医学统计学-析因分析

合集下载

医学统计学分析基本思路指南

医学统计学分析基本思路指南

医学统计学分析基本思路指南第一篇:医学统计学分析基本思路指南医学统计学分析基本思路指南医学统计学的学习一定要以理解为主。

对于初学者,不必强记一大堆的公式,也不要死钻牛角尖,非要弄明白为什么这种方法叫“t检验”、“F检验”,为什么这个残差叫做“学生化残差”等等。

这些都是历史遗留问题,感兴趣的读者可以查阅统计学史。

对于只想应用的人来讲,你只要了解在什么情况下应该用什么方法,什么指标应该用于什么情形。

尽管多数统计教材都说了数据分析应该先做假设检验,然后选定统计量,然后怎么怎么。

但实际中我们拿到一堆数据的时候,不会坐在桌上先列出零假设和备择假设,也不会满座子地计算统计量。

更实际的分析思路是:(1)先确定研究目的,根据研究目的选择方法。

不同研究目的采用的统计方法不同,常见的研究目的主要有三类:一是差异性研究,即比较组间均数、率等的差异,可用的方法有t检验、方差分析、χ2检验、非参数检验等。

二是相关性分析,即分析两个或多个变量之间的关系,可用的方法有相关分析。

三是影响性分析,即分析某一结局发生的影响因素,可用的方法有线性回归、logistic回归、Cox回归等。

(2)明确数据您身边的论文好秘书:您的原始资料与构思,我按您的意思整理成优秀论文论著,并安排出版发表,扣1550116010、766085044自信我会是您人生路上不可或缺的论文好秘书类型,根据数据类型进一步确定方法。

不同数据类型采用的统计方法也不同。

定量资料可用的方法有t检验、方差分析、非参数检验、线性相关、线性回归等。

分类资料可用的方法有χ2检验、对数线性模型、logistic 回归等。

图1.6简要列出了不同研究目的、不同数据类型常用的统计分析方法。

(3)选定统计方法后,需要利用统计软件具体实现统计分析过程。

SAS中,不同的统计方法对应不同的命令,只要方法选定,便可通过对应的命令辅之以相应的选项实现统计结果的输出。

(4)统计结果的输出并非数据分析的完成。

析因设计与分析

析因设计与分析

合计
Tg (ΣX)
4.81
5.38
4.58
4.29
5.17 5.52
5.12
4.20 39.07
ΣX2 2.9403 3.6764 2.6768 2.3257 3.3729 3.8540 3.2914 2.2410 24.3785
A1
A2
B1
A1 B1
A2 B1
B2
A1 B2
A2 B2
2×2=4种处理
2019年10月22日
2×3析因设计
各因素各水平全面组合的设计
A
B
B1
B2
B3
A1
A1B1
A1B2
A1B3
A2
A2B1
A2B2
A2B3
2×3=6种处理
2019年10月22日
2×2×2析因设计
B1 A
C1
C2
B2
C1
C2
A1
A1B1C1 A1B1C2
A1B2C1 A1B2C2
A2
A2B1C1 A2B1C2
A2B2C1 A2B2C2
2×2×2 =8种处理
2019年10月22日
3×3析因试验举例
考察不同剂量考的松和党参对ATP酶活 力的作用。
A因素(考的松)
不用 低剂量 高剂量
不用 O B因素 低剂量 B1
高剂量 B2
A1 A1 B1 A1 B2
AB=[( a2b2- a1b2)-(a2b1- a1b1)]/2= (16-4)/2=6
AB=[( a2b2- a2b1)-(a1b2- a1b1)]/2=(22-10)/2=6
2019年10月22日
B
B1 (未用药) B2 (用药)

