金融时间序列分析教材
金融时间序列分析教学设计
金融时间序列分析教学设计一、教学背景与目的金融时间序列分析是金融学中的一种重要方法,用于分析金融市场和企业的收益、波动和风险等。
本课程旨在帮助学生们掌握金融时间序列数据的基本概念、特征分析和预测模型等知识,以提升其在金融领域的应用能力。
二、教学内容1.金融时间序列数据介绍–时间序列数据基本概念–金融市场中的时间序列数据–常用时间序列数据的获取和处理方法2.金融时间序列数据特征分析–时间序列的分类和判定准则–平稳性检验及相关数学基础知识–均值方差模型(ARMA模型)及其拟合3.金融时间序列建模与预测–自回归移动平均模型(ARIMA模型)及其拟合–季节性时间序列建模及预测–ARCH、GARCH模型4.金融时间序列分析实战应用–金融时间序列数据分析软件介绍–金融时间序列数据实战案例分析–实战应用中的注意事项和技巧三、教学方法本课程采用理论教学与实践相结合的教学方法,注重学生的主动学习和实践能力培养。
具体教学方法如下:1.理论授课:通过PPT讲授,结合案例分析,引导学生理解和掌握金融时间序列分析的基本概念、特征和应用方法。
2.实验操作:提供金融时间序列数据分析软件,进行实践和模拟操作,让学生们在实验中深化对理论的理解。
3.课程设计:根据金融时间序列分析的实际应用需求,让学生们进行课程设计,包括数据获取、预处理、拟合和预测等环节。
四、教学评估本课程评估分为两个部分,一是平时作业,二是期末考试。
1.平时作业:包括实验报告、数据练习、理论考试等。
2.期末考试:主要测试学生对于金融时间序列分析的理解和应用能力。
五、教学资源1.课本:《金融时间序列分析》(Danica Prevendar,2016)2.PPT教学材料:包括理论讲解、案例分析、实践操作等。
3.数据分析软件:R、MATLAB等。
六、总结本课程旨在帮助学生们掌握金融时间序列数据的基础理论和实践应用,提升其在金融领域的数据分析能力和实践操作技能。
通过本课程的学习,让学生们在实际应用中了解金融时间序列分析的实际用途,并解决相关问题,提升其在金融领域的竞争力。
analysis of financial times series 中文版
analysis of financial times series 中文版引言概述:金融时间序列分析是金融领域中重要的研究方向之一。
通过对金融时间序列的分析,可以揭示金融市场的规律和趋势,为投资决策提供依据。
本文将从五个大点出发,对金融时间序列分析进行详细阐述。
正文内容:1. 时间序列的基本概念1.1 时间序列的定义和特点时间序列是按照时间顺序排列的一系列数据点的集合。
它具有时间相关性和序列相关性的特点,可以用来描述金融市场中的价格、收益率、交易量等变量的变化情况。
1.2 时间序列的组成要素时间序列由趋势、季节性、周期性和随机波动等多个组成要素构成。
趋势是时间序列中的长期变化趋势,季节性是时间序列中的周期性变化,周期性是时间序列中的较长周期变化,而随机波动则是时间序列中的无规律变动。
1.3 时间序列的数据处理方法在进行金融时间序列分析之前,需要对数据进行处理。
数据处理方法包括平滑处理、差分处理、标准化处理等。
平滑处理可以去除数据中的噪音,差分处理可以消除趋势和季节性,标准化处理可以将数据转化为相对数值。
2. 时间序列模型2.1 自回归移动平均模型(ARMA)ARMA模型是一种常用的时间序列模型,它将时间序列的当前值与过去的值和白噪声误差相关联。
ARMA模型可以用来预测时间序列的未来值,通过对模型参数的估计和模型拟合,可以得到较为准确的预测结果。
2.2 广义自回归条件异方差模型(GARCH)GARCH模型是一种用于描述时间序列波动性的模型,它考虑了波动性的异方差性。
GARCH模型可以用来对金融市场中的波动性进行建模,从而提供风险管理和投资决策的依据。
2.3 随机游走模型(Random Walk)随机游走模型是一种基于随机性的时间序列模型,它认为未来的价格变动是在过去价格的基础上随机波动的结果。
随机游走模型被广泛应用于金融市场中的股票价格预测和投资组合管理。
3. 时间序列分析方法3.1 傅里叶变换傅里叶变换是一种将时间序列从时域转换到频域的方法,可以将时间序列分解为不同频率的成分。
金融时间序列分析
《金融时间序列分析》讲义主讲教师:徐占东登录:徐占东《金融时间序列模型》参考教材:1.《金融时间序列的经济计量学模型》经济科学出版社米尔斯著2.《经济计量学手册》章节3.《Introductory Econometrics for Finance》 Chris Brooks 剑桥大学出版社4.《金融计量学:资产定价实证分析》周国富著北京大学出版社5.《金融市场的经济计量学》 Andrew lo等上海财经大学出版社6.《动态经济计量学》 Hendry著上海人民出版社7.《商业和经济预测中的时间序列模型》中国人民大学出版社弗朗西斯著8.《No Linear Econometric Modeling in Time series Analysis》剑桥大学出版社9.《时间序列分析》汉密尔顿中国社会科学出版社10.《高等时间序列经济计量学》陆懋祖上海人民出版社11.《计量经济分析》张晓峒经济科学出版社12.《经济周期的波动与预测方法》董文泉高铁梅著吉林大学出版社13.《宏观计量的若干前言理论与应用》王少平著南开大学出版社14.《协整理论与波动模型——金融时间序列分析与应用》张世英、樊智著清华大学出版社15.《协整理论与应用》马薇著南开大学出版社16.(NBER working paper)17.(Journal of Finance)18.(中国金融学术研究网) 教学目的:1)能够掌握时间序列分析的基本方法;2)能够应用时间序列方法解决问题。
教学安排1单变量线性随机模型:ARMA ; ARIMA; 单位根检验。
2单变量非线性随机模型:ARCH,GARCH系列模型。
3谱分析方法。
4混沌模型。
5多变量经济计量分析:V AR模型,协整过程;误差修正模型。
第一章引论第一节金融学简介一.金融学概论1.金融学:研究人们在不确定环境中进行资源最优配置的学科。
金融学的三个核心问题:资产时间价值,资产定价理论(资源配置系统)和风险管理理论。
2020版金融计量学:时间序列分析视角(第三版)教学课件第14章第1节
(14.20)
这样,可以把模型(14.19)重新写成
VAR(1)模型的形式,即:
St PSt1 Vt (14.21)
在一阶MS模型中,我们还可以得到比 模型(14.23)更一般的结论,即:
E(Vt Sti ) 0,i 0
无条件期望对应的是其中一个状 态的期数占总共状态期数的比重。我 们知道,对于只有两个状态的MS模型 来说,在每一个时刻点,只有一个状 态,也只有一个扰动项。从模型 (14.16)和(14.21),我们得到:
可以写成如下形式
Yt Yt
X t0 X t1
t0 t1
t0
iid
(0,
2 0
),
st
0
t1 iid (0,12 ), st 1
其中:Yt、Xt 和 分别表示因变量、自变 量矩阵以及系数矩阵。
14.2.4 状态变量的属性
MS模型中不同区制(状态)持续 的时间、区制的期望、区制的向量表 示形式以及利用向量形式的区制形式 预测未来的状态,是状态变量属性中 最重要的几个方面,我们下面分别进 行介绍。
s10
p f1( y1) (1 p) f0 ( y1)
当我们考虑更一般的情况时,则 可以把模型(14.34)拓展为:
Pr| It1]
f ( yt | t1
其中: 1 Pr[s1 1| It1] Pr[st , st1 | It1] st1 0
(1 p){1 p p2
p p2
p2 }
(1
p)
1
1
p
p 1 p
p2 1 p
1 p p2
(14.12)
1 1 p
同理,如果假设
st1 st2 st j 0, st j 1
金融时序分析课程设计
金融时序分析课程设计一、课程目标知识目标:1. 让学生掌握金融时序分析的基本概念、原理及方法。
2. 使学生了解金融市场的波动特征,并运用所学知识对金融时间序列数据进行处理和分析。
3. 帮助学生理解金融时序模型在实际金融领域的应用及其局限性。
技能目标:1. 培养学生运用统计软件进行金融时序数据分析的能力。
2. 提高学生运用金融时序模型进行市场预测和风险评估的技能。
3. 培养学生独立分析和解决金融时间序列问题的能力。
情感态度价值观目标:1. 培养学生对金融时序分析的兴趣和热情,激发他们探索金融市场规律的欲望。
2. 增强学生的团队合作意识,培养他们在团队中沟通、协作的能力。
3. 引导学生树立正确的金融风险意识,认识到金融时序分析在实际应用中的价值。
本课程针对高年级金融及相关专业学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
通过本课程的学习,学生能够掌握金融时序分析的基本知识和方法,具备实际操作能力,为未来从事金融研究和实务工作打下坚实基础。
同时,课程注重培养学生的情感态度价值观,使他们在掌握专业知识的同时,具备良好的职业素养和道德观念。
二、教学内容本课程教学内容主要包括以下几部分:1. 金融时序分析基本概念与原理:介绍金融时间序列的特点、平稳性检验、自相关函数和偏自相关函数等基本概念,以及AR、MA、ARMA、ARIMA等主要模型原理。
2. 金融时序模型的建立与预测:讲解金融时序模型的建立过程,包括模型识别、参数估计、模型检验等步骤,并通过实例分析,展示如何运用模型进行市场预测。
3. 金融时序模型的应用:探讨金融时序模型在市场风险评估、投资组合优化、宏观经济预测等领域的应用,以及模型的局限性。
4. 统计软件操作与实践:结合教材内容,教授学生使用R、Python等统计软件进行金融时序数据分析,提高学生的实际操作能力。
5. 案例分析与讨论:选取具有代表性的金融时序分析案例,组织学生进行讨论,培养学生独立分析和解决问题的能力。
lec2-13经典教材《金融时间序列分析》Ruey S. Tsay 英文第三版高清教材以及最新2013年完整版高清讲义
5.
Variance:
Var(rt)
=
σa2 1−φ21
.
6. Autocorrelations: ρ1 = φ1, ρ2 = φ21, etc. In general, ρk = φk1
and ACF ρk decays exponentially as k increases,
