应变片电阻式传感器测压力实验报告
应变片实验报告
应变片实验报告
实验名称:应变片实验
实验目的:通过应变片实验,研究材料在受力过程中的应变情况。
实验原理:
应变片是一种用于测量物体受力时产生的应变的传感器。
其原理基于电阻应变效应,即应变片在受力作用下会发生微小形变,从而改变其电阻值。
通过测量电阻值的变化,可以获知材料的应变情况。
实验仪器和材料:
1. 应变片
2. 电流源
3. 万用表
实验步骤:
1. 将应变片粘贴在需要测量应变的材料表面。
2. 将电流源与应变片相连,调整电流源的输出电流。
3. 使用万用表测量应变片上的电阻值。
4. 在材料上施加不同的受力,记录电阻值随受力变化的情况。
5. 根据电阻值的变化计算应变大小。
实验结果:
根据实验数据记录的电阻值随受力变化的情况,可以得到应变片的应变曲线。
根据应变曲线可以分析材料在受力过程中的应
变行为,如线性弹性应变、屈服应变等。
根据测得的电阻值变化,还可以计算出材料的应变量。
实验结论:
通过应变片实验,可以获知材料在受力过程中的应变情况,并分析材料的力学性能。
应变片作为一种常用的力学测试传感器,具有灵敏度高、测量精度高等优点,在工程领域有着广泛的应用。
电阻应变片压力传感器实验报告
电阻应变片压力传感器实验报告电阻应变式传感器&压力传感器实验报告电阻应变式传感器&压力传感器——实验报告院系:管理学院姓名:胡阳学号:PB12214074电阻应变式传感器实验内容1、自己设法确认各传感器的受力是拉伸还是压缩力,并用图示说明。
2、利用所提供的元件连接单臂电桥,桥电压由万用表给出,记下零点电压。
3、依次增加砝码,测量单臂电桥的m~U定标曲线。
有了定标曲线后,就作成了一台简易的电子秤。
提示:电子秤的量程约2公斤,请勿加载过重的物体,以免损坏应变片。
4、测量待测物体的质量。
5、连接全桥电路,重复1~3步。
6、比较电路的灵敏度。
7、实验总结数据处理:1.单臂,全桥的定标线(一)单臂电桥-52.6-52.7U/mV-52.9-53.0-53.1-53.20100200300400500m/gLinear Regression for Data1_B:Y = A + B * XParameter Value Error------------------------------------------------------------A -53.17155 0.00501B 0.00107 1.65553E-5------------------------------------------------------------ R SD N P------------------------------------------------------------ 0.99952 0.00692 6 0.0001(二)全桥:0.0530.0520.051U/V0.0490.0480100200300400500600m/gLinear Regression for Data1_B:Y = A + B * XParameter Value Error------------------------------------------------------------A 0.05271 2.06453E-5B -7.33992E-6 5.71108E-8------------------------------------------------------------R SD N P-------------------------------------------------------------0.99985 3.02908E-5 7 0.0001------------------------------------------------------------2、待测物体质量,比较两种电路灵敏度:单臂电桥:U= -53.17155 +0.00107 * m ; 待测物体电压:-52.57mV代入式子求得待测物体质量:m=562.20g全桥电路:U=0.05271 +(-7.33992E-6)* m;待测物体电压:0.0493V代入式子求得待测物体质量:m=464.58g单臂电桥S1=0.00107(mV/g)全桥电路S2=0.00734(mV/g)可知S3S2S1,即全桥电路的灵敏度高,单臂电桥的灵敏度低。
电阻应变式传感器实验报告
电阻应变式传感器实验报告电阻应变式传感器实验报告导言:电阻应变式传感器是一种常见的传感器类型,广泛应用于各个领域。
本实验旨在通过实际操作和数据收集,了解电阻应变式传感器的原理和应用。
一、实验目的本实验的目的是通过测量电阻应变式传感器在不同应变下的电阻变化,了解其工作原理和特性。
同时,通过实验数据的处理,掌握电阻应变式传感器的灵敏度和线性范围。
二、实验器材和原理1. 实验器材:- 电阻应变式传感器- 电源- 电压表- 电流表- 变压器- 桥式电路- 数据采集仪2. 实验原理:电阻应变式传感器是利用材料在受力作用下产生应变,从而改变电阻值的原理。
