第五章讲义遗传算法
遗传算法遗传算法
(5)遗传算法在解空间进行高效启发式搜索,而非盲 目地穷举或完全随机搜索;
(6)遗传算法对于待寻优的函数基本无限制,它既不 要求函数连续,也不要求函数可微,既可以是数学解 析式所表示的显函数,又可以是映射矩阵甚至是神经 网络的隐函数,因而应用范围较广;
(7)遗传算法具有并行计算的特点,因而可通过大规 模并行计算来提高计算速度,适合大规模复杂问题的 优化。
26
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
Pm:变异概率,一般取为0.0001~0.1。
27
10.4.2 遗传算法的应用步骤
遗传算法简称GA(Genetic Algorithms)是1962年 由美国Michigan大学的Holland教授提出的模拟自然 界遗传机制和生物进化论而成的一种并行随机搜索最 优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起 来的。自然选择学说包括以下三个方面:
1
(1)遗传:这是生物的普遍特征,亲代把生物信息交 给子代,子代总是和亲代具有相同或相似的性状。生 物有了这个特征,物种才能稳定存在。
18
(3)生产调度问题 在很多情况下,采用建立数学模型的方法难以对生
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
19
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
10
遗传算法简介课件
机器学习
遗传算法可用于机器学 习中的参数优化。通过 优化模型参数,可以提 高机器学习算法的性能
。
生产调度
在生产调度领域,遗传 算法可以用于解决作业 调度、资源分配等问题 。通过演化调度方案, 可以实现生产资源的高
效利用。
路径规划
遗传算法在路径规划中 也有应用,如机器人路 径规划、物流配送路径 规划等。通过编码路径 信息,并利用遗传操作 进行优化,可以找到最
优的路径方案。
遗传算法的调优策略
选择合适的编码方式
针对具体问题,选择合适的编码方式(如二进制 编码、实数编码等)能够更好地表示问题的解, 提高遗传算法的性能。
选择适当的遗传操作
选择、交叉和变异等遗传操作是影响遗传算法性 能的关键因素。根据问题特性,选择合适的遗传 操作能够提高算法的收敛速度和寻优能力。
设计适应度函数
适应度函数用于评估个体优劣,设计合适的适应 度函数能够引导算法朝着优化目标演化。
控制种群规模和演化代数
种群规模和演化代数是影响遗传算法搜索空间和 搜索效率的重要因素。根据问题规模和计算资源 ,合理设置种群规模和演化代数能够在有限时间 内获得较好的优化结果。
05
总结与展望
遗传算法总结
Байду номын сангаас
编码原理
将问题的解表示为一种编码方式,如二进 制编码、实数编码等。编码后的个体组成 种群。
变异操作
模拟基因突变过程,对个体编码进行随机 改变,增加种群多样性。
适应度函数
用于评估个体优劣的函数,根据问题需求 设计。适应度高的个体有更大概率被选中 进行后续操作。
交叉操作
模拟生物繁殖过程中的基因交叉,通过两 个个体的编码进行交叉操作,生成新的个 体。
《遗传算法详解》课件
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法详解范文
遗传算法详解范文
一、什么是遗传算法
遗传算法(Genetic Algorithm,简称GA)是一种基于自然选择和遗传的算法,是由John Holland于1960年提出的,它是为了解决复杂的全局优化问题而设计的全局优化算法。
在计算机科学中,遗传算法是一种利用遗传进化的思想,模拟生物进化的过程,通过繁殖、淘汰,以及多样性和变异的原理,在有效的空间中,不断改进解决方案,以得到最优解的一种方法。
二、遗传算法工作原理
遗传算法是一种仿生的全局优化方法,它基于自然选择和遗传进化中的基本概念,通过模拟和改进自然选择和遗传,对问题进行全局优化。
其工作原理是模拟生物进化过程,将生物进化中求解能力最强的种群变化适应度最大的种群,优胜劣汰,交叉繁殖,变异演化,以期望获得全局最优解。
在遗传算法中,种群通过遗传演算,数次进化,演化出适应环境最优的解决方案。
遗传算法会先初始化一组解决方案,称为“种群”,然后不断的进行繁殖、交叉、突变、选择等运算,逐渐将种群中的个体演化为最优的解决方案。
遗传算法的具体操作步骤如下:
