your refgene annotation file using an esoteric indexing tool from the Savant genome browser package. If you happen to use IGV, this is a bit tedious. Apparently, this will change in the next version. Also, iReckon takes up an enormous amount of memory and scratch space. For a library with 350 million reads, you would need about 800 G scratch space. Apparently everything (run time, RAM, and space) is linear to the number of reads, so this program would be a alright for a subset of the library or for lower coverage libraries.Cufflinks + cuffdiff2 summary:This pipeline, like iReckon, is based on gapped alignment to the genome. It requires the XS tag, so if you're not using tophat to align your RNA, you need to add that tag. I also found out that our gapped aligner introduces some pesky 0M and 0N's in the cigars, since cufflinks doesn't tolerate these. But with these matters sorted out, it's pretty easy to use.I like the versatility. You can run cufflinks for transcriptome reconstruction and isoform quantification in a variety of different modes. For example, with annotations and novel transcript discovery, with annotations and no novel discovery, with no annotations, and with annotations to be ignored in the output. For differential expression, cuffdiff 2 can be run with the results of the transcript quantification from cufflinks to include novel transcripts, or, it can be run directly from the alignment bam files with an annotation. Unlike the exon-based approaches, you don't need to have more than one library in each treatment group, (ie. you can do pairwise comparisons) though if you do it's better to keep them separate than to merge them. The problem here is that the results of cuffdiff are so numerous that it's not easy to figure out what you need in the end. Also, not all the files include the gene/transcript names so you need to do a fair bit of command line munging. There's also cummeRbund, which is a visualization package in R that so far seems to work ok.。