当传感器受到外力作用时,其内部的应变片会产生应变,从而导致电阻值的变化。
通过测量电阻值的变化,可以间接得到外力的大小。
三、实验步骤1. 将电阻应变式传感器连接到桥式电路中,调节桥臂上的电阻,使得桥路平衡。
2. 施加外力,使传感器产生应变。
3. 通过电压表和电流表测量桥路的电压和电流值。
4. 记录不同应变下的电压和电流值,并计算电阻值的变化。
四、实验数据处理1. 根据实验记录的电压和电流值,计算电阻值的变化。
2. 绘制电阻值与应变的关系曲线,分析其线性范围和灵敏度。
3. 根据实验结果,评估电阻应变式传感器的性能和适用范围。
五、实验结果和讨论根据实验数据处理的结果,我们可以得出电阻应变式传感器在不同应变下的电阻变化曲线。
通过分析曲线,我们可以确定其线性范围和灵敏度。
同时,我们还可以评估传感器的稳定性和精确度。
六、实验结论通过本实验,我们深入了解了电阻应变式传感器的工作原理和特性。
实验结果表明,电阻应变式传感器具有较好的线性范围和灵敏度,适用于各种测量场合。
然而,其稳定性和精确度仍需进一步改进。
七、实验总结本实验通过实际操作和数据处理,使我们对电阻应变式传感器有了更深入的认识。
同时,也让我们了解到传感器在实际应用中的一些局限性和改进方向。
通过不断的实验和研究,我们可以进一步提高传感器的性能和精确度,以满足不同领域的需求。
压力传感器的原理及应用实验报告
压力传感器的原理及应用实验报告1. 引言压力传感器是一种广泛应用于工业控制和物理实验中的传感器。
它们能够测量物体的压力,并将其转换为相应的电信号输出。
本实验报告将详细介绍压力传感器的原理,搭建实验装置并进行相应的应用实验。
2. 压力传感器的原理压力传感器的原理是基于焊接应变片的工作原理。
当承受压力的物体与传感器接触时,传感器上的焊接应变片会发生变形。
这个变形会引起应变片内部电阻的变化,从而导致电信号的改变。
通过测量这个电信号的改变,我们可以确定物体所受压力的大小。
3. 实验装置搭建为了进行压力传感器的实验,我们需要准备以下材料和设备: - 压力传感器 -嵌入式开发板 - 连接线 - 软件开发工具在实验装置搭建过程中,我们首先将压力传感器连接到嵌入式开发板上,然后使用相应的软件开发工具对传感器进行数据读取和处理。
4. 实验过程在实验过程中,我们按照以下步骤进行: 1. 将嵌入式开发板连接到计算机,并启动软件开发工具。
2. 配置开发工具的相关设置,包括传感器类型、数据采集频率等。
3. 将压力传感器连接到开发板的相应引脚上。
4. 在开发工具中编写相应的代码,用于读取传感器的数据值。
5. 启动实验装置,给传感器施加不同的压力,并记录传感器输出的电信号值。
6. 根据实验记录的数据,绘制压力与电信号的关系曲线图。
5. 实验结果分析根据实验记录的数据以及绘制的关系曲线图,我们可以得出以下结论: 1. 压力传感器的输出电信号与所受压力呈正比关系,即随着压力的增加,电信号的值也会增加。
2. 在一定范围内,压力传感器的输出电信号与所受压力之间存在线性关系。
3. 通过对实验数据进行适当处理和分析,我们可以得到传感器的灵敏度和响应时间等参数。
6. 应用领域压力传感器在许多领域中都有广泛的应用,包括但不限于以下几个方面: - 工业自动化控制 - 医疗设备 - 汽车工业 - 环境监测 - 建筑结构监测7. 结论通过以上实验和分析,我们深入了解了压力传感器的原理和应用。
传感器实验报告
传感器实验报告传感器实验实验⼀、电阻应变⽚传感器1.实验⽬的(1) 了解⾦属箔式应变⽚的应变效应,单臂电桥⼯作原理和性能。
(2) 了解半桥的⼯作原理,⽐较半桥与单臂电桥的不同性能、了解其特点(3) 了解全桥测量电路的原理及优点。
(4) 了解应变直流全桥的应⽤及电路的标定。
2.实验数据整理与分析由以上两趋势图可以看出,其中⼀个20.9997R =,另⼀个20.9999R =,两个的线性都较好。
其中产⽣⾮线性的原因主要有:(1)04x R e e R R ?=+?,0e 和R ?并不成严格的线性关系,只有当0R R ?<<才有04x Re e R=,所以理论上并不是绝对线性的,总会出现⼀些⾮线性。
(2)应变⽚与材料的性能有关,这也可能产⽣⾮线性。
(3)实验中外界因素的影响,包括外界温度之类的影响。
为什么半桥的输出灵敏度⽐单臂时⾼出⼀倍,且⾮线性误差也得到改善?答:单臂:04x R e e R ?=半桥:1201()2x R R e e R R ??=-灵敏度公式:U S W=;所以半桥测量时是单臂测量的灵敏度的两倍。
0k 受电阻变化影响变得很⼩改善了⾮线性误差。
3.思考题a .半桥测量时两⽚不同受⼒状态的电阻应变⽚接⼊电桥时,应放在:(1)对边(2)邻边。
解:邻边 b .桥路(差动电桥)测量时存在⾮线性误差,是因为:(1)电桥测量原理上存在⾮线性(2)应变⽚应变效应是⾮线性的(3)调零值不是真正为零。
解:(1)(2)(3)。
c .全桥测量中,当两组对边(R1、R3为对边)值R 相同时,即R1=R3,R2=R4,⽽R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
