数理统计08第八讲 假设检验(续)
概率论与数理统计(8)假设检验
概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。
由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。
概率论与数理统计 第8章
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。
08-χ2 检验011014
专用计算公式:
2
A n( 1) n R nC
2
式中n是总例数,A是每个格子的实际频数, nR 、nC分别为某格子对应的行合计和列合计。
例6.14 市重污染区、一般市区和农村的出生婴儿 的致畸情况如下表示。问三个地区的出生婴儿致 畸率有无差别?
表6.14 某市三个地区出生婴儿的致畸率比较
3.实际频数(actual frequency, A):
实际资料中的数据。
4.无效假设下频数的重新分配
--理论频数(Therical frequency, T)
TRC
n R nC n
式中TRC表示R 行(row)C 列(column) 的理论频数,nR为相应行的合计,nC为相应列 的合计,n为总例数。
【教学内容】
一、四格表资料的χ2检验
(一)四格表资料的χ2检验 (二)四格表资料χ2检验的校正
二、行×列表资料的χ2检验
三、配对四格表资料的χ2检验
2检验 一、四格表资料的χ
(一)四格表资料的χ2检验
【例6.12】在某山区小学随机抽取男生
80人,其中肺吸虫感染23人;随机抽取女
生85人,其中肺吸虫感染13人。问该山区
例如,两种方法检测诊断n个病人,结果如下:
2
(3)确定 P 值,作出统计结论 2 2 ν =2,查χ 界值表χ 0.005(2)=10.60,P<0.005。在a=0.05 水准上, 拒绝 H0,接受 H1,可以认为该市三个地区出生婴儿的致畸率有差别。
表10
Χ2界值表(部分)
R×C表χ2检验应用的注意事项
1. 理论频数不宜太小,一般要求:不应有1/5 以上格子的理论频数小于5或有一个格子的理论 频数小于1。
《概率论与数理统计》课件第八章 假设检验
《概率论与数理统计》第八章1假设检验的基本概念
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%?
双侧检验 H0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, 先抽取某个班的平均 分,看该成绩是否显著高于全校整体水平?
单侧检验 H0 : 0 65, H1 : 65
0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
分析 以 和 分别表示这一天袋装糖的净重
总体X 的均值和标准差,
由长期实践表明标准差比较稳定, 我们就设
0.015,于是 X ~ N(, 0.0152 ),这里 未知. 问题 问题是根据样本值判断 0.5 还是 0.5 .
所
以,原假
设H
不正确
0
。
对于这两种解释,哪种解释比较合理呢?
我们需要判断以上两种假设谁对谁错,并给出判断的理由
以上例子属于参数检验(parametric test) 的问题,(如针对总体均值,总体方差等参数的假 设检验)。
另外还有非参数检验(Nonparametric test) 的问题,如关于总体服从某种分布(如正态分布, 泊松分布)的假设检验。
4. 拒绝域与临界点
拒绝域W1: 拒绝原假设 H0 的所有样本值 (x1, x2, ···, xn)所组成的集合.
W1 W1 :拒绝原假设H0的检验统计量的取值范围.
临界点(值):拒绝域的边界点(值) (相应于检验统计量的值).
如: 在前面例4中,拒绝域 {u :| u | u / 2 }.
5. 双边备择假设与双边假设检验
之 下 做 出 的.