gpresult的用法 -回复

gpresult的用法 -回复

gpresult的用法-回复gpresult是Windows操作系统中的一个命令行工具,用于获取当前用户或计算机的组策略信息。

组策略是一种管理和配置Windows计算机上用户和计算机行为的方法,通过集中控制实施安全策略、软件安装、桌面设置等。

在本文中,将详细介绍gpresult的用法,并提供一步一步的指导,帮助读者正确地使用该命令行工具。

一、基本介绍1. gpresult的定义gpresult是一种用于生成计算机或用户的组策略结果的命令行工具。

它可以显示实施在计算机或用户上的所有组策略设置和信息,包括应用的组策略、组策略优先级以及结果的详细信息等。

2. 使用场景gpresult常用于以下场景:- 系统管理员需要获取计算机或用户的组策略设置信息。

- 用户或计算机遇到问题,需要查看是否存在某些组策略设置。

- 查看组策略应用的优先级和结果。

二、使用指南下面将一步一步回答如何使用gpresult命令行工具。

1. 打开命令提示符在Windows操作系统中,点击开始菜单,键入“命令提示符”并按回车键,即可打开命令提示符窗口。

2. 输入gpresult命令在命令提示符窗口中,输入“gpresult”命令,并按回车键。

默认情况下,它将生成当前用户的组策略信息。

如果要生成计算机的组策略信息,需要使用“gpresult /r”命令。

3. 查看结果执行gpresult命令后,将在命令提示符窗口中显示组策略结果。

这些结果包括已应用的组策略规则、优先级、应用情况等。

4. 使用参数进行筛选gpresult还支持一些常用的参数,用于指定要显示的组策略信息和进行筛选。

以下是一些常用的参数:- /v: 显示详细信息。

如果您需要查看更详细的组策略信息,可以使用该参数。

例如,输入“gpresult /v”,将显示更多关于组策略的配置详情。

- /z: 显示所有宗旨和设置。

使用该参数可查看所有宗旨和其对应的设置,以及每个宗旨下的详细设置。

aggregationexpression与project使用实例 -回复

aggregationexpression与project使用实例 -回复

aggregationexpression与project使用实例-回复Aggregation Expression and Project Usage ExamplesIn this article, we will explore the concept of aggregation expressions and their usage in MongoDB's project operation. We will provide a step-by-step explanation of the topic, discussing various examples and scenarios in which aggregation expressions and projects are commonly used. By the end of this article, you will have a comprehensive understanding of how to use aggregation expressions and project operations effectively in MongoDB.Introduction to AggregationAggregation in MongoDB is the process of transforming and manipulating data from multiple documents into a single result. It is similar to the GROUP BY clause in SQL, but with more advanced capabilities. Aggregation expressions are the key components that allow us to perform various transformations, computations, and manipulations on the data during the aggregation process.Aggregation expressions provide a flexible and powerful way to perform complex calculations, manipulations, and transformations on data in MongoDB. They allow us to perform operations like mathematical computations, data grouping, conditional operations, string manipulations, and much more. These expressions are used in conjunction with the project operation to shape the output of the aggregation pipeline.Understanding Project OperationThe project operation in MongoDB is used to reshape and customize the document structure of the output generated by the preceding aggregation stages. It allows us to include or exclude fields, rename fields, create computed fields, and perform various data transformations using aggregation expressions. By using the project operation, we can control the output of the aggregation pipeline and tailor it to our specific requirements.Step-by-Step Guide to Using Aggregation Expressions and Project OperationsTo understand the usage of aggregation expressions and projectoperations better, let's walk through some practical examples and discuss the process step by step.Example 1: Calculating the Total Sales AmountSuppose we have a collection of sales documents containing information about sales transactions. Each document has fields such as "product," "quantity," and "price." We want to calculate the total sales amount for each product in our collection.Step 1: Filtering Relevant DataThe first step in any aggregation pipeline is to filter and select the relevant documents from the collection. We can use the match stage to filter the documents based on certain criteria. For our example, let's assume we want to calculate the total sales amount for all products in the "Electronics" category. We can use the following match stage:{ match: { category: "Electronics" } }Step 2: Grouping DataOnce we have filtered the relevant documents, we need to group them based on the "product" field. We can use the group stage for this purpose. The group stage allows us to specify a field to group by and define the operations to perform on each group. In our example, we want to group the documents by the "product" field, so our group stage will look like this:{ group: { _id: "product", totalAmount: { sum: { multiply: ["quantity", "price"] } } } }Step 3: Shaping the OutputFinally, we can shape the output of our aggregation pipeline using the project operation. We can use the project operation to include or exclude specific fields, rename fields, create computed fields, and perform various data transformations. In our example, we want to include the "product" and "totalAmount" fields in the output, and we can achieve this using the following project stage:{ project: { _id: 0, product: "_id", totalAmount: 1 } }Example 2: Calculating Average Order ValueLet's consider another example where we want to calculate the average value of each order placed in our collection. Each document in our collection represents an order and contains fields such as "orderId" and "amount."Step 1: Filtering Relevant DataTo calculate the average order value, we need to filter the relevant documents. In this case, we want to consider all orders placed in the last month. We can use the match stage to filter the documents based on the "orderDate" field. The match stage for this example will look like this:{ match: { orderDate: { gte: new Date("2022-01-01"), lt: newDate("2022-02-01") } } }Step 2: Grouping DataOnce we have filtered the relevant documents, we can group them by the "orderId" field using the group stage. We want to calculate the total order value for each order, so our group stage will look like this:{ group: { _id: "orderId", totalValue: { sum: "amount" } } }Step 3: Shaping the OutputTo calculate the average order value, we need to divide the total order value by the number of orders. We can achieve this using the project operation and aggregation expressions. In our case, we need to include the "totalValue" field to perform the computation. Our project stage will look like this:{ project: { _id: 0, averageValue: { divide: ["totalValue", { count: {} }] } } }ConclusionIn this article, we explored the concept of aggregation expressions and project operations in MongoDB. We discussed how aggregation expressions provide a powerful way to perform complex calculations and transformations on data during the aggregation process. We also learned that the project operation allows us to shape the output of the aggregation pipeline according to our specific requirements.By following the presented step-by-step examples, you should now understand the process of using aggregation expressions and project operations effectively in MongoDB. Remember, these examples are just the tip of the iceberg, and there are countless possibilities to explore with aggregation and project operations in MongoDB.。

