人教版七年级数学暑假作业初一数学 直线、射线、线段练习题 含答案.doc
初一数学直线、射线、线段练习题
初一数学直线、射线、线段中考要求例题精讲直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴ 也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)lAB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:模块一直线、射线、线段的概念【例1】下列说法正确的是()A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB与射线BA是同一条射线D. 过两点P Q、可画出两条射线【巩固】下列说法中正确的是()A. 直线的一半是射线B. 延长线段AB至C,使BC AB=C. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【例2】下列语句准确规范的是( )A. 直线a b、相交于一点mB. 延长直线ABC. 反向延长射线AO(O是端点)D. 延长线段AB到C,使BC AB=【巩固】下面说法中错误的是( )A. 直线AB和直线BA是同一条直线B. 射线AB和射线BA是同一条射线C. 线段AB和线段BA是同一条线段D. 把线段AB向两端无限延伸便得到直线BA【巩固】下列叙述正确的是()A.孙悟空在天上画一条十万八千里的直线B.笔直的公路是一条直线C.点A一定在直线A B上D.过点A、B可以画两条不同的直线,分别为直线A B和直线B A 【例3】根据直线、射线、线段各自的性质,如下图,能够相交的是()D.C.B.B AA.【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是( )C.B.A.【巩固】下列叙述正确的是( )A .可以画一条长5cm 的直线B .一根拉紧的线是一条直线C .直线AB 经过C 点D .直线AB 与直线BA 是不同的直线【例4】 如图所示根据要求作图:⑴连结AB ;⑵作射线AC ;⑶作直线BC .ABC模块二 直线公理公理:两点确定一条直线【例5】 如图,图中共有 条线段.EDFCA【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线?模块三 线段的相关计算【例6】 如图所示,M 是线段A B 的中点,则1______2A M =,2_____2_____A B ==. A BM【巩固】判断:若3c m A BB C ==,则说明B 是A C 的中点.【巩固】判断:已知A ,B ,C 三点在同一条直线上,12AC AB =,那么C 是A B 的中点.【例7】 如图,已知线段AB 上依次有三个点C D E ,,把线段AB 分成2:3:4:5四个部分,56AB =,求BD 的长度.【巩固】已知14cm AD =,B C ,是AD 上顺次两点,且::2:3:2AB BC CD =,E 为AB 的中点,F 为CD的中点,求EF 的长.E【例8】 如图,已知线段A B 上依次有三个点,,C D E 把线段A B 分成2:3:4:5四个部分,,,,M P Q N 分别是,,,A C C D D E E B的中点,若21,M N =求P Q 的长度. EQDPA【巩固】摄影组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中 午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A B ,两市相距多少千米?模块四 两点之间线段最短【例9】 从家到学校共有条路可以走,如图所示,若想走最近的路,应选择 (填序号).这是根据 .学校家【例10】 如图,已知A B ,在直线的两侧,在l 上求一点P ,使PA PB +最小;B l图1【巩固】如图,有一个正方体的盒子1111ABCD A B C D -,在盒子内的顶点A 处有一只蜘蛛,而在对角的顶点1C 处有一只苍蝇。
人教版数学七年级上册4.2直线 射线 线段测试带答案解析
4.2直线、射线、线段小测验007(满分60)姓名:分数:一、客观题(每题3分,共33分)1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画直线.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有个交点,最少有个交点.6.平面上有任意三点,过其中两点画直线,共可以画条直线.7.如图1,图中共有条线段,它们是.如图2,图中共有条射线,指出其中的两条.8.要在墙上固定一根木条,至少要个钉子,根据的原理是.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.二、解答题(共27分)12.(8分)点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.13.(9分)(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.14.(10分)如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.参考答案与试题解析1.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.【解答】解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.【点评】本题考查的是两点间的距离,熟知中点的特点是解答此题的关键.2.如图,用圆规比较两条线段AB和A′B′的长短,其中正确的是()A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.3.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有()A.8种B.9种C.10种D.11种【分析】根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.【解答】解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有==10种,故选:C.【点评】此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.4.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画1条或4条或6条直线.【分析】分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:①四点在同一直线上时,只可画1条;②当三点在同一直线上,另一点不在这条直线上,可画4条;③当没有三点共线时,可画6条;故答案为:1条或4条或6条.【点评】本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.5.平面上有五条直线相交(没有互相平行的),则这五条直线最多有10个交点,最少有1个交点.【分析】直线交点最多时,根据公式,把直线条数代入公式求解即可,直线相交于同一个点时最少,是1个交点.【解答】解:最多时=10,相交于同一个点时最少,有1个交点.【点评】中学阶段记住公式在解题时会很方便,熟记公式是解题的关键.6.平面上有任意三点,过其中两点画直线,共可以画1或3条直线.【分析】先画图,由图可直接解答.【解答】解:如图所示:三点在一条直线上时可画一条,不在一条直线上时可画三条.【点评】本题考查了过平面上两点有且只有一条直线,体现了数形结合的思想.7.如图1,图中共有3条线段,它们是线段AC、线段AB、线段BC.如图2,图中共有4条射线,指出其中的两条射线AB、射线BA.【分析】直线上有三个点,过其中任意两个可以作为线段的端点作一条线段,即可以得出有三条;直线上有两点,过每一个点都可以得到两条射线,即过两个点可以找到4条射线.【解答】解:(1)根据线段的定义,可以找到3条,分别为:线段AC、线段AB、线段BC.(2)射线有一个端点,在直线上过每个点都可以得到2条射线,即如图所示,过两个点可以找到4条,其中包括:射线AB和射线BA.故图中共有4条射线,指出两条为:射线AB、射线BA.【点评】本题考查了线段和射线的性质,结合图形可以很明白的得出结论,注意数形结合的思想.8.要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.【分析】根据两点确定一条直线解答.【解答】解:要在墙上固定一根木条,至少要两个钉子,根据的原理是两点确定一条直线.故答案为:两;两点确定一条直线.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.9.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是两点之间线段最短.【分析】根据两点之间线段最短解答.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释应是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,熟记两点之间线段最短是解题的关键.10.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是8cm或2cm.【分析】分点B在线段AC上和点C在线段AB上两种情况,计算即可.【解答】解:当点B在线段AC上时,AC=AB+BC=8cm,当点C在线段AB上时,AC=AB﹣BC=2cm,故答案为:8cm或2cm.【点评】本题考查的是两点间的距离的计算,灵活运用分情况讨论思想是解题的关键.11.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有5个.【分析】点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,所以出现报警的次数最多六次.【解答】解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.【点评】本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.12.点O是线段AB的中点,OB=14cm,点P将线段AB分为两部分,AP:PB=5:2.①求线段OP的长.②点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;②分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【解答】解:①∵点O是线段AB的中点,OB=14cm,∴AB=2OB=28cm,∵AP:PB=5:2.∴BP=cm,∴OP=OB﹣BP=14﹣8=6(cm);②如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点评】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.13.(1)如图1,在直线AB上,点P在A、B两点之间,点M为线段PB的中点,点N为线段AP的中点,若AB=n,且使关于x的方程(n﹣4)x=6﹣n无解.①求线段AB的长;②线段MN的长与点P在线段AB上的位置有关吗?请说明理由;(2)如图2,点C为线段AB的中点,点P在线段CB的延长线上,试说明的值不变.【分析】(1)①直接根据关于x的方程(n﹣4)x=6﹣n无解求出m的值即可;②根据题意画出图形,分别用BP,AP表示出PM与PN的值,进而可得出结论;(2)根据题意画出图形,由各线段之间的关系可得出结论.【解答】解:(1)①方程(n﹣4)x=6﹣n,∵关于x的方程(n﹣4)x=6﹣n无解,∴n﹣4=0,即n=4,∴线段AB的长为4;②如图1,∵点M为线段PB的中点,点N为线段AP的中点,AB=n,∴PM=BP,PN=AP,∴MN=MP+NP=AB=n;∴线段MN的长与点P在线段AB上的位置无关;(2)如图2,∵点C为线段AB的中点,∴AC=AB,∴P A+PB=PC﹣AC+PC+BC=2PC,∴=2,∴的值不变.【点评】本题考查的是两点间的距离,根据题意画出图形,利用数形结合求解是解答此题的关键.14.如图,B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动1次,C是线段BD的中点,AD=15cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,求线段AB和CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变.求出EC的长;若发生变化,请说明理由.【分析】(1)①根据AB=2t即可得出结论;②先求出BD的长,再根据C是线段BD的中点即可得出CD的长;(2)分类讨论;(3)直接根据中点公式即可得出结论.【解答】解:(1)①∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当t=2时,AB=2×3=6cm;②∵AD=15cm,AB=6cm,∴BD=15﹣6=9cm,∵C是线段BD的中点,∴CD=BD=×9=4.5cm;(2)∵B是线段AD上一动点,沿A→D→A以3cm/s的速度往返运动,∴当0≤t≤5时,AB=3t;当5<t≤10时,AB=15﹣(3t﹣15)=30﹣3t;(3)不变.∵AB中点为E,C是线段BD的中点,∴EC=(AB+BD)=AD=×15=7.5cm.【点评】本题考查了两点间的距离,根据已知得出各线段之间的等量关系是解题关键.。
人教版数学七年级上册:4.2 直线、射线、线段 同步练习(附答案)
