《概率论与数理统计》第二套模拟试题(2)剖析
概率论与数理统计(二)试题及答案.
![概率论与数理统计(二)试题及答案.](https://img.taocdn.com/s3/m/8721ac4da98271fe910ef954.png)
全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。
错选错选、、多选或未选均无分选均无分。
1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。
概率论与数理统计第二版参考答案
![概率论与数理统计第二版参考答案](https://img.taocdn.com/s3/m/8228a1eb102de2bd96058820.png)
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
自学考试专题:概率论与数理统计(二)复习思考题含答案
![自学考试专题:概率论与数理统计(二)复习思考题含答案](https://img.taocdn.com/s3/m/761afff8951ea76e58fafab069dc5022aaea46b2.png)
复习思考题一.单选题:1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为( )。
A 、C B A B 、C B A C 、C B AD 、C B A2.设随机事件A 与B 相互独立, 且P (A)=51, P (B)=53, 则P (A ∪B)= ( )。
A 、253B 、2517C 、54 D 、2523 3.设随机变量X~B (3, 0.4), 则P{X≥1}= ( )。
A 、0.352 B 、0.432 C 、0.784 D 、0.9364.已知随机变量X 的分布律为 ,则P{-2<X≤4}= ( )。
A 、0.2 B 、0.35 C 、0.55D 、0.8 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X), D (X)分别为 ( )。
A 、2,3-B 、-3, 2C 、2,3D 、3, 26.设二维随机变量 (X, Y)的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c=( )。
A 、41B 、21C 、2D 、47.设二维随机变量 (X, Y)~N (-1, -2;22, 32;0), 则X-Y~ ( )。
A 、N (-3, -5) B 、N (-3,13) C 、N (1, 13)D 、N (1,13)8.设X, Y 为随机变量, D (X)=4, D (Y)=16, Cov (X,Y)=2, 则XY ρ=( )。
A 、321 B 、161 C 、81D 、41 9.设随机变量X~2χ(2), Y~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( )。
A 、2χ (5) B 、t (5) C 、F (2,3)D 、F (3,2)10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( )。
A 、P {拒绝H 0|H 0为真} B 、P {接受H 0|H 0为真} C 、P {接受H 0|H 0不真}D 、P {拒绝H 0|H 0不真}11. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )。
《概率论与数理统计》习题及答案 第二章
![《概率论与数理统计》习题及答案 第二章](https://img.taocdn.com/s3/m/7a422fd669dc5022abea001b.png)
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论及数理统计第二章考试题答案
![概率论及数理统计第二章考试题答案](https://img.taocdn.com/s3/m/6c5dc26884868762cbaed500.png)
第二章考试题答案一. 填空(共28分,每题4分)1. 抛掷一枚均匀对称的硬币,以X 表示正面出现的次数,则随机变量在区间2. , 取值的概率为 . 解:随机变量X 的散布律为所以{0.5}{1}0.551.P X P X <===≤3. 设随机变量~(1,6)U ξ, 则方程210x x ξ++=, 有实根的概率为 4/5 . 解:方程210x x ξ++=有实根,则判别式240ξ∆=-≥, 则2ξ≥或2ξ≤-,所以()2{}{40}{2}{2}P P P ξξξ=∆=-≥=≥⋃≤-方程有实根{2}{2}P P ξξ=≥+≤-又因为随机变量ξ服从参数为(1,6)的均匀散布,所以其概率密度函数为11,16,16()6150,0,x x f x ⎧⎧<<<<⎪⎪==-⎨⎨⎪⎪⎩⎩其它其它所以6222214{2}(),55{2}()00.P f t dt dt P f t dt dt ξξ+∞---∞-∞≥===≤-===⎰⎰⎰⎰ 故{}P 方程有实根{2}{2}P P ξξ=≥+≤-45=. 4. 设(2,),(3,)X b p Y b p , 若519{}P X ≥=, 则{1}P Y ≥=19/27. 解:由题意知随机变量X 和Y 别离服从参数为2和p 、3和p 的二项散布.5{1}1{0}9P X P X =≥=-=, 取得4{0}9P X ==, 即00222(1)(1)C p p p -=-49=,1329S2S1所以2(1)3p -=, 从而 300333219{1}1{0}1(1)1(1)1.327P Y P Y C p p p ⎛⎫≥=-==--=--=-= ⎪⎝⎭5. 设X 的概率密度函数为1,[0,1]32(),[3,6]90,x f x x ⎧∈⎪⎪⎪=∈⎨⎪⎪⎪⎩其它,若k 使得2{}3P X k ≥=, 则k 的取值范围是13k ≤≤. 解:此题用画图的方式来解:下图中红线即为()f x 的图像.()f xx0 1 2 3 4 5 6其中S1表示由红线1()3f x =与x 轴所夹部份的面积,即{01}P X ≤≤13=;S2表示红线2()9f x =与x 轴所夹部份面积,即{36}P X ≤≤22393=⨯=. 而{}P X k ≥即表示()f x 图像与x 轴所夹图形在直线x k =右边的面积(绿色虚线所示x=k范围). 因为2{}3P X k ≥={36}P X =≤≤,所以k 的取值范围只能在1和3之间, 即 13k ≤≤. 6. 设随机变量(1,4)XN , 则{12}P X <≤= .(已知(0.5)0.6915Φ=.)解:由(1,4)XN 可知,1,2μσ==. 第一进行正态散布的标准化,在查表计算11211{12}{0}222X X P X P P μμσσ----⎧⎫<≤=<≤=<≤⎨⎬⎩⎭ 1()(0)2=Φ-Φ0.69150.5=-=7. 设硕士研究生入学数学考试合格率为,则15名考生中数学考试合格人数X 的概率散布是二项散布,参数为15和, 解:15名考生参加考试,能够视为15次伯努利实验。
《概率论与数理统计》第02章习题解答.docx
![《概率论与数理统计》第02章习题解答.docx](https://img.taocdn.com/s3/m/0965ba9e2cc58bd63186bd6d.png)
P{ X = 1} = P[人(瓦U瓦)U孔A ] = 0.8(0.2 + 0.2-0.04) + 0.2 x (0.8)2
= 0.416
P{X=2} =P( £%為)=(0.8)3=0.512
3、据信有20%的美国人没有任何健康保险,现任意抽查12个美国人,以X表示15人无 任何健康保险的人数(设各人是否有健康保险是相互独立的),问X服从什么分布,写出X的分布律,并求下列情况下无任何健康保险的概率
解:(1)P{X>1}=f(x)dx=j"-(4-x2)dr = (-X- — X3)
"9927
(2)―叫刃’叩沟心]刃
22
27
10-R
£二0丄2,…,10
27■■
592
(3)P{y=2}=C^(—)2x(—)8=0.2998
s99s9?