2. 检验统计量
概率论与数理统计第八章假设检验习题解答
1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
数理统计中的假设检验方法
数理统计中的假设检验方法在数理统计中,假设检验方法是一种重要的统计推断方法,旨在通过对样本数据进行统计分析,对总体参数的假设进行验证。
本文将介绍假设检验的基本概念和步骤,并介绍几种常见的假设检验方法。
一、假设检验的基本概念和步骤假设检验是基于样本数据对总体参数进行推断的方法,其基本思想是通过假设检验来判断总体参数是否符合某种特定的假设。
例如,我们可以对一个总体的均值是否等于某个特定值进行假设检验。
假设检验的基本步骤如下:1. 建立原假设(H0)和备择假设(H1):原假设是我们要进行检验的假设,备择假设是原假设的对立假设。
例如,原假设可以是总体均值等于某个特定值,备择假设可以是总体均值不等于该特定值。
2. 选择适当的显著性水平(α):显著性水平是我们在进行假设检验时所允许的犯第一类错误的概率,通常取0.05或0.01。
3. 根据样本数据计算检验统计量:检验统计量是用来判断原假设是否成立的量,其选择取决于具体的假设检验方法。
4. 设置拒绝域:拒绝域是指当检验统计量的取值落入该域时,我们拒绝原假设。
拒绝域的划定依赖于显著性水平和假设检验方法。
5. 做出统计判断:根据对样本数据的分析以及检验统计量是否落入拒绝域,我们可以判断是否拒绝原假设。
6. 得出结论:根据统计判断,我们可以得出关于总体参数的统计结论,并对其进行解释。
二、常见的假设检验方法1. 单样本 t 检验:单样本t 检验用于判断一个样本的均值是否与某个已知的数值相等。
它常用于样本容量较小(小于30)且总体标准差未知的情况。
2. 独立样本 t 检验:独立样本 t 检验用于比较两个独立样本的均值是否相等。
它常用于独立样本间的均值差异的比较。
3. 配对样本 t 检验:配对样本 t 检验用于比较同一组样本在两个时间点或两个条件下的均值是否相等,常用于配对样本的差异性分析。
4. 卡方检验:卡方检验用于检验两个或多个分类变量之间的关联性。
它可用于判断观察到的频数与期望的频数是否有显著差异。
概率论与数理统计____第8章假设检验习题及答案 (2)
第8章 假设检验一、填空题1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X 2σμ,样本n 21X ,X ,X ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X 是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X (1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布, 拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x , 现算得966.24667.26916152>=⨯=x 拒绝0H , 综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布, 试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH1000:1<μH 在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-= 拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 α, 检 验假 设 H 0 ; μ = μ0, H 1 ; μ ≠ μ0, 问当 μ0, μ, α一 定 时 , 增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 β 减 少 对 吗 ?并 说 明 理 由 。
概率与数理统计第8章--假设检验与方差分析
第8章假设检验与方差分析【引例】重庆啤酒股份有限公司(以下简称重庆啤酒)于1990年代初斥巨资开始乙肝新药的研发,其股票被视作“生物医药”概念股受到市场热捧。
尤其是2010~2011年的两年间,在上证指数大跌1/3的背景下,重庆啤酒股价却从23元左右飙升最高至元,但公司所研制新药的主要疗效指标的初步统计结果于2011年12月8日披露后,股价连续跌停,12月22日以元报收后停牌。
2012年1月10日重庆啤酒公告详细披露了有关研究结论,复牌后股价又遭遇连续数日下跌,1月19日跌至元。
此公告明确告知:“主要疗效指标方面,意向性治疗人群的安慰剂组与 600μg组,及安慰剂组与εPA-44 900μg组之间,HBeAg/抗HBe 血清转换在统计意义上均无差异”。
通俗地说,用药与不用药(安慰剂组)以及用药多与少(900μg组与600μg 组),都没有明显差异,这意味着该公司研制的乙肝新疫苗无效。
有关数据如表所示:表乙肝新疫苗的应答率注:εP A-44为治疗用(合成肽)乙型肝炎疫苗简称。
上表数据显示,两个用药组的应答率都高于安慰剂组的应答率,但为什么说“在统计意义上均无差异”为什么说这个结论表示乙肝新疫苗无效什么叫“在统计意义上无差异”如何根据样本数据作出统计意义上有无差异的判断解答这些问题就需要本章所要介绍的假设检验。
现实中,人们经常需要利用样本信息来判断有关总体特征的某个命题是真还是伪,或对某个(些)因素的影响效应是否显著作出推断,所以假设检验和方差分析有着广泛的应用。
例如,在生物医学领域,判断某种新药是否比旧药更有效;在工业生产中,根据某批零件抽样检查的信息来判断整批零件的质量是否符合规格要求;在流通领域,鉴别产品颜色是否对销售量有显著影响等等。
这些分析研究都离不开假设检验或方差分析。
假设检验与方差分析的具体方法很多,研究目的和背景条件不同,就需采用不同的方法。
本教材介绍假设检验与方差分析的基本原理和一些基本方法。
【精品】概率论与数理统计PPT课件第八章 假设检验
16
假设检验的两类错误
所作判断 真实情况 H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第一类错误
(弃真)
第二类错误
(取伪)
正确
犯第一类错误的概率通常记为
犯第二类错误的概率通常记为
17
如在例2中, 如果第一起交通事故发生后, 就 断定隧道南更容易发生交通事故, 犯第一类错 误的概率是0.35. 当第二起交通事故发生后, 断 定隧道南更容易发生交通事故, 犯第一类错误 的概率是0.352=0.1225. 如果第四起交通事故又 发生在隧道南, 否定p=0.35时犯第一类错误的概 率是0.354=0.015.