4.2直线、射线、线段第1课时直线、射线、线段1.可近似看作直线的是()A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列对于如图所示直线的表示,其中正确的是()①直线A;②直线b;③直线AB;④直线Ab;⑤直线Bb.A.①③B.②③C.③④D.②⑤3.下列说法中,正确的是()A.点A在直线M上B.直线AB,CD相交于点MC.直线ab,cd相交于点MD.延长直线AB4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明;用两个钉子把细木条钉在木板上,就能固定细木条,这说明 .5.如图,完成下列填空:(1)直线a经过点,但不经过点;(2)点B在直线上,在直线外;(3)点A既在直线上,又在直线上.6.生活中我们看到手电筒的光线类似于()A.点B.直线C.线段D.射线7.如图所示,A,B,C是同一直线上的三点,下面说法正确的是()A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线8.如图,能用O,A,B,C中的两个字母表示的不同射线有条.9.如图,在直线l上有A,B,C三点,则图中线段共有()A.1条B.2条C.3条D.4条10.如图所示,下列表述正确的是()A.射线ABB.延长线段ABC.延长线段BAD.反向延长线段BA11.经过任意三点中的两点共可以画出()A.一条直线B.一条或三条直线C.两条直线D.三条直线12.如图,对于直线AB,线段CD,射线EF,其中能相交的是()13.下列关于作图的语句中,正确的是()A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm14.直线a上有5个不同的点A,B,C,D,E,则该直线上共有条线段.15.已知平面上四点A,B,C,D,如图:(1)画直线AB,射线CD;(2)直线AB与射线CD相交于点E;(3)画射线AD,连接BC;(4)连接AC,BD相交于点F.16.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的部分的数是什么图形?怎样表示?17.往返于甲、乙两地的客车,中途有三个站.其中每两站的票价不同.问:(1)要有多少种不同的票价?(2)要准备多少种车票?18.如图:(1)试验观察:如果每过两点可以画一条直线,那么:第①组最多可以画条直线;第②组最多可以画条直线;第③组最多可以画条直线;(2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画条直线;(用含n的代数式表示)(3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握次手.第2课时比较线段的长短1.尺规作图的工具是()A.刻度尺和圆规B.三角板和量角器C.直尺和量角器D.没有刻度的直尺和圆规2.作图:已知线段a,b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)3.为了比较线段AB,CD的大小,小明将点A与点C重合使两条线段在一条直线上,结果点B在CD的延长线上,则()A.AB<CDB.AB>CDC.AB=CDD.无法确定4.已知线段AB和点P,如果PA+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上5.如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC的长是( )A.2 cmB.3 cmC.4 cmD.6 cm 6.如图所示,则:(1)AC =BC + ; (2)CD =AD - ; (3)CD = -BC ; (4)AB +BC = -CD.7.在直线上顺次取A ,B ,C 三点,使得AB =5 cm ,BC =3 cm.如果O 是线段AC 的中点,那么线段OC 的长度是 .8.如图,AB =2,AC =5,延长BC 到D ,使BD =3BC ,则AD 的长为 .9.如图,已知O 是线段AB 的中点,C 是AB 的三等分点,AB =12 cm ,则OC = cm.10.如图,已知线段AB ,反向延长AB 到点C ,使AC =12AB ,D 是AC 的中点,若CD =2,求AB的长.11.已知A,B,C是直线MN上的点,若AC=8 cm,BC=6 cm,点D是AC的中点,则BD的长等于 .12.已知线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC 的长为()A.4 cmB.5 cmC.6 cmD.2 cm13.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于()A.3B.2C.3或5D.2或614.已知线段AB=10 cm,点C是直线AB上一点,BC=4 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.7 cmB.3 cmC.7 cm或3 cmD.5 cm15.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE DE.(填“>”“<”或“=”)16.如图,已知线段a,b,c,用圆规和直尺画线段,使它等于2a+b-c.17.如图所示,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB 的长度.18.线段AB上有两点P,Q,点P将AB分成两部分,AP∶PB=2∶3;点Q将AB也分成两部分,AQ∶QB=4∶1,且PQ=3 cm.求AP,QB的长.19.已知:如图,点C在线段AB上,且AC=6 cm,BC=14 cm,点M,N分别是AC,BC 的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=a cm,BC=b cm,其他条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.第3课时关于线段的基本事实及两点的距离1.如图,为抄近路践踏草坪是一种不文明的现象.请你用数学知识解释出现这一现象的原因: .2.如图,我们可以把弯曲的河道改直,这样做的数学依据是 .改直后A,B两地间的河道长度会 .(填“变短”“变长”或“不变”),其原因是 .3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.4.下列说法正确的是()A.连接两点的直线的长度叫做这两点的距离B.画出A,B两点间的距离C.连接点A与点B的线段,叫A,B两点间的距离D.两点之间的距离是一个数,不是指线段本身5.若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为()A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-26.如图,线段AB=8 cm,延长AB到C,若线段BC的长是AB长的一半,则A,C两点的距离为()A.4 cmB.6 cmC.8 cmD.12 cm7.若A,O,B三点在同一条直线上,OA=3,OB=5,则A,B两点的距离为()A.2B.8C.3D.8或28.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B9.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.10.如图,一只壁虎要从圆柱体A点沿着表面爬到B点,因为B点处有它想吃的一只蚊子,而它饿得快不行了,怎样爬行路线最短?参考答案:4.2直线、射线、线段第1课时直线、射线、线段1.D2.B3.B4. 经过一点可以画无数条直线;明两点确定一条直线.5.(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线b上,在直线a外;(3)点A既在直线a上,又在直线b上.6.D7.C8. 有7条.9.C10.C11.B12.B13.D14. 10.15.解:如图所示.16.解:(1)是一条射线,表示为射线OB. (2)负数和零(非正数). (3)线段,线段AB.17.解:根据线段的定义:可知图中线段有AC ,AD ,AE ,AB ,CD ,CE ,CB ,DE ,DB ,EB ,共10条.(1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票.18.(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n(n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的代数式表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时比较线段的长短1.D2.解:如图,AC即为所求线段.3.B4.B5.A6.(1)AC=BC+AB;(2)CD=AD-AC;(3)CD=BD-BC;(4)AB+BC=AD-CD.7.4__cm.8.11.9.210.解:因为D是AC的中点,所以AC=2CD.因为CD=2,所以AC=4.因为AC =12AB ,所以AB =2AC. 所以AB =2×4=8. 11.10__cm 或2__cm. 12. C 13.D 14.D 15.=16.解:(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ; (3)在线段AD 上截取DE =c.线段AE 即为所求.17.解:因为C ,D 为线段AB 的三等分点, 所以AC =CD =DB. 又因为点E 为AC 的中点, 所以AE =EC =12AC.所以CD +EC =DB +AE. 因为ED =EC +CD =9, 所以DB +AE =EC +CD =ED =9. 所以AB =2ED =18.18.解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.19.解:(1)因为AC =6 cm ,BC =14 cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =3 cm ,CN =7 cm. 所以MN =MC +CN =10 cm. (2)MN =12(a +b)cm.理由:因为AC =a cm ,BC =b cm ,点M ,N 分别是AC ,BC 的中点, 所以MC =12a cm ,CN =12b cm.所以MN =MC +CN =12(a +b)cm.第3课时 关于线段的基本事实及两点的距离1.两点之间,线段最短.2.两点确定一条直线. 变短. 两点之间,线段最短.3.解:点P的位置如图所示.作法:连接AB交l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.4.D5.B6.D7.D8.B9.解:连接AC,BD,AC与BD的交点即为P点的位置,图略.10.解:将圆柱体的侧面展开,如图所示,连接AB,则线段AB是壁虎爬行的最短路线.。
人教版七年级上册数学:4.2《直线、射线、线段》测试题(含答案)
线段、射线、直线测试一、细心填一填:(本题共 5 小题,每小题 5 分,共 25 分,把答案填在题中的横线上)1.线段有个端点 , 射线有个端点 , 直线端点 .2.平面上有 A、B、C 三点 , 过其中的每两点画直线 , 最多可以画条线段 , 最少可以画条直线 .3.在直线 L 上取三点 A、B、C, 共可得条射线 ,条线段 .4.要把木条固定在墙上至少需要钉颗钉子 , 根据是.5.如图 , 用两种方法表示图中的直线.A BPb a二、认真选一选:(本题共 3 小题,每小题 5 分,共 15 分,每小题都给出代号为A、 B、 C、 D 的四个结论,其中只有一个结论正确,请将正确结论的代号填在题后的括号内 . )6.手电筒射出去的光线 , 给我们的形象是 ( )A. 直线B.射线C.线段D.折线7.下列说法正确的是 ( )A. 画射线 OA=3cm;B.线段AB和线段BA不是同一条线段C. 点 A 和直线 L 的位置关系有两种 ;D.三条直线相交有3个交点8.图中给出的直线、射线、线段 , 根据各自的性质 , 能相交的是 ( )AB C DAD三、作图题 :( 每小题 12 分, 共 24 分)CB9.已知平面上四点 A、B、C、D,如图 :(1)画直线 AB;(2)画射线 AD;(3)直线 AB、CD相交于 E;(4)连结 AC、BC相交于点 F.10.过平面上四点中任意两点作直线 , 甲说有一条 , 乙说有四条 , 丙说有六条 , 丁说他们说的都不对 , 应该是一条或四条 , 或六条 , 谁说的对 ?请画图来说明你的看法 .四、创新题 :(12 分)11、请你研究 :(1)平面上有 1 条直线把平面分成几部分 ? (2) 平面上有 2 条直线把平面分成几部分 ?五、走近中考题 : ( 每小题 12 分, 共 24 分)12.(20XX 鄂州市 ) 平面上有四个点 , 过其中每两点画直线 , 可以画多少条 ?13.(20XX 荆门市 ) 观察图中的图形 , 并阅读图形下面的相关文字:两条直线相交 ,三条直线相交 ,四条直线相交 ,最多有 1个交点 .最多有 3个交点 .最多有 6个交点 .像这样 ,10 条直线相交 , 最多交点的个数是 ( )A.40个B.45个C.50个D.55个参考答案:一、 1.2;1; 无 2.3;1 3.6;3 4.2 5.二、 6.B 7.C 8.D 直线AP或直线a、直线BP或直线b三、 9. 解 : 如图点拔 : 注意直线、射线、线段的不同画法,(4) 应画成线段 .A DFBCE10.解: 丁的说法对 .(1)当四点共线时 , 可画 1 条 , 如图 (1);(2)当四点中有三点共线时 , 可画 4 条 , 如图 (2);(3)当四点中任意三点不共线时 , 可画 6 条, 如图 (3);A A DABCD B C D B C(1)(2)(3)四、 11.(1)平面上 1 条直线把平面分成 2 部分.(2)平面上 2 条直线把平面分成 3 部分或 4 部分 .五、 12. 解: 分类讨论 : ①当四点共线时 , 可以画一条 . ②当四点中有三点共线时, 可以画四条 . ③当四点中任意三点不共线时 , 可以画六条 .13、B.1+2+3+4++9=45.。
人教版七年级上册数学 4.2直线、射线、线段 同步习题(含解析)