研究生医学统计学-随机区组设计和析因设计资料的方差分析

研究生医学统计学-随机区组设计和析因设计资料的方差分析
3
Yi
∑Y
j
2 ij
32783.4
变异分解
总变异: (1) 总变异: 所有观察值之间的变异
处理间变异:处理因素+ (2) 处理间变异:处理因素+随机误差 区组间变异:区组因素+ (3) 区组间变异:区组因素+随机误差 (4) 误差变异: 误差变异: 随机误差
SS总 = SS处理 + SS区组 + SS误差
A2
A3
随机区组的两因素3 随机区组的两因素3×2析因设计
15
析因设计的特点
2个或以上(处理)因素(factor)(分类变量 个或以上(处理)因素( 分类变量) 个或以上 ) 分类变量 本节只考虑两个因素) (本节只考虑两个因素) 每个因素有2个或以上水平 个或以上水平( 每个因素有 个或以上水平(level) ) 每一组合涉及全部因素, 每一组合涉及全部因素,每一因素只有一个水平 参与 几个因素的组合中至少有 2个或以上的观察值 个或以上的观察值 观测值为定量数据(需满足随机、独立、正态、 观测值为定量数据(需满足随机、独立、正态、 等方差的ANOVA条件) 条件) 等方差的 条件
n
a
n
SS处理 = ∑
i=1
a
(∑Yij )
j =1
2
n
n
1 − C = (500.72 + 523.42 + 567.02 ) −1591.12 /24 = 283.83 8
(∑Yij )
i =1 a 2
SS区组 = ∑
j=1
a
1 − C = (197.82 +196.12 + 208.12 + 222.22 3
配伍组编号 1 2 3 4 1 2 3 4 1 2 3 4 日注射量A A1 注射次数B B1(少) B2(多) 33.6 33.0 37.1 30.5 34.1 33.3 34.6 34.4 33.0 28.5 29.5 31.8 29.2 29.9 30.7 28.3 31.4 30.7 28.3 28.2 28.9 28.4 28.6 30.6

析因分析

析因分析
20
表9 受试者的体重下降值(kg)
给药顺序 甲组 (AB)
乙组 (BA)
分组后受试者编号 1 2 3 4 5 6 7 8 9 10
前四周 6.129 2.497 4.313 4.540 1.498 4.449 4.994 0.454 0.227 1.589
后四周 –0.454 0.908 0.454 2.724 1.135 2.043 1.816 0.136 1.271 1.271
2.主效应 主效应(main effect)指某一因素各 水平间的平均差别。
30
3.交互作用 当某因素的各个单独效应随另一因 素变化而变化时,则称这两个因素间存在交互作 用(interaction)。
60
50
均 40 数 30
20
缝合2月 缝合1月
10
0
外膜缝合
束膜缝合
图11-2 两因素交互作用示意图
SS组间
(102.91)2 30
(81.46)2 30
(80.94)2 30
(58.99)2 30
876.42 32.16
SS组内 82.10 32.16 49.94
11
4. 列方差分析表
表3 方差分析表
变异来源 自由度 SS MS
总变异 119 82.10
组间
3 32.16 10.72
组内
36
表11-7 A,B两药联合运用的镇痛时间(min)
A药物剂量 1.0 mg
2.5 mg
5.0 mg
5μg 105 80 65 75 115 80 85 120 125
B药物剂量 15μg
115 105 80 125 130 90 65 120 100