解:(1)d .某⼯程技术⼈员在进⾏材料拉⼒测试时在棒材上贴了两组应变⽚,如何利⽤这四⽚电阻应变⽚组成电桥,是否需要外加电阻。
解:可组成全路电桥实验⼆差动变压器1.实验⽬的(1)了解差动变压器的⼯作原理和特性(2)了解三段式差动变压器的结构(3)了解差动变压零点残余电压组成及其补偿⽅法(4)了解激励频率低差动变压器输出的影响2.实验数据整理与分析实验A中产⽣⾮线性误差的原因:(1)存在零点残余电压(2)零点附近波动较⼤(3)读数时的⼈为误差分析产⽣零点残余电压的原因,对差动变压器的性能有哪些不利影响。
应变片式电阻传感器实验报告
应变片式电阻传感器实验报告应变片式电阻传感器是一种测量物体表面应变的传感器,广泛应用于工业、军事、医疗等领域。
以下是应变片式电阻传感器实验报告的详细内容:一、实验目的1. 学习应变片式电阻传感器的基本原理和特性。
2. 掌握应变片式电阻传感器的测量方法及操作技巧。
3. 分析不同条件下的实验结果,了解应变片式电阻传感器的适用范围。
二、实验器材与原理实验器材:a. 应变片式电阻传感器b. 电源c. 万用表d. 可调电阻盒e. 电缆及连接线原理:应变片式电阻传感器是利用应变致使电阻值发生变化的原理进行测量。
当应变片受到外力作用后,片上的电阻值会随之改变,通过读取电阻值的变化,可以得到外力的大小。
通常,应变片式电阻传感器会将电阻值变化转换为电压信号输出,进而通过增益电路、滤波电路等处理电路获得精准的测量结果。
三、实验步骤1. 搭建实验电路,将应变片式电阻传感器连接到电源和万用表上,调整电路使电流稳定。
2. 通过可调电阻盒调节电路中的电阻至一定大小,读取电压值并记录。
此时应变片未受到外力作用。
3. 在保持电路参数不变的情况下,给应变片施加一定大小的外力,记录测得的电压值。
4. 根据实验数据计算电阻值及应变量,并绘制电阻随应变变化的曲线图。
5. 将实验数据与理论分析相结合,分析应变片式电阻传感器的特性及适用条件。
四、实验注意事项1. 实验中需要注意电路的接线顺序及稳定性,以确保测量精度。
2. 应严格遵守实验要求,不得超出应变片式电阻传感器的测量范围,避免对设备造成损坏。
3. 在实验过程中应注意安全,谨慎操作,避免发生意外事故。
4. 记录实验数据时,应准确无误地记录每组数据,以保证后续分析的准确性。
五、实验结果及分析通过实验得到的数据,我们可以将电阻值随应变的变化绘制成曲线图。
根据曲线图可以看出,在应变范围内,电阻值与应变量成线性关系。
而在超过一定应变量后,电阻值的增大速度会明显降低,表明应变片失去了线性响应。
电阻应变片实验报告
电阻应变片实验报告电阻应变片实验报告引言:电阻应变片是一种常见的测量应变的传感器,广泛应用于工程领域。
本实验旨在通过对电阻应变片的实验研究,了解其原理、特性以及应用。
一、实验目的:通过实验研究,掌握电阻应变片的工作原理和特性,了解其在测量应变中的应用。
二、实验仪器和材料:1. 电阻应变片2. 电源3. 电压表4. 电流表5. 万用表6. 变压器7. 压力传感器8. 数据采集卡9. 计算机三、实验原理:电阻应变片是一种利用金属电阻随应变而发生变化的传感器。
当电阻应变片受到应变时,其电阻值会发生相应的变化。
根据电阻值的变化,可以计算出应变的大小。
四、实验步骤:1. 将电阻应变片粘贴在待测物体表面,确保其与物体表面紧密贴合。
2. 将电阻应变片的两端连接到电源和电压表,以测量电阻值的变化。
3. 施加外力,使待测物体产生应变。
4. 通过电压表测量电阻值的变化,并记录下来。
5. 重复以上步骤,进行多次实验,以获得准确的数据。
五、实验结果与分析:通过实验测量得到的数据,我们可以得出电阻应变片的应变-电阻特性曲线。
根据这个曲线,我们可以计算出任意应变下的电阻值。
六、实验误差分析:在实际实验中,由于各种因素的影响,可能会导致实验结果存在一定的误差。
例如,电阻应变片与待测物体之间的粘贴不牢固、外界温度变化等。
因此,在实验过程中需要注意这些因素,并尽量减小误差的影响。
七、实验应用:电阻应变片广泛应用于工程领域,特别是在结构应变的测量中。
例如,在桥梁、建筑物等结构的监测中,可以使用电阻应变片来测量结构的应变情况,及时发现潜在的问题。
八、实验总结:通过本次实验,我们深入了解了电阻应变片的工作原理和特性,掌握了其在测量应变中的应用。
同时,我们也认识到了实验中可能存在的误差,并提出了相应的改进方法。
电阻应变片作为一种常见的传感器,具有广泛的应用前景,对于工程领域的发展具有重要意义。
结语:电阻应变片实验报告通过对电阻应变片的实验研究,我们对其工作原理、特性以及应用有了更深入的了解。
应变片实验报告
应变片实验报告引言:应变片是一种常见的用于测量物体应变的传感器。
它们可以在各种领域中应用,如结构工程、材料研究和机械设计等。
本实验旨在通过进行一系列实验,探究应变片的基本原理、测量方法以及应用前景。
实验一:应变片的基本原理应变片是一种金属薄膜传感器,利用金属材料在受力作用下发生应变的特性来进行测量。
在实验中我们选取了常见的金属材料,如铜和铝,制备了应变片,并在实验设备中对其施加压力,观察应变片的变化。
