1章 数字电路基本概念(1)介绍
数字电路与逻辑设计教程-第1章
1.2 数制和码制
【例1-4】求十进制数(26)10所对应的二进制数。
因此(26)10=(11010)2。
上一页 下一页 返回
1.2 数制和码制
【例1-5】求十进制数(357 ) 10所对应的八进制数。 解
因此(357 )10=(545)8。
上一页 下一页 返回
1.2 数制和码制
上一节介绍了数字信号的两种取值,实际生活中的数字表示 大多采用进位计数制。
下一页 返回
1.2 数制和码制
1.2.1 进位计数制与常用计数制
用数字量表示物理量大小时,仅用一位数码往往不够用,经 常需要用进位计数的方法组成多位数码表示。把多位数码中 每一位的构成方法以及从低位到高位的进位规则称为计数制 。在生产实践中除了人们最熟悉的十进制以外,还大量使用 各种不同的进位计数制,如八进制、十六进制等。在数字设 备中,机器只认识二进制代码,由于二进制代码书写长,所 以在数字设备中又常采用八进制代码或十六进制代码。
上一页 下一页 返回
1.2 数制和码制
任何进制数的值都可以表示为该进制数中各位数字符号值与 相应权乘积的累加和形式,该形式称为按权展开的多项式之 和。一个J进制数(N为按权展开的多项式的普遍形式可表示为 :
式中,K为任意进制数中第i位的系数,可以为0~ (J-1)数码中 的任何一个;i是数字符号所处位置的序号;m和n为整数,m为 小数部分位数(取负整数),n为整数部分位数(取正整数);.J为 进位基数,Ji为第i位的权值。例如,十进制数(123.75 )10表示 为:
第1章 微型计算机系统概述
1.1 数字电路概述 1.2 数制和码制 1.3 逻辑代数基础 本章小结
1.1 数字电路概述
数字电路基本概念
数字电路基本概念数字电路是信息处理领域中的重要组成部分,是由数字元件(如逻辑门和触发器)组成的电路。
它以二进制信号(0和1)作为基本单位,通过逻辑运算和时序控制来处理和传输信息。
本文将介绍数字电路的基本概念,包括逻辑门、逻辑运算、布尔代数、二进制系统和数字信号。
一、逻辑门逻辑门是数字电路的基本元件,用于实现各种逻辑运算。
常见的逻辑门包括与门、或门、非门、与非门、或非门和异或门等。
与门(AND)输出只有当所有输入都为1时才为1,或门(OR)输出只要有一个输入为1就为1,非门(NOT)输出与输入相反。
与非门、或非门和异或门是与门、或门和非门的组合形式,具有更复杂的逻辑功能。
二、逻辑运算逻辑运算是数字电路的基础操作,用于实现逻辑功能。
常见的逻辑运算包括与运算、或运算、非运算、异或运算、与非运算和或非运算等。
与运算将多个输入的状态全都为1时,输出也为1;或运算将多个输入的状态只要有一个为1时,输出即为1;非运算将输入的状态进行反转;异或运算将多个输入的状态不全相同时,输出为1。
三、布尔代数布尔代数是数字电路设计和分析的基础,是一种用于描述逻辑运算的代数系统。
它由乔治·布尔于19世纪中叶提出,将逻辑运算用代数符号和公式表示。
布尔代数包括布尔常数、布尔变量、逻辑运算符和逻辑表达式等。
通过布尔代数可以推导出逻辑电路的输出与输入之间的关系,从而实现数字电路的设计和优化。
四、二进制系统二进制系统是数字电路中常用的数值表示方式,其基础是以2为底的数制系统。
二进制数由0和1组成,每一位代表一个2的幂次方。
二进制数可以表示逻辑状态,如0表示低电平、1表示高电平。
在数字电路中,二进制数用于表示数字信息,如计数器、存储器和寄存器等。
五、数字信号数字信号是数字电路中的信息载体,用于表示和传输数字信息。
它由离散的时间和离散的幅度组成,通过不同的电平表示不同的逻辑状态。
数字信号可以是脉冲信号、方波信号、正弦波信号等。
在数字电路中,数字信号的传输和处理需要考虑信号的稳定性、延迟和噪声等因素。
数字电路(第一章逻辑代数基础)
东南大学计算机系
电话: 025-3792757 Email:qqliu@
刘其奇
1
第一章 逻辑代数基础
1-1 概述
1-1-1 数字量和模拟量
自然界中物理量分为两大类:
数字量:它们的变化在时间上和数量上都是离散的; 在时间上不连续。
模拟量:它们的变化在时间上或数值上是连续的。 数字信号:表示数字量的信号,是在两个稳定状态之 间作阶跃式变化的信号。 脉冲:是一个突然变化的电压或电流信号。
11
有权码
常用BCD码 十进制数
0 1 2 3 4 5 6 7 8 9
无权码
8421BCD
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001
5421BCD
0000 0001 0010 0011 0100 1000 1001 1010 1011 1100
22
2)变量常量关系定律
0、 1律:A • 1 = A; (2 )
A • 0 = 0;(1)
A + 1 = 1; (11) A + 0 = A(12) ;
互补律:A • A = 0; ) A + A = 1;(14) (4
3)逻辑代数的特殊定律
重叠律:A • A = A; ) A + A = A; (13) (3
Y = A + A BC( A + BC + D) + BC = A + ( A + BC)( A + BC + D) + BC = A + A ( A + BC + D) + BC( A + BC + D) + BC = A + BC
数字电子技术基础知识点总结
时序逻辑电路分析的一般步骤 :
1. 观察电路的结构,确定电路是同步时序逻辑电路还是 异步时序逻辑电路,是米里型电路还是莫尔型电路。
2. 根据给定的时序电路图,写出下列各逻辑方程式:
(1) 写出各触发器的时钟方程。 (2) 写出时序逻辑电路的输出方程。 (3) 写出各触发器的驱动方程。 (4) 将各触发器的驱动方程代入其特性方程,求得各触发器的次态方 程.