医学统计学中常用的分析方法

医学统计学中常用的分析方法

医学统计学中常用的分析方法医学统计学是现代医学研究中必不可少的一个领域。

医学统计学是通过数据量化来描述和分析人群的疾病发病率、死亡率等重要指标。

在医疗领域中,各种慢性病、癌症等疾病的诊断和治疗,都需要依托经验数据以及一系列科学的研究手段,从而获得越来越准确的分析结果。

下面我们就来介绍医学统计学中常用的分析方法。

一、描述统计学在医治领域中,描述统计学的作用就是通过对样本的描述来深入了解总体特征。

常见的该类统计学指标有平均数、标准差以及四分位数等。

一个样本和你常遇到的人群数据不同,但也表现出自己的普遍特征。

描述统计学可以利用样本中的数据特征,了解该群体的规律和变化趋势,有助于研究者对整个群体的认识。

例如,在研究一种癌症的发病率时,描述统计学可以看到该癌症发病人群的年龄分布、性别分布等特征。

二、参数检验参数检验是将样本得到的数据运用到总体上分别进行推断的方法,用来检验研究者的假定是否成立。

参数检验的结果常表示为 t 值或 F 值等统计指标,这些指标可以在制定检测的同时告诉我们这些检测是否显著。

其中,t 值的大小表示两个样本之间的差别是否显著;F 值的大小表示方差是否显著。

基于参数检验可以根据样本数据,对推论进行延伸并推断总体信息状态。

三、协方差分析协方差分析是用来研究自变量对因变量的影响是否显著,同时控制与自变量无关的某些变量的干扰。

举个例子:人体中身高和体重间的关系是正相关的,但如果控制年龄变量的干扰之后,协方差分析可能会发现身高和体重间的关系并不如之前想象得那么紧密。

协方差分析可以对多个变量之间的关系进行分析和推断。

在医疗领域,随着研究越来越复杂,可能会引入多个干扰因素。

通过协方差分析,可以发现自变量对因变量的影响是否显著,并且还可以刻画各个因素对研究结果的影响程度。

四、生存分析生存分析主要是针对生命活动中发生的事件,例如人类、动物生存时间等等。

在医疗领域,生存分析主要用来研究生存时间和死亡原因的相关性,预测某疾病的患者数量,以及病人存活时间的评估等。

卫生统计学名词解释

卫生统计学名词解释

1、抽样误差:有个体变异产生的,抽样造成的样本统计量与总体参数之间的差异,称之。

2、标准误:将样本统计量的标准差称为标准误。

3、均数的标准误:样本均数的标准差也称为均数的标准误(SEM),它反映样本均数间的离散程度,也反映样本均数与相应总体均数间的差异,因而说明了均数抽样误差的大小。

4、u分布:若某一随机变量X服从总体均数为υ、总体标准差为σ的正态分布N(υ,σ2),则通过u变换(X-u/σ)可将一般正态分布转化为标准正态分布N(0,1 2),即u分布。

5、t分布:在实际工作中,由于σ-X未知,用S-X代替,则-X-υ/S-X不再服从标准正态分布,而服从t分布。

6、可信区间:是按照预先给定的概率(1-α)所确定的包含总体均数的区间估计范围。

其确切含义为:如果能够进行重复抽样试验,平均有1-α(如95%)的可信区间包含了总体均数,而不是总体均数落在该可信区间。

7、假设检验:也称为显著性检验,是利用小概率反证法思想,从问题的对立面(Ho)出发间接判定要解决的问题(H1)是否成立。

然后在Ho成立的条件下计算检验统计量,最后获得P值来判断。

8、Ⅰ型错误:拒绝了实际上成立的Ho,这类“弃真”的错误称之。

Ⅱ型错误:“接受”了实际上不成立的Ho,这样的“取伪”的错误称之。

9、检验效能:1-β,即把握度,指当两总体确有差异,按规定检验水准α所能发现该差异的能力。

10、变量转换:是指原始数据作某种函数转换,如转换为对数值等。

1、方差分析:又称变异数分析或 F检验,适用于对多个平均值进行总体的假设检验,以检验实验所得的多个平均值是否来自相同总体。

2、单向方差分析(one way analysis of variance)是指处理因素只有一个。

这个处理因素包含有多个离散的水平,分析在不同处理水平上应变量的平均值是否来自相同总体。

3均方:每种来源的离均差平方和用相应的自由度去除,可得到平均的离均差平方和,简称均方(mean square,MS)4、LSD-t检验:即最小显著性差异t检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较。