实验结果显示,当应变片受到受力作用时,其形状发生微小变化,从而引起电阻值的变化。
这是因为金属材料的应变会改变其电阻值,进而反映在应变片中,我们可以通过测量电阻值的变化来间接获取物体的应变情况。
实验二:应变片的测量方法在实验二中,我们探究了应变片的测量方法,并尝试使用应变片测量不同物体在受力情况下的应变程度。
实验中我们选取了不同形状和材质的物体,如横梁和钢筋,通过将应变片粘贴在物体的特定位置,再施加一定的受力,以模拟真实工况。
实验结果表明,应变片对物体的应变情况具有高度的灵敏度和准确性。
通过测量应变片的电阻变化,我们可以获取物体在受力作用下的应变变化情况。
同时,不同形状和材质的物体在受力情况下会有不同的应变响应,这为我们在实际工程中的应用提供了一定的参考。
实验三:应变片的应用前景应变片因其高灵敏度和广泛的应用领域,在工程和科研中有着广泛的前景。
在实验三中,我们重点探讨了应变片在结构工程中的应用。
实验结果显示,通过将应变片粘贴到各种结构物上,我们可以实时监测物体在受力情况下的应变情况,从而评估结构物的稳定性和安全性。
这对于桥梁、建筑物和航天器等关键设施的设计和维护具有重要意义。
同时,应变片还可用于材料研究和机械设计中,帮助科学家和工程师更好地了解材料的变形行为和机械受力情况。
结论:本实验通过一系列的实验研究,系统探究了应变片的基本原理、测量方法以及应用前景。
实验结果表明,应变片是一种准确、灵敏且广泛应用于工程和科研领域的传感器。
电阻应变片的实验报告
电阻应变片的实验报告电阻应变片的实验报告引言电阻应变片是一种常见的传感器,用于测量物体的应变或变形。
本实验旨在探究电阻应变片的原理和特性,并通过实验验证其性能。
一、电阻应变片的原理电阻应变片是一种由导电材料制成的薄片,其电阻随着应变而发生变化。
这种应变可以是由物体的拉伸、压缩或弯曲引起的。
当物体受到外力作用时,电阻应变片会发生微小的形变,进而改变其电阻值。
这种电阻值的变化可以通过电路连接进行测量。
二、实验装置与步骤实验装置包括电阻应变片、电桥、电源和数字万用表。
首先,将电阻应变片固定在被测物体上。
接下来,将电桥连接到电源和电阻应变片上,并调整电桥的平衡,使其输出为零。
最后,通过数字万用表测量电桥输出的电压,即可得到电阻应变片的电阻变化值。
三、实验结果与分析在实验中,我们对不同物体施加不同的力,测量了电阻应变片的电阻变化。
结果显示,当物体受到拉伸力时,电阻应变片的电阻值增加;当物体受到压缩力时,电阻值减小。
这与电阻应变片的工作原理相符。
此外,我们还发现电阻应变片的灵敏度与其材料的特性有关。
不同材料的电阻应变片在相同应变下的电阻变化程度不同。
因此,在实际应用中,我们需要根据具体需求选择合适的电阻应变片材料。
四、应用领域与前景电阻应变片在工程领域有广泛的应用。
它们可以用于测量结构物的应变,如桥梁、建筑物等,以及机械零件的变形。
通过监测应变,我们可以及时发现结构物的变形情况,从而提前采取措施进行修复或加固,保障结构的安全性。
此外,电阻应变片还可以用于制造压力传感器和称重传感器。
通过测量电阻应变片的电阻变化,我们可以准确地获取被测物体的压力或重量信息。
这在工业生产中具有重要意义,可以实现对生产过程的精确控制。
未来,随着科技的不断进步,电阻应变片的应用领域将进一步扩展。
例如,在医学领域,电阻应变片可以用于监测人体的生理参数,如心率、呼吸等,为医生提供更准确的诊断和治疗依据。
结论通过本次实验,我们深入了解了电阻应变片的原理和特性,并通过实验验证了其性能。
传感器实验报告(电阻应变式传感器)
传感器技术实验报告院(系)机械工程系专业班级姓名同组同学实验时间 2014 年月日,第周,星期第节实验地点单片机与传感器实验室实验台号实验一金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、实验仪器:应变传感器实验模块、托盘、砝码(每只约20g)、、数显电压表、±15V、±4V电源、万用表(自备)。
三、实验原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε,式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件,如图1-1所示,四个金属箔应变片分别贴在弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。
图1-1通过这些应变片转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,如图1-2所示R5、R6、R7为固定电阻,与应变片一起构成一个单臂电桥,其输出电压εk E R RR R R E U 4R 4E 21140=∆⋅≈∆⋅+∆⋅= (1-1) E 为电桥电源电压,R 为固定电阻值,式1-1表明单臂电桥输出为非线性,非线性误差为%10021L ⋅∆⋅-=RR γ。
四、实验内容与步骤1.图1-1应变传感器上的各应变片已分别接到应变传感器模块左上方的R 1、R 2、R 3、R 4上,可用万用表测量判别,R 1=R 2=R 3=R 4=350Ω。
