高一数学12月月考试题理
北京市2023-2024学年高一上学期12月月考试题 数学含解析
2023-2024学年度第一学期北京高一数学12月月考试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --< D.x ∀∈R ,2230x x --≥4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x = D.1y x=-5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.1206.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a7.若122log log 2a b +=,则有A.2a b= B.2b a= C.4a b= D.4b a=8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年B.7年C.8年D.9年二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.14.设函数()3log ,x af x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲4.944.904.954.824.80 4.79乙 4.86 4.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.20.已知函数()()12log 21xf x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.2023-2024学年度第一学期北京高一数学12月月考试卷一、选择题(本大题共10小题,每小题4分,共40分1.已知集合{}2,A x x k k ==∈Z ,{}33B x x =-<<,那么A B = ()A.{}1,1- B.{}2,0-C.{}2,0,2- D.{}2,1,0,1--【答案】C 【解析】【分析】解不等式()323k k Z -<<∈,求得整数k 的取值,由此可求得A B ⋂.【详解】解不等式323k -<<,得3322k -<<,k Z ∈ ,所以,整数k 的可能取值有1-、0、1,因此,{}2,0,2A B =- .故选:C.【点睛】本题考查交集的计算,考查计算能力,属于基础题.2.方程组22205x y x y +=⎧⎨+=⎩的解集是()A.()(){}1,2,1,2--B.()(){}1,2,1,2--C.()(){}2,1,2,1-- D.()(){}2,1,2,1--【答案】A 【解析】【分析】利用代入消元法,求解方程组的解集即可.【详解】因为22205x y x y +=⎧⎨+=⎩,所以2y x =-代入225x y +=,即()2225x x +-=,解得1x =±.当=1x -时,()212y =-⨯-=;当1x =时,212y =-⨯=-.故22205x y x y +=⎧⎨+=⎩的解集是()(){}1,2,1,2--.故选:A.3.命题“x ∃∈R ,2230x x --<”的否定形式是()A.x ∃∈R ,2230x x -->B.x ∃∈R ,2230x x --≥C.x ∀∈R ,2230x x --<D.x ∀∈R ,2230x x --≥【答案】D 【解析】【分析】直接根据特称命题的否定是全称命题来得答案.【详解】根据特称命题的否定是全称命题可得命题“x ∃∈R ,2230x x --<”的否定形式是x ∀∈R ,2230x x --≥.故选:D.4.下列函数中,既是奇函数又在定义域上是增函数的是()A.ln y x =B.2x y =C.3y x =D.1y x=-【答案】C 【解析】【分析】由函数的奇偶性和单调性的定义对选项一一判断即可得出答案.【详解】对于A ,ln y x =的定义域为{}0x x >,不关于原点对称,所以ln y x =是非奇非偶函数,故A 不正确;对于B ,2x y =的定义域为R ,关于原点对称,而()()122xx f x f x --==≠-,所以2x y =不是奇函数,故B 不正确;对于C ,3y x =的定义域为R ,关于原点对称,而()()()33f x x x f x -=-=-=-,所以3y x =是奇函数且在R 上是增函数,故C 正确;对于D ,1y x=-定义域为{}0x x ≠,关于原点对称,()()1f x f x x -==-,所以1y x=-是奇函数,1y x=-在(),0∞-和()0,∞+上单调递增,不能说成在定义域上单调递增,因为不满足增函数的定义,故D 不正确.故选:C .5.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是A.56B.60C.140D.120【答案】C 【解析】【详解】试题分析:由题意得,自习时间不少于22.5小时的频率为(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的人数为0.7200140⨯=,故选C.考点:频率分布直方图及其应用.6.设lg2a =,12log 3b =,0.22c =,则()A.a b c <<B.a c b<< C.b a c<< D.<<b c a【答案】C 【解析】【分析】借助中间量0,1可确定大小.【详解】对于lg2a =,由lg2lg1=0,lg2lg10=1><得01a <<,对于12log 3b =,由1122log 3log 10<=得0b <,对于0.22c =,由0.20221>=得1c >,所以b a c <<.故选:C.7.若122log log 2a b +=,则有A.2a b = B.2b a= C.4a b= D.4b a=【答案】C 【解析】【分析】由对数的运算可得212log log a b +=2log 2ab=,再求解即可.【详解】解:因为212log log a b +=222log log log 2a b ab-==,所以224a b==,即4a b =,故选:C.【点睛】本题考查了对数的运算,属基础题.8.若()f x 是偶函数,且当[)0,x ∈+∞时,()1f x x =-,则()10f x -<的解集是()A.{}10x x -<<B.{0x x <或}12x <<C.{}02x x << D.{}12x x <<【答案】C 【解析】【分析】根据()f x 是偶函数,先得到()0f x <的解集,再由()10f x -<,将1x -代入求解.【详解】因为[)0,x ∈+∞时,()1f x x =-,所以由()0f x <,解得01x ≤<,又因为()f x 是偶函数,所以()0f x <的解集是11x -<<,所以()10f x -<,得111x -<-<,解得02x <<所以()10f x -<的解集是{}02x x <<,故选:C9.设函数()f x 的定义域为R ,则“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由()f x 是R 上的增函数得()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之若对任意0a >,()()f x a f x +<,满足()()y f x a f x =+-无零点,但不满足()f x 是R 上的增函数,不满足必要性,即可判断.【详解】若()f x 是R 上的增函数,则对任意0a >,显然x a x +>,故()()f x a f x +>,即()()0y f x a f x =+>-无零点,满足充分性;反之,若对任意0a >,()()f x a f x +<,即()()0f x a f x +<-,满足()()y f x a f x =+-无零点,但()f x 是R 上的减函数,不满足必要性,故“()f x 是R 上的增函数”是“任意0a >,()()y f x a f x =+-无零点”的充分而不必要条件.故选:A.10.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)A.6年 B.7年 C.8年 D.9年【答案】B 【解析】【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310(2x,640()5x,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22xx+=)B 产品的年产量为1640(140()55x x +=,依题意若A 产品的年产量会超过B 产品的年产量,则3610()40(25xx>化简得154x x +>,即lg 5(1)lg 4x x >+,所以2lg 213lg 2x >-,又20.3010lg =,则2lg 26.206213lg 2≈-所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.二、填空题(本大题共5小题,每小题5分,共25分.)11.函数()1lg(1)2f x x x =-+-的定义域为___________.【答案】()()1,22,⋃+∞【解析】【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.【详解】函数()()1lg 12f x x x =-+-需满足1020x x ->⎧⎨-≠⎩,解得1x >且2x ≠,故函数()()1lg 12f x x x =-+-的定义域为()()1,22,⋃+∞,故答案为:()()1,22,⋃+∞12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=______;12x x -=______.【答案】①.14②.【解析】【分析】利用韦达定理可得2212x x +、12x x -的值.【详解】因为方程2410x x -+=的两根为1x 和2x ,由韦达定理可得124x x +=,121=x x ,所以,()2221222121242114x x x x x x =+-=-=+⨯,12x x -===.故答案为:14;.13.设函数()f x 同时满足以下条件:①定义域为R ;②()01f =;③1x ∀,2R x ∈,当12x x ≠时,()()21210f x f x x x -<-;试写出一个函数解析式()f x =______.【答案】1x -+(答案不唯一)【解析】【分析】由题意首先由③得到函数的单调性,再结合函数定义域,特殊点的函数值,容易联想到一次函数,由此即可得解.【详解】由③,不妨设12x x ∀<,即210x x ->,都有()()21210f x f x x x -<-,即()()210f x f x -<,即()()21f x f x <,所以由题意可知()f x 是定义域为R 的减函数且满足()01f =,不妨设一次函数y x b =-+满足题意,则10b =-+,即1b =.故答案为:1x -+.14.设函数()3log ,x a f x x x a ≤≤=>⎪⎩,其中0a >.①若5a =,则()81f f ⎡⎤⎣⎦______;②若函数()3y f x =-有两个零点,则a 的取值范围是______.【答案】①.2②.[)9,27【解析】【分析】①代值计算即可;②分别画出()y f x =与3y =的图象,函数有两个零点,结合图象可得答案.【详解】①当5a =时,()35log ,5x f x x x ≤≤=>⎪⎩因为815>,所以()43381log 81log 345f ===<,所以()()8142f f f ⎡⎤===⎣⎦.②因为函数()3y f x =-有两个零点,所以()3f x =,即()y f x =与3y =的图象有两个交点.3=得9x =,3log 3x =得27x =.结合图象可得927a ≤<,即[)9,27a ∈.所以a 的取值范围是[)9,27.故答案为:①2;②[)9,27.15.给定函数y =f (x ),设集合A ={x |y =f (x )},B ={y |y =f (x )}.若对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,则称函数f (x )具有性质P .给出下列三个函数:①1y x =;②12xy ⎛⎫= ⎪⎝⎭;③y =lgx .其中,具有性质P 的函数的序号是_____.【答案】①③【解析】【分析】A 即为函数的定义域,B 即为函数的值域,求出每个函数的定义域及值域,直接判断即可.【详解】对①,A =(﹣∞,0)∪(0,+∞),B =(﹣∞,0)∪(0,+∞),显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;对②,A =R ,B =(0,+∞),当x >0时,不存在y ∈B ,使得x +y =0成立,即不具有性质P ;对③,A =(0,+∞),B =R ,显然对于∀x ∈A ,∃y ∈B ,使得x +y =0成立,即具有性质P ;故答案为:①③.【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题.三、解答题(本大题共6小题,共85分.)16.某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)35【解析】【分析】(Ⅰ)利用分层抽样按比例计算出这5人中男生人数和女生人数.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,利用列举法能求出抽取的2人中恰有1名女生的概率.【详解】(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=.(Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2,则样本空间为:Ω={(B 1,B 2),(B 1,B 3),(B 1,G 1),(B 1,G 2),(B 2,B 3),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2),(G 1,G 2)},样本空间中,共包含10个样本点.设事件A 为“抽取的2人中恰有1名女生”,则A ={(B 1,G 1),(B 1,G 2),(B 2,G 1),(B 2,G 2),(B 3,G 1),(B 3,G 2)},事件A 共包含6个样本点.从而()63105P A ==所以抽取的2人中恰有1名女生的概率为35.【点睛】本题考查古典概型概率,考查分层抽样、列举法等基础知识,考查运算求解能力,是基础题.17.已知函数()211f x x =-.(1)证明:()f x 为偶函数;(2)用定义证明:()f x 是()1,+∞上的减函数;(3)直接写出()f x 在()1,+∞的值域.【答案】(1)证明见解析(2)证明见解析(3)()0,∞+【解析】【分析】(1)根据奇偶性的定义证明即可;(2)利用单调性定义证明即可;(3)根据单调性直接求得即可.【小问1详解】由函数()211f x x =-可知210x -¹,即1x ≠±,所以函数()f x 的定义域为{}1D x x =≠±,所以x D ∀∈,()()()221111f x f x x x -===---,故()f x 为偶函数.