Rb
1
20kΩ
+VCC( +12V ) RC 1kΩ
3
VO
β=50
2
(a)
(b)
(c)
R b1
1
15kΩ
R b2 51kΩ
+VCC (+12V ) RC 1kΩ
V
3
O
β=50
2
5V
R b1
1
15kΩ R b2
51kΩ
+VCC (+15V ) RC 2kΩ
V
3
O
β=50
2
-3V (d)
-3V (e)
基本定律和恒等式
第四章 触发器
基本要求 1.熟练掌握各类触发器的逻辑功能(功能表、特性方 程、状态转换图、驱动表)。 2. 熟练掌握各种不同结构的触发器的触发特点,并能 够熟练画出工作波形。 3.熟悉触发器的主要参数。 4.熟悉各类触发器间的相互转换。 5.了解各类触发器的结构和工作原理。
1 写出图示各电路的状态方程。
5. 根据逻辑函数 表达式画出逻辑 电路图。
第三章 组合逻辑模块及其应用
基本要求 1.熟练掌握译码器、编码器、数据选择器、数值比 较器的逻辑功能及常用中规模集成电路的应用。 2.熟练掌握半加器、全加器的逻辑功能,设计方法。 3.正确理解以下基本概念:
模拟电子技术第1章 数字电路基础
于其进位规则为“逢十六进一”,故称为十六进制,常用大写字母“H”表示。十六进制按
权展开式为:
n1
(N)16 =
ai 16i
im
式中,ai 为十六进制数的任意一个数码;n 表示整数部分数位,m 表示小数部分数位;下标
16(或 H)表示十六进制数。例如
(5D.6A)H =5×161+13×160+6×16-1+10×16-2
(2)二进制数与十六进制数的相互转换 由表 1-1 可知制数与十六进制数之间
进行转换时通常采用分组等值法。 具体操作以小数点为基准,向左或者向右将二进制数按 4 位一组进行分组(当不足 4 位时,
按整数部分从高位、小数部分从低位的原则予以补 0 处理),然后用对应十六进制数代替各组的 二进制数,即可得等值的十六进制数。反之,将十六进制数的每个数码用相应的 4 位二进制数代 替,并去除高、低位无效的 0,所得结果即为等值二进制数。
1.2.2 编码
利用二进制数表示图形、文字、符号和数字等信息的过程称为编码(Encode),编码的结果 称为代码(Code)。例如,发送邮件时收/发信人的 E-mail、因特网上计算机主机的 IP 地址等, 就是生活中常见的编码实例。
进制数。例如:
(110.01)B =1×22+1×21+0×20+0×2-1+1×2-2
【十六进制】十六进制(Hexadecimal System)是数字电路中另一种常用数制,包含 0~9、A、B、
C、D、E、F 十六个数码,其中 A、B、C、D、E、F 依次表示十进制数 10~15,所以基数为 16。由
(3)十进制数转换为二进制数 十进制数转换为二进制数需要将整数部分和小数部分分别进行转换。通常整数部分采用除 2 反序取余法进行转换,小数部分采用乘 2 顺序取整法进行转换。 具体操作:将给定的十进制整数部分依次除以 2,按反序的原则取余数即为等值二进制数; 十进制小数部分依次乘以 2,按顺序的原则取整数即为等值二进制数。当小数部分不能精确转换 为二进制小数时,可根据精度要求,保留几位小数。 此外,利用二进制数作桥梁,可以方便地将十进制数转换为十六进制数。
数字电路知识点总结(精华版)
数字电路知识点总结(精华版)数字电路知识点总结(精华版)第一章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与十六进制数的转换二、基本逻辑门电路第二章逻辑代数逻辑函数的表示方法有:真值表、函数表达式、卡诺图、逻辑图和波形图等。
一、逻辑代数的基本公式和常用公式1.常量与变量的关系A + 0 = A,A × 1 = AA + 1 = 1,A × 0 = 02.与普通代数相运算规律a。
交换律:A + B = B + A,A × B = B × Ab。
结合律:(A + B) + C = A + (B + C),(A × B) × C = A ×(B × C)c。
分配律:A × (B + C) = A × B + A × C,A + B × C = (A + B) × (A + C)3.逻辑函数的特殊规律a。
同一律:A + A = Ab。
摩根定律:A + B = A × B,A × B = A + Bc。
关于否定的性质:A = A'二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则。
例如:A × B ⊕ C + A × B ⊕ C,可令 L = B ⊕ C,则上式变成 A × L + A × L = A ⊕ L = A ⊕ B ⊕ C。
三、逻辑函数的化简——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与或表达式。
1.合并项法利用 A + A' = 1 或 A × A' = 0,将二项合并为一项,合并时可消去一个变量。