24
假设检验步骤(三部曲) 根据实际问题所关心的内容,建立H0与H1。
在H0为真时,选择合适的统计量T, 并确定
拒绝域。 根据样本值计算,并作出相应的判断.
25
提出 假设
总 结
抽取 样本
P(T W)=
-----犯第一 类错误的概率, W为拒绝域
根据统计调查的目的, 提出 原假设H0 和备择假设H1
P= 0.353 ≈ 0.043.
这是一个很小的概率, 一般不容易发生.
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
4
这是 小概率事件, 一般在一次试验中是不会发 生的, 现一次试验竟然发生, 故可认为原假设不 成立, 即该批产品次品率p>0.04 , 则该批产品不 能出厂.
第八讲 心理统计学-假设检验
1422:16
零假设和相应的研究假设
零假设
3年级学生的ABC记忆 考试的平均成绩和5年 级学生的平均成绩没有 差异。
由社区长期照料老人的 效率和由家庭长期照料 老人的效果没有差异。
无方向研究假设
有方向研究假设
3年级学生的ABC记忆 3年级学生的ABC记忆 考试的平均成绩不同于 考试的平均成绩低于5 5年级学生的平均成绩。 年级学生的平均成绩。
¾需要考虑的条件
总体分布 总体方差 样本容量
46
¾1.总体正态分布,总体方差已知; ¾2.总体正态分布,总体方差未知; ¾3.总体非正态分布。
47
1.总体正态分布,总体方差已知
¾ 大样本和小样本的检验方法与步骤是相同 的。都是用样本平均数分布的标准误差按 正态分布去计算Z值。
¾ 检验方法:Z检验。
1622:16
¾ 举例:某班级进行瑞文智力测验,结果平均分X =100,已知瑞文测验的常模μ0=100;σ0= 16,问该班智力水平(不是这一次测验结果) 是否确实与常模水平有差异。
¾ 样本分布理论:多次抽样,得到多次测验的结 果的总平均为μ
¾ 检验目的是证明H1 :μ≠ μ0
17
二、假设检验的步骤
第1步:提出虚无和对立假设 第2步:确定适当的检验统计量 第3步:规定显著性水平 第4步:计算检验统计量的值 第5步:做出统计决策
1822:16
3
第一步 提出假设
¾定义
虚无假设(H0 ):原假设、无差假设、零假设 对立假设(H1 ):备择假设,研究假设
¾例子 测量女大学生是否有性别歧视的倾向
IV. 作为好的研究者,我们的工作是解释观察到的差异时消除偶然 性因素,并评价其他可能导致群体差异的因素
概率论与数理统计第八章假设检验
对于(a)小概率P{X 0 u }
u是所选取合适的统计量 U 的分位点
1
单侧检验
P{ X 0 u } x 0 u为拒绝区域
其含义是依这样本x所推断的
小
概率
事
件H
发生
0
了
,
拒
绝H
0
u
拒绝
1
u 拒绝
对于(b)小概率P{X 0 u } (密度函数为对称时)
由 经 验 知 0.015公 斤 , 为 了 检 验 某 天 机器 工 作 是 否 正 常 , 抽 取其 所
包 装 的9袋 称 得 重 量 分 别 为0:.497,0.506,0.518,0.524,0.488,0.511,0.510,0.515,0.519; 问这天机器正常否?