【小问2详解】假设()12,1,x x ∀∈+∞且12x x <,则()()()()()()()()()()()222221212121122222222212121212111111111111x x x x x x x x f x f x x x x x x x x x ----+--=-===--------,由()12,1,x x ∀∈+∞,12x x <知()()222121120,0,110x x x x x x ->+>++>,从而()()120f x f x ->,即()()12f x f x >.所以()f x 是()1,+∞上的减函数.【小问3详解】因为()f x 在()1,+∞上减函数,所以()f x 在()1,+∞的值域为()0,∞+.18.甲和乙分别记录了从初中一年级(2017年)到高中三年级(2022年)每年的视力值,如下表所示2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙4.864.904.864.844.744.72(1)计算乙从2017年到2022年这6年的视力平均值;(2)从2017年到2022年这6年中随机选取2年,求这两年甲的视力值都比乙高0.05以上的概率;(3)甲和乙的视力平均值从哪年开始连续三年的方差最小?(结论不要求证明)【答案】(1)4.82(2)25(3)甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.【解析】【分析】(1)利用平均数公式计算即可;(2)列表分析,利用古典概型概率公式计算即可(3)由表中数据分析波动性即可得结论.【小问1详解】乙从2017年到2022年这6年的视力平均值为:4.86 4.90 4.86 4.84 4.74 4.724.826+++++=.【小问2详解】列表:2017年2018年2019年2020年2021年2022年甲 4.94 4.90 4.95 4.82 4.80 4.79乙 4.864.904.864.844.744.72甲与乙视力值的差0.0800.090.02-0.060.07由表格可知:2017年到2022年这6年中随机选取2年,这两年甲的视力值都比乙高0.05上的年份由有4年,故所求概率为:2426C 62C 155P ===【小问3详解】从表格数据分析可得:甲的视力平均值从2020开始连续三年的方差最小,乙的视力平均值从2017开始连续三年的方差最小.19.某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x 万个()020x <≤,每年需投入的其它成本为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩(单位:万元),且该纪念品每年都能买光.(1)求年利润()f x (单位:万元)关于x 的函数关系式;(2)当年产量x 为何值时,该厂的年利润最大?求出此时的年利润.【答案】(1)()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩(2)当年产量x 为16万个时,该厂的年利润最大,为416万元【解析】【分析】(1)根据利润等于销售总额减去总成本即可得出答案.(2)求出分段函数每一段的最大值,进行比较即可得出答案.【小问1详解】由题意得:()()5020f x x C x =--,()020x <≤.因为()215,0102256060756,1020x x x C x x x x ⎧+<≤⎪⎪=⎨⎪+-<≤⎪⎩所以()2150205,01022560502060756,1020x x x x f x x x x x ⎧⎛⎫--+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪--+-<≤ ⎪⎪⎝⎭⎩,即()214520,0102256010736,1020x x x f x x x x ⎧-+-<≤⎪⎪=⎨⎛⎫⎪-++<≤ ⎪⎪⎝⎭⎩.【小问2详解】当010x <≤时,函数()2145202f x x x =-+-在(]0,10单调递增,此时()()2max 110104510203802f x f ==-⨯+⨯-=.当1020x <≤时,函数()256010736f x x x ⎛⎫=-++ ⎪⎝⎭在()10,16上单调递增,在()16,20上单调递减,此时()()max 256016101673641638016f x f ⎛⎫==-⨯++=> ⎪⎝⎭.综上可得:当年产量x 为16万个时,该厂的年利润最大,为416万元.20.已知函数()()12log 21x f x mx =+-,m ∈R .(1)求()0f ;(2)若函数()f x 是偶函数,求m 的值;(3)当1m =-时,当函数()y f x =的图象在直线=2y -的上方时,求x 的取值范围.【答案】(1)1-(2)12m =-(3)21log 3x >【解析】【分析】(1)直接将0x =代入计算;(2)通过计算()()0f x f x --=恒成立可得m 的值;(3)解不等式()12log 212xx ++>-即可.【小问1详解】由已知得()()12log 2110f =+=-;【小问2详解】函数()f x 是偶函数,()()()()11122221log 21log 21log 212x xxx mxf x f x mx mx --⎡⎤+∴--=+--++⎢+⎣-=⎥⎦()1222210log 2x mx x mx x m =-=--=-+=,又()210x m -+=要恒成立,故210m +=,解得12m =-;【小问3详解】当1m =-时,()()12log 21x f x x =++,当函数()y f x =的图象在直线=2y -的上方时有()12log 212xx ++>-,()2211222112422l 2og 212log 21x xxxx x x --+--⎛⎫⎛⎫⇒==⨯ ⎪⎪⎝⎭⎝+>--=+<⎭21log 31321223xx⇒⨯>⇒>=解得21log 3x >.21.设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】{}2,3,5A =Q ,{}6,10,15B ∴=【小问2详解】设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数等于7个,所以生成集B 中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。
福建省莆田市两校2022-2023学年高一上学期12月月考数学试题(解析版)
福建省莆田市两校2022-2023学年高一上学期12月月考数学试题一、单选题1.已知全集U =R ,函数()ln 3y x =-的定义域为M ,集合{}230N x x x =->∣,则下列结论正确的是( )A .M N N ⋂=B .()U M N ⋂≠∅C .M N N ⋃=D .()U M N ⊆2.函数()322x f x x =+-的零点所在区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,23.已知32log 3a =,3214b ⎛⎫= ⎪⎝⎭,134log 3c =则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>4.函数()3820xy x -=-≥的值域是A .[) 0,8B .()0,8C .[]0,8D .(]0,85.已知函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩若方程()f x k =有且仅有三个不等实根,则实数k 的取值范围是( )A .0k >B .01k <<C .03k <<D .13k <<6.已知非零实数,,a b c 满足3624a b c ==,则,,a b c 之间的关系是( ) A .111b a c=+ B .312b a c=+ C .123b a c=+ D .321b a c=+ 7.为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1.28亿元的年份是(参考数据:lg1.20.079≈,lg 20.301≈) A .2023年B .2024年C .2025年D .2026年8.若对x ∈R ,函数()xf x a =始终满足()01f x <≤,则函数()1log ag x x=的图象大致为( ) A . B .C .D .二、多选题9.下列函数中,既是奇函数又在区间()0,1上单调递增的是( ) A .1y x x=-B .3y x =-C .e e x xy -=-D .2x y x=10.若正数,x y 满足4455x y x y ---<-,则下列关系正确的是是( ) A .x y <B .33y x -->C x yD .133yx -⎛⎫< ⎪⎝⎭11.已知函数()||||f x x x = ) A .()f x 是偶函数B .方程()3f x =有4个不同的解C .()f x 在(1,0)-上单调递增D .()f x 在(1,)+∞上单调递减12.已知函数()lg ,010225,10x x f x x x ⎧<≤=⎨->⎩若方程()0f x m -=有三个不同的解,,a b c ,且a b c <<,则下列说法正确的是( ) A .1110a << B .110b <≤ C .12.513abc <≤ D .01m <<三、填空题13.函数()log (2)1a f x x =-+ (a >0且a ≠1)恒过定点____________14.函数()e 22xf x m =-+有且仅有1个零点,则m 的取值范围为_______.15.已知函数()()()51,(1),(0,1),1?xa x f x a a ax x ⎧-+<⎪=>≠⎨≥⎪⎩是实数集R 上的增函数,则实数a 的取值范围为______. 四、双空题16.已知函数()()1e ,0?12,02x x f x f x x +⎧≤⎪=⎨->⎪⎩.(1)()1f =______.(2)函数()y f x k =-在区间(),4-∞上有四个不同的零点,则实数k 的取值范围是______.五、解答题17.(1)求值412log 9641lg 22lg 5494-⎛⎫++- ⎪⎝⎭;(2)已知2log 5a =,5log 7b =,试用a 、b 表示14log 56.18.已知函数()212()log 23f x x ax =-+.(1)当1a =-时,求函数的值域;(2)是否存在a ∈R ,使()f x 在(,2)-∞上单调递增,若存在,求出a 的取值范围,若不存在,请说明理由. 19.已知定义域为R 的函数()331x x af x -=+是奇函数.(1)求a 的值;(2)判断()f x 的单调性,并证明;(3)若()()222210f m m f m -++≤,求实数m 的取值范围.20.水葫芦原产于巴西,1901年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积为218m ,经过3个月其覆盖面积为227m . 现水葫芦覆盖面积y (单位2m )与经过时间()x x N ∈个月的关系有两个函数模型(0,1)=>>x y ka k a 与12(0)=+>y px q p 可供选择.1.732,lg 20.3010,lg 30.4771≈≈≈≈ ) (Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的1000倍. 21.已知函数1()428x x f x m +=-⋅- (1)若1m =,求方程()0f x =的解;(2)若对于[0,2]x ∀∈,()2f x ≥-恒成立,求实数m 的取值范围.22.已知函数()ln g x x =和函数()()22114f x x a x a =-++-(其中a<0).(1)求()2log 10lg2g ⋅的值.(2)用{}max ,m n 表示,m n 中的最大值,设函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 零点的个数.福建省莆田市两校2022-2023学年高一上学期12月月考数学试题一、单选题1.已知全集U =R ,函数()ln 3y x =-的定义域为M ,集合{}230N x x x =->∣,则下列结论正确的是( )A .M N N ⋂=B .()U M N ⋂≠∅C .M N N ⋃=D .()U M N ⊆【答案】C【分析】求函数的定义域求得集合M ,解不等式求得集合N ,由此对选项进行分析,从而确定正确答案. 【详解】由30x ->解得3x >,所以{}|3M x x =>;由()2330x x x x -=->解得0x <或3x >,所以{|0N x x =<或}3x >;所以{}{}|3,|03U U M x x N x x =≤=≤≤. 所以:M N M ⋂=,A 选项错误.()U M N ⋂=∅,B 选项错误. M N N ⋃=,C 选项正确.M 不是UN 的子集,D 选项错误.故选:C2.函数()322x f x x =+-的零点所在区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】C【分析】由函数的解析式求得f (0)f (1)<0,再根据根据函数零点的判定定理可得函数f (x )=2x +x 3﹣2的零点所在的区间.【详解】∵函数f (x )=2x +x 3﹣2在R 上单调递增, ∴f (0)=1+0﹣2=﹣1<0,f (1)=2+1﹣2=1>0, ∴f (0)f (1)<0.根据函数零点的判定定理可得函数f (x )=2x +x 3﹣2的零点所在的区间是(0,1), 故选C .【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题.3.已知32log 3a =,3214b ⎛⎫= ⎪⎝⎭,134log 3c =则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>【答案】D【解析】将a 与c 化为同底的对数式,然后利用对数函数的单调性及利用“1”的关系进行比较即可.【详解】31322log log 33a ==-,11334log log 334c ==-,因为2334<,所以0a c <<,320110144b ⎛⎫⎛⎫<== ⎪ ⎪⎭⎝⎭<⎝,故b c a >>, 故选:D.【点睛】本题考查指数式与对数式比较大小的问题,解题关键是根据指指、对数的单调性进行比较,属于基础题. 4.函数()3820xy x -=-≥的值域是A .[) 0,8B .()0,8C .[]0,8D .(]0,8【答案】A【分析】根据指数函数单调性确定函数值域.【详解】0x ≥,0x ∴-≤,33x ∴-≤,330228x -∴<≤=,30828x -∴≤-<, ∴函数382x y -=-的值域为[0)8,.故选:A【点睛】本题考查指数函数单调性与值域,考查基本分析求解能力,属基础题.5.