7. Forecast (minimum squared error): Suppose the forecast origin is n. For simplicity, we shall use the model representation in (1)
rt = 0.005 + 0.35rt−1 + 0.18rt−2 − 0.14rt−3 + at, σˆa = 0.01.
This is called an AR(3) model because the growth rate rt depends on the growth rates of the past three quarters. How do we specify this model from the data? Is it adequate for the data? What are the implications of the model? These are the questions we shall address in this lecture.
(1)
This model also has two parameters (µ and φ1). It explicitly uses the mean of the series. It is less commonly used in the literature,
金融计量学-时间序列分析视角教学设计
金融计量学-时间序列分析视角教学设计前言金融计量学是金融领域的重要学科之一,它主要研究金融数据及其规律性。
时间序列分析是金融计量学中一种常用的方法,它可以用于分析和预测股票价格、汇率波动、利率变动等金融数据。
而本文的主要目的就是从时间序列分析的角度,探讨如何将金融计量学融入教学中。
一、教学目标通过时间序列分析的视角,帮助学生了解金融计量学的基本理论和方法,能够运用时间序列模型对金融数据进行分析和预测。
二、教学内容本教学设计主要包括以下内容:1.时间序列分析的基本概念和思路。
包括时间序列数据的定义、时间序列的组成部分、时间序列的平稳性等。
2.ARIMA模型及其应用。
主要包括ARIMA模型的基本概念、ARIMA模型的识别、估计和预测方法等。
3.GARCH模型及其应用。
主要包括GARCH模型的基本概念、GARCH模型的估计与预测方法等。
4.时间序列建模的实践教学。
三、教学方法本教学设计采用“理论与实践相结合”的教学方法,具体包括以下措施:1.通过讲授时间序列分析的基本概念和思路,让学生了解时间序列的基本组成部分、平稳性的检验方法等。
2.通过案例分析的方式,让学生了解如何使用ARIMA模型对时间序列进行建模和预测。
3.通过小组讨论和实验的方式,让学生了解如何使用GARCH模型对时间序列进行建模和预测。
同时,学生也可以自由选择相关领域的实际数据进行实践。
4.通过上机实践的方式,让学生熟悉使用计量软件(如R、STATA等)进行时间序列建模和预测的具体操作。
四、评估方法为了深入了解学生对本学科的掌握程度,本教学设计采用以下评估方法:1.期中考试:主要对学生对时间序列分析基本概念和ARIMA模型的手动计算能力进行评估;2.期末考试:主要对学生对时间序列分析方法的熟悉程度及口头表述和批判能力进行评估;3.实验报告:主要对学生通过实验掌握时间序列建模和预测的能力进行评估;4.课堂表现:包括出勤情况、提问积极程度、小组讨论等方面进行综合评估。
2020版金融计量学:时间序列分析视角(第三版)教学课件第11章第1节
地分析标准正交随机扰动项对系统产生
冲击后的影响情况,即 et对系统的冲击 影响情况。et就是所谓的“标准正交随机
扰动项”。
在模型(11.31)中,矩阵A和B被称
为正交因子分解矩阵。从模型(11.31)
第二个等式可以看到,矩阵A将缩减式
VAR模型中的扰动项 t的向量进行转化
i1
p
p
p
y2t
(0) 21
y1t
y (i) 21 1,ti
y (i)
22 2,ti
y u (i) 23 3,ti 2t
i1
i1
i1
p
p
p
y3t
(0) 31
y1t
(0) 32
y2t
y (i) 31 1,ti
y (i)
32 2,ti
y u (i) 33 3,ti 3t
i1
要想获得SVAR模型中的结构性系数, 首先需要考虑所谓的“排序”(order) 问题。什么是order问题呢?简单地解 释即,order问题就是对比SVAR模型中 待估计量的个数与VAR模型中可以估计 出来的对应量的个数。
比较含有n个变量的VAR(p)与SVAR(p) 模型的这些数字关系,我们看到,
(11.3)
Yt 01 011Yt1 01ut
(11.8)
Yt c 1Yt1 2Yt2 t (11.9)
所以,VAR模型从某种程度上说, 是SVAR模型的缩减形式。
SVAR(p)模型:
0Yt 1Yt1 2Yt2 Yp t p ut
其中:p表示滞后期数。
相应的缩减VAR形式为:
(1)短期约束条件
在许多情况下,对矩阵A和B施加 的约束条件是限制这两个矩阵中的某 些位置上的元素取特定的值。这种直 接令矩阵A和B中某些元素为特定值的 约束条件称为短期约束条件。
时间序列分析第一讲2.ppt
第章 金融时间序列模型分析ppt课件
输出参数: m %AR模型的文字形式 ref1 %AR模型的系数
精品课件
例1-2 给出深发展2005年10月21日至2006年9月
29日的交易日收盘价收益率,收益率保存在变量y 中,用2阶的AR模型进行估计。代码如下:
精品课件
➢ 从上面的结果可以知道,2阶的AR模型可以 写成如下形式:
模型中参数的估计采用了默认的 “Forward-Backward”方法,上述模型的损失 函数为0.000576822,FPE准则的值为 0.000587809。
Moving-Average)模型精品课件
1.2.1 时间序列模型介绍 ➢1、自回归(AR)模型
如果时间序列是它前期值与随机项的线性函 数,即
引入滞后算子Q,并记为AR(Q)。
模型可以写为:
精品课件
➢2、移动平均(MA)模型 如果时间序列是随机项的线性组合,即 引入滞后算子Q,并记MA(Q)为: 模型可以表示为:
精品课件
Backward方法
‘fb’:Forward-
’ls’:最小二乘
Walker方法
’yw’:Yule-
Lattic-Based方法
’burg’:Burg’s
Lattic方法
’gl’:Geomatic
windo
精品课‘件 yw’:表示Yule-
精品课件
1.2 时间序列模型的估计
时间序列分析的研究对象是一系列随时间变化 而又相互关联的动态数据。George Box和 Gwilym Jenkins对时间序列的研究有独特贡献, 1970年他们合著的《时间序列分析:预测与控 制》
是这方面的权威著作。 时间序列模型有3种基本类型: (1)自回归(AR,Auto-Regressive)模型 (2)移动平均(MA,Moving-Average)模型 (3)自回归移动平均(ARMA, Auto-Regressive
金融时间序列分析
第1章金融时间序列及其特征金融时间序列分析考虑的是资产价值随时间演变的理论与实践.它是一个带有高度经验性的学科,但也像其他科学领域一样,理论是形成分析推断的基础.然而,金融时间序列分析有一个区别于其他时间序列分析的主要特点:金融理论及其经验的时间序列都包含不确定因素.例如,资产波动率有各种不同的定义,对一个股票收益率序列,波动率是不能直接观察到的.正因为带有不确定性,统计的理论和方法在金融时间序列分析中起重要作用.本书的目的是提供一些金融时间序列的知识,介绍一些对分析金融时间序列有用的统计工具,从而使读者获得各种经济计量方法在金融中应用的经验 .第1章引入资产收益率的基本概念,并简要介绍本书所讨论的一些过程 .第2章回顾了一些线性时间序列分析中的基本概念,如平稳性、自相关函数,引入了一些简单的线性模型来处理序列的序列相关性,并讨论了带时间序列误差、季节性、单位根非平稳性和长记忆过程的回归模型.当存在条件异方差性和序列相关时,该章给出了协方差阵相合估计的方法 .第3章着重讨论了条件异方差性(资产收益率的条件方差)的建模,讨论了新近发展起来的用来描述资产收益率的波动率随时间演变的各种经济计量模型.该章还讨论了波动率建模的其他方法,包括使用高频交易数据和一项资产的日最高价格和日最低价格进行建模 .第4章讨论了金融时间序列中的非线性性,引入了能区别非线性序列与线性序列的检验统计量,并讨论了几个非线性模型.该章还介绍了非参数估计方法和神经网络,并且展示了非线性模型在金融中的各种应用 .第5章考虑的是高频金融数据的分析,市场微观结构的影响及高频金融的应用,阐明了不同步(或不同时)的交易和买卖价格间的跳跃可能带来股票收益的序列相关性.该章还研究了不同交易之间持续时间的动态规律和一些分析交易数据的计量经济模型 .第6章引入了连续时间扩散模型和伊滕(Ito)引理,导出了Black-Scholes期权定价公式,并应用一个简单的跳跃扩散模型来刻画期权市场常见的一些特征 .第7章讨论了极值理论、厚尾分布及其在金融风险管理中的应用.该章还特别讨论了计算金融头寸风险值(VaR)及金融头寸的预期赤字的各种方法 .第8章着重讨论多元时间序列分析和简单的多元模型,重点在于分析时间序列之间的交叉延迟关系.该章还介绍了协整、一些协整检验以及门限协整,并用协整的概念来研究金融市场中的套利机会,包括配对交易 .第9章讨论了简化多元时间序列动态结构的方法和降低维数的方法,并介绍和演示了3种因子模型来分析多个资产的收益率 .第10章介绍了多元波动率模型,其中包括带时变相关系数的模型,同时还讨论了怎样对一个条件协方差阵进行重新参数化,使之满足正定性的限制,并降低波动率建模的复杂性 .第11章介绍了状态空间模型和卡尔曼滤波,还讨论了状态空间模型和本书中所讨论的其他计量经济模型之间的关系.该章还给出了在金融方面应用的几个例子.最后 ,第12章介绍了统计文献中一些新近发展起来的马尔可夫链蒙特卡罗方法,并把这些方法应用于各种金融研究的问题,如随机波动率模型和马尔可夫转换模型的估计.本书着重强调应用和实证分析.每章都有实际例子,很多时候经济计量模型的发展是由金融时间序列的实证特征来推动的.必要时,本书还提供了用来分析数据的计算机程序和命令.在某些案例中,程序已在附录中给出.