现在另一天任然抽取9袋得样本均值x 0.511公斤,推断这天机器是否工作正常?
小 概 率 事 件 是: 样 本 均 值X与 所 假 设 的 期 望0相 差 X 0
不 能 太 大, 若 相 差 太 大 则 拒 绝H0
小概率事件P{ X 0 u }
u
是
2
所
选
取
合
适
的
统
计
量U
2
的
2
分
位
点
1
P{ X 0 u } x 0 u 为拒绝区域 2
较大、较小是一个相对的概念,合理的界限在何 处?应由什么原则来确定?
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生(若发 生了则认为假设是错 )
在假设检验中,称这个小概率为显著性水平,用 表示.
数理统计 第八章 假设检验
量
渐近2 服从ik自1 (由fi度n为pni(pik)-21)的ik1 2nf分pi2i布. n
检验的拒绝域形为: W= 2 C
当显著性水平给定时,可得 C=2 (k 1).
12
如果根据所给的样本值 X1,X2, …,Xn算得
(2 n-1)
2 1
2 (n 1)
(n 1)S 2
2
t(n1 n2 2)
2 2 (n 1) (X Y ) (1 2 )
S 1 1 w n1 n2
t(n1 n2 2)
F1 2 (n1 1, n2 1)
F(n1 1,n2 1)
npi
近似服从 2(1)
按 0.05,查表得
2 0.05
(1)
3.841,拒绝域为
W= 2 3.841
这里,n=70+27=97, k=2,
实测频数为70,27.
理论频数为: np1=72.75, np2=24.25
由于统计量 2的实测值 2=0.4158<3.841,17
理论频数npˆi 217 149 51
12
3
22
战争次数x 实测频数 fi 概率估计 pˆi 理论频数npˆi
0
1
223 142
0.502 0.346
217 149
2 48 0.119 51
3 15 0.027
12
4
4
0.006
3
15
检验统计量的观察值为
2 k ( fi npi )2 k fi2 n
i 1
npi
i1 npˆi
《概率论与数理统计教学课件》8第八章—正态总体均值和方差的假设检验
真)
P1 2
(
x y
11
k)
k t (n1 n2 2)
sw
n1 n2
2
概率统计
在显著性水平 下, H0 的拒绝域:
x y
sw
11
t (n1 n2 2)
2
n1 n2
注:
当
2 1
2 2
2
未知时
检验假设
或
H0 : 1 -2 (或1 2 ), H0 : 1 2 (或1 2 ),
2
概率统计
所以拒绝H 0 ,可认为这两种轮胎的耐磨性有显著差异。
注: ▲ 用两种不同的方法得到了两种不同的结论,那么
究竟应该采取哪一个结论比较合理呢?
显然,应该采取第二种方法得出的结论是合理的
因为数据配对的方法是针对同一架飞机的,它是 排除了因飞机之间的试验条件的不同而对数据产 生的干扰,所以它是直接反映了这两种轮胎的耐 磨性的显著差异的情况,因此,应采取第二种方 法得出的结论,即可认为这两种轮胎的耐磨性有 显著差异。
概率统计
按单个正态总体中当 2 未知时,关于 的假设检验
的计算公式,可得 H0 的拒绝域为:
C { t t t (n 1)}
2
经计算 d 320 , s2 89425 ,
t
d s
320 2.83 89425
n
8
t (n 1) t0.05 (7) 2.365
2
2
因为: t 2.83 t0.05 (7) 2.365
为已知常数,显著水平为
概率统计
Q 检验统计量
(X Y)
~ N (0,1)
2 1
2 2
n1 n2
《概率论与数理统计教学课件》8第八章置信区间与假设检验之间的关系及p值
H0 : 0, H1 : 0 也有类似的对应关系 . 若已求得单侧置信区间 ( ( X1, X2, , Xn ), ), 则当0 ( ( x1, x2, , xn ), ) 时接受 H0;
当0 ( ( x1, x2, , xn ), ) 时拒绝 H0 . 反之, 若已求得检验问题 H0 : 0 , H1 : 0
若 0 ( , ), 则接受 H0; 若 0 ( , ), 则拒绝 H0 .