(1)初始化:为了使遗传算法发挥作用,首先要求用户提供一组初始解(个体)。
遗传算法简介与基本原理
遗传算法简介与基本原理遗传算法是一种模拟自然进化过程的优化算法,它通过模拟生物进化中的遗传、交叉和变异等过程,来寻找问题的最优解。
遗传算法在解决复杂问题、优化搜索和机器学习等领域有广泛的应用。
一、遗传算法的基本原理遗传算法的基本原理是受到达尔文进化论的启发,模拟了自然界中的生物进化过程。
它通过对候选解进行编码、选择、交叉和变异等操作,逐代迭代,不断优化求解的问题。
1. 编码:遗传算法首先需要对问题的解进行编码,将问题的解表示为染色体或基因的形式。
染色体通常由二进制串组成,每个基因代表一个问题的解。
2. 选择:在每一代中,遗传算法通过选择操作,根据适应度函数的评估结果,选择一部分优秀的个体作为父代,用于产生下一代的个体。
选择操作通常使用轮盘赌算法或竞争选择算法。
3. 交叉:在选择操作之后,遗传算法通过交叉操作,将父代个体的染色体进行交叉配对,产生新的个体。
交叉操作可以通过单点交叉、多点交叉或均匀交叉等方式实现。
4. 变异:为了增加算法的多样性和搜索空间,遗传算法引入了变异操作。
变异操作通过对个体的染色体进行随机的变换,以引入新的解,并防止算法陷入局部最优解。
5. 评估:在每一代中,遗传算法需要根据问题的特定要求,对每个个体的适应度进行评估。
适应度函数用于度量个体的优劣程度,通常越优秀的个体具有越高的适应度。
6. 迭代:通过不断地进行选择、交叉、变异和评估等操作,遗传算法逐代迭代,直到满足停止条件或达到最大迭代次数。
最终,遗传算法将输出找到的最优解或近似最优解。
二、遗传算法的应用遗传算法在许多领域都有广泛的应用,尤其是在复杂问题求解和优化搜索方面。
1. 组合优化问题:遗传算法可以用于求解组合优化问题,如旅行商问题、背包问题等。
通过编码问题的解和适应度函数的设计,遗传算法可以在大规模的搜索空间中找到最优解或近似最优解。
2. 机器学习:遗传算法可以用于机器学习中的特征选择、参数优化和模型优化等问题。
通过对候选解的编码和适应度函数的设计,遗传算法可以帮助机器学习算法找到更好的模型和参数组合。
《遗传算法》PPT课件
遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
遗传算法(精讲)
适应值
三、遗传算法的基本流程(1) 遗传算法的基本流程( )
基本步骤:
确定实际问题参数集 对参数进行编码 (1)选择编码策略,把参数集合X和域转换为相应编码空间S。 选择编码策略,把参数集合X和域转换为相应编码空间S (2)定义适应值函数f(x)。 定义适应值函数f(x)。 f(x) 初始化群体P(t) 定义遗传策略,包括选择群体大小、交叉、 (3)定义遗传策略,包括选择群体大小、交叉、变异方法以及确定交 叉概率Pc、变异概率Pm等遗传参数。 叉概率P 变异概率P 等遗传参数。 评价群体 随机初始化生成群体P(t) P(t)。 (4)随机初始化生成群体P(t)。 (5)计算群体中个体的适应值f(X)。 计算群体中个体的适应值f(X)。 f(X) 群体P(t+1) 满足停止准则? 按照遗传策略,运用选择、交叉和变异操作作用于群体, (6)按照遗传策略,运用选择、交叉和变异操作作用于群体,形成下 三个基本操作: 一代群体。 一代群体。 结束 群体P(t) 1、选择 判断群体性能是否满足某一指标,或者已完成预定跌代次数, (7)判断群体性能是否满足某一指标,或者已完成预定跌代次数,不 遗传操作 2、交叉 满足则返回第6 或者修改遗传算法再返回第6 满足则返回第6步,或者修改遗传算法再返回第6步。 3、变异 其他高级操作 标准遗传算法基本流程框图 7
2
一、遗传算法概述(2) 遗传算法概述(
基本思想 使用模拟生物和人类进化的方法求 解复杂的优化问题,因而也称为模拟 解复杂的优化问题, 进化优化算法。 进化优化算法。将择优与随机信息交 换结合在一起。在每一代中, 换结合在一起。在每一代中,使用上 一代中最好的, 一代中最好的,即最适应环境的位或 片段,形成新的人工生物集。 片段,形成新的人工生物集。
《遗传算法》课件
个体选择策略
轮盘赌选择
按照适应度大小进行选择, 适应度越大的个体被选中的 概率越高。
锦标赛选择
随机选择一组个体进行比较, 选择适应度最好的个体。
随机选择
随机选择一部分个体作为下 一代。
杂交操作的实现方法
单点杂交 多点杂交 均匀杂交
从两个个体的某个交叉点将两个个体分割,并交 换剩下的部分。