OSQP库的R语言接口说明说明书

OSQP库的R语言接口说明说明书

Package‘osqp’October20,2023Title Quadratic Programming Solver using the'OSQP'LibraryVersion0.6.3.2Date2023-10-19Copyrightfile COPYRIGHTDescription Provides bindings to the'OSQP'solver.The'OSQP'solver is a numerical optimiza-tion package or solving convex quadratic programs written in'C'and based on the alternating di-rection method of multipliers.See<arXiv:1711.08013>for details.License Apache License2.0|file LICENSESystemRequirements C++17Imports Rcpp(>=0.12.14),methods,Matrix(>=1.6.1),R6LinkingTo RcppRoxygenNote7.2.3Collate'RcppExports.R''osqp-package.R''sparse.R''solve.R''osqp.R''params.R'NeedsCompilation yesSuggests slam,testthatEncoding UTF-8BugReports https:///osqp/osqp-r/issuesURL https://Author Bartolomeo Stellato[aut,ctb,cph],Goran Banjac[aut,ctb,cph],Paul Goulart[aut,ctb,cph],Stephen Boyd[aut,ctb,cph],Eric Anderson[ctb],Vineet Bansal[aut,ctb],Balasubramanian Narasimhan[cre,ctb]Maintainer Balasubramanian Narasimhan<******************>Repository CRANDate/Publication2023-10-2015:40:02UTC12osqpR topics documented:osqp (2)osqpSettings (3)solve_osqp (5)Index7 osqp OSQP Solver objectDescriptionOSQP Solver objectUsageosqp(P=NULL,q=NULL,A=NULL,l=NULL,u=NULL,pars=osqpSettings())ArgumentsP,A sparse matrices of class dgCMatrix or coercible into such,with P positive semidef-inite.(In the interest of efficiency,only the upper triangular part of P is used) q,l,u Numeric vectors,with possibly infinite elements in l and upars list with optimization parameters,conveniently set with the function osqpSettings.For osqpObject$UpdateSettings(newPars)only a subset of the settings canbe updated once the problem has been initialized.DetailsAllows one to solve a parametric problem with for example warm starts between updates of theparameter,c.f.the examples.The object returned by osqp contains several methods which can beused to either update/get details of the problem,modify the optimization settings or attempt to solvethe problem.ValueAn R6-object of class"osqp_model"with methods defined which can be further used to solve theproblem with updated settings/parameters.Usagemodel=osqp(P=NULL,q=NULL,A=NULL,l=NULL,u=NULL,pars=osqpSettings())model$Solve()model$Update(q=NULL,l=NULL,u=NULL,Px=NULL,Px_idx=NULL,Ax=NULL,Ax_idx=NULL) model$GetParams()model$GetDims()model$UpdateSettings(newPars=list())model$GetData(element=c("P","q","A","l","u"))model$WarmStart(x=NULL,y=NULL)print(model)Method Argumentselement a string with the name of one of the matrices/vectors of the problem newPars list with optimization parametersSee Alsosolve_osqpExamples##example,adapted from OSQP documentationlibrary(Matrix)P<-Matrix(c(11.,0.,0.,0.),2,2,sparse=TRUE)q<-c(3.,4.)A<-Matrix(c(-1.,0.,-1.,2.,3.,0.,-1.,-3.,5.,4.),5,2,sparse=TRUE)u<-c(0.,0.,-15.,100.,80)l<-rep_len(-Inf,5)settings<-osqpSettings(verbose=FALSE)model<-osqp(P,q,A,l,u,settings)#Solveres<-model$Solve()#Define new vectorq_new<-c(10.,20.)