反之 ,对于任意的0 , 考虑显著性水平为 的假设检验问题:
H0 : 0, H1 : 0 .
假设它的接受域为
( x1, x2, , xn ) 0 ( x1, x2, , xn ). 即有 P0 { ( X1, X2 , , Xn ) 0 ( X1, X2 , , Xn )} 由0 的任意性,
要
拒绝H
,再
0
取
0.01也要拒绝H0,但不
能知道将再降低一些是否也要拒绝H0. 而p值法
给出了拒绝 H0的最小显著性水平 . 因此p值法比
临界值法给出了有关拒绝域的更多的信息.
二、典型例题
例2 用p值法检验本章第一节例2 的检验问题
H 0 : 0 0.545, H1 : 0 0.05 解 用Z检验法 , 现在检验统计量Z x 0 的观察
(, ( X1, X2 , , Xn ))与显著水平为 的左边检 验问题 H0 : 0, H1 : 0 有类似的对应关系. 若已求得单侧置信区间 (, ( X1 , X2 , , Xn )),
则当0 (, ( x1, x2, , xn ))时接受 H0; 当0 (, ( x1, x2, , xn ))时拒绝 H0.
那么在检验问题
H0 : 0, H1 : 0中 p值 P0 {t t0 } t0右侧尾部面积, 如图3;
数理统计之假设检验
数理统计之假设检验概述假设检验是数理统计学中的一个重要方法,用于根据样本数据对总体参数的假设进行推断。
通过对样本数据进行分析,判断总体参数是否符合我们所假设的条件。
本文将从假设检验的基本概念、假设检验的步骤和常见的假设检验方法进行介绍。
假设检验的基本概念假设检验分为原假设和备择假设。
原假设是对总体参数进行的假设,常用符号H0表示。
备择假设是对原假设的否定,常用符号H1或Ha表示。
在进行假设检验时,我们首先设立一个原假设,然后通过对样本数据的分析,对原假设进行推翻或接受。
假设检验的步骤假设检验的步骤一般包括以下几个步骤:1.建立假设:确定原假设H0和备择假设H1。
2.选择显著性水平:显著性水平(α)是在进行假设检验时拒绝原假设的临界点,常用的显著性水平有0.05和0.01。
3.选择检验统计量:根据研究问题和数据类型选择适当的检验统计量。
4.计算检验统计量的值:根据样本数据计算检验统计量的值。
5.做出决策:根据检验统计量的值和显著性水平,判断是否拒绝原假设或接受备择假设。
6.得出结论:根据决策结果得出对总体参数的推断结论。
常见的假设检验方法单总体均值检验单总体均值检验用于检验总体均值是否符合某个给定的值。
假设我们要检验一个药物的剂量对病人的平均生存时间是否有影响,我们可以采用单总体均值检验方法。
双总体均值检验双总体均值检验用于检验两个总体均值是否相等。
假设我们想知道男性和女性的平均身高是否有差异,我们可以使用双总体均值检验方法。
单总体比例检验单总体比例检验用于检验总体比例是否符合某个给定的比例。
假设我们想知道某品牌产品的整体满意度是否达到90%,我们可以采用单总体比例检验方法。
双总体比例检验双总体比例检验用于检验两个总体比例是否相等。
假设我们想知道男性和女性购买某款产品的比例是否相等,我们可以使用双总体比例检验方法。
卡方检验卡方检验用于检验两个或多个分类变量之间的关联性。
假设我们想知道吸烟与患某种疾病是否有关系,我们可以使用卡方检验方法。
数理统计学中的假设检验
数理统计学中的假设检验数理统计学是现代统计学中非常重要的部分,它主要研究如何通过数据来理解自然界的规律。
其中假设检验是其核心内容之一。
什么是假设检验?为什么它如此重要?下面让我们来仔细探讨。
一、假设检验的概念假设检验是指对一个已知的数据样本进行分析,并根据样本推断总体参数的过程。
具体地说,它涉及到两个假设:原假设和备择假设。
原假设指的是我们要检验的假设,一般是由问题的提出者提出;备择假设指的是与原假设相关的另外一种假设。