析因设计与统计分析

析因设计与统计分析
也称2×2析因设计
➢ 多因素多水平析因设计
如2×2×2设计,2×2×3设计,2×3×2×2 设计等
带区组因素的析因设计
资料仅供参考,不当之处,请联系改正。
析因设计类型
例1 缺铁性贫血病人的疗效观察。12例病人随机 分为4组,每组给予不同的治疗,一个月后, 检查各组病人的红细胞增加数x。
疗法
X
疗法1(一般疗法)
90 91 89
86 83 85
92 88 88
72 71 74
81 82 79
A2 80 83 81
89 88 87
76 77 78
86 89 88
A:原料种类;B:培养液种类; C:植物血凝素浓度 。
资料仅供参考,不当之处,请联系改正。
析因设计的特点
至少有2个处理因素,每个因素至少有2个水平; 各因素各水平下的全面组合; 每种组合条件下至少做2次独立重复试验; 试验实施时,所有因素是同时施加的; 分析时,各因素在专业上的地位是平等的。
广东四季豆(A1),湖南刀豆(A2)
培养液种类(B) 标准培养液(B1),199培养液(B2)
植物血凝素浓度(C) 2%(C1),3%(C2),5%(C3)
资料仅供参考,不当之处,请联系改正。
三种因素对淋巴细胞转化试验结果
B1
B2
C1 C2 C3 C1 C2 C3
70 73 76
80 82 79
A1 82 81 85
交互效应(interaction effect) 单独效应(simple effect) 主效应(main effect)
资料仅供参考,不当之处,请联系改正。
析因设计中的三种效应
2×2析因设计 例1 缺铁性贫血病人的疗效观察。

研究生医学统计学-随机区组设计与析因设计资料的方差分析

研究生医学统计学-随机区组设计与析因设计资料的方差分析

平均 a1-a2 0.156 0.060 0.132 0.034 0.144 0.047 0.024
单独效应是指其他因素水平固定时,同一因素不同水平的效应之差 主效应是指某一因素单独效应的平均值。 交互作用是指两个或多个因素间的效应互不独立的情形。如果A因 素的水平变化时,B因素的单独效应也发生变化,则认为AB两个因 素存在交互作用。
2
表 9-1 区 组 (j)
三 种 营 养 素 喂 养 四 周 后 各 小 鼠 所 增 体 重 (g) 营 养 素 分 组 (i) 1(A) 2(B) 64.8 66.6 69.5 61.1 91.8 51.8 69.2 48.6 8 523.4 65.3 35459.1 3(C) 76.0 74.5 76.5 86.6 94.7 43.2 61.1 54.4 8 567.0 70.9 42205.0 按区组求 和
SS总 Yij2 C 110447.5 1591.12 / 24 4964.21
i 1 j 1
n
a
n
SS处理
i 1
a
( Yij )
j 1
2
n
n
1 C (500.7 2 523.42 567.02 ) 1591.12 / 24 283.83 8
2
(3)
(4)
(5) 误差变异:SS SS SS SS SS A B AB 总 误差
1 ba n 处理因素B的变异: SSB Y ijk C a n j 1 i 1 k 1 2 a b n 1 A与B交互作用的变异:SS Y AB ijk C SS A SS B n i 1 j 1 k 1

卫生统计学之析因设计的方差分析

卫生统计学之析因设计的方差分析
两因素两水平 完全随机析因设计的方差分析
资料仅供参考,不当之处,请联系改正。
例11-1:研究不同缝合方法及缝合后时间对家兔轴突通过 率(%)的影响,问①两种缝合方法间有无差别?缝合后 时间长短间有无差别?②两者间有无交互作用
完全随机的两因素2×2析因设计
A 因素
缝合方法
B 因素
缝合时间
n Σx 均数
18
26
21
资料仅供参考,不当之处,请联系改正。
析因设计的特点
➢ 2个以上(处理)因素(factor)(分类变 量)
➢ 2个以上水平(level) ➢ 2个以上重复(repeat) ➢ 每次试验涉及全部因素,即因素同时施加 ➢ 观察指标(观测值)为计量资料(独立、
正态、等方差)
资料仅供参考,不当之处,请联系改正。
实例1:甲乙两药治疗高胆固醇血症的疗效(胆固 醇降低值mg%),问①甲乙两药是否有降低胆固 醇的作用?②两种药间有无交互作用
乙药