p{r>2}= 1- p{r=0} - p{y=1}= 1-(—)° x(―)10- ^0(—)J(—)9= 0.5778
J;(0.2 + 1.2y)dy
—oo
y v _1
-1 < y < 0
0<y<\
0
0.2y + 0.2
0.6/+0.2j + 0.2
1
y <-1
0<y<l
沖1
P{0<Y<0.5} = F(0.5)-F(0) = 0.2+0.2x0.5 + 0.6x(0.5)2-0.2 = 0.25
P{y > 0.1} = 1-F(0」)=1一0.2-0.2x0」一0.6x0= 0.774
《概率论与数理统计(二)》复习题
![《概率论与数理统计(二)》复习题](https://img.taocdn.com/s3/m/f8f0a526b90d6c85ec3ac6fc.png)
《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度讲解
![概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度讲解](https://img.taocdn.com/s3/m/92234df581c758f5f71f6710.png)
(2)正态分布N (µ, σ 2 ;(3)对数正态分布LN (µ, σ 2 .解:(1)因 X 服从区间 (a, b上的均匀分布,则0.5 = P{ X ≤ x0.5 } = P{a < X ≤ x0.5 } = 故中位数x0.5 = a + 0.5(b − a = (2)因 X 服从正态分布N (µ, σ 2 ,x0.5 − a ,b−a a+b ; 2 x −µ⎛x −µ⎞ =0,则 0.5 = P{ X ≤ x0.5 } = F ( x0.5 = Φ⎜ 0.5 ⎟,即0.5 σ ⎝ σ ⎠故中位数 x0.5 = µ;(3)因 X 服从对数正态分布LN (µ, σ 2 ,有 ln X 服从正态分布 N (µ, σ 2 ,ln x0.5 − µ ⎛ ln x0.5 − µ ⎞ =0,则0.5 = P{ X ≤ x0.5 } = P{ln X ≤ ln x0.5 } = F (ln x0.5 = Φ⎜⎟,即σ σ ⎝⎠故中位数 x0.5 = e µ. 4.设 X ~ Ga (α , λ ,对 k = 1, 2, 3,求µ k = E (X k 与ν k = E [X − E (X ] k.解:因Ga (α , λ 的密度函数为⎧λα α −1 − λ x ⎪ x e , x ≥ 0, p X ( x = ⎨ Γ(α ⎪ x < 0. ⎩0, 由正则性知∫ +∞ +∞ +∞ Γ(α λα α −1 − λ x x e dx = 1 ,可得∫ x α −1 e −λ x dx = α ,0 Γ(α λ 0 故µ1 = ∫ 0 x⋅ λα α −1 − λ x λα+ ∞ α −λ x λα Γ(α + 1 α x e dx = x e dx = ⋅ = ;λ Γ(α Γ(α ∫0 Γ(α λα +1 λα α −1 −λ x λα + ∞ α +1 − λ x λα Γ(α + 2 α (α + 1 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 2 λ2 λα α −1 − λ x λα + ∞ α + 2 −λ x λα Γ(α + 3 α (α + 1(α + 2 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 3 λ3 µ2 = ∫ µ3 = ∫ +∞ 0 x2 ⋅ +∞ 0 x3 ⋅ ν 1 = E [X − E (X ] = 0;α (α + 1 α 2 α − 2 = 2 ;λ2 λ λ α (α + 1(α + 2 α (α + 1 α α 3 2α .3 2 − ⋅ + = ν 3 =E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ λ3 λ2 λ3 λ3 5.设X ~ Exp(λ,对 k = 1, 2, 3, 4,求µ k = E (X k 与ν k = E [X − E (X ] k ,进一步求此分布的变异系数、偏ν 2 = E[ X − E ( X ] 2 = µ 2 − µ12 = 度系数和峰度系数.解:因 X 的密度函数为⎧λ e − λ x , x ≥ 0, p X ( x = ⎨ x < 0. ⎩0, 41且 k 为正整数时,∫ 故µ1 = ∫ +∞ 0 +∞ 0 x k −1 e − λ x dx = +∞ Γ(k λ k = (k − 1! λk 1 ,; x ⋅ λ e −λ x dx = λ ∫ 0 x e −λ x dx = λ ⋅ λ 2 = 2! 1 λ = = = µ 2 = ∫ x 2 ⋅ λ e −λ x dx = λ ∫ x 2 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 2 λ λ 3 λ2 6 ;;;µ 3 = ∫ x 3 ⋅ λ e − λ x dx = λ ∫ x 3 e − λ x dx = λ ⋅ 0 0 +∞ +∞ 3! 4 λ3 24 µ 4 = ∫ x 4 ⋅ λ e −λ x dx = λ ∫ x 4 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 4! λ 1 5 λ4 ν 1 = E [X − E (X ] = 0;ν 2 = E[ X − E ( X ] 2 = µ 2 −µ12 = 2 λ 2 − 1 λ 2 = λ2 6 3 ;ν 3 = E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ −3 2 λ 2 ⋅ 1 λ 4 +2 −4 1 λ 6 3 = ⋅ 1 2 λ3 ;ν 4 = E[ X − E ( X ] 4 = µ 4 − 4 µ 3 µ1 + 6µ 2µ12 − 3µ14 = 变异系数C v ( X = 24 λ λ 3 λ +6 2 λ 2 ⋅ 1 λ 2 −3 1 λ 4 = 9 λ3 ; Var( X E( X =2;= ν2 =1; µ1 偏度系数β 1 = ν3 (ν 2 3 / 2 峰度系数β 2 = ν4 −3=9−3=6.(ν 2 2 6.设随机变量 X 服从正态分布 N (10, 9,试求 x0.1 和 x0.9.x − 10 ⎛ x − 10 ⎞解:因F ( x 0.1 = Φ⎜ 0.1 = 1.2816 ,故 x0.1 = 6.1552;⎟ = 0.1 ,得− 0.1 3 3 ⎝⎠ x − 10 ⎛ x − 10 ⎞又因F ( x 0.9 = Φ⎜ 0.9 = 1.2816 ,故 x0.9 = 13.8448.⎟ = 0.9 ,得0.9 3 3 ⎝⎠ x − 10 x 0.1 − 10 = 1.28 ,故 x0.1 = 6.16; 0.9 = 1.28 ,故 x0.9 = 13.84)3 3 7.设随机变量 X 服从双参数韦布尔分布,其分布函数为(或查表可得− m ⎧⎪⎪⎛ x⎞⎫⎟⎜ F ( x = 1 − exp ⎨− ⎜⎟⎬, η ⎭⎪⎩⎝⎠⎪ x>0,其中η > 0, m > 0.试写出该分布的 p 分位数 xp 的表达式,且求出当m = 1.5, η = 1000 时的 x0.1 , x0.5 , x0.8 的值.⎧⎪⎛ xp 解:因F ( x p = 1 − exp⎨− ⎜⎜η ⎪⎩⎝故x p = η[−ln(1 − p ] m ; 1 ⎞⎟⎟⎠ m ⎫⎪⎬= p,⎪⎭ 42当m = 1.5, η = 1000 时, x 0.1 = 1000(− ln 0.9 1 1.5 1 = 223.0755 ; x 0.5 = 1000(− ln 0.5 1 1.5 = 783.2198 ;x 0.8 = 1000(− ln 0.2 1.5 = 1373.3550 . 8.自由度为 2 的χ 2 分布的密度函数为p ( x = 1 −2 e , 2 x x>0,试求出其分布函数及分位数x0.1 , x0.5 , x0.8 .解:设 X 服从自由度为 2 的χ 2 分布,当 x < 0 时,F (x = P{X ≤ x} = P (∅ = 0,当x ≥ 0 时,F ( x = P{ X ≤ x} = ∫ 故 X 的分布函数为 x ⎧ − ⎪1 − e2 , x ≥ 0, F ( x = ⎨⎪ x < 0. ⎩0, x − − 1 −2 e du = (− e 2 = 1 − e 2 ; 2 0 u u x x 0 因 F (x p = 1 − e − xp 2 = p ,有xp = −2 ln (1 − p,故x0.1 = −2 ln 0.9 = 0.2107;x0.5 = −2 ln 0.5 = 1.3863;x0.8 = −2 ln 0.2 = 3.2189. 9.