书中各章的练习题也要用到很多实际数据.1.1资产收益率多数金融研究针对的是资产收益率而不是资产价格. Campbell, Lo和MacKinlay (1997)给出了使用收益率的两个主要理由:第一,对普通的投资者来说,资产收益率完全体现了该资产的投资机会 ,且与其投资规模无关 ;第二 ,收益率序列比价格序列更容易处理,因为前者有更好的统计性质.然而,资产收益率有多种定义.设 P t 是资产在 t 时刻的价格 .下面给出全书中要用到的一些收益率的定义 .暂时假定资产不支付分红. 单期简单收益率若从第 t − 1天到第 t 天 (一个周期)持有某种资产,则简单毛收益率为1+ R t = P t或 P t = P t −1 (1 + R t ) . (1.1)P t −1对应的单期简单净收益率或称简单收益率为P t Pt − P t −1R t = − 1= . (1.2)P t −1 P t −1多期简单收益率若从第 t − k 天到第 t 天这 k 个周期内持有某种资产 ,则 k-期简单毛收益率为P t Pt P t −1 P t −k+11+ R t [k]= = × ×· ··×P t −k P t −1 P t −2 P t −k=(1 + R t )(1 + R t −1) ··· (1 + R t −k+1)k −1= � (1 + R t −j ) .j=0这样, k-期简单毛收益率就是其所包含的这 k 个单期简单毛收益率的乘积 ,称为复合收益率 . k-期简单净收益率是 R t [k]=(P t − P t −k ) /P t −k .1.1资产收益率在实际中 ,确切的时间区间对讨论和比较收益率是非常重要的 (例如是月收益率还是年收益率 ).若时间区间没有给出 ,那么就隐含地假定时间区间为 1年.如果持有资产的期限为 k 年,则 (平均的)年化收益率定义为1/kk −1年化的{R t [k]} = (1+ R t −j ) − 1.j=0⎤⎦⎡⎣这是由它所包含的这 k 个单期简单毛收益率的几何平均得到的 ,可以用下式计算:⎤⎦年化的{R t [k]} = exp k1 k −1ln(1 + R t −j ) − 1,j=0⎡⎣其中 exp(x)表示指数函数, ln(x)是正数 x 的自然对数.因为计算算术平均值比计算几何平均值容易 ,并且单期收益率一般很小 ,我们可以用一阶泰勒 (Taylor)展开来近似年度化的收益率,得到k −1年化的{R t [k]}≈k1 R t −j . (1.3)j=0然而,在有些应用中, (1.3)式近似的精度可能不够.连续复合在引进连续复合收益率之前 ,我们讨论一下复合的效果 .假定银行存款的年利率为 10%,最初存款为 1美元 .如果该银行每年支付一次利息 ,那么 1年之后存款的净值变为 1美元 ×(1 + 0.1) = 1.1美元 .如果该银行半年付息一次 ,6个月的利息率是 10%/2 = 5%,第 1年之后净值是 1美元 × (1 + 0.1/2)2=1.102 5美元 .一般地,如果银行 1年付息 m 次,那么每次支付的利息率为 10%/m,1年后存款的净值变成 1 × (1 + 0.1/m)m美元 .表 1-1给出了年利率为 10%时一些常用的时间间隔下存款 1美元的结果 .特别地 ,净值趋于 1.1052美元 ≈ exp(0.1)美元 ,这个值就是连续复合的结果.于是,我们可以清楚地看到复合的效果.一般地,连续复合的资产净值 A 为A = C exp (r × n) , (1.4)其中 r 是年利率, C 是初始资本, n 是年数①.由 (1.4)式,我们有C = A exp (−r × n) , (1.5)叫作 n 年后价值为 A 的资产的现值 ,这里我们假定连续复合的年利率为 r.1-1复合效果的演示:期限为 1年,年利率为 10%类型支付次数每期的利率净值一年 1 0.1 $1.100 00半年 2 0.05 $1.102 50季度 4 0.025 $1.103 81月 12 0.008 3 $1.104 71周 52 0.1/52 $1.105 06天 365 0.1/365 $1.105 16连续地 ∞ $1.105 17连续复合收益率资产的简单毛收益率的自然对数称为连续复合收益率或对数收益率 (log-return)Pt�r t = ln(1+ R t )=ln = p t − p t −1, (1.6)P t −1其中 p t = ln P t .与简单净收益率 R t 相比 ,连续复合收益率 r t 有一些优点 .首先 ,对多期收益率,我们有r t [k]= ln(1+ R t [k]) = ln[(1+ R t)(1 + R t−1) ···(1 + R t−k+1)] = ln(1+ R t) + ln(1 + R t−1)+ ···+ln(1 + R t−k+1) = r t + r t−1 + ···+ r t−k+1.这样,连续复合多期收益率就是它所包含的连续复合单期收益率之和.其次,对数收益率具有更容易处理的统计性质.资产组合收益率若一个资产组合由N个资产组成,则该资产组合的简单净收益率是它所包含的各个资产的简单净收益率的加权平均,其中每个资产所占的权重是该资产的价值占资产组合总价值的百分比.设p是一个资产组合,它在资产i上的权重为w i,那N么p在t时刻的简单收益率R p,t = w i R it,其中R it是资产i的简单收益率.i=1 然而,资产组合的连续复合收益率没有上述方便的性质.如果简单收益率R itN的绝对值都很小,则我们有r p,t ≈w i r it,其中r p,t是该组合在t时刻的连续复合i=1收益率.这种近似经常被用来研究资产组合的收益率.分红支付如果一个资产周期性地支付分红,我们必须修改资产收益率的定义.设D t是一个资产在第t −1天和第t天之间的分红, P t是该资产在第t个周期末的价格.这样,分红并没有包含在P t中.因此, t时刻简单净收益率和连续复合收益率分别1.1资产收益率变为P t + D tR t = −1,r t = ln(P t + D t) −ln(P t−1).P t−1超额收益率一个资产在t时刻的超额收益率是该资产的收益率与某个参考资产的收益率之差.这个参考资产通常是无风险的,如美国短期国债的收益率.简单超额收益率和对数超额收益率分别定义为Z t = R t −R0t,z t = r t −r0t, (1.7)其中R0t和r0t分别是该参考资产的简单收益率和对数收益率.在金融文献中,超额收益率被认为是某个套利投资组合的赢利.在这个投资组合中,对某资产持多头头寸而对参考资产持空头头寸,且初始投资净值为0.注释多头金融头寸意味着持有某资产.空头头寸则指卖出不属于自己的资产.这需通过从已购买该资产的投资者那里借入资产来完成.在之后的某天,卖空者有义务买进和借入完全相同数量的股份偿还给借出者.因为偿还时要求的是相等数量股份,而不是相等数量的美元,卖空者会由于该资产价格的下跌而获利.如果在空头持续期间该资产有现金分红,则支付给做空买卖的买者.卖空者也必须从自己的资源里配备相应的现金分红来补偿借出者.换句话说,卖空者有义务支出所借资产的现金分红给借出者. �关系小结简单收益率R t与连续复合收益率r t的关系是r t = ln(1+ R t) ,R t =e r t − 1.如果收益率R t与r t是百分比,则�R t �r t = 100ln 1 + ,R t = 100(e r t/100 −1).100收益率的时间累加使得1+ R t [k] = (1+ R t)(1 + R t−1) ···(1 + R t−k+1) ,r t [k]= r t + r t−1 + ···+ r t−k+1.如果连续复合年利率为r,则资产的现值与资产的未来价值之间的关系为A = C exp (r ×n) ,C = A exp (−r ×n) .例 1.1若某项资产的月对数收益率为 4.46%,则相应的月简单收益率为100[exp(4.46/100)−1]=4.56%.同样,若某项资产在一个季度内的月对数收益率分别为 4.46%, −7.34%, 10.77%,则该资产的季度对数收益率为(4.46−7.34+10.77)%=7.89%.1.2收益率的分布性质要研究资产收益率,最好从它们的分布性质开始.目的是要理解不同资产、不同时间收益率的表现.考虑N个资产,持有这N个资产T个时间周期,如t = 1, ···,T .对每个资产i, r it表示它在t时刻的对数收益率.所要研究的对数收益率为{r it; i =1, ···,N; t =1, ···,T }.也可以考虑简单收益率{R it; i =1, ···,N; t = 1, ···,T }和对数超额收益率{ z it; i =1, ···,N; t =1, ···,T }.1.2.1统计分布及其矩的回顾我们简要地回顾一下统计分布的一些基本性质和随机变量的矩.设R k表示k维欧几里得空间, x∈R k表示x是R k中的点,考虑两个随机向量X =(X1, ···,X k)�和Y =(Y1, ···,Y q)�.令P (X ∈A, Y ∈B)表示X在子空间 A ⊂R k中且Y在子空间 B ⊂R q中的概率.本书的大部分场合,都假定这两个随机向量是连续的.联合分布函数F X,Y (x, y; θ)= P (X � x, Y � y; θ) ,是参数为θ的X与Y的联合分布,其中不等号“�”是分量对分量的运算. X和Y的规律由F X,Y (x, y; θ)刻画.如果X和Y的联合概率密度函数f x,y (x, y; θ)存在,则�x�y F X,Y (x, y; θ)= f x,y (w, z; θ)dzdw.−∞−∞这时, X和Y是连续型随机向量.边际分布X的边际分布是F X (x; θ)= F X,Y (x, ∞, ···, ∞; θ) .这样, X的边际分布可通过对Y求积分得到.同理, Y的边际分布也可类似得到.如果k = 1, X是一个一元随机变量,其分布函数为F X (x)= P (X � x; θ) ,称为X的累积分布函数(Cumulative Distribution Function, CDF).一个随机变量的CDF是非降的[即对x1 � x2有F X (x1) � F X (x2)],且有F X (−∞) = 0,1.2收益率的分布性质F X (∞) = 1.对给定的概率p,使p �F X (x p)成立的最小实数x p称为随机变量X的100 p-分位点,更具体地,x p = inf {x |p � F X (x) } .x本书中我们用CDF来计算检验统计量的p值.