我们需要对这两个假设进行比较,判断样本的表现是否支持原假设。
如果不支持,那么我们就可以把原假设拒绝,并接受备择假设。
二、假设检验的应用假设检验在各个领域均有广泛的应用,例如医学、金融、政治等。
下面就以医学为例,来说明假设检验的应用。
例如,某个新药对特定疾病的治疗效果进行评估。
原假设是新药的治疗效果和传统药物相同,而备择假设是新药的治疗效果更好。
研究人员会在一定的样本规模内进行临床试验,然后根据试验结果进行假设检验。
如果结果表明新药的治疗效果显著超过传统药物,那么我们就可以拒绝原假设,接受备择假设。
在这个过程中,我们需要考虑到检验结果的可靠性,因此必须计算出显著性水平和P值。
三、假设检验的步骤通常来说,假设检验的步骤可以归纳为以下几步:1. 建立原假设和备择假设原假设通常是问题的提出者对研究对象的一种猜测或假设,而备择假设则是一个相关的假设,通常是对原假设的否定或拓展。
2. 设定显著性水平显著性水平是用于衡量研究结果是否达到了预期的水平。
通常,显著性水平被设定在0.05或0.01水平,也就是说,只有当P值小于0.05时,结果才会被认为是显著的。
3. 计算检验统计量检验统计量是指用来判断样本和原假设之间的差异程度的数值。
通常来说,检验统计量可以从样本中计算出来。
4. 计算P值P值是指在原假设成立的情况下,观察到的样本比当前样本更极端的概率。
通常,我们会根据检验统计量计算P值,并与显著性水平进行比较。
数理统计第八章 假设检验
P{拒绝H0 | H0真} P{X 1500 K | 1500}
U X 1500 H0真 X ~ N(0,1),其中 200,n 25;
n n
H 0真时,
P{U
z } ,其中 z
K
n
得到
T {t
U
x 1500 200 n
z: (x1,
,xn ) C},
其中C {( x1, ,xn ):U z }, 简记为 U z。
(1)根据实际问题作出假设H0与H1; (2)构造统计量,在H0真时其分布已知; (3)给定水平的值(一般为0.05,0.025,0.01,0.005等), 求出 H0对H1的拒绝域C; (4)查表、计算得分位点和统计量的值; (5)比较统计量与分位点值的大小,得出结论,依据是小概率 原理。
显著性检验解题步骤简述:
以样本(1,…, n)出发制定一个法则,一旦观 测值(x1,…,xn)确定后,我们由这个法则就可作出 判断:是拒绝H0还是接受H0. 这种法则称为H0对H1的 一个检验法则,简称检验法。
样本观测值的全体组成样本空间S,把S分成两 个互不相交的子集C和C*,即S=C∪C*,C∩C*=, 假设当(x1,…,xn)∈C时,我们就拒绝H0;当 (x1,…,xn)∈C*时,我们就接受H0. 子集C S就 称为检验的拒绝域(或临界域 )。
这两个事件都是小概率事件,常记P{拒绝H0| H0真}=, P{接受H0| H0假}= , ,在0~1之间,通常不超过0.1。
(五) 显著性检验
对于给定的一对H0和H1,总可找出许多临界域, 人们自然希望找到这种临界域C,使得犯两类错误的 概率和都很小。但在样本容量n一定时,这又是做 不到的,除非容量 n无限增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n ( 0 ) u . 由分布函数的非减性知, E ( ( x ))是的严格 单调增函数, 所以当 0时有 n E ( ( x )) ( 0 ) u ( u ) , 这与(9)矛盾,故结论成立。
H 0: 0, H 1: 1 ( 1 0 )
的水平为的MPT, 根据N-P引理知 ( x )具体
1 , 表示式为 ( x ) 0,
x 0 x 0
n n
u1 , u1 ,
此时MPT ( x )的功效为 E ( ( x )) P { x 0 u1 }