设随机变量 X 的分布密度函数 p(x 关于 c 点是对称的,且 E (X 存在,试证(1)这个对称点 c 既是均值又是中位数,即 E (X = x0..5 = c;(2)如果 c = 0,则xp = −x1 − p .证:设 f (x = p (x + c,因 p (x 关于 c 点对称,有 f (x 为偶函数,(1)E ( X = ∫ xp( xdx = ∫ ( x − c p ( xdx + ∫ cp( xdx = ∫ up (u + cdu + c = ∫ uf (u du + c −∞ −∞ −∞ −∞ −∞ +∞ +∞ +∞ +∞ +∞ = 0 + c = c;因 f (x 为偶函数,有∫ 则F (c = ∫ c −∞ 0 −∞ 0 f ( xdx = 1 +∞ f ( xdx = 0.5 ,2 ∫− ∞ 0 p( x dx = ∫ p (u + cdu = ∫ −∞ −∞ f (u du = 0.5 ,可得 x0..5 = c;故 E (X = x0..5 = c;(2)如果 c = 0,有 p (x 为偶函数,则 F (x p = ∫ xp −∞ p ( xdx = ∫ −xp +∞ p(−u ⋅ (−du = ∫ +∞ −xp p(u du = 1 − ∫ −xp −∞ p(u du = 1 − F (− x p = p ,可得 F (−xp = 1 − p,故−xp = x1 − p ,即xp = −x1 − p . 10.试证随机变量 X 的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数a, b (b ≠ 0, Y = a + b X 与 X 有相同的偏度系数与峰度系数.证:因 Y = a + bX,有 E (Y = E (a + bX = a + bE (X ,可得Y − E (Y = a + b X − a − bE (X = b[X − E (X ],则ν 2 (Y = E [Y − E (Y ]2 = E{b2[X − E (X ]2} = b2 E [X − E (X ]2 = b2ν 2 (X ,ν 3 (Y = E [Y − E (Y ]3 = E{b3[X − E (X ]3} = b3 E [X − E (X ]3 = b3ν 3 (X ,ν 4 (Y = E [Y − E (Y ]4 =E{b4[X − E (X ]4} = b4 E [X − E (X ]4 = b4ν 4 (X ,故偏度系数β 1 (Y = ν 3 (Y [ν 2 (Y ] 3/ 2 = b 3ν 3 ( X [b ν 2 ( X ] 2 3/ 2 = b 3ν 3 ( X b [ν 2 ( X ] 3 3/ 2 = ν 3 (X [ν 2 ( X ]3 / 2 = β1 ( X ; 43峰度系数β 2 (Y = b 4ν 4 ( X b 4ν 4 ( X ν 4 (Y ν (X−3 = − 3 = −3= 4 − 3 = β2(X .2 2 2 4 2 [ν 2 (Y ] [b ν 2 ( X ] b [ν 2 ( X ] [ν 2 ( X ] 2 11.设某项维修时间 T(单位:分)服从对数正态分布LN (µ, σ 2 .(1)求 p 分位数 tp;(2)若µ =4.127,求该分布的中位数;(3)若µ = 4.127,σ = 1.0364,求完成 95%维修任务的时间.解:(1)因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布 N (µ, σ 2 ,ln t p − µ ⎛ ln t p − µ ⎞⎟则p = P{T ≤ t p } = P{ln T ≤ ln t p } = Φ⎜ = up ,ln tp = µ + σ ⋅ up,⎜σ ⎟,即σ ⎝⎠故tp = e µ +σ ⋅u p ;(2)中位数 t0.5 = e µ +σ ⋅u0.5 = e 4.1271+0 = 61.9979 ;(3)t0.95 = e µ +σ ⋅u0.95 = e4.1271+1.0364×1.6449 = 340.9972 . 12.某种绝缘材料的使用寿命 T(单位:小时)服从对数正态分布LN (µ, σ 2 .若已知分位数 t0.2 = 5000 小时,t0.8 = 65000 小时,求µ和σ.解:因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布N (µ, σ 2 ,由第 11 题可知t p = e µ +σ ⋅u p ,则t0.2 = e µ +σ ⋅u0.2 = e µ−0.8416σ = 5000 ,t0.8 = e µ +σ ⋅u0.8 = e µ +0.8416σ = 65000 ,可得µ − 0.8416σ = ln 5000 = 8.5172,µ + 0.8416σ = ln 65000 = 11.0821,故µ = 9.7997,σ =1.5239. 13.某厂决定按过去生产状况对月生产额最高的 5%的工人发放高产奖.已知过去每人每月生产额 X(单位:千克)服从正态分布 N (4000, 602 ,试问高产奖发放标准应把生产额定为多少?解:因 X 服从正态分布 N (4000, 602 ,x − 4000 ⎛ x − 4000 ⎞ = u0.95 = 1.6449 ,则0.95 = P{ X ≤ x0.95 } = F ( x0.95 = Φ⎜0.95 ⎟,即 0.95 60 60 ⎝⎠故高产奖发放标准应把生产额定为 x0.95 = 4000 + 60 ×1.6449 = 498.6940 千克. 44。
概率论与数理统计模拟试题集(6套,含详细答案)
![概率论与数理统计模拟试题集(6套,含详细答案)](https://img.taocdn.com/s3/m/8b99bea1b9d528ea81c779f2.png)
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
《概率论与数理统计》模拟题(二)参考答案
![《概率论与数理统计》模拟题(二)参考答案](https://img.taocdn.com/s3/m/e5478de4a300a6c30d229f2d.png)
《概率论与数理统计》模拟题(二)及参考答案一、填空题1. 已知()()()14P A P B P C ===,()0P AB =,()()19P AC P BC ==,则事件,,A B C 全不发生的概率为 .2.(1842)设事件123,,A A A 是样本空间的一个划分,且1()0.5P A =,2()0.3P A =,则3()P A = .3.(1842)设,A B 是随机事件,()0.8P A =,()0.6P AB =,则(|)P B A = .4.(1741)已知()0.5P A =,()0.6P B =,(|)0.8P B A =,则()P A B = .5. 设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于1927,则事件A 在一次试验中出现的概率为 .6. 电路由元件A 与两个并联的元件,B C 串联而成,若,,A B C 损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率为 .7.(1841)设随机变量X 服从参数为λ的泊松分布,1{0}P X e -==,则λ= . 8.(1841)设()F x 是随机变量X 的分布函数,且{1}0.15P X >=,则(1)F = .9.(1842)设随机变量X 的概率密度为,04,()0,,a x f x ≤≤⎧=⎨⎩其它其中常数a 未知,则{11}P X -<<= . 10. 设2~(,)X N μσ,已知标准正态分布函数值(1)0.8413Φ=,则{}P X μσμσ-<<+= .11. 设2~(1,4)X N -,(0.125)0.5498Φ=,则{ 1.5}P X >-= .12.(1841)设随机变量,X Y 独立,且X 服从区间[0,1]上的均匀分布,Y 服从参数为1的指数分布,则当01,0x y ≤≤>时,二维随机变量(,)X Y 的概率密度(,)f x y = .13.(1841)设随机变量(,)X Y 的分布律为则{1,2}P X Y =≤= .14. 设(,)X Y 的概率密度为1,01,02,(,)20,x y x y ϕ⎧≤≤≤≤⎪=⎨⎪⎩其它, 则X 与Y 中至少有一个小于12的概率为 . 15.(1842)设随机变量X 服从参数为3的泊松分布,则(2)D X -= .16.(1842)设随机变量,X Y 独立,且分别服从参数为2,3的指数分布,则()D X Y -= .17.设随机变量X 的数学期望()E X μ=,方差2()D X σ=,则由切比雪夫(Chebyshev )不等式,有{3}P X μσ-≥≤ . 18. 已知总体2~(2)X χ,2~(3)Y χ,且X 与Y 相互独立,则X Y +服从 分布.19.