4.2直线、射线、线段同步习题一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.图中共有线段()A.4条B.6条C.8条D.10条4.已知线段AB=12cm,点C是直线AB上一点,BC=4cm,若点P是线段AB的中点,则线段PC的长度是()A.2cm B.2cm或10cm C.10cm D.2cm或8cm 5.已知点A,B,C在同一条直线上,若线段AB=5,BC=3,AC=2,则下列判断正确的是()A.点A在线段BC上B.点B在线段AC上C.点C在线段AB上D.点A在线段CB的延长线上6.如图,已知线段AB=12cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.2cm B.3cm C.4cm D.5cm7.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 8.在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cm B.8cm C.5cm或8cm D.5cm或11cm 9.如图,将线段AB延长至点C,使BC=AB,D为线段AC的中点,若BD=2,则线段AB的长为()A.4B.6C.8D.1210.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.31二.填空题11.两地之间弯曲的道路改直,可以缩短路程,其根据的数学道理是.12.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.13.已知,如图,在直线l的两侧有两点A,B.在直线上画出点P,使P A+PB最短..14.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.15.如图,点B在线段AC上,AB=4,BC=2,点M为线段AB中点,点N为线段BC中点,则线段MN的长度为.三.解答题16.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.17.如图,点C在线段AB上,线段AB=15cm,点M,N分别是AC,BC的中点,CN=3cm,求线段MC的长度.18.如图,已知线段AB=10cm,CD=2cm,点E是AC的中点,点F是BD的中点.(1)若AC=3cm,求线段EF的长度.(2)当线段CD在线段AB上从左向右或从右向左运动时,试判断线段EF的长度是否发生变化,如果不变,请求出线段EF的长度;如果变化,请说明理由.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.4.解:∵线段AB=12cm,点P是线段AB的中点,∴BP=AB=6(cm),如图1,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm),如图2,线段BC在线段AB上时,PC=BP﹣BC=6﹣4=2(cm),综上所述,线段PC的长度是10或2cm.故选:B.5.解:如图,∵点A,B,C在同一条直线上,线段AB=5,BC=3,AC=2,∴点A在线段BC的延长线上,故A错误;点B在线段AC延长线上,故B错误;点C在线段AB上,故C正确;点A在线段CB的反向延长线上,故D错误;故选:C.6.解:∵AB=12cm,M是AB中点,∴BM=AB=6cm,又∵NB=2cm,∴MN=BM﹣BN=6﹣2=4(cm).故选:C.7.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.8.解:当点C在线段AB上时,BC=AB﹣AC=8﹣3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.故选:D.9.解:∵BC=AB,∴BC=AC;∵D为线段AC的中点,∴CD=AC,∴BD=AC,∵BD=2,∴AC=2×6=12,∴AB=AD+BD=AC+BD=×12+2=8.故选:C.10.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.11.解:将弯曲的公路改直,可以缩短路程,这是根据两点之间,线段最短.故答案为:两点之间,线段最短.12.解:∵M是AB的中点,AB=8cm,∴AM=BM=4cm,∵N为PB的中点,NB=1.5cm,∴PB=2NB=3cm,∴MP=BM﹣PB=4﹣3=1cm.故答案为1.13.解:如图所示:连结AB交l于P点.故答案为:连结AB交l于P点.14.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.15.解:∵点M为线段AB中点,∴BM=AB,∵点N为线段BC中点,∴BN=BC,∵AB=4,BC=2,∴MN=MB+BN=AB+BC=2+1=3,故答案为3.16.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.17.解:∵CN=3cm,点N是BC的中点;∴BC=2CN=2×3=6(cm),∵AB=15cm,∴AC=AB﹣BC=15﹣6=9(cm),又∵点M是AC的中点,∴(cm).18.解:(1)∵AC=3cm,CD=2cm,∴BD=AB﹣AC﹣CD=10﹣3﹣2=5(cm).∵点E是AC的中点,点F是BD的中点,∴,.∴.(2)线段EF的长度不发生变化.∵点E是AC的中点,点F是BD的中点,∴,,∴EF=AB﹣AE﹣BF====6(cm).11/ 11。
人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)
4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。
人教版七年级上册数学直线、射线、线段练习题及答案
第1课时直线、射线、线段一、单选题1、线段AB=5cm,BC=2cm,则线段AC的长度是()A、3cmB、7cmC、3cm或7cm2、两条相交直线与另一条直线在同一平面,它们的交点个数是()A、1B、2C、3或2D、1或2或33、平面上有四点,经过其中的两点画直线最多可画出()A、三条B、四条C、五条D、六条4、以下条件能确定点C是AB中点的条件是()A、AC=BCB、C、AB=2CBD、AB=2AC=2CB5、平面内四条直线最少有a个交点,最多有b个交点,则a+b=()A、6B、4C、2D、06、如图,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是()A、5B、6C、7D、87、平面上有四个点,经过其中的两点画直线最少可画a条直线,最多可画b条直线,那么a+b的值为()A、4B、5C、6D、78、下列说法中正确的是()A、两点之间线段最短B、若两个角的顶点重合,那么这两个角是对顶角C、一条射线把一个角分成两个角,那么这条射线是角的平分线D、过直线外一点有两条直线平行于已知直线9、下列说法:①平角就是一条直线;②直线比射线线长;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个;④连接两点的线段叫两点之间的距离;⑤两条射线组成的图形叫做角;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,其中正确的有()A、0个B、1个C、2个D、3个10、如图,点A,B在直线m上,点P在直线m外,点Q是直线m上异于点A,B的任意一点,则下列说法或结论正确的是()A、射线AB和射线BA表示同一条射线B、线段PQ的长度就是点P到直线m的距离C、连接AP,BP,则AP+BP>ABD、不论点Q在何处,AQ=AB-BQ或AQ=AB+BQ二、填空题11、往返于甲,乙两地的客车,中途停靠3个车站(来回票价一样)准备________种车票.12、线段有________个端点,射线有________个端点,直线有________个端点.13、如图所示,共有线段________条,共有射线________条.14、如图,A,B,C,D是一直线上的四点,则________ +________=AD﹣AB, AB+CD =________﹣________.15、往返于两个城市的客车,中途停靠三个站,且任意两站间的票价都不同,则共有________种不同票价.三、作图题16、按下列要求画出图形(在原图上画)如图,平面上有三点A,B,C ①画直线AB ②画射线BC③画线段AC.四、解答题17、已知AB=10cm,点C在直线AB上,如果BC=4cm,点D是线段AC的中点,求线段BD的长度.18、如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.19、如图,点D为线段CB的中点,AD=8cm,AB=10cm,求CB的长度.20、已知C,D两点将线段AB分为三部分,且AC:CD:DB=2:3:4,若AB的中点为M,BD的中点为N,且MN=5cm,求AB的长.21、如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.答案解析部分一、单选题1、【答案】C【考点】两点间的距离【解析】【解答】解:如图(一)所示,当点C在线段AB外时,AC=AB+BC=5+2=7cm;如图(二)所示,当点C在线段AB内时,AC=AB﹣BC=5﹣2=3cm.故选C【分析】根据题意画出图形,由于点C与线段AB的位置不能确定,所以应分点C在AB外和在AB之间两种情况进行讨论.2、【答案】D【考点】直线、射线、线段【解析】【解答】解:当另一条直线与两条相交直线交于同一点时,交点个数为1;当另一条直线与两条相交直线中的一条平行时,交点个数为2;当另一条直线分别与两条相交直线相交时,交点个数为3;故它们的交点个数为1或2或3.故选D.【分析】本题中直线的位置关系不明确,应分情况讨论,包括两条相交直线是否是另一条直线平行、相交或交于同一点.3、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图,最多可画6条直线.,故选D.【分析】画出图形即可确定最多能画的直线的条数.4、【答案】D【考点】直线、射线、线段【解析】【解答】解:AC=BC,AC= AB,AC=2CB都不能说明点A、B、C三点共线,由AB=2AC=2CB 可知A、B、C三点共线,且AC=BC,所以,点C是AB中点.故选D.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.5、【答案】A【考点】直线、射线、线段【解析】【解答】解:交点个数最多时, = =6,最少有0个.所以b=6,a=0,所以 a+b=6.故选:A.【分析】当所有直线两两平行时交点个数最少;交点最多时根据交点个数公式代入计算即可求解;依此得到a、b的值,再相加即可求解.6、【答案】D【考点】直线、射线、线段【解析】【解答】解:以O为端点的射线有2条,以A为端点的射线有3条,以B为端点的射线有3条,共有2+3+3=8条.故选D.【分析】根据射线的定义,分别数出以O、A、B为端点的射线的条数,再相加即可解得.7、【答案】D【考点】直线、射线、线段【解析】【解答】解:如图所示:平面上有四个点最少画1条直线,最多画6条直线.故a=1,b=6.则a+b=1+6=7.故选:D.【分析】当四点在一条直线上时,可画1条,当任意三点不在同一条直线上时可画出6条直线,1+6=7.8、【答案】A【考点】线段的性质:两点之间线段最短,角平分线的定义,对顶角、邻补角,平行公理及推论【解析】【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确; B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.【分析】根据线段的性质,对顶角的定义,角平分线的定义,平行公理对各选项分析判断后利用排除法求解.9、【答案】B【考点】直线、射线、线段,角的概念,角平分线的定义【解析】【解答】解:①平角就是一条直线,错误;②直线比射线线长,错误;③平面内三条互不重合的直线的公共点个数有0个、1个、2个或3个,正确;④连接两点的线段叫两点之间的距离,错误;⑤两条射线组成的图形叫做角,错误;⑥一条射线把一个角分成两个角,这条射线是这个角的角平分线,错误;其中正确的有1个.故选:B.【分析】分别利用直线、射线、线段的定义以及角的概念和角平分线的定义分析得出即可.10、【答案】C【考点】直线、射线、线段,点到直线的距离,三角形三边关系【解析】【解答】解:A. 射线AB和射线BA表示不同的射线,故A不符合题意;B. PQ⊥AB时,线段PQ的长度就是点P到直线m的距离,故B不符合题意;C. 连接AP,BP,则AP+BP>AB,故C符合题意;D. Q在A的右边时,不满足AQ=AB-BQ或AQ=AB+BQ,故D不符合题意;故选:C.【分析】二、填空题11、【答案】20【考点】直线、射线、线段【解析】【解答】解:此题相当于一条线段上有3个点,有多少种不同的票价即有多少条线段:4+3+2+1=10;∴有10种不同的票价;∵有多少种车票是要考虑顺序的,∴需准备20种车票,故答案为:20.【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.12、【答案】2;1;0【考点】直线、射线、线段【解析】【解答】解:根据线段、射线、直线的定义即可得出:线段有2个端点,射线有1个端点,直线有0个端点.故答案为:2,1,0.【分析】根据线段、射线、直线的定义即可得出其顶点的个数,此题得解.13、【答案】6;5【考点】直线、射线、线段【解析】【解答】解:图中线段有:ED、EC、EB、DC、DB、CB共6条,射线有:ED、EB、CD、CB、BE 共5条,故答案为:6,5.【分析】根据直线、射线、线段的概念进行判断即可.14、【答案】BC;CD;AD;BC【考点】直线、射线、线段【解析】【解答】解:∵AD=AB+BC+CD,∴BC+CD=AD﹣AB;∵AB+CD+BC=AD,∴AB+CD=AD﹣BC;∵AD=AB+BC+CD,∴AB+BC=AD﹣CD.故答案为BC;CD;AD;BC【分析】根据图中给出A,B,C,D4个点的位置,根据两点间距离的计算即可解题.15、【答案】10【考点】直线、射线、线段【解析】【解答】解:根据题意得: =10,则共有10种不同票价,故答案为:10【分析】根据在一条直线上n个点连为条线段规律,计算即可得到结果.三、作图题16、【答案】解:如图所示:.【考点】直线、射线、线段【解析】【分析】根据直线、射线、线段的定义画出即可.四、解答题17、【答案】解:∵AB=10cm,BC=4cm,点C在直线AB上,∴点C在线段AB上或在线段AB的延长线上.①当点C在线段AB上时,如图①,则有AC=AB﹣BC=10﹣4=6.∵点D是线段AC的中点,∴DC= AC=3,∴DB=DC+BC=3+4=7;②当点C在线段AB的延长线上时,如图②,则有AC=AB+BC=10+4=14.∵点D是线段AC的中点,∴DC= AC=7,∴DB=DC﹣BC=7﹣4=3.综上所述:线段BD的长度为7cm或3cm.【考点】两点间的距离【解析】【分析】由于AB>BC,点C在直线AB上,因此可分点C在线段AB上、点C在线段AB的延长线上两种情况讨论,只需把BD转化为DC与BC的和或差,就可解决问题.18、【答案】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE= AB=x,CF= CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x= ,∴AD=AB+BC+CD=2x+3x+4x=9x= cm【考点】两点间的距离【解析】【分析】根据题意可设AB=2x,然后根据图形列出方程即可求出AD的长度.19、【答案】解:由线段的和差,得 DB=AB﹣AD=2cm,由线段中点的性质,得BC=2BD=4cm.【考点】两点间的距离【解析】【分析】根据线段的和差,可得DB的长,根据线段中点的性质,可得答案.20、【答案】解:设AC=2x,CD=3x,DB=4x,∴AB=AC+CD+DB=9x,∵AB的中点为M,∴MB= AB=4.5x,∵N是DB的中点,∴NB= DB=2x,∴MB﹣NB=MN,∴4.5x﹣2x=5,∴2.5x=5,∴x=2,∴AB=9x=18cm【考点】两点间的距离【解析】【分析】根据AC:CD:DB=2:3:4,可设AC=2x,然后根据条件列出方程即可求出AB的长度.21、【答案】解:∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=2+4=6cm,∵M是线段AC中点,∴AM= AC=3cm,∴BM=AM﹣AB=3﹣2=1cm.故BM长度是1cm.【考点】两点间的距离【解析】【分析】先根据AB=2cm,BC=2AB求出BC的长,进而得出AC的长,由M是线段AC中点求出AM,再由BM=AM﹣AB即可得出结论.第2课时线段长短的比较与运算1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=.8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD 上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。