2.从主控台接入±15V 电源,检查无误后,合上主控台电源开关,将差动放大器的输入端U i 短接,输出端Uo 2接数显电压表(选择2V 档),调节电位器Rw 3,使电压表显示为0V ,Rw 3的位置确定后不能改动,关闭主控台电源。
图1-2 应变式传感器单臂电桥实验接线图3.将应变式传感器的其中一个应变电阻(如R 1)接入电桥与R 5、R 6、R 7构成一个单臂直流电桥,见图1-2,接好电桥调零电位器Rw 1,直流电源±4V (从主控台接入),电桥输出接到差动放大器的输入端U i ,检查接线无误后,合上主控台电源开关,调节Rw 1,使电压表显示为零。
应变片式电阻传感器实验报告
应变片式电阻传感器实验报告
一、实验目的
本次实验的主要目的是通过对应变片式电阻传感器的实验研究,掌握其工作原理以及应用技术,进一步加深对电阻传感器的了解和掌握。
二、实验原理
应变片式电阻传感器是一种利用应变片电阻变化来检测物体变形的传感器。
当物体受到外力作用时,会发生应变,应变片的电阻值也会相应地发生变化。
通过利用测量电桥的原理,可以精确地检测出应变片的电阻值变化,从而得到物体受力情况的参数。
三、实验步骤
1.将应变片式电阻传感器连接到电桥电路上,调整电压和电流的大小。
2.将被测物体放在应变片式电阻传感器上,施加不同大小的外力,记录下应变片电阻值的变化。
3.根据实验数据,进行数据分析和处理,得到物体受力情况的参数。
四、实验结果
通过实验数据的采集和处理,我们得到了物体受力情况的各项参数。
实验结果表明,应变片式电阻传感器具有高灵敏度、高精度、高可靠性等优点,在物体受力测试和工业自动化控制领域有着广泛的应
用前景。
五、实验结论
本次实验通过对应变片式电阻传感器的研究和测试,我们了解了其工作原理和应用技术,掌握了其在物体受力测试和工业自动化控制领域的应用前景。
同时,我们也发现了一些问题和不足之处,需要进一步加以完善和改进。
六、实验心得
本次实验让我更加深入地了解了电阻传感器的工作原理和应用技术,同时也提高了我的实验操作能力和数据处理能力。
通过本次实验,我也发现了一些需要进一步改进和完善的地方,希望能在今后的学习和实践中继续加以改进和提高。
(完整版)压阻式压力传感器测量压力特性实验
压阻式压力传感器测量压力特性实验一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和标定方法.二、基本原理:扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。
一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出P型或N型电阻条)组成电桥。
在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。
图为压阻式压力传感器压力测量实验原理图.压阻式压力传感器压力测量实验原理三、需用器件与单元:主机箱中的气压表、气源接口、电压表、直流稳压电源±15V、±2V~±10V(步进可调);压阻式压力传感器、压力传感器实验模板、引压胶管。
四、实验步骤:1、按示意图安装传感器、连接引压管和电路:将压力传感器安装在压力传感器实验模板的传感器支架上;引压胶管一端插入主机箱面板上的气源的快速接口中(注意管子拆卸时请用双指按住气源快速接口边缘往内压,则可轻松拉出),另一端口与压力传感器相连;压力传感器引线为4芯线(专用引线),压力传感器的 1端接地,2端为输出Vo+,3端接电源+4V,4端为输出Vo-。
具体接线见下图。
压阻式压力传感器测压实验安装、接线示意图2、将主机箱中电压表量程切换开关切到2V档;可调电源±2V~±10V调节到±4V档.实验模板上R W1用于调节放大器增益、R W2用于调零,将R W1调节到的1/3位置(即逆时针旋到底再顺时针旋3圈)。
合上主机箱电源开关,仔细调节R W2使主机箱电压表显示为零。
3、合上主机箱上的气源开关,启动压缩泵,逆时针旋转转子流量计下端调压阀的旋钮,此时可看到流量计中的滚珠在向上浮起悬于玻璃管中,同时观察气压表和电压表的变化.4、调节流量计旋钮,使气压表显示某一值,观察电压表显示的数值.5、仔细地逐步调节流量计旋钮,使压力在2kPa~18kPa之间变化(气压表显示值),每上升1kPa气压分别读取电压表读数,将数值列于表8。
应变式传感器实验报告
应变式传感器实验报告一、引言应变式传感器是一种广泛应用于工业领域的传感器,其主要作用是测量物体的应变量。
本实验旨在通过实验操作和数据分析,深入了解应变式传感器的原理、性能和应用。
二、实验原理1. 应变式传感器的原理应变式传感器是利用金属材料受力时会产生形变而引起电阻值的变化,从而转化成电信号输出。
当物体受到外力作用时,其表面会产生微小的形变,进而改变金属材料内部电阻值,将这种形变转换为电信号输出即可测量物体所受外力大小。
2. 实验仪器与材料(1)多功能测试仪(2)应变片(3)导线3. 实验步骤(1)将应变片粘贴在被测物体表面,并固定好。