(1841)设总体X 在区间[1,3]上服从均匀分布,n X X X ,,,21 为来自总体X 的一个样本,且11ni i X X n ==∑,则()E X = . 20.(1842)设总体2~(,4)X N μ,n X X X ,,,21 为来自总体X 的一个样本,则211[()]ni i E X n μ=-=∑ .21.(1841)设总体X 的分布律为其中p 为未知参数,01p <<,设12,,,n X X X 为来自该总体的一个样本,X 为样本均值,则p 的矩估计ˆp = . 22.(1841)设总体~(,1)X N μ,1216,,,X X X 为来自该总体的一个样本,X 为样本均值,对假设检验问题01:0,:H H μ=0μ≠,应采用检验统计量的表达式为 . 二、单项选择题:1.(1841)设随机事件,A B 满足()0.2P A =,()0.4P B =,()0.6P B A =,则()P B A -=()A 0.16. ()B 0.2. ()C 0.28. ()D 0.32. 答 【 】2. 设,A B 为两个互斥事件,且()0P A >,()0P B >,则下列结论中正确的是()A (|)0P B A >. ()B (|)()P A B P A =. ()C (|)0P A B =. ()D ()()()P AB P A P B =. 答【 】 3. 设,A B 为两个事件,且B A ⊂,则下列结论中正确的是()A ()()P A B P A =. ()B ()()P AB P A =. ()C ()()P B A P B =. ()D ()()()P B A P B P A -=-. 答 【 】 4. 袋中有5个球(3个新球2个旧球),每次取一个,无放回地取三次,则第三次取到新球的概率为 ()A 310. ()B 34. ()C 12. ()D 35. 答 【 】5. 已知随机变量2~(,)X N a σ,记(){}g P X a σσ=-<,则随着σ的增大,()g σ之值()A 保持不变. ()B 单调增大. ()C 单调减小. ()D 增减性不确定. 答【 】 6. 已知随机变量X 的分布律为X 的分布函数为()F x ,则(0.5)F =()A 0. ()B 0.2. ()C 0.25. ()D 0.3. 答【 】 7.(1010)设随机变量~(1,4)X N ,()F x 为X 的分布函数,()x Φ为标准正态分布函数,则(3)F =()A (0.5)Φ. ()B (0.75)Φ. ()C (1)Φ. ()D (3)Φ. 答【 】 8. 随机变量,X Y 都服从二项分布,且~(2,)X B p ,~(4,)Y B p ,已知{1}5P X ≥=,则{1}P Y ≥=()A 65. ()B 5681. ()C 8081. ()D 1. 答 【 】9.(1010)设下列函数的定义域均为(,)-∞+∞,则其中可以作为概率密度的是()A ()x f x e -=-. ()B ()x f x e -=. ()C ||1()2x f x e -=. ()D ||()x f x e -=. 答【 】10. 设(,)X Y 的分布函数1,0,0,(,)0,,x y x y e e e x y F x y ----⎧--+>>=⎨⎩其它 则下列结论中错误的是 ()A X 与Y 一定相互独立. ()B X 与Y 一定都服从指数分布.()C 1()2E X Y +=. ()D ()2D X Y -=. 答 【 】 11.(1841)设随机变量X 和Y 独立同分布,且X 的分布律为则{}P X Y ==()A 0.16. ()B 0.36. ()C 0.48. ()D 0.52. 答 【 】12.(1841)设随机变量X 满足2()20E X =,()4D X =,则(2)E X =()A 4. ()B 8. ()C 16. ()D 32. 答【 】 13. 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()A 8. ()B 16. ()C 28. ()D 44. 答 【 】14. 设随机变量~(0,1)X N ,2~(5)Y χ,且X 与Y~ ()A (5)t . ()B (4)t . ()C (1,5)F . ()D (5,1)F . 答【 】15.设12,,,n X X X 及12,,,m Y Y Y 分别是来自两个独立的正态总体21(,)N μσ及22(,)N μσ的两个样本,其样本方差分别为21S 及22S ,则统计量2212F S S =服从F 分布的自由度为()A (1,1)n m --. ()B (,)n m . ()C (1,1)n m ++. ()D (1,1)m n --. 答【 】 注 样本方差比的抽样分布:2211122222~(1,1)S F n n S σσ--.16.(1741)设总体X 的概率密度为1,2,()0,,x f x θθθ⎧<<⎪=⎨⎪⎩其它(0θ>)12,,,n X X X 是来自总体X 的样本,___X 为样本均值,则参数θ的无偏估计为()A 12X . ()B 23X . ()C X . ()D 1X. 答【 】 17.(1841)某假设检验的拒绝域为W ,当原假设0H 成立时,样本值12(,,,)n x x x 落入W 的概率为0.05,则犯第一类错误的概率为()A 0.05. ()B 0.1. ()C 0.9. ()D 0.95. 答【 】三、计算题:1.(1842)设商店有某商品10件,其中一等品8件,二等品2件,售出2件后,从剩余的8件中任取一件,求取得一等品的概率.2. 设连续型随机变量X的概率密度为||1,()0,||1,x f x x <=≥⎩求:(1) 常数k . (2) 1{}2P X <. (3) X 的分布函数. 3.(1842)设随机变量X 服从参数为1的指数分布,31Y X =+,求Y 的概率密度.4. 设随机变量(,)X Y 的分布律为求:(1) (,)X Y 关于X 和关于Y 的边缘分布律. (2) 2X Y +的分布律.5.(1841)设随机变量(,)X Y 的分布律为且{0}0.4P Y ==,求:(1) 常数,a b . (2) (),()E X D X . (3) ()E XY .6. 设(,)X Y 的概率密度为(5)2,01,5,(,)0,y xe x y f x y --⎧≤≤>=⎨⎩其它. (1) 求(,)X Y 关于X 和关于Y 的边缘概率密度. (2) 问X 与Y 是否相互独立?为什么? (3) 求()E X .7.(1841)设随机变量X 的分布律为令3Y X =,求:(1) ()E X ,()D X . (2) ()E Y ,()D Y . (3) X 与Y 的相关系数XY ρ.8.(1741)设某批零件的长度~(,0.09)X N μ(单位:cm ),现从这批零件中抽取9个,测其长度作为样本,并算得样本均值为43x =,μ的置信度为0.95的置信区间.(0.025 1.96u =)9. 设总体X 的概率密度为(1),1,()0,x x f x ββ-+⎧>=⎨⎩其它,其中(0)ββ>为未知参数,12,,,n X X X 是来自总体X 的一个容量为n的简单随机样本,12,,,n x x x 是一相应的样本值,求参数β的最大似然估计量和最大似然估计值.10.(1842)某水泥厂用自动包装机包装水泥,每袋水泥重量服从正态分布,当包装机正常工作时,每袋水泥的平均重量为50kg .某日开工后,随机抽取9袋,测得样本平均值49.9x kg =,样本标准差0.3s kg =.问当日水泥包装机工作是否正常?(显著性水平0.05α=,0.025(8) 2.306t =)《概率论与数理统计》模拟题(二)参考答案一、填空题1.1736.2.0.2.3.0.25.4.0.7.5.13.6.0.314.7.1.8.0.85.9.14. 10.0.6826.11.0.5498. 12.y e -. 13.0.3. 14.58. 15.12. 16.1336. 17.1. 18.2(5)χ. 19.2. 20.16. 21.1X -. 22.4X .二、单项选择题1.C .2.C .3.A .4.D .5.A .6.D .7.C .8.A .9.C . 10.C . 11.D . 12.B . 13.D . 14.A . 15.A . 16.B . 17.A . 二、计算题:1.解 设{B =任取一件为一等品},{i A =售出的2件商品中有i 件一等品},0,1,2i =,则2202101()45C P A C ==,08(|)18P B A == 1128121016()45C C P A C ==,17(|)8P B A =,28221028()45C P A C ==,263(|)84P B A ==,由全概率公式得2()()()0.8i i iP B P A P B A ===∑. 2.