#Update model and solve againmodel$Update(q=q_new)res<-model$Solve()osqpSettings Settings for OSQPDescriptionFor further details please consult the OSQP documentation:https:///UsageosqpSettings(rho=0.1,sigma=1e-06,max_iter=4000L,eps_abs=0.001,eps_rel=0.001,eps_prim_inf=1e-04,eps_dual_inf=1e-04,alpha=1.6,linsys_solver=c(QDLDL_SOLVER=0L),delta=1e-06,polish=FALSE,polish_refine_iter=3L,verbose=TRUE,scaled_termination=FALSE,check_termination=25L,warm_start=TRUE,scaling=10L,adaptive_rho=1L,adaptive_rho_interval=0L,adaptive_rho_tolerance=5,adaptive_rho_fraction=0.4,time_limit=0)Argumentsrho ADMM step rhosigma ADMM step sigmamax_iter maximum iterationseps_abs absolute convergence toleranceeps_rel relative convergence toleranceeps_prim_inf primal infeasibility toleranceeps_dual_inf dual infeasibility tolerancealpha relaxation parameterlinsys_solver which linear systems solver to use,0=QDLDL,1=MKL Pardiso delta regularization parameter for polishpolish boolean,polish ADMM solutionpolish_refine_iteriterative refinement steps in polishverbose boolean,write out progressscaled_terminationboolean,use scaled termination criteriacheck_terminationinteger,check termination interval.If0,termination checking is disabled warm_start boolean,warm startscaling heuristic data scaling iterations.If0,scaling disabledadaptive_rho cboolean,is rho step size adaptive?adaptive_rho_intervalNumber of iterations between rho adaptations rho.If0,it is automatic adaptive_rho_toleranceTolerance X for adapting rho.The new rho has to be X times larger or1/X timessmaller than the current one to trigger a new factorizationadaptive_rho_fractionInterval for adapting rho(fraction of the setup time)time_limit run time limit with0indicating no limitsolve_osqp Sparse Quadratic Programming SolverDescriptionSolves0.5x P x+q xarg minxs.t.l i<(Ax)i<u ifor real matrices P(nxn,positive semidefinite)and A(mxn)with m number of constraintsUsagesolve_osqp(P=NULL,q=NULL,A=NULL,l=NULL,u=NULL,pars=osqpSettings())ArgumentsP,A sparse matrices of class dgCMatrix or coercible into such,with P positive semidef-inite.Only the upper triangular part of P will be used.q,l,u Numeric vectors,with possibly infinite elements in l and upars list with optimization parameters,conveniently set with the function osqpSettingsValueA list with elements x(the primal solution),y(the dual solution),prim_inf_cert,dual_inf_cert,andinfo.ReferencesStellato,B.,Banjac,G.,Goulart,P.,Bemporad,A.,Boyd and S.(2018).“OSQP:An Operator Splitting Solver for Quadratic Programs.”ArXiv e-prints.1711.08013.See Alsoosqp.The underlying OSQP documentation:https:///Exampleslibrary(osqp)##example,adapted from OSQP documentationlibrary(Matrix)P<-Matrix(c(11.,0.,0.,0.),2,2,sparse=TRUE)q<-c(3.,4.)A<-Matrix(c(-1.,0.,-1.,2.,3.,0.,-1.,-3.,5.,4.),5,2,sparse=TRUE)u<-c(0.,0.,-15.,100.,80)l<-rep_len(-Inf,5)settings<-osqpSettings(verbose=TRUE)#Solve with OSQPres<-solve_osqp(P,q,A,l,u,settings)res$xIndexosqp,2,6osqpSettings,2,3solve_osqp,3,57。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 2 打印字符的各种式样 (3) 字符粗体,加下划线和加宽等效果 // ESC|bC = 粗体; ESC|uC = 下划线; // ESC|2C = 宽体字符 ptr.printNormal( POSPrinterConst.PTR_S_RECEIPT, "\u001b|bC不含税.$200.00\u001b|N\n" ); ptr.printNormal( POSPrinterConst.PTR_S_RECEIPT, "\u001b|uC税率 5.0% $10.00\u001b|N\n" ); ptr.printNormal( POSPrinterConst.PTR_S_RECEIPT, "\u001b|bC\u001b|2C总计 $210.00\u001b|N\n" );
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
知识点(4.1): 支持打印的条码类型? TM-T88IV 利用printBarCode 能支持的条码类型 CODE128, CODE128 Parsed CODE93 CODABAR ITF CODE39 JAN13 (EAN13), JAN8 (EAN8) UPC-E, UPC-A PDF417
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 1 “Hello JavaPOS!” (1) 申请打印机的过程在processWindowEvent(e) //打开设备 //使用连接你计算机的设备逻辑名 ptr.open("POSPrinter"); //获得打开设备的独占权限 //使得其它应用程序不能访问该设备 ptr.claim(1000); //起用设备 ptr.setDeviceEnabled(true);