人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案
人教版七年级数学上册《4.2直线、射线、线段》同步练习题-含有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列直线、射线、线段中,能相交的是()A.B.C.D.2.任意画三条不重合的直线,交点的个数是()A.1B.1或3C.0或1或2或3D.不能确定3.如图,用适当的语句表述图中点与直线的关系,错误..的是()A.点P在直线AB外B.点C在直线AB外C.直线AC不经过点M D.直线AC经过点B4.晚上,小明拿起手电筒射向远方,他发现电筒光线是一条()A.线段B.射线C.直线D.不能确定5.如图,下列不正确的说法是()A.直线AB与直线BA是同一条直线;B.射线OA与射线AB是同一条射线C.线段AB与线段BA是同一条线段;D.射线OA与射线OB是同一条射线6.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.线段是直线的一部分7.已知:A、B、C是同一直线上的三点,点D为AB的中点,若12AB=,BC=7,则CD的长为()A.1B.13C.13或1D.9.531二、填空题三、解答题15.如图,点C在线段上,,AC=12,点M,N分别是,的中点,点P在线段上,点Q为的中点.(1)分别求出、的长度;(2)若,求的长度.16.如图,点A,C,N,B在同一条直线上.(1)图中共有______条线段;(2)AB=______+______+______;(3)若点N是线段BC的中点,35cm=求线段AN的长.AB=,3AC CN参考答案:1.A2.C3.B4.B5.B6.A7.C8.D9.C10.2 直线上直线外直线外直线上11.312.AB13.314.3或1315.(1)CN=9 MN=6(2)AP=616.(1)6 (2)AC,CN,NB (3)28cm。
人教版七年级上册数学 4.2直线、射线、线段 同步练习(含解析)
4.2直线、射线、线段同步练习一.选择题1.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条2.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线3.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.84.已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB 与CD叠合,这时点B的位置必定是()A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上5.若线段AB=13cm,MA+MB=17cm,则下列说法正确的是()A.点M在线段AB上B.点M在直线AB上,也有可能在直线AB外C.点M在直线AB外D.点M在直线AB上6.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线7.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm8.如图,AB=18,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度是()A.8B.10C.12D.159.图中共有线段()A.4条B.6条C.8条D.10条10.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=10,CD =4,则EF的长为()A.6B.7C.5D.8二.填空题11.平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条.12.已知点C,D在直线AB上,且AC=BD=1.5,若AB=7,则CD的长为.13.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14.把一段弯曲的河流改直,可以缩短航程,其理由是.15.如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.三.解答题16.已知:点M是直线AB上的点,线段AB=12,AM=2,点N是线段MB的中点,画出图形并求线段MN的长.17.如图,C、D在线段AB上,AB=48mm,且D为BC的中点,CD=18mm.求线段BC和AD的长.18.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案1.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.2.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.3.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.4.解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,∴点B在线段CD上(C、D之间),故选:A.5.解:当点M在线段AB上时,MA+MB=AB,∵AB=13cm,MA+MB=17cm,∴M点不在线段AB上;当点M在线段AB的延长线上时,AB=AM﹣BM=13cm,∵MA+MB=17cm,∴AM=15cm,BM=2cm;当点M在线段BA的延长线上时,AB=BM﹣AM=13cm,∵MA+MB=17cm,∴BM=15cm,AM=2cm;当点M不在直线AB上时,则构成△ABM,∵AM+BM>AB,∴17cm>13cm成立,∴点M不在直线AB上;综上所述,点M可能在直线AB上,也可能在直线AB外,故选:B.6.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.7.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.8.解:∵AB=18,点C为AB的中点,∴BC=AB=×18=9,∵AD:CB=1:3,∴AD=×9=3,∴DB=AB﹣AD=18﹣3=15.故选:D.9.解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.10.解:由线段的和差,得AC+DB=AB﹣CD=10﹣4=6.∵点E是AC的中点,∴AE=AC,∵点F是BD的中点,∴BF=BD,∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB﹣(AE+BF)=10﹣3=7.故选:B.11.解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.12.解:如图1,∵AC=BD=1.5,AB=7,∴CD=AB﹣AC﹣BD=4;如图2,CD=AC+AB﹣BD=1.5+7﹣1.5=7;如图3,CD=AB﹣AC+BD=7,如图4,CD=AC+AB+BD=1.5+7+1.5=10,综上所述,CD的长为4或7或10,故答案为:4或7或10.13.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14.解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.15.解:对C点的位置分情况讨论如下:①C点在A点的左边,∵AC:CB=1:2,BD:AB=2:3,假设AC=3k,则AB=3k,BD=2k,∴CD=3k+3k+2k=8k,∵CD=12,∴k=1.5,∴AB=4.5;②C点在线段AB上,∵AC:CB=1:2,BD:AB=2:3,假设AC=k,则CB=2k,BD=2k,∴CD=CB+BD=4k,∵CD=12,∴k=3,∴AB=AC+CB=3k=9;③C点在B点后,不符合题意,舍去;∴综上所述,AB=4.5或9.16.解:由于点M的位置不确定,所以需要分类讨论:①点M在点A左侧,如图1:∵AB=12,AM=2,∴MB=AB+AM=12+2=14,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=14,∴MN=×14=7;②点M在点A右侧,如图2:∵AB=12,AM=2,∴MB=AB﹣AM=12﹣2=10,∵N是MB的中点(已知),∴MN=MB(中点定义),∵MB=10,∴MN=×10=5,综上所述,MN的长度为5或7.17.解:∵D为BC中点,∴BC=2CD,∵CD=18mm,∴BC=2×18=36(mm),∵AB=48mm,∴AC=AB﹣BC=48﹣36=12(mm),∴AD=AC+CD=12+18=30(mm).18.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。
七年级 直线、射线、线段,带答案
直线射线线段典题探究例1.点A、B是直线l上的两点,AB=12cm,在直线l上取一点C,使BC=5cm,则线段AC的长是____________.例2.如图一列往返于甲乙两站的火车,中途停靠三站,你认为要准备()种车票才满足乘客的需要.A.10 B.20C.30 D.40例3.如图所示,在平整的地面上放有一个正方体,一只蚂蚁在顶点A处,它要爬到顶点B,问蚂蚁有几条最短路线,它应怎样确定爬行路线?例4.已知点B在直线AC上,AB=6,AC=10,P、Q分别是AB、AC的中点,求PQ 的长演练方阵A档(巩固专练)1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到CC.平角是一条直线; D.延长线段AB到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.7.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
8.图中共有线段________条。
9.如图,已知C点为线段AB的中点,D点为BC中点,AB=10cm,求AD的长度。
10.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。
B档(提升精练)1.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个2. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B3.如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b4.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝5.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外6.如图,学生要去博物馆参观,从学校A处到博物馆B处的路径共有⑴、⑵、⑶三条,为了节约时间,尽快从A处赶到B处,假设行走的速度不变,你认为应该走第________条线路(只填番号)最快,理由是___________________。
直线、射线、线段练习题及答案
直线、射线、线段练习题及答案(七年级上册数学)(附详细答案解析)(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--直线、射线、线段测试题一、选择题1. 下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线垂直B. 两点之间的所有连线中,线段最短C.经过两点有且只有一条直线D. 过一点有且只有一条直线与已知直线平行2.平面上的三条直线最多可将平面分成()部分A .3 B.6 C . 7 D.93.如果A BC三点在同一直线上,且线段AB=4CM,BC=2CM,那么AC两点之间的距离为()A .2CM B. 6CM C .2 或6CM D .无法确定4.下列说法正确的是()A.延长直线AB到C; B.延长射线OA到C;C.平角是一条直线; D.延长线段AB 到C5.如果你想将一根细木条固定在墙上,至少需要几个钉子()A.一个 B.两个 C.三个 D.无数个6.点P在线段EF上,现有四个等式①PE=PF;②PE=12EF;③12EF=2PE;④2PE=EF;其中能表示点P是EF中点的有()A.4个 B.3个 C.2个 D.1个7. 如图所示,从A地到达B地,最短的路线是().A.A→C→E→B B.A→F→E→B C.A→D→E→B D.A→C→G→E→B8..如右图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A .2()a b B .2a b C .a b D .a b9..在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝ B.㎝ C.㎝ D.1㎝10.如果AB=8,AC=5,BC=3,则()A.点C在线段AB上 B.点B在线段AB的延长线上C.点C在直线AB外 D .点C可能在直线AB上,也可能在直线AB外二、填空题1.若线段AB=a,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN=_______.2.经过1点可作________条直线;如果有3个点,经过其中任意两点作直线,可以作______条直线;经过四点最多能确定条直线。
人教版 七年级数学上册 4.2 直线、射线、线段 针对训练 (含答案)