从两个个体的多个交叉点将两个个体分割,并交 换剩下的部分。
遗传算法的基本流程
1
评估适应度
2
计算每个个体的适应度。
3
交叉操作
4
通过交叉操作产生新的个体。
5
替换操作
6
将新的个体替换种群中的一部分个体。
7
输出结果
8
输出最优解作为最终结果。
初始化种群
生成初始的候选解。
选择操作
根据适应度选择优秀的个体。
变异操作
对个体进行变异以增加多样性。
迭代
重复执行选择、交叉和变异操作直至满足 终止条件。
智能控制
如机器人路径规划和智能决策。
数挖掘
例如聚类、分类和回归分析。
遗传算法的优缺点
1 优点
能够全局搜索、适应复杂问题和扩展性强。
2 缺点
计算量大、收敛速度慢和参数选择的难度。
遗传算法的基本概念
个体
候选解的表示,通常采用二进 制编码。
适应度函数
评价候选解的质量,指导选择 和进化过程。
种群
多个个体组成的集合,通过遗 传操作进行进化。
遗传算法实例分析
旅行商问题
遗传算法可以用于求解旅行商问 题,找到最短路径。
背包问题
调度问题
遗传算法可以用于求解背包问题, 找到最优的物品组合。
《遗传算法》课件
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
人工智能入门课件第5章遗传算法
5.4.2 交叉操作(crossover)
交叉的具体步骤为:
1. 从交配池中随机取出要交配的一对个体;
2. 根据位串长度L,对要交配的一对个体,随 机选取[1,L-1]中一个或多个的整数k作为 交叉点;
3. 根据交叉概率pc(0<pc≤1)实施交叉操作,配 对个体在交叉点处,相互交换各自的部分内 容,从而形成新的一对个体。
N
pi 1
i 1
2.基于排名的选择
(1)线性排名选择
首先假设群体成员按适应值大小从好到坏依次排列
为x1,x2,…,xN,然后根据一个线性函数分配选 择概率pi。
设线性函数pi=(a-b·i/(N +1))/N,i=1,
2,…,N,其中a,b为常数。由于
N
pi
1
,易得,
b=2(a-1)。又要求对任意i=1,2,…i1,N,有pi>0,
5.2.3 实数编码
为了克服二进制编码的缺点,对于问题的变量 是实向量的情形,直接可以采用十进制进行编码, 这样可以直接在解的表现形式上进行遗传操作,从 而便于引入与问题领域相关的启发式信息以增加系 统的搜索能力
例3 作业调度问题(JSP)的种群个体编码常用 m×n的矩阵Y=[yij],i=1,2,…,m,j=1, 2,…,n(n为从加工开始的天数,m为工件的 优先顺序)。 yij表示工件i在第j日的加工时间。 下表是一个随机生成的个体所示。
一种方法是为参与交换的数增加一个映射如下:
将此映射应用于未交换的等位基因得到:
T~1 234 | 751| 68 T~2 136 | 275 | 84 则为合法的。
5.2.2 Gray编码
Gray编码即是将二进制码通过如下变换进行转
遗传算法详解ppt课件
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1110111
13
一.前言
2. GA的生物学原理
➢ 遗传学的基本术语 • 基因座(locus):遗传基因在染色体中所占 据的位置,同一基因座可能有的全部基因称 为等位基因(allele) • 个体(individual):带有染色体特征的实体 • 种群(population):个体的集合
➢ 2000年,汪定伟教授翻译出版了《遗传算法与 工程优化》
6
一.前言
1. 遗传算法的产生与发展
➢ 几个名词 • 遗传算法 (Genetic Algorithm, GA) • 进化算法(Evolutionary Algorithm, EA) • 计算智能(Computational Intelligence, CI) • 人工智能(Artificial Intelligence, AI)
15
一.前言
2. GA的生物学原理
➢ 遗传学的基本术语 • 复制(reproduction):细胞在分裂时,遗传 物质DNA通过复制而转移到新产生的细胞中, 新的细胞就继承了旧细胞的基因 • 交叉(crossover):在两个染色体的某一相 同位置处DNA被切断,其前后两串分别交叉 组合形成两个新的染色体。又称基因重组, 俗称“杂交”
5
一.前言
1. 遗传算法的产生与发展
➢ 1989年,Holland的学生D. J. Goldherg出版了 “Genetic Algorithms in Search, Optimization, and Machine Learning”,对遗传算法及其应用 作了全面而系统的论述