第1章__电路的基本概念和分析方法--第1讲
第1章 电路的基本概念和基本定律 章
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 电路和电路模型 电路的基本物理量 电阻元件和电源 基尔霍夫定律 支路电流法 等效变换法 节点电压法 网络定理分析法 应用——惠斯登电桥测电阻 应用 惠斯登电桥测电阻
本章内容提要
重点: 重点:
电子技术基础
参考教材:计算机电路基础(第二版) 参考教材:计算机电路基础(第二版) 张虹主编,电子工业出版社) (张虹主编,电子工业出版社)
主讲: 主讲:宁波工程学院电信学院包蕾
(QQ:178083516 ) 622774
1. 基本电路知识 2. 模拟电子电路知识 3. 数字电路知识
24% 26% 50%
(1)电路模型的概念; )电路模型的概念; (2)电压、电流的参考方向; )电压、电流的参考方向; (3)电路的各种分析方法; )电路的各种分析方法;
难点: 难点:
(1)关联参考方向的判断; )关联参考方向的判断; (2)灵活、熟练选用最佳分析电路的方法。 )灵
我们要学习最现代的技术,必须掌握最基 我们要学习最现代的技术,必须掌握最基 最现代的技术 的知识,否则的话,我们很难掌握最先进 最先进的 本的知识,否则的话,我们很难掌握最先进的 技术。特别是现今社会, 技术。特别是现今社会,我们无时无刻地与电 打交道,电能是最主要的能源, 打交道,电能是最主要的能源,如果不掌握有 关电路和器件的特性, 关电路和器件的特性,我们根本无法很好的应 用它, 用它,也无法开发出更多适合我们要求的新装 学习计算机硬件的基础就是电路, 置。学习计算机硬件的基础就是电路,随着计 算机技术飞速发展, 算机技术飞速发展,电子技术的应用越来越广 而这方面的人才越来越缺乏。 泛,而这方面的人才越来越缺乏。
数字电路第1章数字电路概述
导线连接起来的电路;
集成电路是将元器件及导线均采用半导体工艺 集成制作在同一硅片上,并封装于一个壳体内的 电路。一块芯片上集成的元器件数量的多少,称 为集成电路的集成度。
小规模集成电路(SSI, 数十器件/片) 中规模集成电路(MSI, 数百器件/片)
JHR
第1章 数字电子技术概述
一、本章主要介绍内容
1.数字电子技术与模拟电子技术的区别,数字 信号和数字电路的基本概念。
2.半导体器件(二极管、三极管、MOS管)在 数字电路中主要工作于开关状态,重点介绍它们的 开关运用特性。 3.数字系统中信息可分为数值和文字符号两大 类。数值的计数体制常用的有二进制、十进制、十 六进制,重点介绍它们的
方法二:按位、权值进行转换。 在十进制数中,小数点左侧第一位称为个位,其 权值为100,第二位称为十位,其权值为101,依
此类推。
例如:十进制数3954代表:
3 9 5 4
(3103)+(9102)+(5101)+(4100) (31000)+(9100)+(510)+(41) 3000 + 900 + 50 + 4=3954
3.八进制数
数码:0、1、2、3、4、5、6、7、八个数码。 基数:8 计数规律: 逢八进一、借一当八
n 1
一般表达式: N 8
im
K i 8i
如 .7 ) 8 3 8 2 2 81 5 8 0 7 8 1 (325 ( 213 .875 )10
(N)10=(b2b1b0)2
则
(b2b1b0)2 =(b2×22+b1×21+b0×20)10
此式说明 (N)10÷2=b2×21+b1……余数b0
数字电路基本概念的理解
数字电路基本概念的理解1)数字电路中工作的信号是数字信号,这种信号在时间上和数值上都是离散的。
在二进制系统中,数码只有1和0两种可能,反映到电路上就是高电平和低电平或开关通断、电流有无等。
而在模拟电路中工作的信号是模拟信号,这种信号在时间上和数值上都是连续变化的。
时间上连续是指任意时刻有一个相对的值。
数值上连续是指可以是在肯定范围内的任意值。
2)数字电路是处理和传输数字信号的电路。
三极管工作在开关状态,即饱和区或截止区。
放大区只是一种过渡状态。
抗干扰力量强、精度高。
而模拟电路是处理和传输模拟信号的电路。
三极管工作在线性放大区,即放大状态。
3)数字电路讨论的主要问题是电路的输入和输出状态之间的规律关系,即电路的规律功能。
具有"规律思维"力量。
数字电路能对输入的数字信号进行各种算术运算和规律运算、规律推断,故又称为数字规律电路。
而模拟电路讨论的主要问题是怎样不失真地放大模拟信号。
4)数字电路中,分析和设计数字电路的重要工具是规律代数,描述电路规律功能的主要方法是真值表、规律函数表达式、状态转换图、波形图和和卡诺图。
常常遇到的问题则是怎样利用它们对已知电路进行规律分析,依据实际要求进行规律设计。
而在模拟电路中,常常利用图解法和微变等效电路法等对电路进行静态和动态的定量分析,以确定放大倍数是多少、波形是否失真、怎样改善电路的放大性能等问题。