(2)将多功能测试仪连接到计算机上,并打开相应软件。
(3)通过测试仪对被测物体施加不同大小的外力,并记录下相应的电信号输出值。
(4)根据实验数据计算出被测物体所受外力大小。
三、实验结果与分析1. 实验数据记录表外力大小(N)电信号输出值(mV)0 010 2.520 5.130 7.840 10.22. 数据分析从实验数据中可以看出,随着被测物体所受外力的增加,其电信号输出值也随之增加,呈现出一定的线性关系。
通过对实验数据进行拟合,可以得到应变式传感器的灵敏度和线性误差等性能指标。
四、实验结论与建议1. 实验结论本实验通过对应变式传感器的原理和性能进行了深入了解,并通过实验操作和数据分析验证了其可靠性和准确性。
应变式传感器在工业领域有着广泛的应用前景。
2. 实验建议(1)在实验过程中要注意被测物体表面必须平整光滑,并且应变片固定牢固。
(2)在进行数据分析时要注意选择合适的拟合方法,并对误差进行修正。
(3)在使用多功能测试仪时要仔细阅读说明书,并按照说明书操作。
五、参考文献[1] 王志勇, 马海彬, 陈明,等. 应变式传感器原理及其应用[J]. 传感器与微系统, 2010(4):1-4.[2] 黄华, 郑海峰. 应变式传感器的原理及应用[J]. 电气自动化,2012(5):25-27.。
应变片电阻式传感器测压力实验报告
应变片电阻式传感器测压力实验报告
本实验利用电阻式变形片式压力传感器实现压力测量,测试设备包括传感器本体和信号测量读写装置,使用液压系统模拟出不同的压力以检测传感器的可靠性和性能。
实验用于准备的参数如下:
实验仪器:电阻式变形片式压力传感器、液压系统用于生成压力,及信号测量读写装置。
环境条件:常温下(25摄氏度),湿度50%。
压力参数:-0.20 MPa、3.0 MPa、6.0 MPa和8.0 MPa。
实验流程如下:
1.首先根据技术参数定义好传感器连接线,并将传感器连接到信号测量读写装置;
2.安装液压系统,使用液压力源精确生成所需要检测的压力标准值;
3.使用信号测量读写装置连接传感器,使用软件设定不同的压力标准值进行测量;
4.将压力标准值与测量值进行对比以确定传感器的准确性;
5.统计实验数据,生成测试报告。
根据上述实验参数,在常温下,电阻式变形片式压力传感器测得的压力值与液压系统生成的压力值完全相符,经过检测没有发现较大差异,可认为压力传感器性能稳定有效。
通过以上实验,我们可以了解电阻式变形片式压力传感器的性能特点,传感器可以很好地检测出不同压力大小的变化,误差在接受范围以内。
因此,电阻式变形片式压力传感器在压力测量仪表中具有一定的应用前景,可以满足各种复杂的工况条件。
电阻应变传感器实验报告
一、实验目的1. 理解电阻应变式传感器的基本原理和结构。
2. 掌握电阻应变式传感器的测量方法及其在工程中的应用。
3. 通过实验验证电阻应变式传感器在不同应变条件下的响应特性。
二、实验原理电阻应变式传感器是利用电阻材料的应变效应,将机械变形转换为电阻变化的传感器。
其基本原理如下:当电阻丝受到拉伸或压缩时,其长度和截面积将发生变化,从而导致电阻值的变化。
这种电阻值的变化与应变值呈线性关系。
通过测量电阻值的变化,可以计算出应变值。
实验中使用的电阻应变式传感器主要由电阻应变片、引线、电桥电路和电阻应变仪组成。
三、实验器材1. 电阻应变式传感器2. 电桥电路3. 电阻应变仪4. 拉伸装置5. 载荷装置6. 电流表7. 电压表8. 电阻箱四、实验步骤1. 将电阻应变式传感器安装到拉伸装置上,确保传感器与拉伸装置的连接牢固。
2. 将电桥电路连接到电阻应变仪上,并调整电桥电路的平衡。
3. 通过拉伸装置对传感器施加不同等级的拉伸力,记录相应的应变值。
4. 使用电阻应变仪测量电阻值的变化,并计算应变值。
5. 重复步骤3和4,验证电阻应变式传感器在不同应变条件下的响应特性。
五、实验结果与分析1. 电阻应变式传感器在不同应变条件下的响应特性实验结果表明,电阻应变式传感器在不同应变条件下的响应特性良好,其电阻值的变化与应变值呈线性关系。
当拉伸力逐渐增大时,电阻值也随之增大,且变化趋势与应变值的变化趋势基本一致。
2. 电阻应变式传感器的灵敏度实验结果表明,电阻应变式传感器的灵敏度较高。
在相同的应变条件下,电阻应变式传感器的电阻值变化较大,说明其具有较高的灵敏度。
3. 电阻应变式传感器的线性度实验结果表明,电阻应变式传感器的线性度较好。
在一定的应变范围内,电阻应变式传感器的电阻值变化与应变值呈线性关系,说明其具有较高的线性度。
六、实验结论1. 电阻应变式传感器是一种有效的应变测量装置,具有灵敏度高、线性度好等优点。
2. 电阻应变式传感器在工程中具有广泛的应用前景,如结构健康监测、材料力学性能测试等。
应变传感器实验报告
一、实验目的1. 了解电阻应变片的工作原理与应用。
2. 掌握应变片测量电路的搭建与调试。
3. 通过实验验证应变传感器在实际应用中的性能。
二、实验原理应变片传感器是一种将机械变形转换为电信号的传感器。
它基于电阻应变效应,即金属导体或半导体材料在外力作用下,其电阻值会发生相应变化。