条件分布给定Y � y的条件下X的条件分布为P (X � x, Y � y; θ)F X|Y �y (x; θ)= .P (Y � y; θ)若所对应的概率密度函数存在,则给定Y = y的条件下, X的条件密度为f x,y (x, y; θ)f x|y (x; θ)= , (1.8)f y (y; θ)其中边际密度函数f y (y; θ)由下式得到∞�f y (y; θ)= f x,y (x, y; θ)dx.−∞由(1.8)式知,联合分布、边际分布和条件分布之间的关系为f x,y (x, y; θ)= f x|y (x; θ) ×f y (y; θ) . (1.9)上述等式关系在时间序列分析中经常用到(如在进行最大似然估计时).最后, X与Y 是相互独立的随机向量当且仅当f x|y (x; θ)= f x (x; θ),这时f x,y (x, y; θ)= f x (x; θ) f y (y; θ).随机变量的矩一个连续型随机变量X的l阶矩定义为∞�m =E �X l� = x lf (x)dx,l−∞其中 “E ”表示期望 (expectation), f (x)是 X 的概率密度函数 .一阶矩称为 X 的均值 (mean)或期望 ,它度量的是分布的中心位置 ,记为 µx . X 的 l 阶中心矩定义为�∞m l =E �(X − µx )l �=(x − µx )lf (x)dx,−∞假定上式中积分存在 .二阶中心矩可度量 X 取值的变化程度 ,称为 X 的方差 (variance),记为 σx2 .方差的正平方根 σx 称为 X 的标准差 .一个正态分布由它的前两阶矩决定.对其他分布,可能要了解其更高阶矩.三阶中心矩度量 X 关于其均值的对称性 ,而四阶中心矩度量 X 的尾部 .在统计学中 ,标准化的三阶矩叫偏度 (skewness),标准化的四阶矩叫峰度 (kurtosis),它们分别用来描述随机变量的对称程度和尾部厚度 .具体地 , X 的偏度和峰度分别定义 为�(X − µx )3��(X − µx )4� S (x)=E ,K (x)=E .σ3 σ 4xx量 K (x) − 3叫作超额峰度 (excess kurtosis),因为正态分布的峰度 K (x) = 3.这样,一个正态随机变量的超额峰度为 0.若一个分布有正的超额峰度 ,则称此分布具有厚尾性 ,厚尾的含义是指该分布在其支撑 (support)的尾部有比正态分布更多的 “质量 ”.在实际中 ,这就意味着来自于这样一个分布的随机样本会有更多的极端值,故称这样的分布为尖峰的(leptokurtic).另外 ,一个具有负的超额峰度的分布是轻尾的 (例如,有限区间上的均匀分布),这样的分布称为低峰的.在应用中 ,我们可以用相应的样本偏度和样本峰度来估计偏度和峰度 .设 {x 1, ··· ,x T }是 X 的 T 个观察值,样本均值为1 Tµˆx = �x t , (1.10)Tt=1样本方差为t=1 在正态分布的假定下 , Sˆ(x)和 K ˆ(x)−3均渐近地服从均值为零、而方差分别为 6/T 和 24/T 的正态分布 [参见 Snedecor 和 Cochran(1980),第 78页].我们可以用这些渐近性质来检验资产收益率是否具有正态性 .给定一个资产收益率序列 {r 1, ··· ,r T },要检验其偏度 ,即要考虑零假设 H 0 : S(r)=0对备择假设 H a : S(r)= 0.�由 (1.12)式所定义的样本偏度的 t-比统计量为 ˆ S(r) t = . �6/T决策规则如下:在显著性水平 α下,若 |t| >Z α/2,则拒绝零假设 ,其中 Z α/2是标准正态分布的100(α/2)上分位点 .另外一个方法是计算检验统计量 t 的 p 值,当且仅当 p 值小于 α时拒绝 H 0.1.2收益率的分布性质类似地 ,我们可以用假设检验 H 0 : K(r)− 3=0与 H a : K(r) − 3 = 0,�来检验收益率序列的超额峰度.检验统计量为 ˆK(r) − 3 t = , �24/T并且该统计量渐近标准正态分布 .决策规则为当且仅当检验统计量的 p 值小于显著性水平α时拒绝 H 0. Jarque 和 Bera(1987)结合了这两个先验检验 ,并利用了下述统计量S ˆ2(r)[K ˆ(r)− 3]2JB= + ,6/T 24/T 其中 ,该统计量的渐近分布是自由度为 2的 χ2分布 .如果 JB 统计量的 p 值小于显著性水平 α,则拒绝正态性的 H 0假设.例 1.2考虑表 1-2中所用的 IBM 股票的日简单收益率 .作为描述性统计量的一部分 ,收益率的样本偏度和峰度可以用各种统计软件包很容易地得到 .我们给出了实例中用到的 SCA 和 S-Plus 命令 ,其中 d-ibm3dx7008.txt 是数据文件名 .需要注意的是 ,在 SCA 中峰度指的是超额峰度 .输出ˆσ2 x=1 T − 1T � (x t − ˆµx )2 ,(1.11)t=1样本偏度为ˆS (x) =1 (T −1) ˆσ3 xT � t=1 (x t −ˆµx )3 ,(1.12)样本峰度为1 (T −�(x − ˆµ).结果中超额峰度很高,表明IBM股票的日简单收益率具有厚尾性.为了检验收益率分布的对称性,我们用检验统计量0.0614 0.061 4t = ==2.49,�6/9845 0.024 7该检验统计量的p值大约为0.013,表明在5%的显著性水平下, IBM股票的日简单收益率显著地右偏.表1-2几种股指和股票日或月简单收益率和对数收益率的描述性统计量aˆσ 2 x =1 T−1T� (x t −ˆµx)2 ,(1.11)t=1 样本偏度为ˆS (x) = 1 (T −1) ˆσ3 xT�t=1 (x t −ˆµx)3 ,(1.12)样本峰度为ˆK (x) = 1 (T −1) ˆσ4 xT�(x t −ˆµx)4 .(1.13)证券起始日期样本量均值标准差偏度超额峰度最小值最大值日简单收益率(%)SP 70/01/02 9845 0.029 1.056 −0.73 22.81 −20.4711.5。
金融时间序列分析教材
金融时间序列分析教材金融时间序列分析是金融学中的一个重要领域,它旨在研究金融市场中的时间序列数据,并利用统计模型和方法来预测未来的金融市场走势。
本教材将介绍金融时间序列分析的基本概念、理论框架和常用方法,帮助读者掌握这一领域的基本知识和技能。
第一章介绍了金融时间序列的基本概念和特点。
金融时间序列是指金融市场中某一资产价格(如股票价格、外汇汇率等)或指标随时间变化的一组数据。
它具有时间相关性、波动性和非正态性等特点,需要特殊的方法进行分析和预测。
第二章介绍了金融时间序列的统计特征和描述统计方法。
通过观察和分析时间序列的均值、方差、自相关性和偏度等统计特征,可以揭示时间序列数据中存在的规律和趋势,为后续的分析提供基础。
第三章介绍了平稳时间序列的概念和检验方法。
平稳时间序列是指具有固定的均值和方差,并且其自相关性不随时间变化的时间序列。
通过检验时间序列的平稳性,可以为后续的建模和分析提供准确的结果。
第四章介绍了时间序列数据的建模方法。
包括传统的经典时间序列模型(如AR、MA、ARMA模型)和现代时间序列模型(如ARCH、GARCH、VAR模型)等。
这些模型可以根据时间序列的特点和要求来选择和应用,通过建立合适的模型,对金融时间序列进行预测和分析。
第五章介绍了金融时间序列中的异常值和波动性模型。
在金融市场中,时间序列中常常存在异常波动和极端事件,需要采用特殊的模型(如HAR模型、SV模型)来对其进行建模和分析,以更准确地预测金融市场的波动和风险。
第六章介绍了金融时间序列的预测方法和模型评估。
通过利用已有的时间序列数据,可以采用传统的统计方法(如滚动窗口法、指数平滑法)和机器学习方法(如回归模型、神经网络模型)来进行预测,然后通过模型评估来评估预测的准确性和可靠性。
第七章介绍了金融时间序列的因果关系和协整模型。
通过检验时间序列之间的因果关系和建立协整模型,可以揭示金融市场中不同资产之间的相互影响和长期平衡关系,为投资决策和风险管理提供依据。
exam12s经典教材《金融时间序列分析》Ruey S. Tsay 英文第三版2012年试题及答案高清版
Booth School of Business,University of ChicagoBusiness41202,Spring Quarter2012,Mr.Ruey S.TsaySolutions to MidtermProblem A:(34pts)Answer briefly the following questions.Each question has two points.1.Describe two improvements of the EGARCH model over the GARCHvolatility model.Answer:(1)allows for asymmetric response to past positive or negative returns,i.e.leverage effect,(2)uses log volatility to relax parameter constraint.2.Describe two methods that can be used to infer the existence of ARCHeffects in a return series,i.e.,volatility is not constant over time.Answer:(1)The sample ACF(or PACF)of the squared residuals of the mean equation,(2)use the Ljung-Box statistics on the squared residuals.3.Consider the IGARCH(1,1)volatility model:a t=σt t withσ2t =α0+β1σ2t−1+(1−β1)a2t−1.Often one pre-fixesα0=0.Why?Also,suppose thatα0=0and the1-step ahead volatility prediction at the forecast origin h is16.2%(annualized),i.e.,σh(1)=σh+1=16.2for the percentage log return.What is the10-step ahead volatility prediction?That is,what isσh(10)?Answer:(1)Fixingα0=0based on the prior knowledge that volatility is mean reverting.