5)从电路结构上看,模拟电路的主要单元电路是放大器。
而数字电路的主要单元电路则是规律门和触发器。
虽然适应各种需要的数字电路千变万化,但是分析和设计的方法基本上是一样的。
只要我们对这些单元电路的组成、工作原理和性能把握得比较好,而且又学会了规律分析和规律设计的基本方法,熟识了若干典型电路,那就可以说初步具备了分析和解决一般数字电路问题的力量。
数字电路基础(全部课件)
则该数的权展开式为: (M)2 = an-1×Nn-1 + an-2 ×Nn-2 + … +a1×N1+ a0 ×N0
+a-1 ×N-1+a-2 ×N-2+… +a-m×N-m ③由权展开式很容易将一个N进制数转换为十进制数。
事物往往存在两种对立的状态,在逻辑代数中可以抽 象地表示为 0 和 1 ,称为逻辑0状态和逻辑1状态。
逻辑代数中的变量称为逻辑变量,用大写字母表示。 逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为 逻辑常量,并不表示数量的大小,而是表示两种对立的逻 辑状态。
1.3.1 基本逻辑运算
1、与逻辑(与运算)
2、二进制
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2
-2 =(5.25)10
各数位的权是2的幂
二进制数只有0和1两个数码,它的每一位都可以用电子元 件来实现,且运算规则简单,相应的运算电路也容易实现。
(3)对组成数字电路的元器件的精度要求不高, 只要在工作时能够可靠地区分0和1两种状态即可。
2、数字电路的分类
(1)按集成度分类:数字电路可分为小规模(SSI,每 片数十器件)、中规模(MSI,每片数百器件)、大规模 (LSI,每片数千器件)和超大规模(VLSI,每片器件数 目大于1万)数字集成电路。集成电路从应用的角度又可 分为通用型和专用型两大类型。
A
B
B
E
Y
E
Y
A接通、B断开,灯亮。
A、B都接通,灯亮。
数字电路基本概念介绍
数字电路基本概念介绍数字电路是在现代电子技术领域中极为重要的一部分,它是基于数字信号进行运算和处理的电路系统。
本文将介绍数字电路的基本概念,包括数字信号、逻辑门、布尔代数、编码和译码等方面的内容。
一、数字信号数字信号是一种离散的信号,它的取值只有两种可能,通常表示为0和1。
数字信号可以通过不同的方式表示,例如电平表示、脉冲表示、磁性表示等。
在数字电路中,常用的是电平表示,即高电平表示1,低电平表示0。
数字信号的离散特性使得数字电路能够进行高效的逻辑运算和处理。
二、逻辑门逻辑门是数字电路的基本组成单元,它可以根据输入信号的不同组合产生不同的输出信号。
常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
逻辑门可以通过逻辑运算符(与、或、非、异或等)表示,它们之间可以通过连接和组合构成更复杂的数字电路,实现各种不同的功能。
三、布尔代数布尔代数是一种用于描述和分析逻辑运算的数学工具,它基于两个值的逻辑运算,即真(1)和假(0)。
布尔代数中定义了一系列逻辑运算规则和定理,用于推导和简化逻辑表达式。
在数字电路设计中,布尔代数是必不可少的工具,它可以帮助设计者分析和优化电路结构,提高电路的性能和可靠性。
四、编码和译码编码和译码是数字电路中常用的技术,用于将信息从一种形式转换为另一种形式。
编码通常是将多个输入信号转化为一个压缩的输出信号,而译码则是将压缩的信号还原为多个输出信号。
常见的编码和译码方式有BCD码、格雷码、ASCII码等,它们在数字电路中广泛应用于数据传输和处理。
总结:数字电路是基于数字信号进行运算和处理的电路系统,它的基本概念包括数字信号、逻辑门、布尔代数、编码和译码等方面。
数字电路在现代电子技术中扮演着重要的角色,广泛应用于计算机、通信、控制等领域。
掌握数字电路的基本概念对于理解和设计数字电路系统至关重要,希望本文能够对读者有所帮助。
数字电路基本概念和分类
数字电路基本概念和分类数字电路是计算机科学和电子工程领域中的重要概念之一。
它是由逻辑门组成的电路,能够进行数字信号的处理和转换。
本文将介绍数字电路的基本概念和分类,并探讨其在现代科技中的重要性。
一、数字电路的基本概念数字电路是一种基于二进制逻辑的电路系统。
它使用0和1表示逻辑状态的开关,并在开关之间传递电信号来实现逻辑功能。
数字电路的基本元件是逻辑门,包括与门、或门、非门、异或门等。
这些逻辑门可以组合成复杂的电路,并通过电信号的传递来实现各种功能。
数字电路最基本的特征是离散性和可编程性。
与模拟电路相比,数字电路的运算对象是离散的信号,可以经过编程来改变其功能和行为。
这使得数字电路在信息处理和存储方面具有广泛的应用。
二、数字电路的分类根据不同的功能和应用,数字电路可以分为多种类型。