➢ 1991年,L. Davis编辑出版了《遗传算法手册》, 其中包括了遗传算法在工程技术和社会生活中 大量的应用实例
14
一.前言
2. GA的生物学原理
➢ 遗传学的基本术语 • 进化(evolution):生物在其延续生存的过 程中,逐渐适应其生存环境,使得其品质不 断得到改良,这种生命现象称为进化 • 适应度(fitness):度量某个物种对于生存环 境的适应程度。对生存环境适应程度较高的 物种将获得更多的繁殖机会,而对生存环境 适应程度较低的物种,其繁殖机会就会相对 较少,甚至逐渐灭绝
8
一.前言
1. 遗传算法的产生与发展
➢ 几个名词 • 计算智能CI:利用计算机实现的具有一定启 发式特征的一类优化方法的统称。这些方法 具备的要素:自适应的结构、随机产生的或 指定的初始状态、适应度的评测函数、修改 结构的操作、系统状态存储器、终止计算的 条件、指示结果的方法、控制过程的参数。 计算智能方法具有自学习、自组织、自适应 的特征和简单、通用、鲁棒性强、适于并行 处理的优点。
➢ 60年代, L. J. Fogel在设计有限态自动机时提出 进化规划的思想。1966年,Fogel等出版了《基 于模拟进化的人工智能》,系统阐述了进化规 划的思想
3
一.前言
1. 遗传算法的产生与发展
➢ 60年代中期,美国Michigan大学的J. H. Holland 教授提出借鉴生物自然遗传的基本原理用于自 然和人工系统的自适应行为研究和串编码技术
➢ 1967年,他的学生J. D. Bagley在博士论文中首 次提出“遗传算法(Genetic Algorithms)”一词
➢ 1975年,Holland出版了著名的“Adaptation in Natural and Artificial Systems”,标 志遗传算法的诞生
4
一.前言
1. 遗传算法的产生与发展
10
一.前言
2. GA的生物学原理
➢ 达尔文的自然选择说 • 遗传:子代和父代具有相同或相似的性状, 保证物种稳定性 • 变异:子代与父代,子代不同个体之间总有 差异,是生命多样性的根源 • “自然选择、适者生存”:具有适应性变异 的个体被保留,不具适应性变异的个体被淘 汰,这是一个长期的、缓慢的、连续的过程
11
一.前言
2. GA的生物学原理
➢ 遗传学的基本术语 • 染色体(chromosome):遗传物质的载体 • 脱氧核糖核酸(DNA):大分子有机聚合物, 双螺旋结构
• 遗传因子(gene):DNA长链结构中占有一 定位置的基本遗传单位
12
一.前言
2. GA的生物学原理
➢ 遗传学的基本术语 • 基因型(genotype):遗传因子组合的模型 • 表现型(phenotype):由染色体决发展
➢ 几个名词 • 进化算法EA:由于遗传算法、进化规划和进 化策略是不同领域的研究人员分别独立提出 的,在相当长的时期里相互之间没有正式沟 通。直到90年代,才有所交流。他们发现彼 此的基本思想具有惊人的相似之处,于是提 出将这类方法统称为“进化算法”。后来, 遗传规划和差分进化也被归纳到EA范畴之内。
9
一.前言
1. 遗传算法的产生与发展
➢ 几个名词 • 人工智能AI:二十世纪七十年代以来被称为 世界三大尖端技术之一(空间技术、能源技 术、人工智能)。AI是研究人类智能活动的 规律,构造具有一定智能的人工系统,研究 如何让计算机去完成以往需要人的智力才能 胜任的工作,也就是研究如何应用计算机的 软硬件来模拟人类某些智能行为的基本理论、 方法和技术。
第五章遗传算法
精品jing
易水寒江雪敬奉
第五章 遗传算法
一.前言 二.基本算法 三.模板理论 四.算法变形 五.算法应用 六.学习遗传算法的几点体会
2
一.前言
1. 遗传算法的产生与发展
➢ 早在50年代,一些生物学家开始研究运用数字 计算机模拟生物的自然遗传与自然进化过程
➢ 1963年,德国柏林技术大学的I. Rechenberg和H. P. Schwefel做风洞实验时,产生了进化策略的初 步思想
➢ 70年代初,Holland提出了“模式定理” (Schema Theorem),一般认为是“遗传算法 的基本定理”,从而奠定了遗传算法研究的理 论基础
➢ 1985年,在美国召开了第一届遗传算法国际会 议,并且成立了国际遗传算法学会(ISGA, International Society of Genetic Algorithms)