解 (1) 由()1f x dx +∞-∞=⎰,得111(arcsin )[()]122k x k k πππ--==--==⎰,故1k π=.(2)0.50.50.51111{}{0.50.5}(arcsin )[()]2663P X P X x ππππ--<=-<<===--=⎰. (3) 设X 的分布函数为()F x ,则当1x <-时,()()0x F x f t dt -∞==⎰.当11x -≤<时,()()x xF x f t dt -∞-===⎰⎰11111(arcsin )(arcsin )arcsin 22xt x x ππππ-=+=+.当1x ≥时,1()()1x F x f t dt -∞-===⎰⎰.综上X 的分布函数为 0,1,11()arcsin ,11,21,1.x F x x x x π<-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩3.解 X 的概率密度,0,()0,0,xX e x f x x -⎧>=⎨≤⎩当0x >时,311y x =+>,得1(1)3x y =-,3y '=,此时131()13()|3|3y X Y y f f y e ---==,故Y 的概率密度131,1,()30,y Y ey f y --⎧>⎪=⎨⎪⎩其它.4.解 (1) (,)X Y 关于X 和关于Y 的边缘分布律分别为(2) 由题设有故2X Y +的分布律为5.解 (1) 由{0}{0,0}{1,0}0.10.4P Y P X Y P X Y b ====+===+=,得0.3b =.再由分布律的定义知0.10.20.1a ++++0.21b +=,得0.1a =.综上0.1a =,0.3b =.(2) (,)X Y 关于X 的边缘分布律为则()0.6E X =,()0.6(10.6)0.24D X =-=.(3) ()1(1)0.1110.20.1E XY =⨯-⨯+⨯⨯=.6.解 (1) (5)52,01,2,01,()(,)0,0,y X xe dy x x x f x f x y dy +∞--+∞-∞⎧≤≤≤≤⎧⎪===⎨⎨⎩⎪⎩⎰⎰其它.其它1(5)(5)02,5,,5,()(,)0,0,y y Y xe dx y e y f y f x y dx ----+∞-∞⎧>⎧>⎪===⎨⎨⎩⎪⎩⎰⎰其它.其它(2) 由于对,x y R ∀∈,均有(,)()()X Y f x y f x f y =⋅,故X 和Y 相互独立.(3) 102()()23X E X xf x dx x xdx +∞-∞==⋅=⎰⎰. 7.解 (1) 111()(1)010333E X =-⨯+⨯+⨯=,22221112()(1)013333E X =-⨯+⨯+⨯=,222()()[()]3D XE X E X =-=.(2) 由题设得随机变量Y 与X 具有相同的分布,则()0E Y =,2()3D Y =.(3) 4X 的分布律为则42()3E X =,故4()()231()()2XY E XY E X D X D X ρ=====.8.解 43x =,20.09σ=,9n =,10.95α-=,0.05α=,20.025 1.96u u α==,所求置信区间为()(43 1.96)x α±=±, 即(42.804,43.196).9.解 样本的似然函数(1)(1)111,1,(),1,()()0,,0,,n n n nii i i i i i i x x x x L f x βββββ-+-+===⎧⎧>>⎪⎪===⎨⎨⎪⎪⎩⎩∏∏∏其它其它当1(1,2,,)i x i n >=时,()0L β>,且11ln ()ln (1)ln()ln (1)ln nni i i i L n x n x θββββ===-+=-+∑∏,令ln ()0dL d ββ=,即1ln 0n i i n x β=-=∑,解得θ的最大似然估计 值为1ˆln nii nxθ==∑.θ的最大似然估计量为1ˆln nii nXθ==∑.10.解 依题意,需检验假设0010:50,:H H μμμμ==≠.统计量~(1)X t t n =-,0.05α=时,拒绝域为||(1)t t n α≥-= 0.025(8) 2.306t =.由于||1 2.306x t ===<,所以应接受0H ,即认为当日水泥包装机工作正常.。
概率论与数理统计第2章复习题解答
![概率论与数理统计第2章复习题解答](https://img.taocdn.com/s3/m/a82012ebfc4ffe473268ab45.png)
《概率论与数理统计》第二章复习题解答1. 将4只球(1-4号)随机放入4只盒子(1-4号)中去,一只盒子只放一球. 如一只球装入了与之同号的盒子, 称形成了一个配对. 记X 为总的配对数, 求X 的分布律. 解:241!41)4(===X P ; 0)()3(===ΦP X P ——因为当3个球形成配对时,另1个球一定也形成配对;41!41)2(24=⨯==C X P ——当4个球中的某2个形成配对时,另2个球(标号a,b )都不形成配对的放法只1种,即分别放入标号b,a 的盒中;31!42)1(14=⨯==C X P ——当4个球中的某1个形成配对时,另3个球都不形成配对的放法只2种:以abc 记3个空盒的号码排列,则3个球只能以bca 或cab 的次序对应放入3个盒中;249314102411)0(=----==X P . 于是,分布律为2. 盒中装有10个大小相等的球, 编号为0-9. 从中任取一个, 在号码“小于5”、“等于5”、“大于5”三种情况下,分别记随机变量.2,1,0=X 求X 的分布律、分布函数、分析2)1(-=X Y 服从什么分布.解:(1)10个球中号码“小于5”、“等于5”、“大于5”分别有5、1、4个,于是X 的分布律为(2)X 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=2,1 21 ,6.010 ,.500 ,0 )(x x x x x F X ; (3)2)1(-=X Y 分布律为即2)1(-=X Y 服从参数为0.9的0-1分布.3. 设随机变量X 的分布密度为∞<<∞-=-x Aex f x X ,)(. 求(1)A 的值;(2))21(<<-X P ;(3)X的分布函数;(4)21X Y -=的分布密度. 解:(1)122)(0===⎰⎰∞-∞∞-A dx Ae dx x f x X , 21=∴A ,⎪⎪⎩⎪⎪⎨⎧≤>=∴-0,21 0,21)(x e x e x f x x X ; (2))(2112121)21(212001----+-=+=<<-⎰⎰e e dx e dx e X P x x ; (3)⎪⎪⎩⎪⎪⎨⎧≥-=+<===--∞-∞-∞-⎰⎰⎰⎰0 ,21121210 ,2121 )()(00x e dt e dt e x e dt e dt t f x F x x t t x x t xX X ; (4))1(1)1()1()()(222y X P y X P y X P y Y P y F Y -<-=-≥=≤-=≤=⎪⎩⎪⎨⎧≥-<-<<---=1 ,01 1,)11(1y y y X y P ⎪⎩⎪⎨⎧≥<--+--=1 ,11,)1()1(1y y y F y F X X 求导得⎪⎩⎪⎨⎧≥<---+-=1 ,0 1,121)]1()1([)(y y y y f y f y f X X Y⎪⎩⎪⎨⎧≥<-+=----1 ,0 1 ,121]2121[11y y y e e y y ⎪⎩⎪⎨⎧≥<-=--1 ,01,1211y y e y y .4. 根据历史资料分析, 某地连续两次强地震间隔的年数X 的分布函数为⎩⎨⎧<≥-=-0 ,00,1)(1.0x x e x F x ,现在该地刚发生了一次强地震,求(1)今后3年内再发生强地震的概率;(2)今后3-5年内再发生强地震的概率;(3)X 的分布密度)(x f ,指出X 服从什么分布.解:(1)26.01)3()3(31.0=-==≤⨯-e F X P ;(2)13.0)1()1()3()5()53(31.051.0=---=-=≤<⨯-⨯-e eF F X P . (3)X 的分布密度⎪⎩⎪⎨⎧≤>=⎩⎨⎧≤>=--0,0 0,1010 ,0 0,1.0)(1011.0x x e x x e x f x x ,故X 服从参数为10的指数分布. 5.(1)设),2(~p b X , ),3(~p b Y , 且95)1(=≥X P , 求)1(≥Y P .(2)设)(~λP X , 且)2()1(===X P X P , 求)4(=X P .(3)设),(~2σμN X ,试分析当↑σ时,概率)(σμ<-X P 的值将如何变化. 解:(1)),2(~p b X ,95)1(1)0(1)1(2=--==-=≥∴p X P X P ,故321=-p ,31=p . 