(2)σh(10)=16.2.4.(Questions4to8)Consider the daily log returns of Amazon stockfrom January3,2007to April27,2012.Some summary statistics of the returns are given in the attached R output.Is the expected(mean) return of the stock zero?Why?Answer:The data does not provide sufficient evidence to suggest that the mean return is not zero,because the95%confidence interval con-tains zero.5.Let k be the excess kurtosis.Test H0:k=0versus H a:k=0.Writedown the test statistic and draw the conclusion.1Answer:t-ratio =9.875√24/1340=73.79,which is highly significant com-pared with χ21distribution.6.Are there serial correlations in the log returns?Why?Answer:No,the Ljung-Box statistic Q (10)=10.69with p-value 0.38.7.Are there ARCH effects in the log return series?Why?Answer:Yes,the Ljung-Box statist of squared residuals gives Q (10)=39.24with p-value less than 0.05.8.Based on the summary statistics provided,what is the 22-step ahead point forecast of the log return at the forecast origin April 27,2012?Why?Answer:The point forecast r T (22)=0because the mean is not signif-icantly different from zero.[Give students 1point if they use sample mean.]9.Give two reasons that explain the existence of serial correlations in ob-served asset returns even if the true returns are not serially correlated.Answer:Any two of (1)bid-ask bounce,(2)nonsynchronous trading,(3)dynamic dependence of volaitlity via risk premuim.10.Give two reasons that may lead to using moving-average models inanalyzing asset returns.Answer:(1)Smoothing (or manipulation),(2)bid-ask bounce in high frequency returns.11.Describe two methods that can be used to compare different modelsfor a given time series.Answer:(1)Information criteria such as AIC or BIC,(2)backtesting or out-of-sample forecasting.12.(Questions 12to 14)Let r t be the daily log returns of Stock A.Assume that r t =0.004+a t ,where a t =σt t with t being iid N(0,1)random variates and σ2t =0.017+0.15a 2t −1.What is the unconditionalvariance of a t ?Answer:Var(a t )=0.0171−0.15=0.02.13.Suppose that the log price at t =100is 3.912.Also,at the forecastorigin t =100,we have a 100=−0.03and σ100=pute the21-step ahead forecast of the log price (not log return)and its volatility for Stock A at the forecast origin t =100.Answer:r 100(1)=0.004so that p 100(1)=3.912+0.004=3.916.Thevolatility forecast is σ2100(1)= 0.017+0.15(−0.03)2=pute the 30-step ahead forecast of the log price and its volatilityof Stock A at the forecast origin t =100.Answer:p 100(30)=3.912+0.004×30=4.032and the voaltility is the unconditional stantard error √0.02=0.141.15.Asset volatility has many applications in finance.Describe two suchapplications.Answer:Any two of (1)pricing derivative,(2)risk management,(3)asset allocation.16.Suppose the log return r t of Stock A follows the model r t =a t ,a t =σt t ,and σ2t =α0+α1a 2t −1+β1σ2t −1,where t are iid N(0,1).Under whatcondition that the kurtosis of r t is 3?That is,state the condition under which the GARCH dynamics fail to generate any additional kurtosis over that of t .Answer:α1=0.17.What is the main consequence in using a linear regression analysis whenthe serial correlations of the residuals are overlooked?Answer:The t -ratios of coefficient estimates are not reliable.Problem B .(30pts)Consider the daily log returns of Amazon stock from January 3,2007to April 27,2012.Several volatility models are fitted to the data and the relevant R output is attached.Answer the following questions.1.(2points)A volatility model,called m1in R,is entertained.Write down the fitted model,including the mean equation.Is the model adequate?Why?Answer:ARCH(1)model.r t =0.0018+a t ,a t =σt t with t being iidN(0,1)and σ2t =7.577×10−4+0.188a 2t −1.The model is inadequatebecause the normality assumption is clearly rejected.2.(3points)Another volatility model,called m2in R,is fitted to the returns.Write down the model,including all estimated parameters.3Answer:ARCH(1)model.r t=4.907×10−4+a t,a t=σt t,where t∼t∗3.56with t∗vdenoting standardized Student-t distribution with v degreesof freedom.The volatility equation isσ2t =7.463×10−4+0.203a2t−1.3.(2points)Based on thefitted model m2,test H0:ν=5versus H a:ν=5,whereνdenotes the degrees of freedom of Student-t distribution.Perform the test and draw a conclusion.Answer:t-ratio=3.562−50.366=−3.93,which compared with1.96is highlysignificant.If you compute the p-value,it is8.53×10−5.Therefore, v=5is rejected.4.