本实验采用电阻应变片作为传感器,将微小的形变转换成电阻的变化,通过电桥电路将电阻变化转换为电压或电流信号输出。
三、实验仪器与设备1. 电阻应变片2. 电桥电路3. 悬臂梁4. 万用表5. 数据采集器6. 计算机四、实验步骤1. 搭建电桥电路:按照实验原理图搭建自搭式单臂电桥电路,连接电源、桥臂、桥路等元件。
2. 粘贴应变片:将电阻应变片粘贴在悬臂梁的适当位置,确保应变片与悬臂梁的连接牢固。
3. 调节电桥平衡:通过调节电桥电路中的电阻,使电桥达到平衡状态,即桥路两端电压为零。
4. 施加外力:在悬臂梁上施加一定的外力,使悬臂梁发生形变。
5. 测量电阻变化:利用万用表测量应变片电阻的变化,并记录数据。
6. 数据分析:将测量数据输入计算机,通过数据采集器进行采集,并分析应变传感器的性能。
五、实验结果与分析1. 电阻应变效应验证:实验结果显示,当悬臂梁发生形变时,应变片电阻发生明显变化,验证了电阻应变效应。
2. 电桥电路性能分析:通过调节电桥电路中的电阻,使电桥达到平衡状态,有效避免了电路误差。
3. 应变传感器性能分析:实验结果显示,应变传感器具有良好的线性度和灵敏度,能够准确测量悬臂梁的形变。
六、实验结论1. 电阻应变片传感器能够将机械变形转换为电信号,具有广泛的应用前景。
2. 电桥电路能够有效测量应变片电阻的变化,为应变传感器提供准确的测量结果。
3. 本实验验证了应变传感器的性能,为实际应用提供了理论依据。
七、实验注意事项1. 搭建电桥电路时,注意元件连接正确,避免短路或开路。
2. 粘贴应变片时,确保应变片与悬臂梁的连接牢固,避免脱落或松动。
应变片电阻式传感器测压力实验报告
设计目的了解应变直流电桥的应用及电路的标定基本原理一应变片传感器电阻应变片压力传感器由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成1 应变片的工作原理电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。
当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。
这样弹性体的变形转化为电阻应变片阻值的变化。
把4个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。
一般这种变化的对应关系具有近似线性的关系。
找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。
电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
金属导体的电阻值可用下式表示:SL R ρ= 式中: ρ——金属导体的电阻率(Ω·m )S ——导体的截面积(2m )L ——导体的长度(m )以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。
当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。
只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。
2 全桥电路应变片将应变的变化转换成电阻相对变化ΔR/R ,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。
这里使用全桥电路,如下图所示。
采用四臂电桥,如上图所示并设初始时R R R R R ====4321,工作时R R R R R ∆=∆-=∆=∆=∆2341时,输出为i i o U U RR U εK =∆= 四臂电桥的电压灵敏度为iU U =K 二 实验原理该试验就是应用了箔式应变片及其全桥测量电路,实验原理如图所示,本实验只做放大器输出0V 实验,通过对电路的标定使电路输出的电压值为重量对应值,电压量纲(V )转化为压力纲(N )即成为一台原始测压力装置。
应变片式电阻传感器实验报告
应变片式电阻传感器实验报告
一、实验目的
本次实验的目的是通过实验了解应变片式电阻传感器的工作原理和使用方法,掌握应变片式电阻传感器的基本特性和应用场景。
二、实验原理
应变片式电阻传感器是一种基于电阻变化的传感器,其工作原理是利用应变片的应变变化引起电阻值的变化,从而实现对应变片所受应变的测量。
应变片式电阻传感器的特点是精度高、响应速度快、可靠性好、使用寿命长等。
三、实验步骤
1.将应变片式电阻传感器连接到电路板上,并连接电源和万用表。
2.通过手动施加外力,使应变片受到应变,记录下此时的电阻值。
3.重复以上步骤,记录不同应变下的电阻值。
4.根据实验数据,绘制应变-电阻曲线图。
四、实验结果
通过实验,我们得到了应变-电阻曲线图,可以看出应变片式电阻传
感器的电阻值随着应变的增加而增加,呈现出线性关系。
同时,我们还发现应变片式电阻传感器的响应速度很快,精度高,可以满足很多实际应用场景的需求。
五、实验结论
应变片式电阻传感器是一种精度高、响应速度快、可靠性好、使用寿命长的传感器,可以广泛应用于工业自动化、机器人控制、航空航天等领域。