以下是几种常见的数字电路分类:1. 组合逻辑电路:组合逻辑电路是由多个逻辑门组成的电路,根据输入信号的组合来决定输出信号的电路。
组合逻辑电路没有存储器件,只依赖输入信号的状态进行计算,可以实现布尔代数的逻辑运算。
2. 时序逻辑电路:时序逻辑电路是在组合逻辑电路的基础上引入了存储器件,如触发器和寄存器。
它不仅依赖输入信号的组合,还依赖过去的状态和时钟信号来计算输出信号。
时序逻辑电路常用于存储和处理时序信息,如时钟频率的分频和同步信号的生成。
3. 存储器:存储器是一种特殊的数字电路,用于存储和读取信息。
它具有存储和检索数据的功能,是计算机系统的核心组成部分。
存储器按照不同的存取方式和工作原理,可以分为RAM(随机存取存储器)和ROM(只读存储器)等类型。
4. 程序逻辑控制器(PLC):PLC是一种广泛应用于工业自动化控制系统的数字电路。
它通过组合逻辑和时序逻辑来控制和管理各种生产设备。
PLC具有高度的可编程性和灵活性,可以实现复杂的控制逻辑和协调多个设备的工作。
三、数字电路在现代科技中的应用数字电路广泛应用于计算机科学、电子通信、自动化控制等领域。
数字电子技术简明教程教案
数字电子技术简明教程教案第一章:数字电路基础1.1 数字电路概述介绍数字电路的定义、特点和应用领域解释数字电路与模拟电路的区别1.2 逻辑代数介绍逻辑代数的基本概念和运算规则演绎逻辑表达式和逻辑函数1.3 逻辑门电路介绍常见的逻辑门电路,如与门、或门、非门等分析逻辑门电路的truth table 和逻辑功能第二章:组合逻辑电路2.1 组合逻辑电路概述介绍组合逻辑电路的定义和特点解释组合逻辑电路的输入输出关系2.2 常用组合逻辑电路介绍常用的组合逻辑电路,如编码器、译码器、多路选择器等分析组合逻辑电路的真值表和逻辑功能2.3 组合逻辑电路的设计方法介绍组合逻辑电路的设计方法和步骤通过实例讲解组合逻辑电路的设计过程第三章:时序逻辑电路3.1 时序逻辑电路概述介绍时序逻辑电路的定义和特点解释时序逻辑电路的输入输出关系3.2 常用时序逻辑电路介绍常用的时序逻辑电路,如触发器、计数器、寄存器等分析时序逻辑电路的真值表和逻辑功能3.3 时序逻辑电路的设计方法介绍时序逻辑电路的设计方法和步骤通过实例讲解时序逻辑电路的设计过程第四章:数字电路仿真与实验4.1 数字电路仿真概述介绍数字电路仿真的定义和意义解释数字电路仿真的原理和方法4.2 数字电路仿真软件的使用介绍常见的数字电路仿真软件,如Multisim、Proteus等讲解数字电路仿真软件的使用方法和技巧4.3 数字电路实验介绍数字电路实验的目的和意义讲解数字电路实验的步骤和注意事项第五章:数字电路应用案例分析5.1 数字电路在通信领域的应用介绍数字电路在通信领域的应用案例,如数字调制器、解调器等分析数字电路在通信领域的作用和优势5.2 数字电路在计算机领域的应用介绍数字电路在计算机领域的应用案例,如微处理器、存储器等分析数字电路在计算机领域的功能和性能5.3 数字电路在其他领域的应用介绍数字电路在其他领域的应用案例,如数字控制系统、数字信号处理器等分析数字电路在其他领域的应用前景和挑战第六章:数字电路设计方法6.1 数字电路设计概述介绍数字电路设计的目标和流程解释数字电路设计的两种方法:自顶向下和自底向上6.2 数字电路设计工具介绍数字电路设计中常用的工具和技术,如硬件描述语言(HDL)讲解如何使用这些工具进行数字电路的设计和仿真6.3 数字电路设计实例通过具体的实例讲解数字电路设计的过程和方法分析设计实例中的关键步骤和注意事项第七章:数字电路的测试与维护7.1 数字电路测试概述介绍数字电路测试的目的和方法解释数字电路测试的基本概念,如功能测试和结构测试7.2 数字电路测试技术介绍常用的数字电路测试技术,如静态测试和动态测试讲解如何选择合适的测试技术和方法7.3 数字电路的维护与故障排除介绍数字电路维护的目标和内容讲解数字电路故障排除的步骤和方法第八章:数字电路与系统的优化8.1 数字电路与系统优化的目标介绍数字电路与系统优化的目的和重要性解释数字电路与系统优化的基本概念8.2 数字电路与系统优化的方法介绍常用的数字电路与系统优化方法,如门级优化和逻辑优化讲解如何运用这些方法进行数字电路与系统的优化8.3 数字电路与系统优化的实例通过具体的实例讲解数字电路与系统优化过程和方法分析优化实例中的关键步骤和优化效果第九章:数字集成电路9.1 数字集成电路概述介绍数字集成电路的定义和分类解释数字集成电路的特点和应用领域9.2 数字集成电路的制造工艺介绍数字集成电路的制造工艺,如CMOS和TTL工艺讲解不同制造工艺的特点和应用场景9.3 数字集成电路的应用与选择介绍数字集成电路的应用领域和选择原则讲解如何根据实际需求选择合适的数字集成电路第十章:数字电子技术的综合应用10.1 数字电子技术在通信领域的应用介绍数字电子技术在通信领域的综合应用案例,如数字电话和无线通信系统分析数字电子技术在通信领域的作用和优势10.2 数字电子技术在计算机领域的应用介绍数字电子技术在计算机领域的综合应用案例,如个人计算机和服务器分析数字电子技术在计算机领域的功能和性能10.3 数字电子技术在其他领域的应用介绍数字电子技术在其他领域的综合应用案例,如数字医疗设备和智能家居系统分析数字电子技术在其他领域的应用前景和挑战重点和难点解析1. 数字电路基础:理解逻辑代数和逻辑门电路的基本概念是学习数字电子技术的基础。