不用
甲药 用
73
47
不用
27
20
完全随机的两因素2×2析因设计
资料仅供参考,不当之处,请联系改正。
甲乙两药治疗高胆固醇血症的疗效
乙药

不用
乙药单独效应


73
47
26

不用
27
20
7
甲药单独效应 46
27
资料仅供参考,不当之处,请联系改正。
析因设计的有关术语
➢ 单独效应(simple effects):其它因 素的水平固定为某一值时,某一因素不 同水平的差别
➢ 主效应(main effects):某一因素各 水平间的平均差别 (即某因素各单独效 应的平均效应)

析因分析.ppt

析因分析.ppt

生物统计学析因设计的方差分析两因素方差分析析因设计(factorial design):在一批试验中可以研究多个因素(或处理)。

两因素随机效应型(random-effect model)固定效应型(fixed-effect model)混合效应型(mixed-effect model)1.单独效应单独效应(simple effect)是指其他因素的水平固定时,同一因素不同水平间的差别。

2.主效应主效应(main effect)指某一因素各水平间的平均差别。

它与单独效应的区别是,主效应所指的某因素各水平间的平均差别是综合了其他因素各水平与该因素每一水平所有组合的情况。

3.交互效应(interaction)如果一个处理因素的单独效应随另一因素水平变化而变化,而且变化的幅度超出随即波动的程度,则称两因素间存在交互作用。

一、固定效应型两因素两水平的析因分析固定效应型∑∑∑∑∑∑∑=====⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅-=+--=-=-=ai bj nk ij ijk e ai bj j i ij AB b j j B ai i A x x SS x x x x n SS x x an SS x x bn SS 11121121212)()()()(SS T =SS A + SS B + SS AB + SS e1-=a SS MS AA 1-=b SS MS BB )1)(1(--=b a SS MS ABAB)1(-=n ab SS MS ee ν= a-1ν= b-1ν= (a-1)(b-1)ν= ab (n-1)固定模型方差分析表(A B固定)变异来源平方和自由度均方FA因素SS A a-1 MS A MS A /MS e (6-20)B因素SS B b-1 MS B MS B/MS e (6-21)AB交互作用SS AB (a-1)(b-1) MS AB MS AB /MS eab(n-1) MS e误差SSeabn-1总和SST若A、B无交互作用,F= MS A /MS W (6-22)AF B= MS A /MS W (6-23)MS W=(SSe+ SS AB)/ (νe+ νAB) (6-19)例 6.1 将20只家兔随机等分4组,每组5只,进行神经损伤后的缝合试验。

医学统计学 名解

医学统计学 名解

absolute frequency频数:对一个随机事件进行反复观察,其中某变量值出现的次数被称为频数。

age-sexpyramid人口金字塔:是将人口的性别和年龄资料结合起来,以图形的方式表达人口的性别和年龄构成。

它以年龄为纵轴,人口数构成为横轴,左侧为男,右侧为女而绘制的两个相对应的直方图,可以分析过去人口的出生死亡情况以及今后人口的发展趋势。

Analysis of Variance,简称ANOVA方差分析:又称F检验,是通过对数据变异的分解来判断不同样本所代表的总体均值是否相同,用于比较两个或两个以上均数的差别。

binomial distribution二项分布:对只有两种互斥结果的离散型随机事件的规律性进行描述的一种概率分布。

Coefficient of variation变异系数:是衡量资料中各观测值变异程度的一个统计量,用标准差与平均数的比值来表示。

confidence interval可信区间:按一定的概率或可信度(1-α)用一个区间来估计总体参数所在的范围,该范围通常称为参数的可信区间或者置信区间。

constituent ratio构成比:是指事物内部某一组成部分观察单位数与事物内部各组成部分观察单位总数之比,常用百分数表示。

Correlation coefficient相关系数:又称Pearson积距相关系数,是定量描述两个变量间线性关系密切程度和相关方向的统计指标。

dependent variable因变量:指实验中由于实验变量而引起的变化和结果。

Dynamic Series动态数列:按时间顺序将一系列统计指标(可以为绝对数,相对数或平均数)排列起来,用以观察和比较该事物在时间上的变化和发展趋势Error误差:观察值与真实值之间的差,一般偏差也称误差。