例9.2 设X 1 , X 2 ,, X n是来自正态总体N ( , 2 ) 的简单样本, 2已知。 试证明检验问题 H 0: 0, H 1: 0 的水平为 (0 1)的UMPT不存在。 证明 反证法 假设所考虑检验问题的水平为 (0 1) 的UMPT是 ( x ), 则对任何水平为 的检验
的检验, 如果对任一水平为的检验 ( x ),有 不等式
E ( ( x )) E ( ( x ))
则称 ( x )是水平为 对所有的 1都成立,
的 一致最优势检验, 简记为UMPT。
(Uniformly Most Powerful Test)
对复合假设检验而言, UMPT的存在性不
解 由例8.1可知,检验问题 H 0: 0, H 1: 1 ( 1 0) (9)
水平为 的最优势检验具有拒绝域 u1 W x:x n
或检验函数
u1 1 , x , n ( x) u1 0, x . n 由于检验函数 ( x )与 1 ( 0)无关,所以 ( x )也
i
i 1
这样 T ( x ) xi , c( ) ,且c( )是的严格 单调增函数, 由定理9.1可知水平为 的UMPT 的拒绝域为 ( T ( x )连续随机变量) n W x: xi c , i 1 其中 c 满足 n E ( ( x )) P { xi c }
2 0
~ (1), 再由
2
xi2
2 0
0
xi
i 1
2 i
~ N (0,1), 所以
( i 1,, n) 相互独立性可得
n 1 c 2 x ~ ( n), 从而 P 2 xi 2 可 2 0 i 1 0 0 i 1
1
n
2 i
H 0: 0,
H 1: 0
可以分别化为假设检验问题 H 0: 0, H 1: 0 和假设检验问题
H 0: 0, H 1: 0
同样可以使用定理8.1来求UMPT。
例9.3 设某种设备的寿命服从参数为 的指数 分布,即密度函数为
2 令 ,则所讨论的检验问题变为 解
H 0: 0,
H 1: 0 .
(11)
样本的联合密度函数为 n 1 1 2 2 p( x , ) exp 2 xi 2 n ( 2 ) 2 i 1
n 1 1 2 即 p( x , ) exp xi . n ( 2 ) 2 i 1 n 1 2 这样 T ( x ) xi 和c( ) , 且c( )是的严 2 i 1 格单调增函数, 所以有定理9.1对检验问题(11) 而言, UMPT存在。 由于T ( x )是连续随机变量,
水平为 的UMPT的检验函数为
1, ( x) 0, x i 1
n i 1 n 2 i
c,
2 x i c,
其中 c常数由下式确定
E ( ( x )) P { x c } .
0 0
n
又由于当 0 时,
2 0
xi2
1 1
由于1 ( 0)的任意性,即就是说对所有的 0
E ( ( x )) E ( ( x )), 都有 所以 ( x )是检验问题(8)的水平为的UMPT。
由此例可知对简单原假设对简单备择假设检 验问题, 如果MPT不依赖于备择假设的参数,则 可适当扩大备择假设, 并由MPT获得UMPT。这 扩大了N-P引理的应用范围。
但与总体的分布有关, 而且与所考虑的假设检
为了说明问题,我们先看下面两个 验问题有关。
例子。
例9.1 设X 1 , X 2 ,, X n是来自正态总体N ( ,1)
( 0) 的简单样本。 求检验问题
H 0: 0,
H 1: 0 (8)
的水平为 (0 1)的UMPT。
是检验问题(8)的水平为的检验。现在令 ( x )
是检验问题(8)的任一水平为的检验,它显然也
是检验问题(9)的水平为 的检验。又由于 ( x )
是检验问题(9)的水平为 的MPT, 所以对任意
给定的 1 ( 0), 有 E ( ( x )) E ( ( x )).