已知函数()21,23,21x x f x x x ⎧-<⎪=⎨>⎪-⎩若方程()f x k =有且仅有三个不等实根,则实数k 的取值范围是( )A .0k >B .01k <<C .03k <<D .13k <<【答案】B【分析】画出()f x 的图象,根据图象求得k 的取值范围. 【详解】画出()f x 的图象如下图所示,由图可知,要使()y f x =的图象与直线y k =有三个不同的公共点, 则需01k <<. 故选:B6.已知非零实数,,a b c 满足3624a b c ==,则,,a b c 之间的关系是( ) A .111b a c=+ B .312b a c=+ C .123b a c=+ D .321b a c=+ 【答案】D 【分析】计算得到1log 3m a =,1log 6m b=,1log 24m c =,依次带入选项计算即可.【详解】3624a b c m ===,0m >且1m ≠,则3log a m =,6log b m =,24log c m =, 1log 3m a =,1log 6m b=,1log 24m c =,对选项A :11log 3log 24log 72log 16m m m m b a c =≠+=+=,错误;对选项B :23123log 3log 24log 1728log 6m m m m b a c +≠+===,错误;对选项C :3231log 9log 24log 124416log 6m m m m b a c +≠+===,错误;对选项D :3g 2213log 9log 24lo 16log 63log 6m m m m m ba c +=+====,正确.故选:D7.为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,假设某市2019年全年用于垃圾分类的资金为5000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1.28亿元的年份是(参考数据:lg1.20.079≈,lg 20.301≈) A .2023年 B .2024年 C .2025年 D .2026年【答案】C【分析】根据指数型函数模型,求得投入资金的函数关系式,由此列不等式,解不等式求得经过的年份,进而求得开始超过1.28亿元的年份.【详解】由题意,可设经过n 年后,投入资金为y 万元,则()5000120%ny =+.由题意有()5000120%12800n+>,即1.2 2.56n >,则8lg1.2lg 2.56lg 22n >=-,所以80.30125.160.079n ⨯->≈,所以6n =,即2025年该市全年用于垃圾分类的资金开始超过1.28亿元. 故选C.【点睛】本小题主要考查指数函数模型在实际生活中的运用,考查指数不等式的解法,属于中档题.8.若对x ∈R ,函数()xf x a =始终满足()01f x <≤,则函数()1log ag x x=的图象大致为( ) A . B .C .D .【答案】B【分析】确定01a <<,()20g >,排除AD ;102g ⎛⎫< ⎪⎝⎭,排除C ,得到答案.【详解】当x ∈R 时,函数()xf x a =始终满足()01f x <≤,0x ≥,故01a <<.()1log log 2202aa g =->=,排除AD ; 0log l 1og 222a a g ⎛⎫= ⎪⎝⎭<=,排除C. 故选:B二、多选题9.下列函数中,既是奇函数又在区间()0,1上单调递增的是( ) A .1y x x=-B .3y x =-C .e e x xy -=-D .2x y x=【答案】AC【分析】根据函数的单调性和奇偶性依次判断即可. 【详解】对选项A :()1f x x x=-在()0,1上单调递增,()()1f x x f x x -=-+=-,函数为奇函数,正确;对选项B :3y x =-在()0,1上单调递减,排除;对选项C :()e e x x f x -=-,()()e e x xx f x f --==--,函数为奇函数,在()0,1上单调递增,正确;对选项D :()2x f x x =,则()()()2x f x f xx --==-,函数为偶函数,排除.故选:AC10.若正数,x y 满足4455x y x y ---<-,则下列关系正确的是是( ) A .x y < B .33y x -->C x yD .133yx -⎛⎫< ⎪⎝⎭【答案】AD【分析】构造函数()45x xf x -=-,根据函数单调性得到0x y <<,再依次判断每个选项即可.【详解】4455x y x y ---<-,故4545x x y y ---<-,函数()45x xf x -=-单调递增,故()()f x f y <,x y <,故0x y <<. 对选项A :x y <,正确;对选项B :若33y x -->,则33x y >,即x y >,错误;对选项C x y >,错误;对选项D :若11333xy x -⎛⎫⎛⎫< ⎪ ⎪⎝⎝⎭=⎭,则y x >,正确.故选:AD11.已知函数()f x = ) A .()f x 是偶函数B .方程()3f x =有4个不同的解C .()f x 在(1,0)-上单调递增D .()f x 在(1,)+∞上单调递减 【答案】ABC【分析】A 选项,根据函数奇偶性判断;B 选项,换元法利用一元二次方程求出解,作出判断;CD 选项,利用对勾函数,函数奇偶性及复合函数单调性进行判断.【详解】因为函数()f x 的定义域为(,0)(0,)-∞+∞,关于原点对称,且()f x -=()f x ==,所以()f x 是偶函数,A 正确;3=,令t 13t t +=,即2310t t -+=,解得t =时,2x =±⎝⎭2x =±⎝⎭,所以方程()3f x =有4个不同的解,B 正确;令t =1y t t =+在(0,1)上单调递减,在(1,)+∞上单调递增,又知t =(,0)-∞上单调递减,在(0,)+∞上单调递增,根据复合函数的单调性性质可知,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,D错误;由()f x 是偶函数,知()f x 在(1,0)-上单调递增,C 正确, 故选:ABC.12.已知函数()lg ,010225,10x x f x x x ⎧<≤=⎨->⎩若方程()0f x m -=有三个不同的解,,a b c ,且a b c <<,则下列说法正确的是( )A .1110a << B .110b <≤ C .12.513abc <≤ D .01m <<【答案】BC【分析】画出()f x 的图象,结合图象以及对数运算确定正确答案.【详解】由题意可知,()lg ,01lg ,110225,10x x f x x x x x -<<⎧⎪=≤≤⎨⎪->⎩,作出()f x 的图象,如图所示:因为方程()0f x m -=有三个不同的解,,()a b c a b c <<,由图可知01m <≤,故D 错误; 且lg lg 225m a b c =-==-,lg lg lg 0,1a b ab ab +===, 所以(]110,1,101,1010mm a b -⎡⎫=∈=∈⎪⎢⎣⎭,故A 错误,B 正确; 所以(]2512.5,132m abc c +==∈,故C 正确; 故选:BC【点睛】关于形如log a y x =、log a y x =等函数图象的画法,可结合绝对值的意义、函数的奇偶性、函数的单调性进行作图,作图过程中要注意曲线“弯曲”的方向,也要注意函数定义域的影响.三、填空题13.函数()log (2)1a f x x =-+ (a >0且a ≠1)恒过定点____________ 【答案】(3,1)【分析】根据log 10a =求定点坐标.【详解】因为当21,3x x -==时,()log (2)11a f x x =-+=, 所以()log (2)1a f x x =-+恒过定点(3,1) 故答案为:(3,1)【点睛】本题考查对数型函数过定点问题,考查基本分析求解能力,属基础题.14.函数()e 22xf x m =-+有且仅有1个零点,则m 的取值范围为_______.【答案】1m ≤-或0m = 【分析】利用数形结合即得.【详解】∵函数()e 22xf x m =-+有且仅有1个零点,∴函数e 2xy =-的图象与直线2y m =-有一个交点,由图可得22m -≥或20m -=, ∴1m ≤-或0m =. 故答案为:1m ≤-或0m =.15.已知函数()()()51,(1),(0,1),1? xa x f x a a ax x ⎧-+<⎪=>≠⎨≥⎪⎩是实数集R 上的增函数,则实数a 的取值范围为______.【答案】[3,4)【分析】根据分段函数是在实数集R 上的增函数,得到51?0? 51a a a a ->⎧⎪>⎨⎪≥-+⎩,解得答案.【详解】函数()()()51,(1),(0,1),1? xa x f x a a ax x ⎧-+<⎪=>≠⎨≥⎪⎩是实数集R 上的增函数, 故51?0? 51a a a a ->⎧⎪>⎨⎪≥-+⎩,解得34a ≤<.故答案为:[3,4)四、双空题16.已知函数()()1e ,0? 12,02x x f x f x x +⎧≤⎪=⎨->⎪⎩.(1)()1f =______.(2)函数()y f x k =-在区间(),4-∞上有四个不同的零点,则实数k 的取值范围是______.【答案】 12##0.5 1e e ,1,242⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭ 【分析】直接计算得到()112f =,计算函数的解析式,画出函数图像,根据图像得到答案. 【详解】函数()()1e ,012,02x x f x f x x +⎧≤⎪=⎨->⎪⎩,则()()1111111e 222f f -+=-==. 当0x ≤时,()1e x f x +=;当0x >时,()()122f x f x =-; 当(]0,2x ∈时,(]()()21111122,0,2e e 222x x x f x f x -+--∈-=-==, 当()2,4x ∈时,()()()21311120,2,2e e 244x x x f x f x ----∈=-==, 函数()y f x k =-在区间(),4-∞上有四个不同的零点,即()y f x =与y k =有四个交点,作出函数()y f x =的图象,如图所示:由图可知,实数k 的取值范围是1e e ,1,242⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭. 故答案为:12; 1e e ,1,242⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭五、解答题17.(1)求值412log 9641lg 22lg 5494-⎛⎫++- ⎪⎝⎭; (2)已知2log 5a =,5log 7b =,试用a 、b 表示14log 56.【答案】(1)158;(2)31ab ab ++. 【分析】(1)利用指数的运算律、对数的运算律、换底公式以及对数恒等式可得出结果;(2)由换底公式可得出51log 2a =,然后利用换底公式可得出5145log 56log 56log 14=,并利用对数5log 2和5log 7表示分子和分母,代入化简计算即可.【详解】(1)原式2222122log 3log 318771542lg 2lg10032725888-⎡⎤⎛⎫=++=+-=+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(2)由换底公式得5211log 2log 5a==,又5log 7b =, 因此,()()355551455553log 72log 56log 73log 23log 561log 14log 72log 7log 21b ab a ab b a +⨯++=====⨯+++. 【点睛】本题考查指数、对数的运算,以及利用换底公式化简计算,考查计算能力,属于基础题.18.已知函数()212()log 23f x x ax =-+. (1)当1a =-时,求函数的值域;(2)是否存在a ∈R ,使()f x 在(,2)-∞上单调递增,若存在,求出a 的取值范围,若不存在,请说明理由.【答案】(1)(,1]-∞-(2)不存在,理由见解析【分析】(1)设223t x x =++并配方,进而得到定义域,并算出t 的范围,进而得到函数的值域; (2)根据题意,只需223t x ax =-+在(,2)-∞上单调递减且2230x ax -+>在(,2)-∞上恒成立,进而列出不等式组求得答案.【详解】(1)当1a =-时,()212()log 23f x x x =++,设2223(1)22t x x x =++=++≥,则x ∈R ,所以()1f x ≤-,所以()f x 的值域为(,1]-∞-.(2)要使()f x 在(,2)-∞上单调递增,只需223t x ax =-+在(,2)-∞上单调递减且2230x ax -+>在(,2)-∞上恒成立, 所以227(2)7404a a h a a ≥⎧≥⎧⎪⇒⎨⎨=-≥≤⎩⎪⎩,此不等式组无解. 故不存在a ∈R ,使()f x 在(,2)-∞上单调递增.19.已知定义域为R 的函数()331x x a f x -=+是奇函数. (1)求a 的值;(2)判断()f x 的单调性,并证明;(3)若()()222210f m m f m -++≤,求实数m 的取值范围.【答案】(1)1(2)增函数,证明见解析(3)3m ≤-或7m ≥【分析】(1)由(0)0f =求出1a =,再验证此时的()f x 为奇函数即可;(2)将()f x 的解析式分离常数后可判断出单调性,再利用增函数的定义可证结论成立;(3)利用奇函数性质化为2(2)(221)f m m f m -≤--,再利用增函数性质可求出结果.【详解】(1)因为()331x x a f x -=+是R 上的奇函数,所以11(0)0112a a f --===+,即1a =, 此时31()31x x f x -=+,3113()()3113x x x x f x f x -----===-++,所以()f x 为奇函数, 故1a =.(2)由(1)知,31()31x x f x -=+2131x =-+为R 上的增函数, 证明:任取12,R x x ∈,且12x x <,则12()()f x f x -1222113131x x =--+++12123(33)(31)(31)x x x x -=++, 因为12x x <,所以1233x x <,即12330x x -<,又12(31)(31)0x x ++>,所以12())0(f x f x -<,即12()()f x f x <,根据增函数的定义可得()f x 为R 上的增函数.(3)由()()222210f m m f m -++≤得2(2)(221)f m m f m -≤-+,因为()f x 为奇函数,所以2(2)(221)f m m f m -≤--,因为()f x 为增函数,所以22221m m m -≤--,即24210m m --≥,所以3m ≤-或7m ≥.20.