experimental effect实验效应:处理因素作用于受试对象长生的反应或结局。

factor analysis析因分析:是将两个或多个实验因素的各水平进行全面组合的实验,能够分析各实验因素的单独效应、主效应和因素间的交相呼应geometricmean几何均数:变量对数值的算数均数的反对数。

【医学统计学PPT】 多因素试验资料的方差分析析因设计的方差分析

【医学统计学PPT】 多因素试验资料的方差分析析因设计的方差分析
多因素试验资料的方差分析 析因设计的方差分析
多因素实验资料的方差分析
• 多因素实验:安排2个及以上处理因素的实验 • 处理因素:研究者根据研究目的施加于受试对象,
在实验中需要观察并阐明其效应的因素。如比较三 种抗癌药物对小白鼠肉瘤的抑瘤效果,处理因素是 抗癌药物,能控制的非处理因素可能是小鼠体重。
12 20.25
用甲药
不用乙药
用乙药
20
46
12
52
10
39
9
47
2
44
17
38
14
46
15
33
12.38
43.13
2×2析因设计因素和水平的组合
乙药
不用 用
甲药
不用 8.25
用 12.38
20.25 43.13
甲药 单独效应
4.13 22.88
乙 药 12.00 单独效应
30.75
甲药的主效应=(22.88+4.13)/2=13.51 乙药的主效应=(30.75+12.00)/2=21.37 交互作用=(22.88-4.13)/2=(30.75-12.00)/2=9.37
Des criptive Statis tics
Dependent Var iable: 通 过 率
缝合法 外 膜 缝合
束 膜 缝合
Total
时间 1个 月 2个 月 Total 1个 月 2个 月 Total 1个 月 2个 月 Total
Mean 24.00 44.00 34.00 28.00 52.00 40.00 26.00 48.00 37.00
9
21
20
46
11

析因设计和分析课件

析因设计和分析课件
H1:两者不独立 (6)略 (7) H0:三个原因旳各水平旳体重平均增长值旳差别相互独立
H1:三个原因旳各水平旳体重平均增长值旳差别不独立 第(4)-(7)个假设就是检验原因旳交互影响。
2024年10月4日
1.计算总变异
S 2
(X X )2 SST
n 1
VT
SST X 2 ( X )2 n 24.3785 39.072 64 0.5275
AB=[( a2b2- a2b1)-(a1b2- a1b1)]/2=(22-10)/2=6
2024年10月4日
B
B1 (未用药) B2 (用药)
A
A1(未用药)
A2 (用药)
A1B1
A2B1
A1B2
A2B2
0 , a , b , ab 表达4个处理组A1B1,A2B1 ,A1B2,A2B2相应旳总体均值 存在交互效应 (ab 0 ) (a 0 ) (b 0 )
(I-1)(J-1) (I-1)(K-1) (J-1)(K-1)
SSTAB-SS(A)-SS(B) SSTAB-SS(A)-SS(C) SSTAB-SS(B)-SS(C)
SS(AB)/dfab SS(AC)/dfab SS(BC)/dfab
MS(AB)/MSE MS(AC)/MSE MS(BC)/MSE

雌雄
A
B1
C1
C2
A1 A1B1C1 A1B1C2
A2 A2B1C1 A2B1C2
B2
C1
C2 玉米
A1B2C1 A1B2C2
A2B2C1 A2B2C2
(二)将试验单位随机分配
32只雌猪随机分配到(1)~(4)组,随机数序号 1 ~8(1)组,9 ~16(2)组,17 ~24(3)组,25 ~ 32(4)组。32只雄猪随机分配到(5)~(8)组。