人教版七年级数学 4.2 直线、射线、线段针对训练一、选择题1. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定2. 如图所示,下列对图形描述不正确的是()A.直线ABB.直线BCC.射线ACD.射线AB3. 下列说法正确的是()A.画一条长3 cm的射线B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到点C4. 下列各选项中,点A,B,C不在同一直线上的是 ()A.AB=5 cm,BC=15 cm,AC=20 cmB.AB=8 cm,BC=6 cm,AC=10 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=16 cm,AC=14 cm5. 下列说法错误的是()A.图①中直线l经过点AB.图②中直线a,b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点6. 如图,对于直线AB,线段CD,射线EF,其中能相交的是()7. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B8. 下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么M是线段AB的中点C.因为点A,M,B(互不重合)在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以M是线段AB的中点9. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b10. 如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点表示的数分别为-5和6,E为BD的中点,则下列选项中,离线段BD的中点E最近的整数是()A.-1B.0C.-2D.3二、填空题11. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是.12. 线段AB被依次分成2∶3∶4的三部分,第一部分和第三部分的中点的距离为4.2 cm,则最长的一部分的长为cm.13. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.14. 如图,已知三点A,B,C.(1)画出直线AC,线段BC,射线AB;(2)在线段BC上任取一点D(不同于点B,C),画线段AD;(3)数数看,此时图中共有条线段.命题点3点与直线、直线与直线的位置关系15. 图中可用字母表示出的射线有条.三、解答题16. 如图,一条直线上依次有A,B,C,D四点,C为AD的中点,BC-AB=AD,求BC是AB的多少倍.17. 如图9所示,A,B,C是一条笔直公路上的三个村庄,A,B之间的路程为100 km,A,C之间的路程为40 km,现要在A,B之间建一个车站P,设P,C 之间的路程为x km.(1)用含x的式子表示车站到三个村庄的路程之和;(2)若路程之和为102 km,则车站应设在何处?(3)若要使车站到三个村庄的路程之和最小,则车站应设在何处?最小值是多少?18. (1)观察思考:如图,线段AB上有C,D两点,计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),那么这条线段上以这m个点为端点的线段共有多少条?说明理由;(3)拓展应用:8名同学参加班级组织的象棋比赛,比赛采用单循环制(即每两名同学之间都要进行一场比赛),那么一共要进行多少场比赛?19. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).20. 已知M是线段AB上一点,点C在线段AM上,点D在线段BM上,C,D 两点分别同时从点M,B出发,以1 cm/s,3 cm/s的速度沿直线BA向左运动. (1)若AB=10 cm,当点C,D运动了2 s时,点C,D的位置如图0①所示,求AC+MD的值;(2)若点C,D在没有运动到点A和点M前,总有MD=3AC,试说明此时有AM=AB;(3)如图②,若AM=AB,N是直线AB上一点,且AN-BN=MN,求的值.人教版七年级数学 4.2 直线、射线、线段针对训练-答案一、选择题1. 【答案】C2. 【答案】B3. 【答案】C[解析] A.画一条长3 cm的射线,说法错误,射线可以向一个方向无限延伸;B.射线、线段、直线中直线最长说法错误,射线可以向一个方向无限延伸,直线可以向两个方向无限延伸;C.射线是直线的一部分,正确;D.延长直线AB到点C说法错误,直线可以向两个方向无限延伸.故选C.4. 【答案】B[解析] 选项B中,因为AB=8 cm,BC=6 cm,AC=10 cm,所以AB+BC≠AC.所以选项B符合题意.5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.10. 【答案】D[解析] 因为AD=|6-(-5)|=11,2AB=BC=3CD,所以AB=1.5CD.所以1.5CD+3CD+CD=11.所以CD=2,所以AB=3.所以BD=8.所以ED=BD=4.所以点E所表示的数是6-4=2.所以离线段BD的中点E最近的整数是选项D中的3.二、填空题11. 【答案】两点确定一条直线12. 【答案】2.8[解析] 设第一部分的长为2x cm.由题意,得x+3x+2x=4.2,解得x=0.7,所以4x=2.8.13. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.14. 【答案】解:(1)(2)如图所示:(3)图中共有6条线段.故答案为6.15. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题16. 【答案】解:因为C为AD的中点,所以AC=AD,即AB+BC=AD.所以2AB+2BC=AD.又因为BC-AB=AD,所以4BC-4AB=AD.所以2AB+2BC=4BC-4AB,即BC=3AB.故BC是AB的3倍.17. 【答案】解:(1)若车站P在B,C之间,则路程之和为P A+PC+PB=PC+AC+PC+PB=PC+AB=(100+x)km;若车站P在A,C之间,则路程之和为P A+PB+PC=P A+PC+CB+PC=AB+PC=(100+x)km.故车站到三个村庄的路程之和为(100+x)km.(2)由题意得100+x=102,故x=2,即车站应设在C村左侧或右侧2 km的地方.(3)当x=0时,x+100=100,即车站建在C处时到三个村庄的路程之和最小,最小值为100 km.18. 【答案】解:(1)因为以点A为左端点的线段有线段AB,AC,AD,以点C为左端点的线段有线段CD,CB,以点D为左端点的线段有线段DB,所以共有3+2+1=6(条)线段.(2)有条.理由:线段上有m个点(包括线段的两个端点),每一个点都可以与其他点构成(m-1)条线段,一共能构成m(m-1)条,但由于线段端点的无序性,所有线段都被重复计算了一次,所以该条线段上以这m个点为端点的线段共有条.(3)把8名同学看作直线上的8个点,每两名同学之间的一场比赛看作一条线段,直线上以这8个点为端点所构成的线段条数就等于比赛的场数,因此一共要进行=28(场)比赛.19. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.20. 【答案】解:(1)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(2)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以当运动时间为t s时,BD=3t cm,CM=t cm.又因为MD=3AC,所以BD+MD=3t+3AC=3(CM+AC),即BM=3AM,所以AM=AB.(3)分以下两种情况讨论:①若点N在线段AB上,如图(a)所示:因为AN-BN=MN,且AN-AM=MN,所以BN=AM=AB.所以MN=AB,即=.②若点N在线段AB的延长线上,如图(b)所示:因为AN-BN=MN,AN-BN=AB,所以MN=AB,即=1.综上所述,的值为或1.。
人教版七年级数学上册《直线、射线、线段》试题及答案
一、选择题1、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB,则AB盖住的整数点的个数共有()个A.13或14个 B.14或15个 C.15或16个 D.16或17个3、如下图是某风景区的旅游路线示意图,其中,,为风景点,为两条路的交叉点,图中数据为相应两点的路程(单位:千米).一学生从处出发,以千米/时的速度步行观览景色,每个景点的逗留时间约为小时.(1)当他沿着路线游览回到处时,共用了小时,求的长;(2)若此学生打算从处出发,步行速度与在景点的逗留时间保持不变,且在最短时间内游览完三个景点返回处,请你为他设计一条步行路线,并说明这样设计的理由.(不考虑其他因素)4、如图,从A到B最短的路线是()A. A—G—E—BB. A—C—E—BC. A—D—G—E—BD. A—F—E—B5、已知线段AB=10cm,直线AB上有点C,且BC=4cm,M是线段AC的中点,则AM= cm。
6、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A.2条B.3条C.4条 D.1条或3条7、在直线上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A、0.5㎝ B、1㎝ C、1.5㎝ D、2㎝8、点是直线外一点,为直线上三点,,则点到直线的距离是()A、 B、小于 C、不大于 D、9、如图所示, 把一根绳子对折成线段AB, 从P处把绳子剪断, 已知AP= PB, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为()A. 30 cmB. 60 cmC. 120 cmD.60 cm或120 cm11、下列说法不正确的是()A.若点C在线段的延长线上,则B.若点C在线段上,则C.若,则点一定在线段外D.若三点不在一直线上,则二、填空题12、若线段AB=10㎝,在直线AB上有一点C,且BC=4㎝,M是线段AC的中点,则AM= ㎝.13、在边长都是1的正方形方格纸上画有如图所示的折线,它们的各段依次标着①,②,③,④,…的序号.那么序号为24的线段长度是 .14、.在直线上取A、B、C三点,使得AB = 9 厘米,BC = 4 厘米,如果O是线段AC的中点,则线段OA的长为厘米.15、往返于甲、乙两地的火车中途要停靠三个站,则有种不同的票价(来回票价一样),需准备种车票.17、如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是________________。
人教版数学七年级上4.2《直线、射线、线段》测试题(含答案及解析)
直线、射线、线段测试题时间:45分钟一、选择题(本大题共11小题,共33.0分)1.如图,下列语句错误的是A. 射线CA和CD不是同一条射线B.C. 射线AC和AB是同一条射线D. 直线BC和BD是不同的直线2.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm3.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种4.下列说法中,正确的有射线与其反向延长线成一条直线;直线a,b相交于点m;两直线交于两点;三条直线两两相交,一定有3个交点.A. 3个B. 2个C. 1个D. 0个5.下列说法中正确的个数有经过一点有且只有一条直线;连接两点的线段叫做两点之间的距离;射线比直线短;三点在同一直线上且,则B是线段AC的中点;在同一平面内,两条直线的位置关系有两种:平行与相交;在8:30时,时钟上时针和分针的夹角是.A. 1个B. 2个C. 3个D. 4个6.乘特快列车从济南西站出发,沿途经过泰安站、曲阜东站、滕州东站,最后到达枣庄站,那么从济南西站到枣庄站这段线路的火车票价格最多有A. 8种B. 9种C. 10种D. 11种7.如图,点A,点B,点C在直线l上,则直线,线段,射线的条数分别为A. 3,3,3B. 1,2,3C. 1,3,6D. 3,2,68.如图,,,则CD等于A. 1cmB. 2cmC. 3cmD. 4cm9.下列说法中正确的是A. 画一条长3cm的射线B. 直线、线段、射线中直线最长C. 延长线段BA到C,使D. 延长射线OA到点C10.对于线段的中点,有以下几种说法:若,则M是AB的中点;若,则M是AB的中点;若,则M是AB的中点;若A,M,B在一条直线上,且,则M是AB的中点其中正确的是A. B. C. D.11.三条互不重合的直线的交点个数可能是A. 0,1,3B. 0,2,3C. 0,1,2,3D. 0,1,2二、填空题(本大题共10小题,共30.0分)12.已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共可以画______ 条直线.13.平面内两两相交的三条直线,如果它们最多有a个交点,最少有b个交点,则______ .14.往返于A、B两地的客车,中途停靠四个站,共有______种不同的票价,要准备______种车票.15.平面内有n条直线两两相交最多有______个交点.16.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出直线的条数为______ .17.平面上有5个点,过其中每两个点画直线,可以画条______条18.两条直线相交有1个交点,三条直线两两相交有3个交点,四条直线两两相交有6个交点,n条直线两两相交有______ 个交点.19.下列说法两条不同的直线可能有无数个公共点;两条不同的射线可能有无数个公共点;两条不同的线段可能有无数个公共点;一条直线和一条线段可能有无数个公共点,其中正确说法的序号为______ .20.如图,该图中不同的线段共有______ 条21.已知线段MN,在MN上逐一画点所画点与M、N不重合,当线段上有1个点时,共有3条线段,当线段上有2个点时,共有6条线段;当线段上有3个点时,共有10条线段;直接写出当线段上有20个点时,共有线段______条三、计算题(本大题共2小题,共12.0分)22.如图1直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段;如图2直线l上有3个点,则图中有______ 条可用图中字母表示的射线,有______ 条线段;如图3直线上有n个点,则图中有______ 条可用图中字母表示的射线,有______ 条线段;应用中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛即每两队之间赛一场,预计全部赛完共需______ 场比赛.23.如图所示,数一数图中有多少条不同的线段?四、解答题(本大题共3小题,共24.0分)24.如图,平面上有四个点A、B、C、D,根据下列语句画图:画线段AB;连接CD,并将其反向延长至E,使得;在平面内找到一点F,使F到A、B、C、D四点距离最短.25.如图,已知线段AC与BC交于点C,M,N分别为线段AC与BC上的点,,若.图中的线段共有______条;若,求的长度.26.如图,点C是线段AB上一点,D、E分别是AC、BC的中点,已知,求AB的长;若中改为点C是射线AB上一点不在线段AB上,其它条件不变,请画出图形,并直接写出相应的AB长.答案和解析【答案】1. D2. C3. D4. C5. C6. C7. C8. B9. C10. B11. C12. 1条或4条或6条13. 414. 15;3015.16. 1条、4条或6条17. 1,5,6,8,1018.19.20. 1021. 21022. 4;3;;;1523. 解:对于两条线段,只要有一个端点不同,就是不同的线段,我们以左端点为标准,将线段分5类分别计数:以A为左端点的线段有AB,AC,AD,AE,AF共5条;以B为左端点的线段有BC,BD,BE,BF共4条;以C为左端点的线段有CD,CE,CF共3条;以D为左端点的线段有DE,DF共2条;以E为左端点的线段只有EF一条.所以,不同的线段一共有条.24. 解:线段AB即为所求;如图所示:;如图所示:F点即为所求.25. 626. 解:,E分别是AC,BC的中点,,,;当点C在AB的延长线上时,如图所示,,E分别是AC,BC的中点,,,.【解析】1. 解:A、射线CA和CD不是同一条射线,正确不合题意;B、,正确不合题意;C、射线AC和AB是同一条射线,正确不合题意;D、直线BC和BD是不同的直线,错误,符合题意.故选:D.直接利用射线、直线、线段的定义分别分析得出答案.此题主要考查了射线、直线、线段的定义,正确区分各定义是解题关键.2. 