水葫芦原产于巴西,1901年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积为218m ,经过3个月其覆盖面积为227m . 现水葫芦覆盖面积y (单位2m )与经过时间()x x N ∈个月的关系有两个函数模型(0,1)=>>x y ka k a 与12(0)=+>y px q p 可供选择.1.732,lg 20.3010,lg 30.4771≈≈≈≈ )(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的1000倍.【答案】(1)38()()2x y x N =∈(2)原先投放的水葫芦的面积为8m2, 约经过17个月该水域中水葫芦面积是当初投放的1000倍.【分析】(Ⅰ)判断两个函数y=ka x (k >0,a >1),()120y px q p =+>在(0,+∞)的单调性,说明函数模型y=ka x (k >0,a >1)适合要求.然后列出方程组,求解即可.(Ⅱ)利用 x=0时,8y =,若经过x 个月该水域中水葫芦面积是当初投放的1000倍则有38810002x ⎛⎫⋅=⨯ ⎪⎝⎭,求解即可. 【详解】(Ⅰ)(0,1)x y ka k a =>>的增长速度越来越快,12(0)y px q p =+>的增长速度越来越慢. (0,1)x y ka k a ∴=>>依题意应选函数则有23=18=27ka ka ⎧⎨⎩, 解得3=2=8a k ⎧⎪⎨⎪⎩ ()382x y x N ⎛⎫∴=∈ ⎪⎝⎭, (Ⅱ)当0x =时,8y =该经过x 个月该水域中水葫芦面积是当初投放的1000倍. 有38810002x ⎛⎫⋅=⨯ ⎪⎝⎭32log 1000x ∴= lg10003lg 2= 3lg3lg2=- 17.03≈ 答:原先投放的水葫芦的面积为8m 2, 约经过17个月该水域中水葫芦面积是当初投放的1000倍.【点睛】本小题考查数学建模能力、运算求解能力、分析问题和解决问题的能力;考查数学应用意识. 21.已知函数1()428x x f x m +=-⋅-(1)若1m =,求方程()0f x =的解;(2)若对于[0,2]x ∀∈,()2f x ≥-恒成立,求实数m 的取值范围.【答案】(1)2x =(2)52m ≤-【解析】(1)将1m =代入函数解析式,得到对应方程,结合题中条件求解即可;(2)先令2x t =,由题意得到[1,4]t ∈,化为262t m t ≤-对[1,4]t ∈恒成立,求出262t t-的最小值,即可求解. 【详解】(1)1m =,则1()428x x f x +=--,由14280x x +--=,整理为()()24220x x -+=,因为220x +>,所以240x -=,可得2x =.(2)令2,[1,4]x t t =∈,由2282t mt --≥-, 即262t m t≤-, [1,4]t ∀∈恒成立,只需2min62t m t ⎛⎫-≤ ⎪⎝⎭, 又26322t t y t t-==-在[1,4]t ∈上为增函数,当1t =时,min 15322y =-=-, 所以52m ≤-.【点睛】关键点点睛:涉及指数型复合函数或不等式问题,换元后转化为其他基本初等函数问题是常用方法,注意换元后新元的取值范围要准确,恒成立问题一般要转化为求函数的最值问题来解决,本题转化为262t m t ≤-后只需利用函数的单调性来求32t y t =-的最小值即可,属于中档题. 22.已知函数()ln g x x =和函数()()22114f x x a x a =-++-(其中a<0). (1)求()2log 10lg2g ⋅的值.(2)用{}max ,m n 表示,m n 中的最大值,设函数()()(){}max ,(0)h x f x g x x =>,讨论函数()h x 零点的个数.【答案】(1)0(2)当12a <-时,()h x 有1个零点;当12a =-时,()h x 有2个零点;当102a -<<时,()h x 有3个零点.【分析】(1)利用对数的运算法则直接计算得到答案.(2)考虑1x =,1x >和01x <<三种情况,根据二次函数与x 轴的交点情况,分别计算零点个数得到答案.【详解】(1)()()21log 10lg2lg21ln10lg2g g g ⎛⎫⋅=⋅=== ⎪⎝⎭; (2)①()10g =,故1为()g x 的一个零点,()2114f a a =-,由于0a <,则()10f <,所以()()(){}()1max 1,110h fg g ===,即1为函数()h x 的零点;②当1x >时,()()()(){}()0,max ,0g x h x f x g x g x >=≥>,故()h x 在()1,+∞上无零点;③当01x <<时,()()0,g x g x <在()0,1上无零点,所以()h x 在()0,1上的零点个数就是()f x 在()0,1上的零点个数.因为()()22221100,10,Δ(1)2144f a f a a a a a =-<=-<=+-=+, 故当210a +<,即12a <-时,函数()f x 无零点,即()h x 在()0,1上无零点; 当210a +=,即12a =-时,函数()f x 的零点为14,即()h x 在()0,1上有零点14; 当210a +>,即102a -<<时,对称轴111,242a x +⎛⎫=∈ ⎪⎝⎭,函数()f x 在()0,1上有两个零点,即函数()h x 在()0,1上有两个零点.综上所述: 当12a <-时,()h x 有1个零点; 当12a =-时,()h x 有2个零点; 当102a -<<时,()h x 有3个零点.。
2022-2023学年辽宁省大连市庄河市高级中学高一上学期12月月考数学试题(解析版)
2022-2023学年辽宁省大连市庄河市高级中学高一上学期12月月考数学试题一、单选题1.已知集合{14}P x x =∈<N ∣,集合{}260Q x x x =--∣,则P Q =( ) A .(1,3] B .{2,3} C .{1,2,3} D .(1,4]【答案】B【分析】首先解一元二次不等式求出集合Q ,再用列举法表示集合P ,最后根据交集的定义计算可得;【详解】解:由260x x --,即()()320x x -+,解得23x -≤≤,所以{}{}223|60|Q x x x x x =---≤=≤,又{}{14}2,3,4P x x =∈<=N ∣,所以2,3P Q,故选:B2.已知α为第三象限角,且5cos 13α=-,则tan α的值为( ) A .1213-B .125C .125-D .1213【答案】B【分析】由同角三角函数的平方关系可得sin α,再由同角三角函数的商数关系即可得解. 【详解】∵α为第三象限角,且5cos 13α=-,∴12sin 13α==-, 故12sin 1213tan 5cos 513ααα-===-. 故选:B. 3.“1x >”是“11x<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】首先解分式不等式,再根据充分条件、必要条件的定义判断即可.【详解】解:因为11x<,所以10x x -<,(1)0x x ∴-<,(1)0x x ∴->,0x ∴<或1x >,当1x >时,0x <或1x >一定成立,所以“1x >”是“11x<”的充分条件;当0x <或1x >时,1x >不一定成立,所以“1x >”是“11x<”的不必要条件. 所以“1x >”是“11x<”的充分不必要条件. 故选:A4.已知函数()y f x =对任意12,x x ∈R ,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,若()20.8a f =,()()0.82log 0.8,2b f c f ==,则,,a b c 之间的大小关系是( )A .b a c <<B .a b c <<C .b<c<aD .a c b <<【答案】A【分析】由题意可得()f x 是增函数,再根据20.82log 0.80.82<<,即可求出答案.【详解】由对任意12,x x ∈R ,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,可得()f x 是增函数, 再由20.820.8(0,1),log 0.80,21∈<>,所以20.82log 0.80.82<<,所以b a c <<. 故选:A.5.若{}210,,a a ∈,则a 的值为( )A .1-B .0C .1D .2【答案】A【解析】本题首先可根据{}210,,a a ∈得出1a =或21a =,然后对1a =、21a =进行分类讨论,即可得出结果.【详解】因为{}210,,a a ∈,所以1a =或21a =,若1a =,则21a a ,不满足元素的互异性,排除;若21a =,则1a =-或1(舍去),1a =-,此时集合为{}0,1,1-, 故选:A.【点睛】本题考查根据元素与集合的关系求参数,集合中的元素需要满足确定性、互异性以及无序性,考查计算能力,是简单题.6.已知函数()log 11a y x =-+(0a >且1a ≠)恒过定点()00,A x y ,且满足001mx ny +=,其中m ,n 是正实数,则21m n+的最小值( ) A .4 B.C .9D【答案】C【分析】由对数函数解析式易知(2,1)A ,则有21m n +=,应用基本不等式“1”的代换求目标式的最小值即可,注意等号成立条件.【详解】由log (1)1a y x =-+过定点(2,1), ∴21m n +=, ∴22(21(521)2)m n m n m n m n n m +=++=++59≥+=,当且仅当22m n n m =,即13m n ==时取等号. 故选:C .7.下列函数是其定义域上的奇函数且在定义域上是增函数的是( ) A .21xy x =+B .21x xy x +=+C .y x =D .1y x x=-【答案】C【分析】利用奇函数的定义判断,结合分式型函数、复合函数的单调性判断各函数是否符合要求即可.【详解】A :函数定义域为R ,且22()()1()1x xf x f x x x --==-=-+-+,故为奇函数,当0x >时1()1f x x x=+,而1y x x =+在(0,1)上递减,(1,)+∞上递增, 故()f x 在(0,1)上递增,(1,)+∞上递减,易知:定义域上不是增函数,不符合; B :函数定义域为{|1}x x ≠-,显然不关于原点对称,不为奇函数,不符合; C :函数定义域为R ,且()()f x x f x -=-=-,故为奇函数,函数单调递增,符合; D :函数定义域为{|0}x x ≠,且11()()()f x x x f x x x-=--=--=--,故为奇函数,函数分别在(,0)-∞、(0,)+∞上递增,整个定义域不递增,不符合.故选:C8.已知圆锥的表面积等于227cm π,其侧面展开图是一个半圆,则圆锥底面的半径为( ) A .1cm B .2cmC .3cmD .3c m 2【答案】C【分析】设圆锥的底面圆的半径为r ,母线长为l ,利用侧面展开图是一个半圆,求得l 与r 之间的关系,代入表面积公式即可得解.【详解】设圆锥的底面圆的半径为r ,母线长为l , 圆锥的侧面展开图是一个半圆,22l r l r ππ∴=⇒=, 圆锥的表面积为27π,22327r rl r ππππ∴+==, 3r ∴=, 故圆锥的底面半径为3cm , 故选:C.【点睛】关键点点睛:本题考查圆锥的表面积公式及圆锥的侧面展开图,解题的关键是利用侧面展开图时一个半圆,求得母线长与半径的关系,考查学生的计算能力,属于一般题.9.已知函数()10,0{?,0x x f x lgx x -≤=>,函数()()()()24g x f x f x m m R =-+∈,若函数()g x 有四个零点,则实数m 的取值范围是 A .[)lg5,4 B .[)34, C .[){}34lg5⋃, D .(],4-∞【答案】B【详解】画出函数()10,0,0x x f x lgx x -⎧≤=⎨>⎩的图象如图所示.设()t f x =,由()()()240g x f x f x m =-+=,得240t t m -+=,由题意得方程240t t m -+=在[1,)+∞上有两个不同的实数解,所以216401410m m ∆=->⎧⎨-⨯+≥⎩,解得34m ≤<.点睛:已知方程解的个数(或函数零点的个数)求参数的取值范围时,可通过分离参数的方法将问题转化为求函数的值域问题处理;也可构造两个函数,在同一坐标系内画出两个函数的图象,利用数形结合的方法进行求解.二、多选题10.下列各组函数中,两个函数是同一函数的有( )A .()f x =()g x =B .()f x x =与()g x =C .()xf x x =与()1,01,0x g x x >⎧=⎨-<⎩D .()21f x x x =-+与()21g t t t =-+【答案】BCD【分析】分别判断每组函数的定义域和对应关系是否一致即可.【详解】解:对于A 选项,函数()f x =(][),11,-∞-⋃+∞,()g x =定义域为[)1,+∞,故错误;对于B 选项,()f x x =与()g x =R ,且()g x x =,满足,故正确; 对于C 选项,函数()xf x x =与()1,01,0xg x x >⎧=⎨-<⎩的定义域均为{}0x x ≠,且()1,01,0x x f x x x >⎧==⎨-<⎩,满足,故正确;对于D 选项,()21f x x x =-+与()21g t t t =-+的定义域与对应关系均相同,故正确.故选:BCD11.已知函数)123f x =,则( )A .()17f =B .()225f x x x =+C .()f x 的最小值为258-D .()f x 的图象与x 轴只有1个交点 【答案】AD【分析】利用换元法求出()f x 的解析式,然后逐一判断即可.故()225f x x x =+,[)1,x ∞∈-+,()17f =,A 正确,B 错误.()2252525248f x x x x ⎛⎫=+=+- ⎪⎝⎭,所以()f x 在[)1,-+∞上单调递增,()()min 13f x f =-=-,()f x 的图象与x 轴只有1个交点,C 错误,D 正确.故选:AD12.已知函数1|ln(2),2()12,22x x x f x x -⎧-⎪=⎨+≤⎪⎩,下列说法正确的是( )A .函数()f x 的单调递增区间是[1,2][3,)+∞B .若函数()()g x f x m =-恰有三个零点,则实数m 的取值范围是35,22⎧⎫⎛⎫+∞⎨⎬ ⎪⎩⎭⎝⎭C .若函数()()g x f x m =-有四个零点123,,x x x ,4x ,则3355222212346,6x x x x e e e e --⎛⎤+++∈++++ ⎥⎝⎦D .若函数2()[()]2()g x f x af x =-有四个不同的零点,则实数a 的取值范围是35,44⎧⎫⎛⎫⋃+∞⎨⎬ ⎪⎩⎭⎝⎭【答案】BCD【分析】根据函数图象变换作出函数图象即可判断选项A ,数形结合将问题转化为()f x 的图象与直线y m =有三个交点即可判断选项B ,根据题意,作出图象,确定有四个交点时122x x +=,43122x x =+-,利用双勾函数性质求出34x x +的取值范围,即可求解选项C ,根据一元二次方程的根结合()f x 的图象,数形结合可判断选项D. 