(2) 如果定理中的 c( ) 是 的严格单减函数,则 定理的结论同样成立, 只需要将(10)中的不 等号改变方向。 (3) 对假设检验问题 H 0: 0, (4) 对假设检验问题
H 0: 0, H 1: 0 H 1: 0
则定理8.1的结论全部成立。
和假设检验问题
2
2 0
2 2 得 c 02 其中 ( n)是自由度为n的 2分布 ( n),
的分位点, 故所求的检验问题的水平为 的 UMPT的拒绝域为 n 2 2 2 W x: xi 0 ( n). i 1
(二)双边假设检验 这里仅讨论假设检验问题
其中常数 c 和 r [0,1]有下式确定
E ( ( x )) . (2) 水平为的UMPT的功效函数E ( ( x ))是
0
的增函数。
有关这个定理的详细证明可参看Bickel P.J. 《Mathematical Statistics --Basic Ideas and Selected Topics》 注意: (1) 有关r和c 的确定方法可参看N-P引理的注。
则水平为的MPT的拒绝域为 W2 x:x 0 u . n
这说明对检验问题 H 0: 0,
H 1: 0
相应MPT的拒绝域与备择假设有关, 因此一致
最优功效检验(UMPT)就不一定存在。那么在什 么情况下UMPT存在? 若存在,如何来求? 为 了方便我们将检验问题分成单边检验问题和双边 检验问题: H 0: 0;H 1: 0 , H : ;H : , 0 0 1 0 单边检验问题 H 0: 0;H 1: 0 , H 0: 0;H 1: 0 .
n
我们将N-P引理应用这个例子, 对检验问题
H 0: 0, H 1: 1 ( 1 0 ),
则水平为的MPT的拒绝域为 W1 x:x 0 u1 . n 而对检验问题 H 0: 0, H 1: 1 ( 1 0 ),
定理9.1 如果样本x1 , x2 ,, xn的联合密度(或分布 率) p( x , ) 是单参数的并可表示为 p( x , ) d ( )h( x ) exp{c( )T ( x )},
其中是实值参数, 且c( )关于的严格单调增 函数, 则对单边检验问题 H 0: 0, H 1: 0 (1) 水平为 的UMPT存在,其检验函数为 1, T ( x ) c , ( x ) r , T ( x ) c , (10) 0, T ( x ) c ,
H 0: 1 or 2 ; H 1: 1 2
(12)
的UMPT的存在性及求法,至于另两类双边假设
检验问题留在后面讨论。
定理9.2 如果样本x1 , x2 ,, xn的联合密度(或分布
率) p( x , ) 是单参数的并可表示为 p( x , ) d ( )h( x ) exp{c( )T ( x )},
e p( x , ) 0
x
x0 x0
.
1
我们想知道这种类型的设备的平均寿命 是否 1 大于 , 即所考虑假设检验问题为 0 1 1 1 1 H 0: , H 1: .
0
0
现抽取 n 个此类设备进行试验直到设备不能正
常工作为止,并记录其寿命分别为 x1 , x2 ,, xn ,
试求这个检验问题的水 平为 的UMPT 。
解 样本的联合密度函数为
p( x , ) I{min{ x }0 } ( x ) exp{ xi } i 1 1 令 , 则假设检验问题变为
n
i
n
H 0: 0,
H 1: 0 .
而p( x , ) 可改写为 1 1 n p( x , ) n I{min{ x }0 } ( x ) exp{ xi },
其中是实值参数, 且c( )关于的严格单调增
函数, 则对双边检验问题(12), 存在水平为
(0 1) 的UMPT, 其检验函数为
第八讲
假设检验(续)
一、一致最优功效检验
(一)单边假设检验
(二)双边假设检验
二、一致最优功效无偏检验
一、一致最优功效检验
考虑检验问题 设统计模型为 { P , }, H 0: 0, H 1: 1 (7) 对这个一般的假设检验问题给出最优检验的定
义如下: 定义9.1 在检验问题(7)中,设 ( x )是水平为