解:当点C在线段AB上时,由线段的和差,得,由线段中点的定义,得;点C在线段BC的延长线上,由线段的和差,得,由线段中点的定义,得;故选:C.分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC 的长,根据线段中点的性质,可得AM的长.本题考查了两点间的距离,利用了线段的和差,线段中点的定义;进行分类讨论是解决问题的关键.3. 解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.先求出线段的条数,再计算票价和车票的种数.本题考查线段的定义,要求学生准确应用;学会查找线段的条数.4. 解:射线与其反向延长线成一条直线,正确;直线a,b相交于点m,错误,点应该用大写字母表示;两直线交于两点,错误;三条直线两两相交,一定有3个交点,错误,三条直线可以经过同一个点.综上所述,正确的有1个.故选C.根据直线、射线和线段的定义以及点的表示对各小题分析判断即可得解.本题考查了直线、射线和线段,是基础题,熟记相关概念是解题的关键.5. 解:经过两点有且只有一条直线,故本小题错误;应为连接两点的线段的长度叫做两点的距离,故本小题错误;射线与直线不能比较长短,故本小题错误;因为A、B、C三点在同一直线上,且,所以点B是线段AC的中点,故本小题正确;在同一平面内,两条直线的位置关系有两种:平行,相交,故本小题正确;在8:30时,时钟上时针和分针的夹角是,正确.综上所述,正确的有共3个.故选C.根据直线的性质,两点间距离的概念,射线与直线的意义,线段中点的概念,同一平面内两条直线的位置关系,钟面角的计算,对各小题逐一分析判断后,利用排除法求解.本题考查了直线的性质,两点间距离的定义,射线与直线的意义,线段中点的定义,两条直线的位置关系,钟面角,是基础题,熟记性质与概念是解题的关键.6. 解:根据题意得:从济南西站到枣庄站这段线路的火车票价格最多有种,故选C根据题意确定出数学模型,五点确定出线段条数,计算即可得到结果.此题考查了直线、射线、线段、从实际问题中抽象出数学模型是解本题的关键.7. 解:图中有直线l,共1条;图中有线段AB、AC、BC,共3条;射线以A为端点的有2条,以B为端点的有2条,以C为端点的有2条,共6条.故选C.根据射线、线段的定义分别数出条数即可.本题考查了直线、射线、线段,关键是掌握线段有2个端点、射线有1个端点,直线没有端点.8. 【分析】此题主要考查了线段的和差关系、两点间的距离的知识点,关键是求出CB的长度先根据已知条件求出线段DB的长度,再求出线段CD长度即可.【解答】解:,,,,.故选B.9. 解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使,正确;D、延长射线OA到点C,错误,可以反向延长射线.故选:C.分别利用直线、射线、线段的性质分析得出答案.此题主要考查了直线、射线、线段,正确把握相关性质是解题关键.10. 解:若,则M是AB的中点;错误,因为点A,B,M要在一条直线上,若,则M是AB的中点;正确,若,则M是AB的中点;错误,若A,M,B在一条直线上,且,则M是AM的中点正确.所以正确的有.故选:B.利用数形结合方法即可判定.本题主要考查了线段的中点,解题的关键是数形结合.11. 解:分四种情况:1、三条直线平行,有0个交点,2、三条直线相交于同一点,有1个交点,3、一条直线截两条平行线有2个交点,4、三条直线两两相交有3个交点.如图所示:故选C.在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.12. 解:分三种情况:四点在同一直线上时,只可画1条;当三点在同一直线上,另一点不在这条直线上,可画4条;当没有三点共线时,可画6条;故答案为:1条或4条或6条.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.本题考查了直线、射线、线段,在没有明确平面上四点是否在同一直线上时,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.13. 解:平面内两两相交的三条直线,它们最多有3个交点,最少有1个交点,;先求出a、b的值,再代入求解.当三条直线都交于一点时,只有一个交点,两两相交不在同一点,有3个交点,注意掌握数学基础知识.14. 解:如图:则共有AC,AD,AE,AF,AB,CD,CE,CF,CB,DE,DF,DB,EF,EB,FB,15种不同的票价,又题中是往返列车,往返的车票都不相同,所以共有票,故答案为:15,30.可先作出一简单的图形,进而结合图形进行分析.本题主要考查运用直线、射线、线段知识解决生活中的问题,需要掌握正确数线段的方法.15. 解:2条直线相交最多有1个交点;3条直线相交最多有个交点;4条直线相交最多有个交点;5条直线相交最多有个交点;6条直线相交最多有个交点;n条直线相交最多有个交点.故答案为:.分别求出2条、3条、4条、5条、6条直线相交时最多的交点个数,找出规律即可解答.本题考查的是多条直线相交的交点问题,解答此题的关键是根据2条、3条、4条、5条、6条直线相交时最多的交点个数发现规律.16. 解:如果4个点,点A、B、C、D在同一直线上,那么只能确定一条直线,如图:如果4个点中有3个点不妨设点A、B、在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图:如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B、C、D确定3条直线,点B分别与点C、D确定2条直线,最后点C、D确定一条直线,这样共确定6条直线,如图:综上所述,过其中2个点可以画1条、4条或6条直线.故答案为:1条、4条或6条.由直线公理,两点确定一条直线,但题中没有明确指出已知点中,是否有3个点,或者4个点在同一直线上,因此要分三种情况加以讨论.本题考查了直线的定义在解题过程中,注意分情况讨论,这样才能将各种情况考虑到.17. 当五点在同一条直线上时,可以做出一条直线;当四点在一条直线上,另一点在直线外时,可以做出5条直线;当三点在一条直线上,另两点在直线外时,可以做出8条直线,如下图所示;当三点在一条直线上,另两点与原来的期中一个点在一条直线上时,可以做出六条直线如下图当任意三点都不在一条直线上,可以做条直线.答案:1、5、6、8、10.分情况讨论:当五点都在同一条直线上时;当四点在一条直线上,另一点在直线外时;当三点在一条直线上,另两点在直线外时;当任何三点都不在同一条直线上时.本题考查了直线的相关知识,计算直线条数时,注意分类讨论,勿重勿漏若平面上有n 个点,且任何三个点都不在同一条直线上时,最多可以得到条直线.18. 解:如图,可得三条直线两两相交,最多有3个交点;如图,可得4条直线两两相交,最多有6个交点;,;可得,n条直线两两相交,最多有个交点为正整数,且.故答案为:.通过以上已知点的个数与直线条数的关系,找出规律解答即可.本题考查了图形的变化,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.19. 解:两条不同的直线可能有无数个公共点,错误,直线不能重合;两条不同的射线可能有无数个公共点,正确;两条不同的线段可能有无数个公共点,正确;一条直线和一条线段可能有无数个公共点,正确.故答案为:.直接利用直线、射线、线段的定义进而判断得出答案.此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.20. 解:从点C到B,D,E,A有4条线段;同一直线上的B,D,E,A四点之间有条;所以共10条线段.本题只要确定了AB之间的线段即可确定图中线段的条数.注意本题是两种情况下的线段条数的和.21. 解:由题意可得:当在MN上有20个点时,共有线段:,故答案为:210.根据题意在MN上1个点有条线段,2个点可组成条线段,进而可得答案.本题考查了直线、射线、线段,任意两点有一条线段,根据规律是解题关键.22. 解:射线有:、、、共4条,线段有:、、共3条;,;.写出射线和线段后再计算个数;根据规律,射线是每个点用两次,但第一个和最后一个只用一次;线段是从所有点中,任取两个;代入中规律即可.本题是信息给予题,读懂题目信息,并学会准确查出射线、线段的条数,做到不重不漏是解题的关键.23. 分别以A、B、C、D、E为起点查找,注意不要漏查.本题考查直线射线及线段的知识,属于基础题,注意从左至右依次查找避免漏解.24. 利用线段的定义得出答案;利用反向延长线段进而结合得出答案;连接AC、BD,其交点即为点F.本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.25. 解:图中的线段共有条;,,,,,.故答案为:6.根据线段的定义数出图中的线段共有多少条即可;根据线段的倍分关系可求AM,再根据线段的和差关系可求的长度.此题考查了两点间的距离,线段的定义,关键是熟练掌握线段的倍分和线段的和差计算.26. 先根据D、E分别是线段AC、BC的中点得出,,再由线段即可得出结论.根据线段中点定义和线段的和差即可得到结论.本题考查的是两点间的距离,熟知中点的定义是解答此题的关键.第11页,共11页。
人教版七年级数学上册《4.2 直线、射线、线段》练习题-附带有答案
人教版七年级数学上册《4.2 直线、射线、线段》练习题-附带有答案一、单选题1.下列说法正确的是()A.过一个已知点B,只可作一条直线B.一条直线上有两个点C.两条直线相交,只有一个交点D.一条直线经过平面上所有的点2.如图,下列说法错误的是()A.直线AC与射线BD相交于点A B.BC是线段C.直线AC经过点A D.点D在直线AB上3.经过同一平面内A、B、C三点可连结直线的条数为()A.只能一条B.只能三条C.三条或一条D.不能确定4.已知A,B,C三点在同一条直线上,M,N分别为线段AB,BC的中点,且AB=60,BC=40,则MN的长为()A.10 B.50 C.10或50 D.无法确定5.已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.-4 B.4 C.-2 D.26.已知数轴上A、B两点对应的数分别为−3、−6,若在数轴上找一点C,使得点A、C之间的距离为4;再在数轴找一点D,使得点B、D之间的距离为1,则C、D两点间的距离不可能为()A.0 B.2 C.4 D.67.如图,数轴上有若干个点,每相邻两点相距1个单位长度.其中点 A, B ,C , D 对应的数分别是整数 a ,b ,c ,d ,且d−2a=12,则b+c的值为()A.-3 B.-1 C.3 D.1AB;③CD= 8.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC−BD;②CD=14AD−BC;④BD=2AD−AB,正确的有()A.1个B.2个C.3个D.4个二、填空题9.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC= .10.已知 A, B, C为直线l上的三点,如果线段AB=3cm,BC=6cm那么A,C两点间的距离为.11.如图,D是AB的中点,E是BC的中点,若AC=10,EC=3,则AD=.12.如图,点C是线段AB上一点,D是线段CB的中点,已知图中所有的线段的长度之和为23,线段AC 的长度与线段CB的长度都是正整数,则线段AC长.13.如图,已知点A、B、C、D在同一直线上,且线段AB=BC=CD=1cm,那么图中所有线段的长度之和是cm.三、解答题14.已知线段CD,按要求画出图形并计算:延长线段CD到B,使得DB= 1CB,延长DC到点A,使AC=2DB,2若AB=8cm,求出CD与AD的长.AB,E是AC的中点,求BE的长. 15.已知A、B、C三点在同一条直线上AB=80cm,BC=3416.如图,点C在线段AB上,AC=8cm,CB=6cm,点M,N分别是AC,BC的中点.求线段MN的长.17.如图,平面上四个点A、B、C、D按要求完成下列问题:(1)①画线段AC,连接BD;②画直线AB与射线DC相交于点E;(2)用量角器度量∠AED的大小为(精确到度).18.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则A、B两点间的距离表示为AB=|a−b|.利用上述结论,回答以下问题:(1)若点A在数轴上表示15,点B在数轴上表示2,则AB= .(2)在数轴上表示x的点与-2的距离是3,那么x=.(3)若数轴上表示a的点位于2和5之间,则|a−2|+|a−5|= .答案1.C2.D3.C4.C5.C6.C7.A8.C9.11cm或3cm10.3cm或9cm11.212.313.1014.解:如图所示:设CD=xCB∵DB= 12∴CD=BD=x∵AC=2DB=2x∵AB=AC+CD+BD=8∴2x+x+x=8x=2∴CD=2,AD=AC+CD=4+2=6答:CD的长为2cm.AD的长为6cm.15.解:①如解图,点C在线段AB上.AB因为AB=80cm BC=34所以 BC =60cm所以 AC =AB −BC =20cm .因为 E 是 AC 的中点所以 EC =10cm .所以 BE =BC +EC =60+10=70(cm) ;②如解图,点 C 在线段 AB 的延长线上.因为 AB =80cm BC =34AB所以 BC =60cm所以 AC =AB +BC =140cm因为 E 是 AC 的中点所以 EC =70cmBE =EC −BC =70−60=10(cm) .所以 BE 的长为 70cm 或 10cm .16.解:由AC=8cm ,CB=6cm ,点M ,N 分别是AC ,BC 的中点,得 MC= 12 AC= 12 ×8=4cm ,CN= 12 BC= 12 ×6=3cm .由线段的和差,得MN=MC+NC=4+3=7cm线段MN 的长7cm17.(1)解:①②如图所示:(2)31°18.(1)13(2)1或-5(3)3。
初一数学直线、射线、线段含答案