【详解】利用函数图象变换,作图如下:由图可知,函数()f x 的单调递增区间是[1,2],[3,)+∞,故A 错误; 函数()()g x f x m =-恰有三个零点,即()f x 的图象与直线y m =有三个交点,所以3m =或5m >,故B 正确;函数()()g x f x m =-有四个零点,则3522m <≤, 不妨设123x x x <<<4x , 令3|ln(2)|2x -=,解得32e 2x -=+或32e 2+, 令5|ln(2)|2x -=,解得52e 2x -=+或52e 2+, 所以由图可知, 53352222123401,12,e2e2,e 2e 2x x x x --≤<<≤+≤<++<≤+,则有12|1||1|112222x x --+=+,即1211112222x x -+-+=+, 所以1211x x -+=-,所以122x x +=,34|ln(2)||ln(2)|x x -=-,即34ln(2)ln(2)x x --=-, 则43122x x =+-,所以3433331122422x x x x x x +=++=-++--, 设532232e ,e t x --⎡⎫=-∈⎪⎢⎣⎭,则对钩函数1()4f t t t =++在5322e ,e --⎡⎫⎪⎢⎣⎭单调递减,所以555333222222max ()(e )e e4,()(e )e e4f t f f t f ----==++>=++,所以335522224()4,f e e t e e --⎛⎤++++ ⎝∈⎥⎦,即33552242234,4x e e x e e --⎥+⎛⎤+++∈+ ⎝⎦又因为122x x +=,所以3355222212346,6x x x x e e e e --⎛⎤+++∈++++ ⎥⎝⎦,故C 正确;令2[()]2()0f x af x -=,解得()0f x =或()2f x a =, 由()0f x =解得3x =,所以()2f x a =有三个不同的解,由B 选项分析过程可知322a =,或522a >,解得34a =,或54a >,所以实数a 的取值范围是35,44⎧⎫⎛⎫⋃+∞⎨⎬ ⎪⎩⎭⎝⎭,故D 正确;故选:BCD.有三个交点,选项C 中,根据()f x 的图象与直线y m =有四个交点,确定四个零点分布的位置,并根据解析式确定122x x +=和43122x x =+-,利用换元思想将34x x +变为单变量函数,利用双勾函数性质求范围,属于综合性较强的问题.三、填空题13.已知函数()()2f x g x =()()⋅f x g x __________.【答案】()()(()2,f x g x x x =∈-+∞【分析】相乘后得到新函数,定义域需要也需要求解.【详解】()()2f x gx x ⋅=10x x +>⎧⎪⎨⎪⎩,所以(()2,x ∈-+∞.【点睛】利用已有的函数求解新的函数解析式时,一定要注意函数的定义域,若定义域非实数集一定要记得将定义域写在末尾.14.已知函数2()x f x e ax =-,对任意12,(,0)x x ∈-∞且12x x ≠,都有()()()()21210x x f x f x --<,则实数a 的取值范围是_______. 【答案】(,]2e-∞【分析】确定函数为偶函数,再判断函数的单调性得到2xe a x≤在(0,)+∞上恒成立,令()x e g x x =,求导得到单调区间,计算最值得到答案.【详解】|()|2||2()()()x x f x e a x e ax f x --=--=-=,即()f x 为偶函数, 又对120,0x x <<且12x x ≠,都有2121()(()())0x x f x f x --<, 知()f x 在(,0)-∞上单调递减,故()f x 在(0,)+∞上单调递增, 则当0x >时,()20x f x e ax '=-≥,即2xe a x≤在(0,)+∞上恒成立, 令()x e g x x =,0x >,则2(1)()x e x g x x '-=,当1x >时,()0g x '>,()g x 单调递增,当01x <<时,()0g x '<,()g x 单调递减, ∴当1x =时,()g x 取得极小值也是最小值(1)1e g e ==, ∴2a e ≤,即2e a ≤.故答案为:(,]2e-∞.15.已知集合sin 2,,123A y y x x ππ⎧⎫⎛⎫==∈⎨⎬ ⎪⎝⎭⎩⎭,{}cos ,0B y y x x π==<<,则A B =_______.【答案】112⎛⎫⎪⎝⎭, 【分析】分别求两个集合,再求交集.【详解】,123x ππ⎛⎫∈ ⎪⎝⎭,22,63x ππ⎛⎫∈ ⎪⎝⎭,1sin 2,12y x ⎛⎤∴=∈ ⎥⎝⎦,()0,x π∈ ()cos 1,1y x ∴=∈-,所以1,12A ⎛⎤= ⎥⎝⎦,()1,1B =-,所以1,12A B ⎛⎫= ⎪⎝⎭.故答案为:1,12⎛⎫⎪⎝⎭16.函数()2()lg 2f x x x =+-定义域是___________.【答案】(1,]2π-【解析】利用余弦函数的性质、结合对数的定义进行求解即可.【详解】由题意可知:2cos 022()12220212x k x k k Z x x x x πππππ⎧≥-≤≤+∈⎧⎪⇒⇒-<≤⎨⎨+->⎩⎪-<<⎩. 故答案为:(1,]2π-四、解答题17.计算:(1)112416254-⎛⎫ ⎪⎝⎭;(2)3332log 2log32log 8-+;(3) (4)2345log 3log 4log 5log 2⨯⨯⨯. 【答案】(1)1;(2)0;(3)18;(4)1.【解析】利用指数与对数的运算性质以及换底公式即可求解. 【详解】(1)11224162522514-⎛⎫=+-= ⎪⎝⎭.(2)3333333342log 2log 32log 8log log 32log 8log 8log 10324⎛⎫-+=+=⨯== ⎪⎝⎭-.(3)111362233 1.512⨯⨯⨯⨯111136623233342⎛⎫=⨯⨯⨯⨯⨯ ⎪⎝⎭22318=⨯=.(4)234513141512log 3log 4log 5log 2112131415g g g g g g g g ⨯⨯⨯=⋅⋅⋅= 【点睛】本题考查了指数、对数的运算性质、换底公式,掌握运算性质是解题的关键,属于基础题. 18.画出下列函数在长度为一个周期的闭区间上的简图: (1)cos 2y x =+; (2)4sin y x =; (3)1cos32y x =;(4)π3sin 26y x ⎛⎫=- ⎪⎝⎭.【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析. 【分析】(1)根据五点法列表描点作图即可; (2)根据五点法列表描点作图即可; (3)根据五点法列表描点作图即可; (4)根据五点法列表描点作图即可; 【详解】解:(1)列表描点,并用光滑的曲线连接即可cos 2y x =+在[]0,2π上的图象,(2)列表 x2π π32π2πsin y x =0 10 1-0 4sin y x =4 04-描点,并用光滑的曲线连接即可得4sin y x =在[]0,2π上的图象,(3)列表3x2π π32π2πx6π3π 2π23π1cos32y x =1212-12描点,并用光滑的曲线连接即可得1cos32y x =在20,3π⎡⎤⎢⎥⎣⎦上的图象,(4)列表π26x -2π π32π2πx12π3π712π56π1312ππ3sin 26y x ⎛⎫=- ⎪⎝⎭ 033-描点,并用光滑的曲线连接即可得π3sin 26y x ⎛⎫=- ⎪⎝⎭在13,1212ππ⎡⎤⎢⎥⎣⎦上的图象,19.已知函数()243f x ax x =++.(1)若关于x 的不等式2430ax x ++>的解集为{}1x b x <<,求,a b 的值. (2)求关于x 的不等式()1f x ax >--的解集. 【答案】(1)7a =-;37b =-(2)答案见解析【分析】(1)由一元二次不等式解的特点可得1x =与x b =是方程2430ax x ++=的两根,由此可代入1x =求得7a =-,再将7a =-代入不等式求得37b =-;(2)由题意得()()410ax x ++>,对0a =,a<0,04a <<,4a =与4a >五种情况分类讨论即可得到结果.【详解】(1)因为2430ax x ++>的解集为{}1x b x <<, 所以1x =与x b =是方程2430ax x ++=的两根,且a<0, 将1x =代入2430ax x ++=,得430a ++=,则7a =-,所以不等式2430ax x ++>为27430x x -++>,转化为()()1730x x -+<, 所以原不等式解集为317xx ⎧⎫-<<⎨⎬⎩⎭∣,所以37b =-.(2)因为()243f x ax x =++,所以由()1f x ax >--得2431ax x ax ++>--,整理得()2440ax a x +++>,即()()410ax x ++>,当0a =时,不等式为440x +>,故不等式的解集为{}1x x >-; 当0a ≠时,令()()410ax x ++=,解得4x a=-或=1x -, 当a<0时,()4410a a a ----=>,即41a ->-,故不等式的解集为41x x a ⎧⎫-<<-⎨⎬⎩⎭∣; 当04a <<时,41a -<-,故不等式的解集为4x x a ⎧<-⎨⎩或}1x >-;当4a =时,41a-=-,不等式为()210x +>,故其解集为{}1x x ≠-; 当4a >时,41a->-,故不等式的解集为{1x x <-或4x a ⎫>-⎬⎭;综上:①当a<0时,原不等式解集为41xx a ⎧⎫-<<-⎨⎬⎩⎭∣; ②当0a =时,原不等式解集为{}1x x >-;③当04a <<时,原不等式解集为4x x a ⎧<-⎨⎩或}1x >-;④当4a =时,原不等式解集为{}1x x ≠-; ⑤当4a >时,原不等式解集为{1x x <-或4x a ⎫>-⎬⎭.20.在①()()()b a b a c b c +-=-;②4AB AC ⋅=;③2sin 22cos122A A π⎛⎫++= ⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =,_________?【答案】条件选择见解析,【分析】选①:结合正弦求出边c ,利用余弦定理求出角A ,结合三角形的面积公式即可求出结果; 选②:合正弦求出边c ,利用平面向量数量积的定义求出角A ,结合三角形的面积公式即可求出结果;选③:合正弦求出边c ,利用二倍角公式以及降幂公式得到关于角A 的方程,进而解方程求出角A ,结合三角形的面积公式即可求出结果;【详解】解:因为sin 2sin C B =,2b =,所以24c b ==, 选①:因为()()()b a b a c b c +-=-,所以222b c a bc +-=,所以2221cos 22b c a A bc +-==,又因为(0,)A π∈,所以3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=选②:若4AB AC ⋅=,故||||cos 4AB AC A ⋅⋅=, 则1cos 2A =,∵(0,)A π∈,故3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=选③:若2sin 22cos 122A A π⎛⎫++= ⎪⎝⎭,则cos2cos 0A A +=, 故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去), ∵(0,)A π∈,故3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=21.若{},0,1A a =-,1,,1B c b b a ⎧⎫=+⎨⎬+⎩⎭,且A B =,()2f x ax bx c =++. (1)求()f x 解析式;(2)若[]1,2x ∈-时,求()f x 的值域;(3)若[]1,x m ∈时,()[]1,f x m ∈,求实数m 的值.【答案】(1)()222f x x x =-+;(2)[] 1,5;(3)2. 【分析】(1)由集合相等,可求得,,a b c ,从而求得函数解析式; (2)简单二次函数的值域求解,配方即可;(3)由对称轴知,二次函数在该区间上单调递增,则该二次函数过点()1,1和(),m m ,解方即可. 【详解】(1)由A B =,可得:1a =,1b a +=-,0b c +=,解得:1,2,2a b c ==-=,故:()222f x x x =-+.(2)()222f x x x =-+=()211x -+故:当1x =时,取得最小值1; 当1x =-时,取得最大值5.故该函数的值域为[]1,5.(3)由解析式可得,对称轴为:1x =, 故该二次函数在[]1,m 上单调递增,故: ()()11f f m m ⎧=⎪⎨=⎪⎩整理得21122m m m =⎧⎨-+=⎩ 解得1m =或2m =,又1m >, 故2m =.【点睛】本题考查集合的相等、二次函数的值域、二次函数的基本性质,属基础题.22.某工厂第一季度某产品月生产量分别为100件、120件、130件.为了估测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:件)与月份x 的关系.模拟函数可以选用二次函数或函数x y ab c =+(其中a ,b ,c 为常数).已知4月份的产量为136件,问:用以上哪个函数作为模拟函数较好?为什么?【答案】135件比130件更接近于4月份的产量136件,选用指数型函数,()800.5140x g x =-⨯+作为模拟函数较好.【分析】利用待定系数法得到函数的表达式,即可作出判断.【详解】解:选二次函数作为模拟函数时,设2()(0)f x px qx r p =++≠,由已知1004212093130p q r p q r p q r ++=⎧⎪++=⎨⎪++=⎩,解得53570p q r =-⎧⎪=⎨⎪=⎩,故2()53570f x x x =-++,2(4)5435470130f =-⨯+⨯+=件;选指数型函数()(0)x g x ab c a =+≠作为模拟函数时,由已知23100120130ab c ab c ab c +=⎧⎪+=⎨⎪+=⎩,解得800.5140a b c =-⎧⎪=⎨⎪=⎩,故()800.5140x g x =-⨯+,4(4)800.5140135g =-⨯+=件,经比较可知,135件比130件更接近于4月份的产量136件,故选用指数型函数 ()800.5140x g x =-⨯+作为模拟函数较好.。
河北省2022-2023学年高一上学期月考(12月)数学试卷含解析