析因设计及其统计分析方法_常用的临床试验设计方案及其统计分析方法之五

析因设计及其统计分析方法_常用的临床试验设计方案及其统计分析方法之五
析因设计是将两个或两个以上因素及其各种水 平进行排列组合、交叉分组的试验设计。它不仅可 检验每个因素各水平之间是否有差异, 而且可检验 各因素之间是否有交互作用, 同时还可以找到最佳 组合。进行析因设计一般要求处理因素最好在 4 个 以内, 各因素包括的水平数也不宜划分得过细, 否则 使计算、分析太繁杂。另外要求每个试验条件下重
( 本文编辑: 李胜利)
专题笔谈析因设计及其统计分析方法常用的临床试验设计方案及其统计分析方法之五杨俊英王孙准刘荷一河北医科大学河北石家庄050017关键词
新乡医学院学报 Journal of Xinxiang Medical College Vol. 17 No. 4 Aug. 2000
# 303 #
# 专题笔谈#
析因设计及其统计分析方法
复试验的次数至少在两次或两次以上。 本文介绍最简单的 2 @2 析因设计。 2 @2 析因设计是指有两个因素 A 和 B, 每个因
素有两个水平: A 1、A2, B 1、B 2。将各个因素的各个 水平间进行排列组合、交叉分组, 模型如下:
表 1 2@2 析因分析模型
B
A
B1
B2
A1
A1B 1
A 1B2
A2
A2B 1
A 2B2
收稿日期: 2000- 02- 15 作者简介: 杨俊 英( 1945- ) , 女, 天津人, 河 北医 科大 学卫 生 统计学教授。毕业于南开大学, 主要从事生物统计研究 。
例 1 某医院进行急性菌痢治 疗的研究, 拟分
析临床类型和疗法对治疗急性菌痢的影响。临床类
型有两个水平: 典型、非典型; 疗法也有两个水平: 特

法 (B)
特异+ 辅疗( B1) 36( A1B 1) 26( A2B 1) 62

第六章 析因实验

第六章   析因实验

在初步试验中,检验尺度应放宽,则可取大一些,如0.1 等。 在严格分析、进一步确认时, 值可取小一些,如取 0 . 01 等。
第二节 单因素析因实验
单因素析因实验 —
在一项实验中,其它因素维持不变, 只改变一个因 素的水平, 考察这一个因素对实验结果影响是否显 著。
Excel 2003 加载宏 工具--数据分析--方差分析—单因素方差分析 Excel 2007 加载宏 数据-- 数据分析,点击数据分析
Excel在分析工具中直接给出了“方差分析宏来 实现单因素、多因素(有交互作用、无交互作用) 方差分析。 具体操作步骤为: [数据分析],选择[方差分析:单因素方差分析]
这里介绍原理
1、总变差的平方和分解
如果各组观测值数目均为n,分解为
i=I,2…,p。表示i因素不同水平平均 值相对于总平均值的波动。波动越大, 平方和越大,说明该因素水平变化时 引起的结果变化大,即对结果影响大。 组内变差 xit 组间变差
用F 检验判断是否显著。 F 分布表,见附录 V - 1 ,p202
F(n1,n2)> Fα(n1,n2) n1 = fa n2 = fe
置信水平与显著性水平的关系
置信水平和置信度是一样的,变量落在置信区间 的可能性,“置信水平”就是相信变量在设定的 置信区间的程度,是个0~1的数,用1-α表示。 显著性水平α:变量落在置信区间以外的可能性, “显著”就是与设想的置信区间不一样,用α表 示。 显著性水平与置信水平的和为1。
置信度越高,显著性水平越低,代表假设的可靠 性越高,越好。
二、 总结F 检验步骤 1 .由观测值 计算各种方差: 按( 6 - 9 )式算出观测值的 F 值。
单因素方差分析计算 Q 值可采用简化公 式表 6 - 3 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档