初一数学直线、射线、线段中考要求例题精讲直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴ 也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)lAB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:模块一直线、射线、线段的概念【例1】下列说法正确的是()A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB与射线BA是同一条射线D. 过两点P Q、可画出两条射线【解析】略【答案】A【巩固】下列说法中正确的是()A. 直线的一半是射线B. 延长线段AB至C,使BC AB=C. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【解析】略【答案】C【例2】下列语句准确规范的是( )A. 直线a b、相交于一点mB. 延长直线ABC. 反向延长射线AO(O是端点)D. 延长线段AB到C,使BC AB=【解析】略【答案】D【巩固】下面说法中错误的是( )A. 直线AB和直线BA是同一条直线B. 射线AB和射线BA是同一条射线C. 线段AB和线段BA是同一条线段D. 把线段AB向两端无限延伸便得到直线BA【解析】略【答案】B【巩固】下列叙述正确的是()A.孙悟空在天上画一条十万八千里的直线B.笔直的公路是一条直线C.点A一定在直线A B上D.过点A、B可以画两条不同的直线,分别为直线A B和直线B A 【解析】略【答案】C【例3】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【解析】略【答案】B【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是( )C.B.A.【解析】略 【答案】C【巩固】下列叙述正确的是( )A .可以画一条长5cm 的直线B .一根拉紧的线是一条直线C .直线AB 经过C 点D .直线AB 与直线BA 是不同的直线【解析】略 【答案】C【例4】 如图所示根据要求作图:⑴连结AB ;⑵作射线AC ;⑶作直线BC .ABC【解析】略 【答案】如图A模块二 直线公理公理:两点确定一条直线【例5】如图,图中共有条线段.【解析】1234515++++=.【答案】15【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线? 【解析】略【答案】1条或3条.模块三线段的相关计算【例6】如图所示,M是线段A B的中点,则1______2A M=,2_____2_____AB==.【解析】12AM AB=,22AB AM BM==.【答案】AM;AM;BM.【巩固】判断:若3c mA BBC==,则说明B是A C的中点.【解析】错误,如图,虽然3c mA BB C==,但B不是A C的中点,要明确点B把线段A C分成两条相等的线段才可.【答案】错误AB C【巩固】判断:已知A,B,C三点在同一条直线上,12AC AB=,那么C是A B的中点.【解析】错误,几何中的题目如果无图,要特别注意读准题意,适时分类求解.如下图⑴,⑵,均满足题意.【答案】错误(1) (2)【例7】如图,已知线段AB上依次有三个点C D E,,把线段AB分成2:3:4:5四个部分,56AB=,求BD的长度.【解析】根据题意可设2345AC x CD x DE x EB x ====,,,,所以有:1456436AB AC CD DE EB x x BD DE EB =+++====+=,,.【答案】36【巩固】已知14cm AD =,B C ,是AD 上顺次两点,且::2:3:2AB BC CD =,E 为AB 的中点,F 为CD的中点,求EF 的长.E【解析】设2AB x =,3BC x =,2CD x =,23214x x x ++=,2x =,510EF x == 【答案】10【例8】 如图,已知线段A B 上依次有三个点,,C D E 把线段A B 分成2:3:4:5四个部分,,,,M P Q N 分别是,,,A C C D D E E B的中点,若21,M N =求P Q 的长度. EQDPA【解析】根据题意可设234510.5212 3.57AC x CD x DE x EB x MN x x PQ x =========,,,,,, 【答案】7【巩固】摄影组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃饭,由于堵车,中 午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C 市到这里路程的二分之一就到达目的地了,问A B ,两市相距多少千米?【解析】根据题意画图,D 为中午赶到的小镇,E 为傍晚赶到的地方,根据题意可得:1140022AD DC BE CE DE ===,,,所以有111200222AD BE DC CE DE +=+==,则600AB AD DE EB =++=(千米).【答案】600千米模块四 两点之间线段最短【例9】 从家到学校共有条路可以走,如图所示,若想走最近的路,应选择 (填序号).这是根据 .学校家【解析】略【答案】②;两点之间,线段最短.【例10】 如图,已知A B ,在直线的两侧,在l 上求一点P ,使PA PB +最小;B l图1【解析】如图,连接,A B ,A B 与的交点即为所求的P 点,利用“两点之间线段最短”, 教师不妨可在其他出处取一点P ,显然''A P B PA B+>.l图1-1【答案】如图l图1-1【巩固】如图,有一个正方体的盒子1111ABCD A B C D -,在盒子内的顶点A 处有一只蜘蛛,而在对角的顶点1C 处有一只苍蝇。
2020-2021学年人教版数学七年级暑假提高训练 专题13 直线、射线、线段(解析版)
2020-2021学年人教版数学七年级暑假提高训练专题13直线、射线、线段1.下列语句正确的有()①射线与射线是同一条射线②两点之间的所有连线中,线段最短③连接两点的线段叫做这两点的距离④欲将一根木条固定在墙上,至少需要个钉子.A.个B.个C.个D.个2.如图,点、、顺次在直线上,点是线段的中点,点是线段的中点.若想求出的长度,那么只需条件()A.=B.=C.=D.=3.下列说法正确的是()A.一个点可以确定一条直线B.两个点可以确定两条直线C.三个点可以确定一个圆D.不在同一直线上的三点确定一个圆4.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边5.下列说法中正确的是A.角是由两条射线组成的图形B.一条射线就是一个周角C.两条直线相交,只有一个交点D.如果线段,那么叫做线段的中点6.下列命题中为假命题的是()A.内错角相等,两直线平行B.一个角的余角一定大于这个角C.一个钝角的补角必是锐角D.过两点有且只有一条直线7.有下列说法:①射线是直线的一半;②线段是点与点的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.个B.个C.个D.个8.有阜阳到合肥的某一次列车,运行途中停靠的车站依次是:阜阳-淮南-水家湖-合肥,那么要为这次列车制作的火车票有()A.种B.种C.种D.种9.数轴上、、三点所表示的数分别为、、,且在上.若,,则下列、的关系式,何者正确?()A. B. C. D.10.下列说法中正确的是()A.画一条厘米长的射线B.画一条厘米长的直线C.画一条厘米长的线段D.在线段、射线、直线中直线最长11.已知线段,点是直线上一点,,若是的中点,是的中点,则线段的长度是()A. B. C.或 D.12.年月日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A. B. C. D.13.在儿时玩玩具手枪,在瞄准时总是半闭着眼,对着准星与目标,用数学知识解释为________.14.用一个钉子把一根木条钉在木板上,用手拨木条转动说明________,用两个钉子就固定了,说明________.15.已知、、三点在同一条直线上,、分别为线段、的中点,且=,=,则的长为________.16.平面内有四个点,,,,过其中每两个点画直线可以画出直线的条数为________.17.乘火车从站出发,沿途经过个车站方可到达站,那么在、两站之间需要安排不同的车票________种.(友情提示:到与到车票不同.)18.平原上有四个村庄,,,,为解决当地缺水是问题,政府准备投资修建一个蓄水池到四个村庄的距离之和最小,如图,蓄水池应该建在点________处,运用的数学道理是________.19.已知线段,点是直线上一点,.若是的中点,是的中点,则线段的长度是________.20.如图,将一根绳子对折以后用线段表示,现从处将绳子剪断,剪断后的各段绳子中最长的一段为,若,则这条绳子的原长为________.21.如图,平面上有四个点、、、,根据下列语句画图(1)画直线;作射线;画线段;(2)连接,并将其反向延长至,使;(3)找到一点,使点到、、、四点距离和最短.22.如图,,是的中点,,求线段的长.23.已知,点在直线上,如果,点是线段的中点,求线段的长度.下面是马小虎同学解题过程解:根据题意可画出如图:∵点是线段的中点∴∴若你是老师,会判马小虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.24.阅读下面文字,完成题目中的问题:阅读材料:①平面上没有直线时,整个平面是部分;②当平面上画出一条直线时,就把平面分成部分;③当平面上有两条直线时,最多把平面分成部分;④当平面上有三条直线时,最多可以把平面分成部分;…完成下面问题:(1)根据上述事实填写下列表格平面上直线的条数…平面最多被分成几部分…(2)观察上表中平面被分成的部分,他们的差是否有规律?如果有请你说出来.(3)平面被分成的部分也有规律,请你根据(2)中的结论说出“平面被分成几部分“的规律.(4)一块蛋糕要分给位小朋友,你至少要切几刀?25.一只蜘蛛在一个正方体的顶点处,一只蚊子在正方体的顶点处,如图所示,现在蜘蛛想尽快地捉到这只蚊子,那么它所走的最短路线是怎样的,在图上画出来,这样的最短路线有几条?26.直线和同侧两点,在上找一点,使得最小.(尺规作图)27.如图,直线上有,两点,线段.(1)若在线段上有一点,且满足,点为线段的中点,求线段长.(2)若点在直线,且满足,点为线段的中点,求线段长.28.已知、在数轴上分别表示、(1)对照数轴填写下表:、两点的距离(2)若、两点间的距离记为,试问和、有何数量关系?(3)在数轴上标出所有符合条件的整数点,使它到和的距离之和为,并求所有这些整数的和.(4)若点表示的数为,当点在什么位置时,取得的值最小?29.如图,平面上有直线及直线外的三点,,.过点画一条直线,使得;过作直线,并延长至,使得为直线,之间的距离;若直线,表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄经桥过河到村庄的路程最短,试问桥应建在何处?画出示意图.30.如图,数轴上的点和分别表示和,点是线段上一动点,沿以每秒个单位的速度往返运动次,是线段的中点,设点运动时间为秒.线段的长度为________;当时,点所表示的数是________;求动点所表示的数(用含的代数式表示);在运动过程中,若中点为,则的长度是否发生变化?若不变,请求出它的值;若变化,请直接用含的代数式表示的长度.参考答案与试题解析专题13:直线、射线、线段1.【答案】B【解答】解:①射线的端点是,射线的端点是,不是同一条射线,故本小题错误;②两点之间的所有连线中,线段最短,正确;③连接两点的线段的长度叫做这两点的距离,故本小题错误;④欲将一根木条固定在墙上,至少需要个钉子,正确;综上所述,语句正确的有②④共个.故选.【点评】本题考查了两点之间,线段最短,两点确定一条直线,以及射线的表示,两点间的距离的定义,是基础题,熟记概念与性质是解题的关键.2.【答案】A【解答】根据点是线段的中点,点是线段的中点,可知:,∴只要已知即可.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.3.【答案】D【解答】解:、根据两点确定一条直线可知说法错误;、两点可以确定两条直线,故说法错误;、不在同一直线上的三点确定一个圆,故说法错误;、正确;故选.【点评】本题考查了确定圆的条件及确定直线的条件,属于基础题,比较简单.4.【答案】C【解答】解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选:.【点评】本题考查了线段的性质,牢记线段的性质是解题关键.5.【答案】C【解答】解:,两条射线必须有公共端点,故本选项错误;,周角的特点是两条边重合成射线.但不能说成周角是一条射线,故本选项错误;,两条直线相交,只有一个交点,故本选项正确;,只有当点在线段上,且时,点才是线段的中点,故本选项错误.故选.【点评】本题考查直线、线段、射线的知识,属于基础题,注意掌握角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.在只用几何语言表述而没有图形的情况下,要注意考虑图形的不同情形.6.【答案】B【解答】解:、根据平行线的判定,内错角相等,两直线平行,故本选项正确,不符合题意;、例如,,其余角,故本选项错误,符合题意;、例如:,其补角,故本项正确,不符合题意;、根据过两点有且只有一条直线,故本项正确,不符合题意.故选.【点评】本题主要考查了平行线的判定、互余、互补的定义,考查了学生对于基础知识的掌握程度.7.【答案】A【解答】解:∵射线是指直线上的一点和它一旁的部分所组成的图形,没有长度,直线也没有长度,∴①的说法错误;∵点与点的距离是指线段的长度,是一个数,而线段是一个图形,∴②错误;∵角的大小与这个角的两边的长短无关,∴③错误;∵当这两个锐角的度数是和时,,的角是锐角,不是钝角,∴④错误;∴正确的个数是个,故选.【点评】本题考查了学生对角的定义,直线、射线的定义,两点间的距离的定义的理解和运用,主要考查学生的理解能力和辨析能力,题目比较好,但是一道比较容易出错的题目.8.【答案】C【解答】解:根据分析,知这次列车制作的火车票数(种),故选.【点评】本题的关键是要找出由一地到另一地的车票的数是多少.9.【答案】A【解答】解:∵在上,,∴,又∵,∴.故选.【点评】本题考查了两点间的距离,属于基础题,根据结合图形得出是解答本题的关键.10.【答案】C【解答】解:、射线可无限延长,不可测量,所以画一条厘米长的射线是错误的;、直线是无限长的,直线是不可测量长度的,所以画一条厘米长的直线是错误的;、线段有两个端点,有限长度,可以测量,所以画一条厘米长的线段是正确的;、直线、射线都是无限延长,不可测量,不能比较长短,只有线段可以比较长短,所以在线段、射线、直线中直线最长是错误的.故选:.【点评】此题考查直线、射线、线段的意义以及特点:直线两端都可以无限延长的线,两端都没有端点,直线是无限长的,直线是不可测量长度的.射线是直线上的一点和它一旁的部分所组成的图形称为射线或半直线,只有一个端点,另一边可无限延长,射线可无限延长,不可测量.线段是直线上两个点和它们之间的部分叫做线段,有限长度,可以测量,有两个端点.11.【答案】D【解答】解:当点在线段上时,则;当点在线段的延长线上时,则.综合上述情况,线段的长度是.故选.【点评】首先要根据题意,考虑所有可能情况,画出正确图形.再根据中点的概念,进行线段的计算.12.【答案】D【解答】解:∵从北京出发的有种车票,从石家庄出发的有种车票,从郑州出发的有种车票,从武汉出发的有种车票,从长沙出发的有种车票,∴一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制种车票,故选.【点评】本题考查了用数学知识解决实际问题的应用,主要考查学生的理解能力和计算能力.13.【答案】两点确定一条直线【解答】解:两点确定一条直线.【点评】能够运用数学知识解释生活中的现象.14.【答案】过一点有无数条直线,经过两点有且只有一条直线【解答】解:用一个钉子把一根木条钉在木板上,用手拨木条转动说明过一点有无数条直线,用两个钉子就固定了,说明经过两点有且只有一条直线,故答案为:过一点有无数条直线;经过两点有且只有一条直线.【点评】此题主要考查了直线的性质,关键是掌握经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.15.