河北省2022-2023学年高一上学期月考(12月)数学试卷考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题(本大题共10小题,共50.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={x|x2−x−2>0},则∁R A=( )A. {x|−1<x<2}B. {x|−1≤x≤2}C. {x|x<−1}∪{x|x>2}D. {x|x≤−1}∪{x|x≥2}2. 设a=3x2−x+1,b=2x2+x,则( )A. a>bB. a<bC. a≥bD. a≤b3. 下列函数f(x)中,满足“对任意的x1,x2∈(0,+∞)时,均有(x1−x2)[f(x1)−f(x2)]>0”的是( )B. f(x)=x2−4x+4A. f(x)=12(x)C. f(x)=2xD. f(x)=log124. 函数y=ln(2x−x2)的单调递增区间是( )A. (0,1)B. (1,2)C. (−∞,1)D. (1,+∞)5. 对于某个与正整数n有关的命题P,若n=k(k∈N∗)时命题P成立可以推得n=k+1时命题P成立,则下列命题中必为真命题的是( )A. 若n=m+2(m∈N∗)时命题P不成立,则n=2m时命题P不成立B. 若n=2m(m∈N∗)时命题P不成立,则n=m+2时命题P不成立C. 若n =2m (m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立D. 若n =2m(m ∈N ∗)时命题P 不成立,则n =2m 时命题P 不成立 6. 若方程2x +ln 1x−1=0的解为x 0,则x 0所在的大致区间是( ) A. (1,2)B. (2,3)C. (3,4)D. (5,6)7. 计算(log 32+log 23)2−log 32log 23−log 23log 32的值为( ) A. log 26B. log 36C. 2D. 18. 已知f(x)是定义域为(−1,1)的奇函数,而且f(x)是减函数,如果f(m −2)+f(2m −3)>0,那么实数m 的取值范围是( )A. (1,53)B. (−∞,53)C. (1,3)D. (53,+∞)9. 已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A. f(x)=2xln|x|B. f(x)=2|x|ln|x|C. f(x)=1x 2−1D. f(x)=1|x|−1|x|10. 如图,有四个平面图形分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t(0≤t ≤a)经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y(图中阴影部分),若函数y =f(t)的大致图象如图,那么平面图形的形状不可能是( )A. B. C. D.二、多选题(本大题共2小题,共10.0分。
高一数学12月月考试题含解析试题
卜人入州八九几市潮王学校闽侯第HY学二零二零—二零二壹高一12月月考数学试题第一卷〔一共60分〕一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的.1.集合,集合,那么〔〕A. B. C. D.【答案】C【解析】∵集合∴集合∵集合∴集合∴应选C2.表示两条不同直线,表示平面,以下说法正确的选项是〔〕A.假设,那么B.假设,那么C.假设,那么D.假设,那么【答案】B【解析】如图,,但相交,错;,但,错;,但,错;故此题选3.扇形的半径为,周长为,那么扇形的圆心角等于〔〕A.1B.3C.D.【答案】A【解析】设扇形的圆心角为,扇形的弧长为∵扇形的半径为,周长为∴扇形的弧长为∴扇形的圆心角为应选A4.执行如下列图的程序框图,假设输入的值是1,那么输出的值是〔〕A.1B.2C.3D.4【答案】B【解析】试题分析:程序执行的数据变化如下:成立,输出考点:程序框图5.一个几何体的三视图如下列图,那么这个几何体的体积是〔〕A. B. C. D.【答案】D【解析】由三视图知几何体为直三棱柱消去一个棱锥,其直观图如图:其中,,为侧棱的中点,侧棱长为2∴几何体的体积为应选D点睛:根据三视图判断空间几何体的形状,进而求几何的表〔侧或者底〕面积或者体积,是高考必考内容,处理的关键是准确判断空间几何体的形状.此题中由的三视图可得:该几何体是直三棱柱消去一个棱锥,画出几何体的直观图,求出棱柱与棱锥的体积,相减可得答案.6.三棱柱中,假设三棱锥的体积为,那么四棱锥的体积为〔〕A. B. C.18D.24【答案】A【解析】根据题意三棱柱如下列图:∵∴应选A7.设是轴上的不同两点,点的横坐标为2,,假设直线的方程为,那么直线的方程是〔〕A. B. C. D.【答案】A【解析】试题分析:根据|PA|=|PB|得到点P一定在线段AB的垂直平分线上,根据y=x+1求出点A的坐标为〔-1,0〕,由P的横坐标是2代入y=x+1求得纵坐标为3,那么P〔2,3〕,又因为Q为A与B的中点,所以得到B〔5,0〕,所以直线PB的方程为:化简后为x+y-5=0故答案为A考点:数形结合的数学思想解决实际问题.会根据两点坐标写出直线的一般式方程.8.如图,正三角形三个顶点都在半径为2的球面上,球心到平面的间隔为1,点是线段的中点,过点作球的截面,那么截面面积的最小值是〔〕A. B. C. D.【答案】C【解析】设正三角形的中心为,连接,分析知经过点的球的截面,当截面与垂直时截面圆的半径最小,相应地截面圆的面积有最小值,由此算出截面圆半径的最小值,从而可得截面面积的最小值.连结,因为是正三角形的中心,三点都在球面上,所以平面,结合平面,可得,因为球的半径.球心到平面的间隔为1,得,所以在中,,又因为为的中点,是等边三角形,所以,因为过作球的截面,当截面与垂直时,截面圆的半径最小,此时截面圆的半径,可得截面面积为.应选C.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)假设球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形〞成为一个球内接长方体,利用求解.9.曲线与直线有两个不同的交点时,实数的取值范围是〔〕A. B. C. D.【答案】A考点:1.直线与圆的位置关系;2.数形结合法10.从个编号中要抽取个号码入样,假设采用系统抽样方法抽取,那么分段间隔应为〔表示的整数局部)〔〕A. B. C. D.【答案】C【解析】从个编号中要抽取个号码入样,按照系统抽样的规那么,为整数时,分段的间隔为,不是整数时,分段的间隔为.应选C11.假设函数是上的减函数,那么实数的取值范围是〔〕A. B. C. D.【答案】D【解析】∵函数是上的减函数∴∴应选D点睛:此题考察分段函数的单调性,解决此题的关键是熟悉指数函数,一次函数的单调性,确定了两端函数在区间上单调以外,仍需考虑分界点两侧的单调性,需要列出分界点出的不等关系.12.设定义域为的函数,假设关于的方程有7个不同的实数解,那么〔〕A. B. C.或者2D.【答案】B【解析】设,作出函数图象,如下列图:由图象可知:当时,函数图象有2个交点,当时,函数图象有3个交点,当时,函数图象有4个交点,当时,函数图象有两个交点,当,函数图象无交点.要使方程有7个不同的实数解,那么要求对应方程中的两个根或者,且∴∴应选B点睛:利用函数零点的情况求参数值或者取值范围的方法(1)利用零点存在的断定定理构建不等式求解;(2)别离参数后转化为函数的值域(最值)问题求解;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.第二卷〔一共90分〕二、填空题〔每一小题5分,总分值是20分,将答案填在答题纸上〕13.设是定义在上的奇函数,且的图象关于直线对称,那么__________.【解析】∵是定义在上的奇函数,且的图象关于直线对称∴,,即∴∴,即∴∴故答案为014.点,点坐标满足,求的取值范围是__________.【答案】【解析】设∵点∴∵点坐标满足∴,即把代入到∵∴∴的取值范围是故答案为15.设点是函数的图象上的任意一点,点,那么的最小值为【答案】【解析】∵函数∴,即对应的曲线为圆心在,半径为2的圆的下局部∵点∴点在直线上过圆心作直线的垂线,垂足为,如下列图:∴故答案为16.函数,其中,假设对任意的非零实数,存在唯一的非零实数,使得成立,__________.〔并且写出的取值范围)【答案】【解析】∵函数,其中∴当时,又∵对任意的非零实数,存在唯一的非零实数,使得成立∴函数必须为连续函数,即在附近的左右两侧函数值相等∴∴由题意可知二次函数的对称轴不能在轴的左侧,那么,即∴故答案为点睛:函数的函数值时,首先应该确定自变量在定义域中所在的范围,然后按相应的对应关系求值,同时,要注意各区间上端点值的取舍情况.分段函数是一种重要的函数,它不是几个函数,而是同一个函数在不同范围内的表示方法不同.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.〕17.函数.〔1〕假设,求的值;〔2)求的值.【答案】〔1〕1;〔2〕1006.【解析】试题分析:〔1〕由及函数的表达式,直接进展求值即可;〔2〕根据〔1〕的结论,即可算出的值.试题解析:〔1〕.〔2〕.18.的顶点,过点的内角平分线所在直线方程是,过点的中线所在直线的方程是.〔1〕求顶点的坐标;〔2〕求直线的方程;【答案】〔1〕.〔2〕.【解析】试题分析:〔1〕设.因为B点在直线上,所以可得①.又因为A,B两点的中点在直线上,所以可得②.所以由①,②可解得的值,即可求出B点的坐标.〔2〕由于过点的内角平分线所在直线方程为.所以通过求出点A关于平分线的对称点,然后再与点B写出直线方程即为所求的直线BC的方程.试题解析:〔1〕设,那么中点,由,解得,故.6分〔2〕设点关于直线的对称点为,那么,得,即,直线经过点和点,故直线的方程.12分考点:1.直线方程的表示.2.求关于直线的点的对称点.3.线段的中点问题.19.如图是以为直径的圆上的两点,,是上的一点,且,将圆沿折起,使点在平面的射影在上,.〔1〕求证:平面〔2〕求证平面;〔3〕求三棱锥的体积.【答案】〔1〕见解析;〔2〕见解析;〔3〕∴..所以AD⊥平面BCE.〔2〕因为,.有直角三角形的勾股定理可得.在直角三角形BCE 中,又.所以.又BD=3,.所以可得.所以AD∥FE,又因为平面CEF,(3)通过转换顶点三棱锥A-CFD的体积.因为.所以.试题解析:〔1〕证明:依题意:平面∴∴平面.4分〔2〕证明:中,,∴中,,∴.∴.∴在平面外,在平面内,∴平面.8分〔3〕解:由〔2〕知,,且平面∴.12分考点:1.线面垂直.2.线面平行.3.几何体的体积公式.4.图形的翻折问题.20.函数〔,且〕.〔1〕写出函数的定义域,判断奇偶性,并证明;〔2〕当时,解不等式.【答案】〔1〕见解析;〔2〕.【解析】试题分析:〔1〕由题设可得,解得,即可写出函数的定义域,利用函数的奇偶性的定义即可判断奇偶性;〔2〕由及,再结合单调性,可得,即可解不等式.试题解析:〔1〕由题设可得,解得,故函数定义域为从而:故为奇函数.〔2〕由题设可得,即:∵∴为上的减函数∴,解得:故不等式的解集为.21.和定点,由外一点向引切线,切点为,且满足.〔1〕务实数间满足的等量关系;〔2〕求线段长的最小值;〔3〕假设以为圆心所作的与有公一共点,试求半径取最小值时的方程.【答案】〔1〕.〔2〕.〔3〕.【解析】试题分析:〔1〕连,由勾股定理可得,化简可得实数间满足的等量关系;〔2〕由于,根据间的等量关系及二次函数的性质即可求出线段长的最小值;〔3〕解法一:设的半径为,根据题设条件可得,利用二次函数的性质求得的最小值,此时,求得,获得最小值,从而得到圆的方程;解法二:根据的轨迹设出直线,由与有公一共点,欲求半径最小,即为与外切时半径最小,然后可求出半径最小值及垂直直线的方程,即可求出此时圆心的坐标,故而求出方程.试题解析:〔1〕连∵为切点,,由勾股定理有又由,故.即:.化简得实数间满足的等量关系为:.〔2〕由,得..故当时,,即线段长的最小值为.〔3〕解法一:设的半径为∵与有公一共点,的半径为1,∴.即且.而,故当时,.此时,,.得半径取最小值时的方程为.解法二:由题意可得的轨迹方程是,设为直线与有公一共点,半径最小时为与外切〔取小者〕的情形,而这些半径的最小值为圆心到直线的间隔减去1,圆心为过原点与垂直的直线与的交点..又,解方程组,得,即.∴所求圆方程为.22.函数,且.〔1〕试求的值;〔2〕用定义证明函数在上单调递增;〔3〕设关于的方程的两根为,试问是否存在实数,使得不等式对任意的及恒成立?假设存在,求出的取值范围;假设不存在说明理由.【答案】(1);〔2〕见解析;〔3.【解析】试题分析:〔1〕由,即可求出的值;〔2〕利用单调增函数的定义即可证明;〔3〕化简为,利用韦达定理可得,根据,得出的取值范围,不等式对任意的恒成立等价为在恒成立,令,根据〔2〕求出,即可求出的取值范围.试题解析:(1)∵∴∴〔2〕∵∴设,∴,∵∴∴∴又∵,∴∴∴在上单调递增.〔3〕∵∴∴又∵∴,故只需当,使得恒成立,即在恒成立,也即在恒成立,∴令,由第〔2〕问可知在上单调递增,同理可得在上单调递减.∴∴故的取值集合是.点睛:对于含有多个变量的函数的恒成立问题,解题时要注意分清哪个是主变量,哪个是参数,区分的原那么是给出了税的范围谁就是变量,求谁的范围谁就是参数.解决恒成立问题一般采用别离参数的方法转化为求函数的最值问题处理.。
福建省厦门第一中学2023-2024学年高一上学期12月月考数学试题
福建省厦门第一中学2023-2024学年高一上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....在平面直角坐标系xOy中,如图所示,将一个半径为1的圆盘固定在平面上,圆盘的圆心与原点重合,圆盘上缠绕着一条没有弹性的细线,细线的端头M(开始时与圆()A重合)系着一支铅笔,让细线始终保持与圆相切的状态展开,切点为1,0ϕ=时,点O之间的距离为()细绳的粗细忽略不计,当2radA .1cos1B .2sin1C .26.设函数()ln |21|ln |21|f x x x =+--,则f (x )()A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在7.已知函数()f x 的定义域为R ,()2f x +为偶函数,(f A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =8.设711,cos ,2sin 822a b c ===,则()A .b a c >>B .b c a >>C .c a b>>D .c b a>>二、多选题9.下列函数中,与y x =是同一个函数的是()A .33y x =B .2y x =C .lg10y =10.已知函数f (x )=sin 3cos x x ωω+(ω>0)满足:f (π6)=2,f (A .曲线y =f (x )关于直线7π6x =对称B .函数y =f C .函数y =f (x )在(π6,7π6)单调递减D .函数y =f 11.筒车是我国古代发明的一种灌溉工具,因其经济又环保,至今还在农业生产中得到明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图)米的简车按逆时针方向每分钟旋转1圈,筒车的轴心距离水面的高度为到水面的距离为d (单位:米)A .23cos 30d ⎛=- ⎝B .π3sin 30d t ⎛= ⎝C .大约经过38秒,盛水筒D .大约经过22秒,盛水筒12.已知0,0x y >>,且A .x y +的最小值为C .(22log log 2x +三、单空题13.某地中学生积极参加体育锻炼,其中有喜欢足球,60%的学生喜欢游泳,例是.14.已知函数()tan f x =图象向左平移π12个单位后为奇函数15.若方程πsin 23x ⎛- ⎝四、双空题五、问答题(1)求函数()f x 的解析式:(2)求函数()f x 在[]0,π的单调递减区间.六、证明题18.已知定义域为R 的函数()f x ,满足对,x y ∀∈R ,均有()()()f x y f x f y +=+,且当0x >时,()0f x >.(1)求证:()f x 在(),-∞+∞单调递增;(2)求关于x 的不等式()()()()222f x f x f ax f a -<-的解集.七、问答题19.如图,在平面直角坐标系中,锐角(1)如果3tan 4α=,B 点的横坐标为(2)设αβ+的终边与单位圆交于以线段,,AP BQ CR 的长为三条边长能构成三角形.八、应用题九、问答题十、证明题。