通过本次实验,我们深入了解了应变片式电阻传感器的工作原理和特性,为今后的实际应用提供了基础。
六、实验心得
通过本次实验,我深刻认识到了应变片式电阻传感器的重要性和应用价值,同时也掌握了应变片式电阻传感器的基本使用方法和实验技巧。
在今后的学习和工作中,我将更加注重实践操作,不断提高自己的实验能力和技术水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心得体会
通过这次实验,我明白了做实验时,最重要的是一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白。
实验就是使我们加深理解所学基础知识,掌握典型传感器的基本原理和适用范围;具有测试系统的选择及应用能力;具有实验数据处理和误差分析能力;得到基本实验技能的训练与分析能力的训练,使我们初步掌握测试技术的基本方法对各门知识得到融会贯通的认识和掌握,加深对理论知识的理解。更重要的是能够提高我们的动手能力。
5.把砝码依次放在梁的自由端上,并依次记录压力和电压数据填入下表。
6.根据数据画出实验曲线,计算误差与线性度。
7.在梁上的自由端放上一元硬币、一把钥匙称一下压力。实验完毕,关闭电路。
实验数据
电压(V)
0.003
0.020
0.041
0.060
0.079
0.098
0.116
0.145
0.151
压力(N)
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
用最小二乘法( , )算出压力与电压的关系得:
F=10.344U-0.0195
x100%算出 = 5.02%
第7步测量值为:
一个硬币(已知6.03g)
0.058
一把钥匙
0.104
已知硬币为6.03g,对传感器的压力为0.0603N,实际测出压力为0.058N。它们之间的误差为3.81%。
需用器件与单元
机头中的应变梁的应变片:显示面板中的F/V表(或电压表)。±2V~±10V步进可调直流稳压电源;调理电路面板传感器输出单元中的箔式应变片;调理电路单元中的电桥,差动放大器:砝码(20g/只)。
实验步骤
1.差动放大器调零点:按图7-2示意接线,将F/V表(或电压表)的量程切换开关切换到2V档,合上主、副电源开关,将差动放大器的增益电位器按顺时针方向轻轻到底后再逆回转一点点(放大器的增益为最大,回转一点点的目的:电位器触点在根部估计会接触不良),调节差动放大器的调零电位器,使电压表显示电压为零,差动放大器的零点调节完成,关闭主电源。
3.拿去梁的自由端上所有砝码,如数显表不显示0.000V则调节差动放大器的调零电位器,使数显表显示为0.000V。再将8只砝码全部置于振动台上(尽量放在中心点上),调节差动放大器的增益电位器,使数显表显示为0.160V(2V测量端)或-0.160V。
4.重复3步骤的标定过程,一直到误差较小为止,把电压量纲V改为压力纲N,就可以测压力,成为一台原始的测压力装置。
2全桥电路
应变片将应变的变化转换成电阻相对变化ΔR/R,要把电阻的变化转换成电压或电流的变化,才能用电测仪表进行测量。这里使用全桥电路,如下图所示。
采用四臂电桥,如上图所示并设初始时 ,工作时 时,输出为
四臂电桥的电压灵敏度为
二实验原理
该试验就是应用了箔式应变片及其全桥测量电路,实验原理如图所示,本实验只做放大器输出 实验,通过对电路的标定使电路输出的电压值为重量对应值,电压量纲(V)转化为压力纲(N)即成为一台原始测压力装置。
设计目的
了解应变直流电桥的应用及电路的标定
基本原理
一应变片传感器
电阻应变片压力传感器由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成
1应变片的工作原理
电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。
2.将±2V~±10V步进可调直流稳压电源切换到4V档,按图所检查接线无误后合上主电源开关,在梁的自由端无砝码时,调节电桥中的W1电位器,使数显表显示为0.000V。将8只砝码全部置于梁的自由端上(尽量放在中心点),调节差动放大器的增益电位器,使数显表显示为0.160V(2V测量端)或-0.160V。
电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:
式中:ρ——金属导体的电阻率(Ω·m)
S——导体的截面积( )
L——导体的长度(m)
以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。
误差分析
由以上可知,实验中存在误差。经过小组讨论,认为可能是由于以下原因造成的。
1堆积ห้องสมุดไป่ตู้码时,由于砝码的底部不平,砝码的重量并不是全部压在压变片上,输出的压力值会偏小。
2长时间做实验后,装置内部会发热。由于环境温度的变化会引起应变片电阻的相对变化,这种温度效应产生了虚假应变。
3由应变片粘贴工艺产生的误差,应变片轴线偏离了原定的方向。