从而)31,3(~b Y , 2719)32(1)1(1)0(1)1(33=-=--==-=≥∴p Y P Y P . (2))(~λP X , 且)2()1(===X P X P , 即λλλλ--=e e !2!121, 亦即λλ22=, 又0>λ, 2=∴λ.从而)2(~P X , 2!2)(-==e k k X P k, .2,1,0 =k 于是22432!42)4(--===e e X P . (3)),(~2σμN X ,故6826.01)1(2)1()1()()(=-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P . 故当↑σ时,概率)(σμ<-X P 的值.6. 设某城市男子的身高(单位:cm))6,170(~2N X .(1)应如何设计公共汽车的车门高度, 才能使该地男子与车门碰头的概率小于0.01?(2)若车门高度为182cm, 求100个男子中会与车门碰头的人数至多是1的概率.解:(1)设公共汽车的车门高度应为x cm. 则 要使01.0)6170(1)(1)(<-Φ-=≤-=>x x X P x X P , 只须)33.2(99.0)6170(Φ=>-Φx , 从而只要33.26170>-x , 于是98.183>x 即可.(2)若车门高度为182cm, 则1个男子会与车门碰头的概率为 0228.0)2(1)6170182(1)182(1)182(=Φ-=-Φ-=≤-=>=X P X P p 设100个男子中会与车门碰头的人数为Y , 于是)0228.0,100(~b Y , 从而34.09772.00228.09772.00228.0)1()0()1(991110010000100=+==+==≤C C Y P Y P Y P .7. 设带有3颗炸弹的轰炸机向敌人的铁路投弹, 若炸弹落在铁路两旁40米以内, 即可破坏铁路交通. 记弹落点与铁路的距离为X (单位: 米), 落在铁路一侧时X 的值为正, 落在另一侧时为负. X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-<≤-+=其它 ,0 1000 ,100001000100,10000100)(x x x x x f若3颗炸弹全部使用, 求敌人铁路交通受到破坏的概率.解:1颗炸弹落在铁路两旁40米以内的概率为64.01000010010000100)()40(4000404040=-++==<=⎰⎰⎰--dx x dx x dx x f X P p 设3颗炸弹中落在铁路两旁40米以内的颗数为Y , 则)64.0,3(~b Y ,从而至少1颗炸弹落在铁路两旁40米以内(可破坏铁路交通)的概率为95.0)64.01(1)0(1)1(3=--==-=≥Y P Y P8. 设),(~b a U X , 证明: 当0>k 时, l kX Y +=仍服从均匀分布.证明:),(~b a U X ,⎪⎩⎪⎨⎧<<-=∴其它,0 ,1)(b x a a b x f X ,而)()()()()(k l y F k l y X P y l kX P y Y P y F X Y -=-≤=≤+=≤= 求导得k k l y f y f X Y 1)()(-=. 又因为⇔≠-0)(k l y f X l bk y l ak b kl y a +<<+⇔<-<,故 ⎪⎩⎪⎨⎧+<<+-=其它,0 ,)(1)(l bk y l ak ka b y f Y . 即当0>k 时, l kX Y +=在),(l bk l ak ++上服从均匀分布. 证毕.9.(1)设X 的分布密度⎩⎨⎧<<--=其它 ,0 11,1)(x x x f X , 用分布函数法求X Y =的分布密度;(2)设)1,0(~U X , 用公式法求XY +=11的分布密度. 解:(1)⎩⎨⎧≤>--=<<-=≤=≤=0 ,00,)()()()()()(y y y F y F y X y P y X P y Y P y F X X Y , 求导得 ⎩⎨⎧≤>-+=0 ,0 0,)()()(y y y f y f y f X X Y 注意到当且仅当10<<y 时)(),(y f y f X X -取非零表达式,故⎩⎨⎧<<-=--+-=其它 ,010),1(2)1()1()( y y y y y f Y (2))1,0(~U X ,⎩⎨⎧<<=∴其它,0 10,1 )(x x f X ,而当10<<x 时x y +=11单调可导;反函数为11)(-=y y h ,21)('y y h -=;21)1(,1)0(==y y ,由定理知⎪⎩⎪⎨⎧<<=其它 ,0 121 ,)('))(()( y y h y h f y f X Y ⎪⎩⎪⎨⎧<<=其它 ,0 121 ,12y y 10. 试证明:若 ,3,2,1,)1()(1=-==-k p p k X P k , 则)()(t X P s X t s X P >=>+>, 其中t s ,是非负整数.(即几何分布具有“无记忆性”) 证明:t t t k k t k k p p p p p p p p t X P )1()1(1)1()1()1()(1111-=---=-=-=>∑∑∞+=-∞+=-, )()()(),()(s X P t s X P s X P s X t s X P s X t s X P >+>=>>+>=>+>,由上一步结果知 t s ts p p p s X t s X P )1()1()1()(-=--=>+>+,故)()(t X P s X t s X P >=>+>对任意非负整数t s ,成立. 即几何分布与指数分布一样,具有“无记忆性”. 证毕.第 1 页:第二章 随机变量及其分布习 题 课**************************************************第二章随机变量及其分布习 题 课第 2 页:**************************************************随 机 变 量离 散 型随机变量连 续 型随机变量分 布 函 数分 布 律密 度 函 数均匀分布指数分布正态分布两点分布二项分布泊松分布随机变量的函数的分布定义知识结构特征数第 3 页:随机变量与普通的函数不同**************************************************随机变量与普通的函数不同随机变量随机变量的取值具有一定的概率规律设 ={}为某随机现象的样本空间,称定义在上的实值函数 X=X() 为随机变量.用来表示随机现象结果的变量。
《概率论与数理统计》习题二答案
![《概率论与数理统计》习题二答案](https://img.taocdn.com/s3/m/6fde2fe96137ee06eef91805.png)
即分布函数 故Y的密度函数为 (2) 由P(0<X<1)=1知 当z≤0时, 当z>0时, 即分布函数 故Z的密度函数为 32.设随机变量X的密度函数为 f(x)= 试求Y=sinX的密度函数. 【解】 当y≤0时, 当0<y<1时,
当y≥1时, 故Y的密度函数为 33.设随机变量X的分布函数如下: 试填上(1),(2),(3)项. 【解】由知②填1。 由右连续性知,故①为0。 从而③亦为0。即 34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X的分布 律. 【解】设Ai={第i枚骰子出现6点}。(i=1,2),P(Ai)=.且A1与A2相互独立。 再设C={每次抛掷出现6点}。则 故抛掷次数X服从参数为的几何分布。 35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9? 【解】令X为0出现的次数,设数字序列中要包含n个数字,则 X~b(n,0.1) 即 得 n≥22 即随机数字序列至少要有22个数字。
解1由d1fxx?????知021ed2edxxaaxax??????????????故2a??即密度函数为e02e02xxxfxx???????????????当x0时1dede22xxxxfxf《概率论与数理统计》习题及答案
习题二
.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】 故所求分布律为 X 3 4 5 P 0.1 0.3 0.6
(2) f(x)= 试确定常数a,b,并求其分布函数F(x). 【解】(1) 由知 故 即密度函数为 当x≤0时 当x>0时 故其分布函数 (2) 由 得 b=1 即X的密度函数为 当x≤0时F(x)=0 当0<x<1时 当1≤x<2时 当x≥2时F(x)=1 故其分布函数为 27.求标准正态分布的上分位点, (1)=0.01,求; (2)=0.003,求,. 【解】(1) 即 即 故 (2) 由得 即 查表得 由得 即 查表得 28.设随机变量X的分布律为 X −2 −1 0 1 Pk 1/5 1/6 1/5 1/15 求Y=X2的分布律.