2022-2023学年山东省威海乳山市第一中学高一上学期12月月考数学试题(解析版)
2022-2023学年山东省威海乳山市第一中学高一上学期12月月考数学试题一、单选题1.已知集合{}15A x N x =∈<<,那么下列关系正确的是( )A AB .3A ∈C .A ⊆D .{}3A ∈【答案】B【分析】根据元素与集合、集合与集合的关系进行判断即可. 【详解】集合{}{}152,3,4A x x =∈<<=N ,对选项A A ,故A 错误; 对选项B ,3A ∈,故B 正确;对选项C A ,故C 错误;对选项D ,{}3表示集合,{}3A ∈表示错误,故D 错误. 故选:B.2.设20.6a =,0.62b =,2log 0.6c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c a b >>【答案】C【分析】利用对数函数和指数函数的性质求解. 【详解】解:∵200.61<<,∴01a <<, ∵0.60221>=,∴1b >, ∵22log 0.6log 10<=,∴0c <, ∴b a c >>, 故选:C.3.若正数a 、b 满足4a b +≤,则下列各式中恒正确的是( )A .112ab ≥; B .111a b+≥;C 2≥;D .221162ab a b ≥-+.【答案】B【分析】由条件可得4ab ≤,可判断AC ,由11111()()14a b a b a b+≥++≥,可判断C ,由22162a a b b+≤-可判断D.【详解】∵0,0,4a b a b >>+≤,∴202a b ab +⎛⎫<≤ ⎪⎝⎭,当且仅当2a b ==时等号成立,∴2042a b ab +⎛⎫<≤≤ ⎪⎝⎭,∴114ab ≥,可取到14,故A 错误; ∵4a b +≤,∴1111111()()(2)(21444b a a b a b a b a b +≥++=++≥+=, 当且仅当2a b ==时取等号,故B 正确;2,故C 错误; 由222()2162a b ab ab a b =+-≤-+,∴2211612a b ab+≥-,取1a b ==,2211121426a b ab <-==+,221162ab a b ≥-+不成立,故D 错误.故选:B .4.某市工业生产总值2018年和2019年连续两年持续增加,其中2018年的年增长率为p ,2019年的年增长率为q ,则该市这两年工业生产总值的年平均增长率为( )A .2p q+; B .()()1112p q ++-; C D 1.【答案】D【分析】设出平均增长率,并根据题意列出方程,进行求解【详解】设该市2018、2019这两年工业生产总值的年平均增长率为x ,则由题意得:()()()2111x p q +=++,解得11x =,21x =,因为20x <不合题意,舍去故选D .5.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .100,10D .200,10【答案】B【详解】试题分析:由题意知,样本容量为()3500450020002%200++⨯=,其中高中生人数为20002%40⨯=,高中生的近视人数为4050%20⨯=,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题.6.下列函数中,函数图象关于y 轴对称,且在()0,∞+上单调递增的是( ) A .2x y = B .21y x =- C .12y x = D .12log y x =【答案】B【分析】根据题意函数为偶函数且在()0,∞+上单调递增,对选项进行逐一验证. 【详解】函数图象关于y 轴对称,则函数为偶函数, 选项A. 2x y =不是偶函数,故排除.选项B. 21y x =-是偶函数,且在()0,∞+上单调递增,满足条件. 选项C. 12y x =不是偶函数,故排除.选项D. 12log y x =是偶函数,当0x >时,12log y x=是减函数,不满足.故选:B7.已知函数()242,1,,1,x x ax x f x a x ⎧-+<=⎨⎩对于任意两个不相等实数12,x x ,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是( )A .10,2⎛⎤ ⎥⎝⎦B .13,25⎡⎤⎢⎥⎣⎦C .30,5⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B【分析】由题可得函数为减函数,根据单调性可求解参数的范围. 【详解】由题可得,函数()f x 为单调递减函数, 当1x <时,若()f x 单减,则对称轴21x a =≥,得:12a ≥, 当1x ≥时,若()f x 单减,则01a <<, 在分界点处,应满足142a a -+≥,即35a ≤,综上:1325a ≤≤ 故选:B8.Logistic 模型是常用数学模型之一,可用于流行病学领域.有学者根据所公布的数据建立了某地区新冠肺炎累计确诊病例()I t (t 的单位:天)的Logistic 模型:()1241etK I t -=+,其中K 为最大确诊病例数.当()00.05I t K =时,标志着已初步遏制疫情,则0t 约为()ln193≈( ) A .35 B .36 C .60 D .40【答案】B【分析】根据题意列出等式,整理化简可得0ln19124t =-,解出0t 即可. 【详解】由题意知,0()0.05I t K =,得01240.051t K K e-=+,整理,得012419t e -=,即0ln19124t =-, 解得036t ≈. 故选:B二、多选题9.已知p :[]2,3x ∃∈,220x a -+≤成立,则下列选项是p 的充分不必要条件的是( ) A .6a > B .6a < C .10a ≥ D .10a ≤【答案】AC【分析】依题意由存在量词命题为真求出参数的取值范围,再根据充分条件、必要条件的定义判断即可;【详解】解:由p :[]2,3x ∃∈,220x a -+≤成立,得当[]2,3x ∈时,()2min26a x ≥+=,即6a ≥.对于A ,“6a >”是“6a ≥”的充分不必要条件; 对于B ,“6a <”是“6a ≥”的既不充分也不必要条件; 对于C ,“10a ≥”是“6a ≥”的充分不必要条件; 对于D ,“10a ≤”是“6a ≥”的既不充分也不必要条件. 故选:AC.10.下列对各事件发生的概率判断正确的是()A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是29【答案】AC【分析】根据每个选项由题意进行计算,从而进行判断即可【详解】对于A,该生在第3个路口首次遇到红灯的情况为前2个路口不是红灯,第3个路口是红灯,所以概率为211413327⎛⎫-⨯= ⎪⎝⎭,故A正确;对于B,用A 、B 、C 分别表示甲、乙、丙三人能破译出密码,则1()5P A =,1()3P B =,1()4P C =,“三个人都不能破译出密码”发生的概率为42325345⨯⨯=,所以此密码被破译的概率为23155-=,故B 不正确;对于C,设“从甲袋中取到白球”为事件A,则82()123P A ==,设“从乙袋中取到白球”为事件B,则61()122P B ==,故取到同色球的概率为2111132322⨯+⨯=,故C 正确;对于D,易得()()P A B P BA =,即()()()()P A PB P B P A ⋅=,即()[1()]()[1()]P A P B P B P A -=-,∴()()P A P B =,又1()9P AB =,∴1()()3P A P B ==,∴2()3P A =,故D 错误故选AC【点睛】本题考查古典概型,考查事件的积,考查独立事件,熟练掌握概率的求解公式是解题关键 11.设()ln 26f x x x =+-,则下列区间中不存在零点的是( ) A .[1,2] B .[2,3] C .[3,4] D .[4,5]【答案】ACD【分析】判断(2)f 、(3)f 的符号,根据零点存在定理即可判断函数零点所在区间. 【详解】(2)ln 220f =-<,(3)ln30f =>,(2)(3)0f f ∴<,函数()ln 26f x x x =+-的零点位于[2,3].故选:ACD12.已知函数()21xf x =-,实数a ,b 满足()()f a f b =()a b <,则( )A .222a b +>B .a ∃,b ∈R ,使得01a b <+<C .222a b +=D .0a b +<【答案】CD【分析】根据函数解析式,作函数的图象,根据图象的特征,可得选项A 、C 的正误,根据基本不等式,可得选项B 、D 的正误.【详解】画出函数()21xf x =-的图象,如图所示.由图知1221a b -=-,则222a b +=,故A 错,C 对.由基本不等式可得22222222a b a b a b +=+>⋅=,所以21a b +<,则0a b +<,故B 错,D 对.故选:CD .三、填空题13.已知函数()2f x ax bx c =++,满足不等式()0f x <的解集为()(),2,t -∞-⋃+∞,且()1f x -为偶函数,则实数t =________. 【答案】0【分析】根据偶函数定义,可得20b a -=,然后根据二次不等式的解集得到二次函数的两个零点为2,t -,然后结合韦达定理,即可解出0=t【详解】根据解集易知:a<0 ,()1f x -为偶函数,可得:()()()()221112f x a x b x c ax b a x a b -=-+-+=+-+-则有:20b a -=易知20ax bx c ++=的两根为,2t -,则根据韦达定理可得:2bt a-=-解得:0=t 故答案为:0 14.若函数()221x x f x a -+=在()1,3上递减,则函数2log (2)a y x x =-增区间________.【答案】(),0∞- 【分析】函数()221xx f x a -+=在()1,3上递减,利用复合函数的单调性可得a 的取值范围,进而可判断函数2log (2)a y x x =-增区间.【详解】设t y a =,则221t x x =-+,在()1,3上递增, 函数()221xx f x a -+=在()1,3上递减,t y a ∴=在()1,3上递减,可得01a <<∴函数2log (2)a y x x =-增区间,即22u x x =-的单调递减区间令220x x ->,解得2x >或0x < ∴函数2log (2)a y x x =-增区间为,0故答案为:,0【点睛】本题考查复合函数的单调性,考查指对函数的性质,属于中档题.15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数221y ax bx =-+在(],2∞-上为减函数的概率是_______.【答案】14【解析】由函数221y ax bx =-+在(],2∞-上为减函数,得到2a b ≤,再结合古典概型及其概率的计算方法,即可求解.【详解】由题意,将一枚质地均匀的骰子先后抛掷两次,可得{}1,2,3,4,5,6a ∈,{}1,2,3,4,5,6b ∈ 又由函数221y ax bx =-+在(],2∞-上为减函数,则2ba≥,即2a b ≤, 当a 取1时,b 可取2,3,4,5,6; 当a 取2时,b 可取4,5,6; 当a 取3时,b 可取6,共9种, 又因为(),a b 的取值共36种情况, 所以所求概率为91364=. 故答案为:14.【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答中认真审题,合理利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.已知函数131()31x x f x ++=+在20211[]202-,上的最大值与最小值分别为M ,m ,则M m +=________.【答案】4【分析】构造()()2g x f x =-是奇函数,由奇函数的对称性求解. 【详解】设()()2g x f x =-,[2021,2021]x ∈-, 13131()()223131x x x x g x f x ++-=-=-=++,()()2g x f x -=--=131331322()311313x x xx x xg x -+-++--=-==-+++, 所以()g x 是奇函数,又max max ()()2g x f x M ==-,min min ()()22g x f x m =-=-, 所以max min ()()40g x g x M m +=+-=,4M m +=. 故答案为:4.四、解答题17.一元二次不等式23208kx kx +-<对一切实数x 都成立的k 的取值集合为A ,函数()()2lg 56f x x x =-++的定义域为B .(1)求集合A ,B ;(2)记C A B =,{}5D x m x m =<<+,x C ∈是x D ∈的充分不必要条件,求m 的取值范围. 【答案】(1)(3,0]A =-,()1,6B =-; (2)(5,1]--.【分析】(1)讨论0k =和0k ≠两种情况,结合判别式法求出A ,由真数大于0求出B ; (2)根据题意C 是D 的真子集,进而求得答案.【详解】(1)对A ,若0k =,则308-<,满足题意;若0k ≠,则230Δ30k k k k <⎧⇒-<<⎨=+<⎩. 综上:30k -<≤,即(3,0]A =-.对B ,()225605601,6x x x x x -++>⇒--<⇒∈-,即()1,6B =-.(2)由(1),(1,0]C A B =-⋂=,因为x C ∈是x D ∈的充分不必要条件,所以C 是D 的真子集,于是15150m m m ≤-⎧⇒-<≤-⎨+>⎩,即(5,1]m ∈--. 18.函数()()22log 25f x x ax a =--在(],2-∞-上单调递减,()1425x x g x a a +=--.(1)求a 的取值范围; (2)当2,2x时,求()g x 的最小值.【答案】(1)[)24-,(2)答案见解析 .