第1章 数字电路基础知识
1.3 逻辑函数及其化简
1.3.1 1.3.2 1.3.3 1.3.4 1.3.5
逻辑代数基础 常用的组合逻辑运算 逻辑函数的表示方法 逻辑代数 逻辑函数的化简
1.3.1 逻辑代数基础
1.与运算(逻辑乘)
与逻辑运算的定义为一个事件的发生 如果具有多个条件,必须同时满足全部条 件,此事件才会发生。 以三变量为例,布尔表达式为: F=A· B· C
2.逻辑函数表式
逻辑函数表达式是描述输入逻辑变量 与输出逻辑变量之间逻辑函数关系的代数 式,是一种用与、或、非等逻辑运算复合 组合起来的表达式。逻辑函数的表达式不 是唯一的,可以有多种形式,并且能互相 转换。 逻辑函数的特点是:简洁、抽象,便 于简化和转换。
3.逻辑图
将逻辑函数表达式中各变量间的与、 或、非等运算关系用相应的逻辑符号表示 出来,就是逻辑函数的逻辑图。 逻辑图表示法的优点是:逻辑图与数 字电路的器件有明显的对应关系,便于制 作实际电路。缺点是不能直接进行逻辑推 演和变换。
1.1.4 数字电路的特点
数字电路主要具有以下一些优点: (1)基本单元电路简单,电路成本低。 (2)抗干扰能力强。 (3)通用性强。 (4)容易实现算术和逻辑运算功能。 (5)数据便于存储、携带和交换。 (6)系统故障诊断容易。 (7)保密性好。
1.2 数制与编码
1.2.1 常用的几种进位计数制 1.2.2 数制转换 1.2.3 编码
3.逻辑代数三项规则
逻辑代数除基本定律外,还有三项重 要规则。 (1)代入规则 对于任一个含有变量A的逻辑等式, 可以将等式两边的所有变量A用同一个逻 辑函数替代,替代后等式仍然成立。这个 规则称为代入规则。 (2)反演规则 (3)对偶规则
4.逻辑代数常用的公式
1.1数字电路的基本知识
模拟电路:传递、处理模拟信号的电路。
双极型电路:TTL、ECL
单级型电路:NMOS、PMOS、CMOS
3、按电路逻辑功能分
组合逻辑电路
时序逻辑电路
1.1.4矩形脉冲的主要参数
1.脉冲参数
(1)脉冲的幅度:脉冲的底部到脉冲的顶部之间的变化量称为脉冲的幅度,用Um表示。
(2)脉冲的宽度:从脉冲出现到脉冲消失所用的时间称为脉冲的宽度,用t w表示。
(3)脉冲的重复周期:在重复的周期信号中两个相邻脉冲对应点之间的时间间隔称为脉冲的重复周期,用T表示。
实际的矩形脉冲往往与理想的矩形脉冲不同,即脉冲的前沿与脉冲的后沿都不是陡直的,如图1-4所示。
实际的矩形脉冲可以用如下的五个参数来描述。
(1)脉冲的幅度Um:脉冲的底部到脉冲的顶部之间的变化量。
(2)脉冲的宽度t w:从脉冲前沿的0.5Um到脉冲后沿的0.5Um两点之间的时间间隔称为脉冲的宽度,又可以称为脉冲的持续时间。
(3)脉冲的重复周期T:在重复的周期信号中两个相邻脉冲对应点之间的时间间隔称为脉冲的重复周期。
(4)脉冲的上升时间t r :指脉冲的上升沿从0.1Um上升到0.9Um所用的时间。
(5)脉冲的下降时间t f :指脉冲的下降沿从0.9Um下降到0.1Um所用的时间。
2.脉冲信号分类
若脉冲信号跃变后的值比初始值高称正脉冲
若脉冲信号跃变后的值比初始值低称负脉冲。
数字电路复习资料
数字电路复习资料数字电路复习资料1第一部分:基本要求和基本概念第一章半导体器件的基本知识一,基本建议1,了解半导体pn结的形成及特性,了解半导体二极管的开关特性及钳位作用。
2,介绍半导体三极管的输出特性和输出特性,熟识半导体三极管共发射极电路的三个工作区的条件及特点,掌控三极管开关电路分析的基本方法。
3,了解绝缘栅场效应管(mos)的结构、符号、工作原理及特性。
二,基本概念1,按导电率为可以把材料分成导体、绝缘体和半导体。
2,半导体中存有空穴和自由电子两种载流子。
3,清澈半导体称作本征半导体。
4,p型半导体中的多数载流子是空穴;少数载流子是自由电子。
5,n型半导体中的多数载流子是自由电子;少数载流子是空穴。
6,pn结是一个二极管,它具有单项导电性。
7,二极管电容由结电容和扩散电容构成。
8,二极管的截至条件就是vd<0.5v,导通条件就是vd≥0.7v。
9,三极管的截止条件是vbe<0.5v,截止的特点是ib=ic≈0;饱和条件是ib≥(ec-vces)/(βrc),饱和的特点是vbe≈0.7v,vce=vces≤0.3v。
第二章门电路一,基本要求1,熟识分立元件“与”“或”“非”“与非”“或非”门电路的工作原理、逻辑符号和功能。
2,熟悉ttl集成与非门的结构、工作原理及外部特性,熟悉oc门三态门和异或门的功能及主要用途,掌握各种门电路输出波形的画法。