【答案】或【解答】(1)当在线段延长线上时,∵、分别为、的中点,∴=,=;∴=.(2)当在上时,同理可知=,=,∴=;所以=或.【点评】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.16.【答案】条、条或条【解答】解:如果个点,点、、、在同一直线上,那么只能确定一条直线,如图:如果个点中有个点(不妨设点、、)在同一直线上,而第个点,点不在此直线上,那么可以确定条直线,如图:如果个点中,任何个点都不在同一直线上,那么点分别和点、、确定条直线,点分别与点、确定条直线,最后点、确定一条直线,这样共确定条直线,如图:综上所述,过其中个点可以画条、条或条直线.故答案为:条、条或条.【点评】本题考查了直线的定义.在解题过程中,注意分情况讨论,这样才能将各种情况考虑到.17.【答案】【解答】解:设点、、是线段上的三个点,根据题意可得:图中共用条线段∵到与到车票不同.∴从到的车票共有种故答案为.【点评】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.18.【答案】,两点之间线段最短【解答】解:如图所示:蓄水池应该建在点处,运用的数学道理是:两点之间线段最短.故答案为:;两点之间线段最短.【点评】此题主要考查了应用作图与设计,利用两点之间线段最短得出是解题关键.19.【答案】或【解答】解:∵是的中点,是的中点,∴,,①如图,点不在线段上时,,②如图,点在线段上时,,综上所述,线段的长度是或.故答案为:或.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,难点在于要分情况讨论.20.【答案】或【解答】解:设,则,①当含有线段的绳子最长时,,解得:,即绳子的原长是;②当含有线段的绳子最长时,,解得:,即绳子的原长是;故答案为:或.【点评】本题考查了两点间的距离的应用,解此题的关键是能根据题意求出符合条件的两个解.21.【答案】解:(1)过作直线即可;以点为顶点,作过点的射线即可得到射线;连接,即可得到线段.(2)连接,并将其反向延长至,使即可;(3)连接、交于点,则点即为所求点.如图:【解答】解:(1)过作直线即可;以点为顶点,作过点的射线即可得到射线;连接,即可得到线段.(2)连接,并将其反向延长至,使即可;(3)连接、交于点,则点即为所求点.如图:【点评】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.22.【答案】.【解答】解:由于,则,∵是的中点,∴,,则,又∵,则,,,所以,,或.【点评】本题考查求线段及线段中点的知识,解这列题要结合图形根据题目所给的条件,寻找所求与已知线段之间的关系,最后求解.解:不会判马小虎同学满分.分两种情况讨论:第一种情况同马小虎同学的解题过程,可求得;第二种情况,根据题意画图如下:,∵点是线段的中点,∴,∴.【解答】解:不会判马小虎同学满分.分两种情况讨论:第一种情况同马小虎同学的解题过程,可求得;第一种情况,根据题意画图如下:,∵点是线段的中点,∴,∴.【点评】考查了两点间的距离,根据题意画出正确图形,然后根据中点的概念进行求解.利用中点性质转化线段之间的倍分关系是解题的关键.解:(1),,,;(2)有规律,个数上差依次为,,;(3)当有条直线时,平面被分成部分,即部分;(4)根据题意,即是把平面分成部分,则需要刀.【解答】解:(1),,,;(2)有规律,个数上差依次为,,;(3)当有条直线时,平面被分成部分,即部分;(4)根据题意,即是把平面分成部分,则需要刀.【点评】此题能够从特殊推广到一般发现规律.注意.25.【答案】解:所走的最短路线是正方体平面展开图中从点到点的连线.在正方体上,像这样的最短路线一共有六条,如图所示.【解答】解:所走的最短路线是正方体平面展开图中从点到点的连线.在正方体上,像这样的最短路线一共有六条,如图所示.【点评】本题考查了几何体的展开图,两点之间线段最短的应用,主要考查学生的空间想象能力和观察图形的能力.26.【答案】解:以点为圆心,某一长度为半径画弧,交于、两点,以点为圆心,为半径画圆,再以点为圆心,为半径画圆,设两圆的另一个交点为,连接,交于,连接,如图所示,点即为所求作.【解答】解:以点为圆心,某一长度为半径画弧,交于、两点,以点为圆心,为半径画圆,再以点为圆心,为半径画圆,设两圆的另一个交点为,连接,交于,连接,如图所示,点即为所求作.【点评】本题主要考查了轴对称的性质、两点之间线段最短等知识,考查了运用尺规作图的能力.27.【答案】解:(1)如图,∵,,∴,∵为线段的中点,∴;(2)如图,当点位于点的左侧时,∵,,∴,∵为线段的中点,∴;当点位于点的右侧时,如图,∵,,∴,∵为线段的中点,∴;∴的长为或【解答】解:(1)如图,∵,,∴,∵为线段的中点,∴;(2)如图,当点位于点的左侧时,∵,,∴,∵为线段的中点,∴;当点位于点的右侧时,如图,∵,,∴,∵为线段的中点,∴;∴的长为或【点评】本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.28.【答案】解:(1)所填表格如下:、两点的距离间(2)由(1)可得:或;(3)只要在和之间的整数均满足到和的距离之和为,有:、、、、、、、、、、、、、、、、、、、、,所有满足条件的整数之和为:;(4)根据数轴的几何意义可得和之间的任何一点均能使取得的值最小.故可得:点的范围在:时,能满足题意.【解答】解:(1)所填表格如下:、两点的距离间(2)由(1)可得:或;(3)只要在和之间的整数均满足到和的距离之和为,有:、、、、、、、、、、、、、、、、、、、、,所有满足条件的整数之和为:;(4)根据数轴的几何意义可得和之间的任何一点均能使取得的值最小.故可得:点的范围在:时,能满足题意.【点评】此题考查了绝对值函数的最值、数轴及两点间的距离,解答本题的关键是理解绝对值的几何意义,难度一般,不理解的地方可以借助坐标轴演示.29.【答案】解:直线如图所示.线段如图所示.桥应建在图中处.如图所示.【解答】解:直线如图所示.线段如图所示.桥应建在图中处.如图所示.【点评】本题考查作图-应用与设计、平行线的判定等知识,解题的关键是掌握基本作图,灵活应用两点之间线段最短解决最短问题,属于中考常考题型.30.【答案】当时,动点所表示的数是,当时,动点所表示的数是.的长度发生变化,当时,,当时,.【解答】解:∵是线段的中点,∴.故答案为:当时,点所表示的数是.故答案为:.当时,动点所表示的数是,当时,动点所表示的数是.的长度发生变化,当时,,当时,.【点评】此题主要考查了一元一次方程的应用以及数轴上点的位置关系,根据点位置的不同得出等式方程求出是解题关键.。
【七年级】初一数学直线射线线段暑假作业
【七年级】初一数学直线、射线、线段暑假作业北京市东城区普通中学暑假作业初一数学直线、射线、线段练习题1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C是AB的中点,D是BC的中点,A、D两点间的距离是_____cm.5.如图3,在直线I上顺次取A、B、C、D四点,则AC=______+BC=AD-_____,AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a、b相交于一点mB.延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB7.下列四个图中的线段(或直线、射线)能相交的是( )A.(1)B.(2)C.(3)D.(4)8.如果点C在AB上,下列表达式①AC= AB;②AB=2BC;③AC=BC;④AC+BC=AB中, 能表示C是AB中点的有( )A.1个B.2个C.3个D.4个9.如图,从A到B有3条路径,最短的路径是③,理由是( ) A.因为③是直的 B.两点确定一条直线C.两点间距离的定义D.两点之间,线段最短10 两条直线相交有_______个交点,三条直线相交最多有_______个交点,最少有_______个交点.11 探索规律:(1)当有两个确定的点时,可以画出一条线段;(2)当有三个确定的点时,可以画出_______条线段;(3)当有四个确定的点时,可以画出_______条线段;(4)如此计算,当n个确定的点时,可以画出_______条线段12.以下说法中正确的语句共有()①两点确定一条直线;②延长直线AB到C;③延长线段AB到C,使得AC=BC;④反向延长线段BC到D,使BD=BC;⑤线段AB与线段BA表示同一条线段;⑥线段AB是直线AB的一部分A.3 B.4 C.5 D.613.下列语句正确的是( )A.点a在直线l上B.直线ab过点pC.延长直线AB到C D.延长线段AB到C14.下列说法中:①两条直线相交只有一个交点;②两条直线不是一定有一个公共点;③直线AB与直线BA是两条不同直线;④两条不同直线不能有两个或更多个公共点,其中正确的是()A.①②B.①④C.①②④D.②③④15. 过平面上A,B,C三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条16.如图,平面上有四个点A、B、C、D,根据下列语句画图(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)连接E、F交BC于点G;(4)连接AD,并将其反向延长;(5)作射线BC;(6)取一点P,使P在直线AB上又在直线CD上.11.观察图中的3组图形,分别比较线段a、b的长短,再用刻度尺量一下,看看你的结果是否正确.12.如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.13.如图,一个三角形纸片,不用任何工具,你能准确比较线段AB与线段AC的大小吗?试用你的方法分别确定线段AB、AC的中点.14.在一条直线上取两上点A、B,共得几条线段?在一条直线上取三个点A、B、 C,共得几条线段?在一条直线上取A、B、C、D四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?15. 现要在一块空地上种7棵树,使其中的每3棵树在一条直线上,要排成6行.这样的要求,你觉得可否实现,假如可以实现,请你设计一下种树的位置图?答案1.无数;一,只有一2.3条,线段AC,AB,CB3.4,射线BA,射线AB4.65. AB,CD,AD6.D7.A8.C9.D12.道理:经过两点,有且只有一条直线13.提示: 折叠14.2个点时1条线段,3个点时有2+1=3条线段;4个点时有3+2+1=6条线段;n 个点时有(n-1)+(n-2)+……+3+2+1= 条线段. (提示:注意数线段的方法)15.感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ ① ② 暑假作业初一数学 直线、射线、线段练习题
1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.
2.如图1,图中共有______条线段,它们是_________.
3.如图2,图中共有_______条射线,指出其中的两条________.
4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.
5.如图3,在直线I 上顺次取A 、B 、C 、D 四点,则AC=______+BC=AD-_____,AC+BD- BC=________.
6.下列语句准确规范的是( )
A.直线a 、b 相交于一点m
B.延长直线AB
C.反向延长射线AO(O 是端点)
D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )
A.(1)
B.(2)
C.(3)
D.(4)
8.如果点C 在AB 上,下列表达式①AC=1
2
AB;②AB=2BC;③AC=BC;④AC+BC=AB
中, 能表示C 是AB 中点的有( ) A.1个 B.2个 C.3个 D.4个
9.如图,从A 到B 有3条路径,最短的路径是③,理由是
( ) A.因为③是直的 B.两点确定一条直线 C.两点间距离的定义 D.两点之间,线段最短 10 两条直线相交有_______个交点,三条直线相交最多有
3()
2()A 1()
A 1()
C
D 2()D 3()D 4()D
_______个交点,最少有_______个交点.
11 探索规律:
(1)当有两个确定的点时,可以画出一条线段;
(2)当有三个确定的点时,可以画出_______条线段;
(3)当有四个确定的点时,可以画出_______条线段;
(4)如此计算,当n个确定的点时,可以画出_______条线段
12.以下说法中正确的语句共有()
①两点确定一条直线;②延长直线AB到C;③延长线段AB到C,使得AC=BC;
④反向延长线段BC到D,使BD=BC;⑤线段AB与线段BA表示同一条线段;
⑥线段AB是直线AB的一部分
A.3 B.4 C.5 D.6
13.下列语句正确的是( )
A.点a在直线l上B.直线ab过点p
C.延长直线AB到C D.延长线段AB到C
14.下列说法中:①两条直线相交只有一个交点;②两条直线不是一定有一个公共点;③直线AB与直线BA是两条不同直线;④两条不同直线不能有两个或更多个公共点,其中正确的是()
A.①②B.①④C.①②④D.②③④
15. 过平面上A,B,C三点中的任意两点作直线,可作( )
A.1条B.3条C.1条或3条D.无数条
16.如图,平面上有四个点A、B、C、D,根据下列语句画图
(1)画直线AB、CD交于E点;
(2)画线段AC、BD交于点F;
(3)连接E、F交BC于点G;
(4)连接AD,并将其反向延长;
(5)作射线BC;
(6)取一点P,使P在直线AB上
又在直线CD上.
B A
11.观察图中的3组图形,分别比
较线段a、b的长短,再用刻度
尺量一下,看看你的结果是否
正确.
12.如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,
且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.
13.如图,一个三角形纸片,不用任何工具,你能准确比较线段AB与线段AC的
大小吗?试用你的方法分别确定线段AB、AC的中点.
A
B
14.在一条直线上取两上点A、B,共得几条线段?在一条直线上取三个点A、B、
C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?
15. 现要在一块空地上种7棵树,使其中的每3棵树在一条直线上,要排成6行.这样的要求,你觉得可否实现,假如可以实现,请你设计一下种树的位置图?
C B A C
答案
1.无数;一,只有一
2.3条,线段AC,AB,CB
3.4,射线BA,射线AB
4.6
5. AB,CD,AD
6.D
7.A
8.C
9.D
12.道理:经过两点,有且只有一条直线 13.提示: 折叠
14.2个点时1条线段,
3个点时有2+1=3条线段; 4个点时有3+2+1=6条线段;
n 个点时有(n-1)+(n-2)+……+3+2+1=(1)
2
n n 条线段.
(提示:注意数线段的方法) 15.
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】。