(3points)A third model,called m3in R,is also entertained.Writedown the model,including the distributional parameters.Is the model adequate?Why?Answer:Another ARCH(1)model.r t=0.0012+a t,a t=σt t,where t are iid and follow a skew standardized Student-t distribution with skew parameter1.065and degrees of freedom3.591.The volatility equationisσ2t =7.418×10−4+0.208a2t−1.Ecept for the insigicant mean value,thefitted ARCH(1)model appears to be adequate based on the model checking statistics shown.5.(2points)Letξbe the skew parameter in model m3.Does the estimateofξconfirm that the distribution of the log returns is skewed?Why?Perform the test to support your answer.Answer:The t-ratio is1.065−10.039=1.67,which is smaller than1.96.Thus,the null hypothesis of symmetric innovations cannot be rejected at the 5%level.6.(3points)A fourth model,called m4in R,is alsofitted.Write downthefitted model,including the distribution of the innovations.Answer:a GARCH(1,1)model.r t=0.0017+a t,a t=σt t,where t are iid and follow a skew standardized Student-t distribution with skew parameter1.101and degrees of freedom3.71.The volatility equationisσ2t =1.066×10−5+0.0414a2t−1+0.950σ2t−1.7.(2points)Based on model m4,is the distribution of the log returnsskewed?Why?Perform a test to support your answer.Answer:The t-ratio is1.101−10.043=2.349,which is greater than1.96.Thus,the distribution is skew at the5%level.48.(2points)Among models m1,m2,m3,m4,which model is preferred?State the criterion used in your choice.Answer:Model4is preferred as it has a smaller AIC value.9.(2points)Since the estimatesˆα1+ˆβ1is very close to1,we consideran IGARCH(1,1)model.Write down thefitted IGARCH(1,1)model, called m5.Answer:r t=a t,a t=σt t,whereσ2t =3.859×10−5+0.85σ2t−1+0.15a2t−1.10.(2points)Use the IGARCH(1,1)model and the information providedto obtain1-step and2-step ahead predictions for the volatility of the log returns at the forecast origin t=1340.Answer:From the outputσ21340(1)=σ21341=3.859×10−5+0.85×(0.02108)2+0.15(.146)2=0.00361.Therefore,σ21340(2)=3.859×10−5+σ2 1340(1)=0.00365.The volatility forecasts are then0.0601and0.0604,respectively.11.(2points)A GARCH-M model is entertained for the percentage logreturns,called m6in the R output.Based on thefitted model,is the risk premium statistical significant?Why?Answer:The risk premium parameter is−0.112with t-ratio−0.560, which is less than1.96in modulus.Thus,the risk premium is not statistical significant at the5%level.12.(3points)Finally,a GJR-type model is entertained,called m7.Writedown thefitted model,including all parameters.Answer:This is an APARCH model.The model is r t=0.0014+a t,a t=σt t,where t are iid and follow a skew standardized Student-tdistribution with skew parameter1.098and degrees of freedom3.846.The volatility equation isσ2 t =7.583×10−6+0.0362(|a t−1|−0.478a t−1)2+0.953σ2t−1.13.(2points)Based on thefitted GJR-type of model,is the leverage effectsignificant?Why?Answer:Yes,the leverage parameterγ1is signfiicantly different from zero so that there is leverage effect in the log returns.5Problem C.(14pts)Consider the quarterly earnings per share of Abbott Laboratories(ABT)stock from1984.III to2011.III for110observations.We analyzed the logarithms of the earnings.That is,x t=ln(y t),where y t is the quarterly earnings per share.Two models are entertained.1.(3points)Write down the model m1in R,including residual variance.Answer:Let r t be the log earnings per share.Thefitted model is=0.00161.(1−B)(1−B4)r t=(1−0.565B)(1−0.183B4)a t,σ2a2.(2points)Is the model adequate?Why?Answer:No,the Ljung-Box statistics of the residuals give Q(12)=25.76with p-value0.012.3.(3points)Write down thefitted model m2in R,including residualvariance.Answer:Thefitted model is=0.00144.(1−B)(1−B4)r t=(1−0.470B−0.312B3)a t,σ2a4.(2points)Model checking of thefitted model m2is given in Figure1.Is the model adequate?Why?Answer:Yes,the model checking statistics look reasonable.5.(2points)Compare the twofitted model models.Which model ispreferred?Why?Answer:Model2is preferred.It passes model checking and has a smaller AIC value.6.(2points)Compute95%interval forecasts of1-step and2-step aheadlog-earnings at the forecast origin t=110.Answer:1-step ahead prediction:0.375±1.96×0.038,and2-step ahead prediction:0.0188±1.96×0.043.