2,熟识pmos门nmos门和cmos门的结构和工作原理,熟识cmos门的外部特性及主要特点,掌控mos门电路的逻辑功能的分析方法。
二,基本概念1,门是实现一些基本逻辑关系的电路。
2,三种基本逻辑就是与、或、非。
3,与门就是同时实现与逻辑关系的电路;或门就是同时实现或逻辑关系的电路;非门就是同时实现非逻辑关系的电路。
4,按集成度可以把集成电路分为小规模(ssi)中规模(msi)大规模(lsi)和超大规模(vlsi)集成电路。
5,仅有一种载流子参予导电的器件叫做单极型器件;存有两种载流子参予导电的器件叫做双极型器件。
数字电子技术基础(第五版)第一章
6ms q 100% 37.5% 16ms
EXIT
绪论
(3)实际脉冲波形及主要参数 非理想脉冲波形
EXIT
绪论
几个主要参数:
tw
Um
tr
tf
T 脉 冲 幅 度 Um:脉冲电压变化的最大值 脉冲上升时间 tr:脉冲波形从 0.1Um 上升到 0.9Um 所需的时间 脉冲下降时间 tf:脉冲波形从 0.9Um 下降到 0.1Um 所需的时间 脉 冲 宽 度 tw :脉冲上升沿 0.5Um 到下降沿 0.5Um 所需的时间 脉 冲 周 期 T :周期脉冲中相邻两个波形重复出现所需的时间 脉 冲 频 率 f : 1 秒内脉冲出现的次数 f = 1/T 占 空 比 q : 脉冲宽度 tw 与脉冲周期 T 的比值 q = tw/T EXIT
(1)易于电路表达---0、1两个值,可以用管子的导 通或截 止,灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA 可变电阻区
VCC
vO
iC VCC Rc
Rb vI
Rc vo
vV
I
饱和区
O
截止区
GS4 V GS3 V GS2 V GS1
vCE VCC
v DS / V
(2)二进制数字装置所用元件少,电路简单、可靠 。 (3)基本运算规则简单, 运算操作方便。 EXIT
绪论
第1章
概 述
绪
论
数制与码制 本章小结
EXIT
绪论
1.1 数字电路与数字信号
主要要求:
了解数字电路的特点和分类。 了解脉冲波形的主要参数。
EXIT
绪论
知 识 分 布 网 络
什么是数字 信号 数字电 路基本 概念 什么是数字 电路
数字电路名词解释(一)
数字电路名词解释(一)数字电路简介1. 什么是数字电路?数字电路是一种电子电路,用于处理数字信号。
数字信号是离散的、非连续的信号,具有两个稳定状态:高电平(表示1)和低电平(表示0)。
数字电路通过逻辑门和触发器等组件,对数字信号进行处理、操作和传输。
2. 相关名词:逻辑门(Logic Gates)逻辑门是数字电路中的基本构建模块,用于实现逻辑运算。
常见的逻辑门包括门(AND)、非门(NOT)、或门(OR)、与门(NAND)、异或门(XOR)等。
每个逻辑门都有特定的真值表,根据输入信号的不同组合,输出相应的逻辑结果。
例:AND门:只有当所有的输入信号都为高电平时,输出信号才为高电平;否则输出信号为低电平。
触发器(Flip-Flop)触发器是一种建立在逻辑门之上的存储器件,用于存储和传递数字信息。
触发器有不同类型,如RS触发器、D触发器、JK触发器等。
它们能够存储一个或多个位的二进制数据,并在时钟信号的作用下进行状态变化。
例:JK触发器:根据输入信号和时钟信号的不同组合,可以实现各种不同的功能,如存储、计数、分频等。
多路选择器(Multiplexer)多路选择器是一种用于在多个输入信号中选择一个输出信号的设备。
它根据选择信号的不同,将指定的输入信号输出到目标位置。
多路选择器有多个输入端和一个输出端,以及一个选择端,用于控制选择哪个输入信号输出。
例:2:1多路选择器:有两个输入信号和一个选择信号。
当选择信号为0时,输出端输出第一个输入信号;当选择信号为1时,输出端输出第二个输入信号。
计数器(Counter)计数器是一种能够根据时钟信号进行计数的设备。
它能够按照规定的顺序产生一系列的输出信号,用于计数、脉冲生成等应用。
计数器通常由触发器和逻辑门组成。
例:二进制计数器:按照二进制的计数规则,从0到最大计数值递增,再从最大计数值回到0。
如4位二进制计数器可以表示0到15的数字。
数字编码器(Encoder)数字编码器是一种将多个输入信号转换为二进制编码输出信号的设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种常见数制间的关系
八进制数(octal Number)
基数r=8,逢八进一 八个数码元素为0、1、…7 (357.61)8 或 357.61O =3×82+5×81+7×80+6×8-1+1×8-2 从高位至低位的“位权”依次是: 8n-1、8n-2、…、80、8-1、…、8-m
十六进制数(hexadecimal Number)
四、数字信号的处理和传输