全国自学考试概率论与数理统计二历年真题及答案
![全国自学考试概率论与数理统计二历年真题及答案](https://img.taocdn.com/s3/m/0ced4dc051e79b89680226f1.png)
全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计第二章自测题答案与提示
![概率论与数理统计第二章自测题答案与提示](https://img.taocdn.com/s3/m/f1a00b5e5e0e7cd184254b35eefdc8d376ee14ab.png)
为了更好地备考,我将关注以下几个方向:深入理解概率论的基本概念和性质;掌握条件概率的计算 方法;熟悉常用随机变量的期望和方差的计算公式;提高解决实际问题的能力。同时,我也会注重培 养自己的逻辑思维和分析能力,以便更好地应对各种考试挑战。
THANKS
感谢观看
通过具体例题,解析如何运用概 率的基本性质和计算方法,解决 复杂的概率计算问题。
随机变量分布题
通过具体例题,解析如何运用随 机变量的性质和分布函数,解决 随机变量分布的问题。
随机变量变换题
通过具体例题,解析如何运用随 机变量的变换方法,解决随机变 量变换的问题。
04
自测题答案总结与反思
答案总结
要点一
填空题答案及解析
填空题1答案:0.6
01
输标02入题
解析:此题考查概率的计算,根据概率的基本性质, 互斥事件的概率和为1,因此$P(A) + P(B) = 1$,解 得$P(A) = 0.6$。
03
解析:此题考查随机变量的期望和方差的计算,根据 期望和方差的定义,随机变量X的期望$E(X) = sum x_i p_i$,方差$D(X) = sum (x_i - E(X))^2 p_i$。
概率论与数理统计第二章 自测题答案与提示
• 自测题答案 • 题目解析与提示 • 重点与难点解析 • 自测题答案总结与反思
01
自测题答案
选择题答案及解析
选择题1答案:B 选择题2答案:C 选择题3答案:D
解析:此题考查概率的基本性质,事件A和B的并集概 率等于它们概率之和减去它们的交集概率,即$P(A cup B) = P(A) + P(B) - P(A cap B)$。
建议
为了提高自己的理解和应用能力,我建议在未来的学习中更加注重基础知识的掌握,多做一些练习题来加深对概 念的理解。同时,我也应该学会如何将理论知识应用于实际问题中,提高自己的分析和解决问题的能力。
数理统计与概率论习题二答案.ppt
![数理统计与概率论习题二答案.ppt](https://img.taocdn.com/s3/m/7df7dcab51e79b89680226b6.png)
P(X 2) 1( P X 0 ) P ( X 1 )
1 C 0 . 80 . 2 C 0 . 8 0 . 2
0 4 0 4 1 4 3
0 .9 7 2 8
2.11 某车间有20部同型号机床,每部机床开动的概率 为0.8,若假定各机床是否开动彼此独立,每部机床开动 时消耗的电能为15个单位,求这个车间消耗电能不少于 270个单位的概率 解 设X为20部机床开动的台数, 则X~B(20,0.8) 由于每部机床开动时消耗的电能为15个单位 则要使车间消耗电能不少于270个单位,则至少要 开动270/15=18台机床 故所求概率为
x0 d x , 解 x 0 0 d x + x d x, 0 (2 )F (x ) 0 1 x 0 d x + x d x (2x ) d x, 0 1 1 2 x 00 x + d x (2x ) d x 0 d x , d 0 x 1 2 x0 0x1 1x2 x2
1 ) 由 规 范 性 得 1 () d 解( fxx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》第二套模拟试题一、单项选择题(每小题3分,共15分) 1. 设事件A 和B 相互独立,则 (B )A .)()()(B P A P B A P -=- B . )()()(B P A P B A P =C .0)(=AB PD . 1)(=+B A P2. 设随机变量X 的全部可能值为1,3,4,且2.0)1(==X P ,5.0)3(==X P ,则==)4(X P ( A )A .3.0B . 2.0C .7.0D . 5.0 3. 离散型随机变量X 的分布列为)(x F ,则=)23(F (C)其分布函数为A .4.0B .2.0C .6.0D .14. 设总体X ~),(2σμN ,μ为已知,σ未知,),,2,1(n i X i =为来自X 的样本,、2S 分别为样本均值和样本方差,则是统计量的是(C )A.nX σμ- B.22)1(σS n - C. ∑=-n i i X n 12)(1μ D. σS5. 设总体X ~)1,(μN ,21,X X 是X 的样本,则下列各式中不是总体参数μ的无偏估计量的是(D) A.213132X X + B. 212121X X + C. 214341X X + D. 2110151X X + 二、填空题(每小题3分,共15分)1、设3.0)(=A P ,P (B |A )=0.6,则P (AB )=____0.42____。
2、设随机变量X 服从参数为5.1的泊松分布,]4,0[~U Y ,则=-+)13(Y X E ______5.5_____。
3、设随机变量X 与Y 的方差分别为25和16,4.0=XY ρ,则)2(Y X Var +=148 。
4、设随机变量X 具有期望2)(=X E ,方差1)(=X Va r ,则由切比雪夫不等式,有≤≥-}32{X P _______1/9____。
5、为了解灯泡使用时数的方差2σ,测量9个灯泡,得样本方差202=S 平方小时。
如果已知灯泡的使用时数服从正态分布,则2σ的置信系数为95%的置信区间为[9.125,73.394]。
三、计算题(一)(共56分)1. (12分)一批同一规格的产品由甲厂和乙厂生产,甲厂和乙厂生产的产品分别占70%和30%,甲乙两厂的合格率分别为95%和90%,现从中任取一只,则(1)它是次品的概率为多少?(2)若为次品,它是甲厂生产的概率为多少?解:设A =‘任取一产品是次品’,B =‘任取一产品是甲厂生产’依题意有:%70)(=B P ,%30)(=B P ,%5)|(=B A P ,%10)|(=B A P ,则(1)()()(|)()(|)P A P B P A B P B P A B =+=065.0%1030%5%70=⨯+⨯(2)5385.03.01.07.005.07.005.0)()|()()|()()|()|(≈⨯+⨯⨯=⨯+⨯⨯=B P B A P B P B A P B P B A P A B P 2.(12分)设随机变量X 的概率密度函数为 ⎩⎨⎧≤≤=其他,010,)(x Ax x f ,(1)求常数A ;(2)求概率⎭⎬⎫⎩⎨⎧<<2131X P -;(3)求X 的分布函数)(x F 。
(1)⎰∞∞-=1)(dx x f 即⎰=101Axdx2=⇒A (2)⎭⎬⎫⎩⎨⎧<<2131X P -⎰==210412xdx (3)⎰∞-=xdt t f x F )()(⎪⎩⎪⎨⎧>≤≤<=1,110,0,02x x x x3.(10分)设随机变量)1,0(~N X ,求随机变量12-=X Y 的概率密度函数。