(Some students may use2-step ahead prediction due to the forecast origin confusion.)Problem D.(22pts)Consider the growth rate of the U.S.weekly regular gasoline price from January06,1997to September27,2010.Here growth rate is obtained by differencing the log gasoline price and denoted by gt in R output.The growth rate of weekly crude oil from January03,1997to September24,2010is also obtained and is denoted by pt in R output.Note that the crude oil price was known3days prior to the gasoline price.61.(2points)First,a pure time series model is entertained for the gasolineseries.An AR(5)model is selected.Why?Also,is the mean of the gtseries significantly different from zero?Why?Answer:An AR(5)is selected via the AIC criterion.The mean of g tis not significantly different from zero based on the one-sample t-test.The p-value is0.19.2.(2points)Write down thefitted AR(5)model,called m2,includingresidual variance.Answer:Thefitted model is=0.000326.(1−0.507B−0.079B2−0.136B3+0.036B4+0.086B5)g t=a t,σ2a3.(2points)Since not all estimates of model m2are statistically signifi-cant,we refine the model.Write down the refined model,called m3.Answer:Thefitted model is=0.000327.(1−0.504B−0.074B2−0.122B3+0.101B5)g t=a t,σ2a4.(2points)Is the refined AR(5)model adequate?Why?Answer:Yes,the Ljung-Box statistics of the residuals give Q(14)=10.27with p-value0.74,indicating that there are no serial correlationsin the residuals.5.(2points)Does the gasoline price show certain business-cycle behavior?Why?Answer:Yes,thefitted AR(5)polynomial contains compplex solutions.6.(3points)Next,consider using the information of crude oil price.Writedown the linear regression model,called m4,including R2and residualstandard error.Answer:Thefitted linear regression model isg t=0.287p t+ t,σ =0.0184,and the R2of the regression is33.66%.7.(2points)Is thefitted linear regression model adequate?Why?Answer:No,because the residuals t are serially correlated based onthe Ljung-Box test.78.(3points)A linear regression model with time series errors is enter-tained and insignificant parameters removed.Write down thefinalmodel,including allfitted parameters.Answer:The model is(1−0.404B−0.164B2−0.096B3+0.101B5)(g t−0.191p t)=a t,σ2=0.000253.a9.(2points)Model checking shows that thefittedfinal model has noresidual serial correlations.Based on the model,is crude oil pricehelpful in predicting the gasoline price?Why?Answer:Yes,because thefitted coefficient of p t is signficantly differentfrom zero.10.(2points)Compare the pure time series model and the regression modelwith time-series errors.Which model is preferred?Why?Answer:The regression model with time series error is preferred as ithas a smaller AIC criterion.8。
时间序列预测模型的书籍案例
时间序列预测模型的书籍案例时间序列预测模型是一种用于分析和预测时间序列数据的统计模型。
它基于时间序列的历史数据,通过建立数学模型来预测未来的趋势和变化。
时间序列预测模型在许多领域都有广泛的应用,如经济学、金融学、气象学等。
下面是一些关于时间序列预测模型的书籍案例,它们涵盖了不同的领域和方法:1. 《时间序列分析》(Time Series Analysis)- George E.P. Box, Gwilym M. Jenkins和Gregory C. Reinsel这本经典著作是时间序列分析领域的权威之作,介绍了时间序列模型的理论基础和实践应用。
它对传统的ARIMA模型和季节性时间序列模型进行了详细的讲解。
2. 《时间序列分析与预测》(Time Series Analysis and Forecasting)- Example Smith, Navdeep Gill和Walter Liggett 这本教材介绍了时间序列分析和预测的基本原理和方法。
它包括了ARIMA、ARCH/GARCH等常用模型,并提供了实际案例和R语言代码。
3. 《金融时间序列分析与预测》(Financial Time Series Analysis and Forecasting)- Ruey S. Tsay这本书重点介绍了在金融领域中应用时间序列分析和预测的方法。
它包括了ARCH/GARCH模型、VAR模型、协整模型等,并通过实际金融数据进行案例分析。
4. 《商业预测:原理与实践》(Business Forecasting: Principles and Practice)- Rob J. Hyndman和George Athanasopoulos这本书是一本实用的商业预测教材,介绍了时间序列预测的基本原理和常用方法。
它使用R语言进行案例分析,并提供了实际业务中的预测应用示例。
5. 《Python时间序列分析》(Python for Time Series Analysis)- Alan Elliott和Wayne A. Woodward这本书介绍了使用Python进行时间序列分析的方法和工具。
2020版金融计量学:时间序列分析视角(第三版)教学课件第12章第1节
(12.21)
如果能验证c 0, 1 1 ,并且 t 为平
稳时间序列,则问题得到验证。
可以看出,这是一个典型的长期均
衡问题,即协整关系问题。根据设计,
我们构造了序列 ft next ptUK ,构造出来 的变量图示描绘在图12-6中。
图12-6英国物价的
美元价值nex变量时序图
0.75 nex
对于n个非平稳序列的误差修正
模型,可以直观地进行拓展。如果将n
个变量写成矩阵的形式,即:
X t (x1t x2t
xnt ) (12.13)
类似地,将涉及的扰动项和系数
等均表示成矩阵的形式,那么,向量
形式的误差修正模型可以写成:
Xt C0 et1 (L)Xt1 (t 12.14)
12.2 Engle-Granger 协整分析方法
yt 1.5 yt1 ut , ut NID(0,1) xt 1.2 xt1 vt , vt NID(0,1) (12.2) 其中:ut NID(0,1) 表示服从正态一致性分 布、均值为0、方差为1的随机扰动项。
图12-1模型(12.2)随机生
成的带截距项的随机游走过 程
350
300
表12-8 模型(12.21)对应 的残差项单位根检验结果
12.3 向量ADF模型与协整分析
12.3.1 向量形式的ADF模型
对于向量形式的自回归模型,即 VAR(p)模型:
(L)Yt C t (12.25)
对于多个非平稳时间序列,有一种 特殊的情况,就是由这几个非平稳时间 序列变量的线性组合形成的变量,是平 稳的序列。在这种情况下,我们说这些 非平稳时间序列存在协整关系。
假定我们研究两个时间序列变量,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ARMA模型的理论介绍
一:ARMA模型的概述
3、如何确定ARMA(p,q)中的p和q?