EPSON
Step 3 打印位图 (1) 设置输出图片的品质,并先下载图片 //设置输出品质 ptr.setRecLetterQuality(true); //注册一张图片 //这里是当前目录下的 javapos.bmp ptr.setBitmap(1, // Bitmap编号 POSPrinterConst.PTR_S_RECEIPT, "javapos.bmp", POSPrinterConst.PTR_BM_ASIS, // 打印出的每一点对应一个象素 POSPrinterConst.PTR_BM_CENTER); // 图片居中
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 2 打印字符的各种式样 (2) 默认为左对齐;设置居中和右对齐 // ESC|rA = 右对齐 ptr.printNormal( POSPrinterConst.PTR_S_REC EIPT, "\u001b|rATEL 86-21-63403477 \n" ); // ESC|cA = 居中 ptr.printNormal( POSPrinterConst.PTR_S_REC EIPT, "\u001b|cA" + time + "\n\n" );
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 5 独立于设备的代码 (3) 中西文字符混合编排,如何计算长度? public String makePrintString (int lineChars, String text1, String text2){ int spaces = 0; String tab = ""; try{ spaces = lineChars (text1.getBytes().length + text2.length()); for (int j = 0 ; j < spaces ; j++){ tab += " "; } }… }
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 2 打印字符的各种式样 (5) 练习修改程序,输出其它票据内容 注意到Java的本地化环境,已经可以自动处理“$”的 转换
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
知识点(2.1):ESC指令序列 Escape指令序列不同于ESC/POS指令 Escape指令序列: 是UPOS组织标准化提出的国际 零售设备调用标准! ESC/POS指令集: 是EPSON在原有的ESC/P指令 ESC/P 系统基础上发展起来的,系统设备使用指令集合与 行业标准! 1.UPOS标准
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 3 打印位图 (2) 打印已下载注册的图片 // ESC | #B, 该ESC指令序列可以打印位图,其 中#代表位图编号 ptr.printNormal(POSPrinterConst.PTR_S_RE CEIPT, "\u001b|1B");
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 3 打印位图(2) 练习修改程序,输出其它位图内容 改变位图输出位置
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 4 打印条码 (1) 打印条码 if (ptr.getCapRecBarCode() == true) ptr.printBarCode( POSPrinterConst.PTR_S_RECEIPT, bcData, //条码数据内容 POSPrinterConst.PTR_BCS_EAN13, //条码类型 30, ptr.getRecLineWidth(), //条码高度与宽度 POSPrinterConst.PTR_BC_CENTER,//条码位置 POSPrinterConst.PTR_BC_TEXT_BELOW); //条码可读字符显示与位置
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 1 “Hello JavaPOS!” (3) 打印命令在 jButton_Print_actionPerformed(ActionEvent e) // printNormal(打印位置, 输出字符串) ptr.printNormal( POSPrinterConst.PTR_S_REC EIPT, "Hello JavaPOS !\n“ ); // 注意在SetupPOS中选择 // 中文GB18030支持才能打印出中文 ptr.printNormal( POSPrinterConst. PTR_S_RECEIPT, "爱普生(中国)有限公司\n" );
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 1 “Hello JavaPOS!” (2) 释放打印机的过程在closing() //释放设备 ptr.setDeviceEnabled(false); //释放独占权限 ptr.release(); //关闭 ptr.close();
EPSON
TECHNICAL WORKSHOP VI JavaPOS
Step by Step
July 2006
爱普生(中国)有限公司 彭 雪松
Confidential 07.01.2005
EPSON
启动Eclipse 3.2, 并导入样例代码 启动 Eclipse 3.2 或更新版本 1. 创建新的 Project 2. 选择导入压缩文件 JavaPOS_Sample.zip 要先引用 jpos 包,才能创建 POSPrinter 对象 import jpos.*; … POSPrinterControl19 ptr = (POSPrinterControl19)new POSPrinter(); 访问, 获得Eclipse相关知识!
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 2 打印字符的各种式样 (4) 自动进纸到切纸位置并切纸 // ESC|#fP = 进纸并切纸 ptr.printNormal( POSPrinterConst.PTR_S_REC EIPT, "\u001b|fP" );
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 4 打印条码 (2) 练习打印其它类型的条码 设置改变HRI文字的位置 HRI
爱普生(中国)有限公司 系统设备营业本部 Confidential 07.01.2006
EPSON
Step 5 独立于设备的代码 (1) 首先要确定打印位置的单位,0.01mm // 无论何种打印机, 0.01mm的单位使得其能够平滑打印. ptr.setMapMode (POSPrinterConst.PTR_MM_METRIC); … // 注册图片 ptr.setBitmap(1, // 第一张图片 POSPrinterConst.PTR_S_RECEIPT, "javapos.bmp", (ptr.getRecLineWidth() / 3), // 图片宽度为纸的1/3 POSPrinterConst.PTR_BM_CENTER //居中);
相关文档
最新文档