解:随机变量X 的密度函数为:()2221x X e x f -=π,∞<<∞-x()()()⎪⎭⎫ ⎝⎛+≤=≤-=≤=2112y X P y X P y Y P y F Y ⎰+∞--=212221y x dx e π由()()y F y f Y Y '= 得()8)1(2221+-=y Y e y f π,∞<<∞-y4.(10分)盒子中有同型号小球5只,编号分别为1、2、3、4、5,今从盒子中任取小球3只,以X 表示取出的3只中的最小号码,求: (1)X 的分布律;(2)X 的期望与方差。
解:(1)X 的取值为1,2,3分布律为53)1(3524===C C X P ,103)2(3523===C C X P ,1011)3(35===C X P(2)5.110131032531)(=⨯+⨯+⨯=X E 7.210131032531)(2222=⨯+⨯+⨯=X E 45.0))(()()(22=-=X E X E X D5.(12分)已知二维随机向量),(Y X 的分布律为求常数;(2)求、的边缘分布律;(3)判断随机变量与是否相互独立。
解:(1)有分布律的性质,有1185926118191=+++++a ,可以求得61=a(2)X 和Y 的边缘分布为1856191)1(=+==X P ,18592181)3(=+==X P , 9418561)5(=+==X P 316118191)2(=++==Y P ,321859261)3(=++==Y P ,(3)因为)2,1(==Y X P ≠P(X=1)P(Y=2) 所以X 与Y 不相互独立. 四、计算题(二)(14分)设总体X 服从参数为θ的指数分布,其概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x θθ n X X X ,,,21 是来自X 的样本,求未知参数θ的矩估计∧θ和极大似然估计*θ。
解:X的概率密度函数为⎩⎨⎧≤>=-0,00,),(x x e x f x θθθ ⎰⎰∞-∞∞-===1)()(θθθdx e x dx x xf X E x样本的一阶原点矩为nnX X X =+++ 21 替换,θ1=X ,得矩估计∧θ=X 1 似然函数为⎪⎩⎪⎨⎧≤>=-=∏000,),,,(11i i x n i n x x e x x L i,θθθ ∑=-=ni i x n LnL 1ln θθ 0ln 1=-=∑=ni i x n d L d θθ 解似然方程得θ的极大似然估计XXni i11*==∑=θ 《概率论与数理统计》第一套模拟试题一、单项选择题(每小题3分,共15分)1. 事件A 、B 互斥,则下列哪个是正确的 ( A ) A .1)(=+B A P B .1)(=B A P C .)()()(B P A P AB P = D .)(1)(AB P A P -=2. 下列函数中可作为某随机变量的概率密度的是( C )A .⎩⎨⎧≤≤-=其他,0,20,1)(x x fB .⎪⎩⎪⎨⎧≤>=0,0,0,10)(x x x x fC .⎪⎩⎪⎨⎧≤>=100,0,100,100)(2x x xx fD .⎪⎩⎪⎨⎧≤≤=其他,0,232121)(x ,x f3.设总体),1(~p B X ,其中p 未知,n X X X ,,,21 是来自总体的样本,则下列哪个不是统计量( D )A .∑=n i i X n 11B . )(31421X X X ++C . ∑=n i i X n 121 D .p X n n i i +∑=114. 设总体X ~),(2σμN ,),,2,1(n i X i =为来自X 的样本,、2S 分别为样本均值和样本方差,则( B ) A.122~)1(--n t S n σ B. ),(~2nN X σμC. X ~)1,0(ND.222~)1(n S n χσ-5. 设n X X X ,,,21 为来自总体X 的随机样本,X ~),(2σμN ,μ未知,则下列哪个不是μ的无偏估计( B )A. ∑=ni i X n 11 B. 212131X X +C.313132X X + D. 321414121X X X ++ 二、填空题(每小题3分,共15分)1、设事件A 与B 相互独立,且P (A ∪B )=0.6,P (A )=0.2,则P (B )=____0.5____。
2、设随机变量)3.0,6(~B X ,)2(~P Y ,则=+-)12(Y X E _____2.6______。
3、设随机变量X 与Y 的方差分别为9和25,6.0=XY ρ,则)12(+-Y X Var = 73 。
4、若随机变量X 满足:3)(=X E ,21)(=X Var ,利用切比雪夫不等式可估计≥<<}51{X P ___7/8_____。
5、设1621,,,X X X 来抽自总体)25,(μN 的样本,其样本均值68.14=X ;则μ的置信系数为95%的置信区间为_[12.23,17.13]. 三、计算题(一)(共56分)1.(12分) 一批同一规格的零件由甲乙两台车床加工,甲和乙加工的零件分别占60%和40%,甲出现不合格品的概率为0.03,乙出现不合格品的概率为0.06, (1)求任取一个零件是合格品的概率为多少?(2)如果取出的零件是合格品,求它是乙车床加工的概率为多少?解:设A =‘任取一零件是合格品’,B =‘任取一零件是甲车床加工的’, 依题意有:%60)(=B P ,%40)(=B P ,%97)|(=B A P ,%94)|(=B A P ,则(1) ()()(|)()(|)P A P B P A B P B P A B =+=⨯+⨯=94.04.097.06.00.958 (2) 3925.0958.04.094.0)()()|()|(≈⨯=⨯=A PB P B A P A B P2.(12分)设随机变量X 的分布函数为 ⎪⎩⎪⎨⎧>≤<≤=2,120,0,)(2x x Axx x F , 求(1)常数A ;(2)X 的概率密度函数)(x f ;(3)概率⎭⎬⎫⎩⎨⎧<<321X P 。
解:(1)由右连续性)2()(lim 2F x F x =+→,即1=22A ,得41=A (2)由⎪⎩⎪⎨⎧≤<='=其他,020,21)()(x x x F x f (3)1615)21(411)21()3(3212=-=-=⎭⎬⎫⎩⎨⎧<<F F X P3.(10分)设随机变量)1,0(~N X ,求随机变量Xe Y -=的概率密度函数。
解:随机变量X 的密度函数为:()2221x X e x f -=π,∞<<∞-x当0≤y 时,()()()()0==≤=≤=-φP y e P y Y P y F X Y 当0>y 时,()()()()⎰∞---=-≥=≤=≤=yx X Y dx e y X P y e P y Y P y F ln 2221ln π由()()y F y f Y Y '= 得: ()⎪⎩⎪⎨⎧≤>=-0,00,212)(l n 2y y e y y f y Y π4.(10分)一海运船的甲板上放着10桶装有化学原料的圆桶,现已知其中有3桶被海水污染了。