ARMA模型的理论介绍
2、时间序列方法
一:ARMA模型的概述
上述方法中存在外部影响因素数据不可获得的特点,时间序列方法则规避了此类缺点。 时间序列法,通过时间序列的历史数据,得出关于过去行为的有关结论,进而对时间序列 未来进行判断。 时间序列方法有很多,如传统时间序列方法(时间序列分解、指数平滑等)、随机时间序 列(ARMA/AR/MA等)、其他方法(ARCH、动态时间序列法等)
称为q阶移动平均过程MA(q) t 为白噪声, q 为移动平均系数 移动平均过程是无条件平稳的(有严格的数学证明)
ARMA模型的理论介绍
一:ARMA模型的概述
2、自回归过程AR(p)模型
一般地,Xt 满足 X t 1 X t1 2 X t2 p X t p t
称为p阶移动平均过程AR(p) 如果 t = t ,为白噪声, p 为自回归系数
ARMA模型的理论介绍
一:ARMA模型的概述
1、ARMA模型有何价值?
时间序列分析即寻找时间序列{ Xt }的规律,对于给定的时间序列{ Xt },有2种方法对 其进行解释或预测:
1、外部影响因素法
利用外部影响因素的时间序列与本时间序列的关系进行解释或预测,典型的方法如回归模 型。例如,预测零配件的月销售量,可以利用汽车月度产量等外部影响建立回归方程,进 行预测。 缺点:上述因素的数据必须具有可获得性,但是影响因素的数据并不是总是可获得,如政 策、消费者偏好等因素就难以获得,这时就不适合采用外部影响因素法。
Cov(Xt ,Xt k一(平稳)
Xt 满足如下条件
E(Xt ) 0 Var(Xt ) 2 Cov(Xt ,Xt k ) 0
Xt t
t ~ N(0, 2 )
t 称为白噪声
ARMA模型的理论介绍
一:ARMA模型的概述
例二(非平稳)
Xt 满足如下条件 X t X t1 t
X1 X0 1 X2 X1 2 X0 1 2 Xt X0 1 2 t
Xt 称为随机游走序列
Var(Xt ) t 2
X t X t X t1 t Xt 作差分后平稳
ARMA模型的理论介绍
一:ARMA模型的概述
2、滞后算子
滞后算子公式:Ln xt = xt- n
3、自相关函数
对于 Xt 有
金融时间序列分析
第五讲:单变量时间序列模型
内容结构 1 ARMA模型的理论介绍 2 ARMA模型的实证分析 3 问题与小结
ARMA模型的理论介绍
一:ARMA模型的概述
六大问题
1、ARMA模型有何价值? 2、什么是ARMA模型? 3、如何确定ARMA(p,q)中的p和q? 4、如何估计ARMA(p,q)中的参数? 5、如何检验ARMA模型? 6、如何利用ARMA模型进行预测?
ARMA模型的理论介绍
一:ARMA模型的概述
3、自回归移动平均过程ARMA(p,q)模型
与AR(p)相似, Xt 满足
X t 1 X t1 2 X t2 p X t p t
1
如果 t 是一个白噪声,t 满足:
t t 1 t 1 q t q
2
由1式和2式得:
X t 1X t1 p X t p t 1t1 qtq
移动自回归过程平稳的条件 滞后算子: LX t X t1 L2 X t X t2 Lp X t X t p 滞后算子表达式: (1 1L 2 L2 p Lp ) X t t 特征方程:(z) (1 1z 2 z 2 p z p ) = 0 结论:特征方程的所有根在单位圆外(根的模大于1), 则AR(p)模型是平稳的
V ar(xt ) Var(xt k )
k 2
=
k 0
其中,k=0时,0 =1
4、偏自相关函数
自相关函数ACF(k)给出了 Xt 与 Xt 的总体相关性,但总体相关性可能 掩盖了变量间完全不同的隐含关系,例如 X t 与 X t2 间有相关性可 能主要是由于它们各自与 Xt1 间的相关性带来的,这时需要用PACF (k)进行判断
其中 t 为白噪声,此模型是上述2个模型的混合,因此称 为ARMA(p,q)模型
ARMA模型的理论介绍
一:ARMA模型的概述
当 p=0 时,ARMA(0, q) = MA(q)
当q = 0时,ARMA(p, 0) = AR(p)
ARMA(p,q)模型包括了一个AR(P)模型和一个MA(q) 模型,因为MA(q)模型永久平稳,因此检验ARMA(p,q) 模型平稳性时,只需检验AR(p)模型的平稳性 结论: ARMA模型的平稳性完全取决于自回归模型的参 数(1 , 2 ,…, p ),而与移动平均模型参数 (1 ,2 ,…, q )无关 常用的两种平稳性检验方法: 1、相关图法。随着k的增加,样本自相关函数下降且趋于零。 但从下降速度来看,平稳序列要比非平稳序列快得多 2、单位根检验。DF/ADF等
2、什么是ARMA模型?
一些知识点的介绍 1、时间序列的平稳性(任何时间序列分析都必须满足的前提)
即进行时间序列分析前,必须判断其是否平稳,否则,时间序列分析中的t、F等检验都 是不可信的。
ARMA模型的理论介绍
一:ARMA模型的概述
E(Xt ) Xt 满足如下条件: Var(Xt ) 2
E(Xt ) Var(Xt ) 2
自协方差函 数定义
k = Cov (Xt, X t - k ) = E[(Xt - ) (Xt - k - ) ] 其中,k=0时,0 =Var(Xt )= 2
ARMA模型的理论介绍
一:ARMA模型的概述
自相关函数 定义
k =
Cov(xt ,xt k ) =
Xt 与 Xtk 间的偏自相关函数(partial autocorrelation,PACF)则 是消除了中间变量 Xt1 ,…, X tk1 带来的间接相关后的直接相关性
ARMA模型的理论介绍
一:ARMA模型的概述
ARMA模型的介绍 1、移动平均MA(q)模型
一般地,t 满足
t t 1 t 1 q t q