简单的数字信号处理 (a) “与”逻辑处理 (b) “或”逻辑处理
(c) 分频处理
数字信号的两种传输方式 (a) 串行传输 (b)并行传输
串行传输方式
并行传输方式
1.2 数字电路中的数制
一、数制及相互间的转换
1.计数体制
每一位的构成方法以及从低位到高位的进位规则
十进制数 475.6=4×102+7×101+5×100+6×10-1
数字电路的特点: 1.抗干扰能力强 2.信号容易存储在电路中 3.便于计算机处理
三、 数字信号的描述方法
1、二值逻辑 数字信号只有两个离散值——高电平和低电平,是一 种二值信号,常用数字0和数字1分别表示低电平和高 电平。 2、数字波形 数字波形是逻辑电平对时间的图形表示。
(a)
(b)
在(a)图所示的时钟脉冲控制下,(b)图所包含的信息 是0100110111100111。
正逻辑体制: 规定高电平为逻辑1,低电平为逻辑0 典型的数字信号波形
二、模拟电路和数字电路
模拟电路主要研究模拟信号的放大和处理;
音频功率放大电路框图
模拟电路中的器件主要工作在放大区,常用 的分析方法是微变等效电路法。
检测人体心率的电路 数字电路中,着重研究输出信号与输入信号之间的逻 辑关系,它常用能代表二种截然不同的状态或因果之 间的关系来表示。 如:来与去,有与无,高与低,开 与关,亮与暗等等。所以,在电信号中,用电平的高 低来区分。电路中的器件工作在饱和区和截止区。常 用的分析方法是逻辑代数。
K 1 r 1 K 2 r 2 K m r m
r ——r进制数的基数,数码有r个 第i位的权:ri 进位规则:逢r进1 Ki ——某数中第i位的数码元素 n ——该数整数部分的位数 m ——小数部分的位数
N r
i m
n 1
K i (r ) i
(b) 锯齿电压波形
(c) 随时间温度变化波形
模拟信号其特征表现为随着时间的变化,幅度(大小) 是连续变化的,没有突变或跳跃
数字信号特征是它的幅度(大小)随时间变化是不连 续的,是断续的,时有时无的。 例如用一个电子电路记录从自动生产线上输出的零 件数目,每送出一个零件就给电子电路一个信号, 使之记1,没有零件送出时记0,零件数目这个信号 的变化在时间上和数量上都不连续,是数字信号。 数字信号在时间上和数值上都是离散的
“数码” :0、1、…、9 “基数”:10,逢十进一 “权”表示价值 可表示成(475.6)10 或
102 100
——百位的“权” ——个位的“权”
475.6D
101 ——拾位的“权” 10-1 ——拾分之一位的“权”
K n1K n2 ...K 2 K1K0 .K 1K 2 ...K m r进制数的通式: N r K n1 r n1 K n2 r n2 K 2 r 2 K1 r 1 K 0 r 0
十进 二进 八进 十六进 十进 二进 八进 十六进
0 1 2 3 4 5 6 7
0000 0001 0010 0011 0100 0101 0110 0111
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
1000 1001 1010 1011 1100 1101 1110 1111
第1章 数字电路与系统基本概念
1.1 1.2 1.3 1.4 1.5 数字信号和数字电路 数字电路中的数制 数字电路中的代码 数字电路中的基本逻辑函数 逻辑代数
1.1
数字信号和数字电路
模拟电子技术基础 和 数字电子技术基础
一、模拟信号和数字信号
模拟信号是时间上和数值上都连续的物理量
(a) 正弦电压波形
5. 函数信号发生电路(55实验 操作及报告30%)+期末试卷50% (试卷中包含有实验测试题10-15分)
参考书:面向21世纪课程教材
1、 电子技术基础 数字部分(第五版) 华中科技大学康华光主编
2、 数字电子技术基础
第四版
清华大学阎石主编
数字电子电路
二进制数(binary Number) 基数r=2,逢二进一 只有0和1二个数码元素 Kn1Kn2 ...K2 K1K0 .K1K2 ...Km N r K n1 r n1 K n2 r n2 K 2 r 2 K1 r 1 K 0 r 0
K 1 r 1 K 2 r 2 K m r m
(1101.001)2=1×23+1×22+0×21+1×20 +0×2-1+0×2-2+1×2-3
也可表示成1101.001B
二进制数从高位至低位的“位权”依次是: 2n-1、2n-2、…、20、2-1、…、2-m
数字电路分析与设计
jichengdianzijishu@ 2016start
电子技术
数字电子技术
模拟电子技术
数字电子技术
1.分析方法:真值表、卡诺图、逻辑表达式、特征方程、波 形图、状态转换图 2. 器件:基本门电路、组合逻辑单元基本电路、时序逻辑 单元基本电路(触发器) 3.基本数字部件电路:集成组合逻辑电路、集成时序逻辑电 路、大规模数字集成电路 4. 模-数(A/D)和数-模(D/A)转换