【分析】(1)二次函数与对数函数复合的单调性讨论;(2)二次函数与指数函数复合的最小值,由x 的取值范围得到指数函数的取值范围,再求二次函数的最小值.【详解】(1)设()225t x x ax a =-- ,则()()()222log 25log f x x ax a t x =--=⎡⎤⎣⎦由题意可得,()202t a ->⎧⎪⎨-≤⎪⎩,所以24a -≤<, 所以,a 的取值范围为[)24-,. (2)因为[]22x ∈-, ,所以22122244x -⎡⎤⎡⎤∈=⎣⎦⎢⎥⎣⎦,, . 又因为()()21242525x x x g x a a a a a +=--=--- ,若 1424xa a ⎡⎫∈=⎪⎢⎣⎭,,时,()g x 有最小值25a a --; 若112244x a ⎡⎫∈-=⎪⎢⎣⎭,,时,()g x 有最小值18816a -, 19.某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.【答案】(Ⅰ)150(Ⅱ)710(Ⅲ)14.68 【分析】(Ⅰ)由频率分布直方图求出课外阅读时间不小于16小时的样本的频率为0.30,由此能估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;(Ⅱ)阅读时间在[18,20]的样本的频率为0.10.从而课外阅读时间在[18,20]的样本对应的学生人数为5.这5名学生中有2名女生,3名男生,设女生为A ,B ,男生为C ,D ,E ,从中抽取2人,利用列举法能求出至少抽到1名女生的概率;(Ⅲ)由频率分布直方图能估计该校学生2018年10月课外阅读时间的平均数.【详解】(Ⅰ)0.10×2+0.05×2=0.30,即课外阅读时间不小于16小时的样本的频率为0.30.因为500×0.30=150,所以估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数为150. (Ⅱ)阅读时间在[18,20]的样本的频率为0.05×2=0.10.因为50×0.10=5,即课外阅读时间在[18,20]的样本对应的学生人数为5.这5名学生中有2名女生,3名男生,设女生为A ,B ,男生为C ,D ,E ,从中抽取2人的所有可能结果是:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ).其中至少抽到1名女生的结果有7个,所以从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,至少抽到1名女生的概率为p =710(Ⅲ)根据题意,0.08×2×11+0.12×2×13+0.15×2×15+0.10×2×17+0.05×2×19=14.68(小时). 由此估计该校学生2018年10月课外阅读时间的平均数为14.68小时.【点睛】本题考查频数、概率、平均数的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.已知函数()2log 1a x f x x -=+为奇函数. (1)求实数a 的值;(2)若()()22log 430m x f x x -+++≤恒成立,求实数m 的取值范围. 【答案】(1)1a =(2)[)2,+∞【分析】(1)利用奇函数定义求出实数a 的值;(2)先求解定义域,然后参变分离后求出()()22log 23g x x x =--+的取值范围,进而求出实数m 的取值范围.【详解】(1)由题意得:()()f x f x -=-,即22log log 11a x a x x x+-=--+,解得:1a =±, 当1a =-时,101a x x -=-<+,不合题意,舍去, 所以1a =,经检验符合题意;(2)由101x x->+,解得:11x -<<,由2430x x ++>得:1x >-或3x <-, 综上:不等式中()1,1x ∈-,()()22log 430m x f x x -+++≤变形为()()2log 13m x x ⎡⎤≥-+⎣⎦,即()()2log 13m x x ⎡⎤≥-+⎣⎦恒成立,令()()()2222log 23log 14g x x x x ⎡⎤=--+=-++⎣⎦,当()1,1x ∈-时,()(),2g x ∈-∞, 所以2m ≥,实数m 的取值范围为[)2,+∞.21.习近平总书记在十九大报告中指出,“要着力解决突出环境问题,持续实施大气污染防治行动”.为落实好这一精神,市环保局规定某工厂产生的废气必须过滤后才能排放.已知在过滤过程中,废气中的污染物含量P (单位:毫克/升)与过滤时间t (单位:小时)之间的函数关系式为:0()ktP t P e -=(e 为自然对数的底数,0P 为污染物的初始含量).过滤1小时后检测,发现污染物的含量为原来的45. (1)求函数()P t 的关系式;(2)要使污染物的含量不超过初始值的11000,至少还需过滤几小时?(参考数据:lg 20.3≈) 【答案】(1)04()()5t P t P =(2)30【分析】(1)由题意代入点(1,45P 0),求得函数P (t )的解析式; (2)根据函数P (t )的解析式,列不等式求出t 的取值范围即可.【详解】解:(1)根据题设,得0045k P P e -=,45k e -∴= 所以,()045t P t P ⎛⎫= ⎪⎝⎭(2)由()004151000t P t P P ⎛⎫=≤ ⎪⎝⎭,得4151000t ⎛⎫≤ ⎪⎝⎭, 两边取以10为底的对数,并整理,得t (1﹣3lg2)≥3,∴t≥30因此,至少还需过滤30小时【点睛】本题考查了指数函数模型的应用问题,求指数型函数的解析式,指数型不等式的解法,是中档题.22.对于函数()f x ,若其定义域内存在实数x 满足()()f x f x -=-,则称()f x 为“伪奇函数”. (1)已知函数()21x f x x -=+,试问()f x 是否为“伪奇函数”?说明理由; (2)若幂函数()()()31n g x n xn -=-∈R 使得()()2g x f x m =+为定义在[]1,1-上的“伪奇函数”,试求实数m 的取值范围;(3)是否存在实数m ,使得()12423x x f x m m +=-⋅+-是定义在R 上的“伪奇函数”,若存在,试求实数m 的取值范围;若不存在,请说明理由.【答案】(1)不是;(2)5,14⎡⎤--⎢⎥⎣⎦;(3)1⎡⎣. 【分析】(1)先假设()f x 为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出()g x 的解析式,然后将问题转化为“()222x x m -=-+在[]1,1-上有解”,根据指数函数的值域以及对勾函数的单调性求解出m 的取值范围;(3)将问题转化为“()()22644222x x x x m m ---=-+++在R 上有解”,通过换元法结合二次函数的零点分布求解出m 的取值范围.【详解】(1)假设()f x 为“伪奇函数”,∴存在x 满足()()f x f x -=-,2211x x x x ---∴=--++有解,化为220x +=,无解, f x 不是“伪奇函数”;(2)()()()31n g x n x n -=-∈R 为幂函数,2n ∴=,()g x x ∴=,()2x f x m ∴=+,()2x f x m =+为定义在[]1,1-的“伪奇函数”,∴22x x m m -+=--在[]1,1-上有解,∴()222x x m -=-+在[]1,1-上有解, 令12,22x t ⎡⎤=∈⎢⎥⎣⎦,∴12m t t ⎛⎫=-+ ⎪⎝⎭在1,22t ⎡⎤∈⎢⎥⎣⎦上有解, 又对勾函数1y t t =+在1,12⎡⎫⎪⎢⎣⎭上单调递减,在(]1,2上单调递增, 且12t =时,52y =,2t =时,52y =, min max 5112,2y y ∴=+==,1y t t ∴=+的值域为52,2⎡⎤⎢⎥⎣⎦, 52,22m ⎡⎤∴∈--⎢⎥⎣⎦,5,14m ⎡⎤∴∈--⎢⎥⎣⎦; (3)设存在m 满足,即()()f x f x -=-在R 上有解,()1212423423x x x x m m m m --++∴-⋅+-=--⋅+-在R 上有解,()()22644222x x x x m m --∴-=-+++在R 上有解,令[)222,x x t -+=∈+∞,取等号时0x =,()222622m t mt ∴-=--+在[)2,∞+上有解,222280t mt m ∴-+-=在[)2,∞+上有解(*), ()2244280m m ∆=--≥,解得m ⎡∈-⎣,记()22228h t t mt m =-+-,且对称轴t m =,当m ⎡⎤∈-⎣⎦时,()h t 在[)2,∞+上递增,若(*)有解,则()22222280h mt m =-+-≤,12m ⎡⎤∴∈⎣⎦,当(m ∈时,()h t 在[)2,m 上递减,在(),m +∞上递增,若(*)有解,则()222222880h m m m m m =-+-=-≤,即280m -≤,此式恒成立,(2,m ∴∈,综上可知,1m ⎡∈⎣.【点睛】关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.。
四川省成都市成华区某校2023-2024学年高一上学期12月月考试题 数学含解析
高一数学(答案在最后)一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关系或运算中①0{0}∈,②0∈∅,③{}210x x ∅⊆+=,④{}(){}{}2,0,1x y x x y y x =⋂==正确的个数为()A.1B.2C.3D.42.已知幂函数2()(3)m f x m x =-在(0,)+∞上单调递减,则实数m 的值为()A.2- B.2C.D.2-或23.下列每组中的两个函数是相同函数的是()A.(),()f x x g x ==B.22(),()(1)f x x g x x ==-C.2()2lg ,()lg f x x g x x == D.()lg(1)(1),()lg(1)lg(1)f x x xg x x x =+-=++-4.若角α的终边过点()5,12,则cos sin αα-=()A.513B.713C.713-D.513-5.函数f (x )=2x e x +-的零点所在的一个区间是A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)6.已知弧长为4π的扇形圆心角为6π,则此扇形的面积为()A.24πB.36πC.48πD.96π7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20⁓79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车,都属于违法驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果停止喝酒以后,他血液中的酒精含量会以每小时25%的速度减少,要保证他不违法驾车,则他至少要休息(其中取lg 20.30,lg 30.48==)()A.7小时B.6小时C.5小时D.4小时8.已知1122log log a b <且a 、b 都不等于1,则下列不等式不一定成立的是()A.11a b< B.若0m >,则b b ma a m+<+C.11()()43a b< D.11log log 22a b<二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.下列说法正确的是()A.命题“m ∃∈N N ”的否定为“m ∃∈N N ”B.命题“a ∀∈R ,一元二次方程210x ax --=有实根”的否定为假命题C.“x 、y 为无理数”是“x y +为无理数”的充分不必要条件D.“a b >”是“22ac bc >”的必要不充分条件10.设函数()(0)af x x a x=+≠,则()A.当0x >时,函数()f x 有最小值为B.当a<0时,函数()f x 是增函数C.当0,4x a >=时,函数()f x 有最小值为4D.存在正实数m ,使得函数()f x 在[,)m +∞上单调递增11.下列四组图象中,每组分别都是两个函数的图象,其中两个函数图象与解析式对应可能正确的是()A. B.C. D.12.设函数()f x 满足:对任意实数x 、y 都有,()()()4f x y f x f y +=+-且当0x >时,()4f x >.设()()4g x f x =-.则下列命题正确的是()A.(2023)(2023)8f f -+=B.函数()f x 有对称中心(0,4)C.函数()g x 为奇函数D.函数()g x 为减函数三、填空题:本题共4小题.13.函数24()23x f x a -=+(0a >,且1a ≠)必过定点__________.14.已知函数()f x 是定义在R 上的偶函数,且对区间(],0-∞上的任意1x ,2x ,当12x x ≠时,都有()()12120f x f x x x -<-.若实数t 满()()213f t f t +≤-,则t 的取值范围是______.15.已知函数()2112x ax f x +-⎛⎫=⎪⎝⎭在[]1,2上单调递减,则实数a 的取值范围是___________.16.设函数()2log f x 的定义域为1,44⎡⎤⎢⎥⎣⎦,且满足()21log 1x f x x -=+,则不等式1142042x xf f ⎛⎫⎛⎫⎛⎫⎛⎫-+-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的解集是_______.四、解答题:本题共6小题,解答应写出必要的文字说明,证明过程或演算步骤.17.计算下列各式的值:(1)0(π4)-+;(2)52log 323log 9log 8lg 2lg 55⨯++-.18.已知角α终边上有一点()P m,且sin (0)4m m α=>.(1)求m 的值,并求cos α与tan α的值;(2)化简并求()()()π11πcos πcos cos 229πcos πsin πsin 2αααααα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭⎛⎫---+ ⎪⎝⎭的值.19.设点(),x y 是奇函数()f x 图象上的动点,且1x >时满足3xy x y =++.(1)求1x <-时,函数()f x 的解析式;(2)用定义法证明:函数()f x 在(),1-∞-上单调递减;(3)当1x >时,求x y +的最小值.20.学校数学学习小组在假期社会实践活动中,对某公司的一种产品销售情况的调查发现:受不可抗力因素影响,该种产品在2022年8月份(价格浮动较大的一个月,以31天计)的最后7天无法进行销售,日销售单价()P x (单位:千元/千克)与第x 天(124x ≤≤,*x ∈N )的函数关系满足()151kP x x =++(k 为正实数).因公司数据保存不当,只能查到该产品的日销售量()Q x (单位:千克)与x 的如下数据:()416Q =,()617Q =,()()1213Q Q >,已知第4天该产品的日销售收入为256千元(日销售收入=日销售单价⨯日销售量).(1)给出以下三种函数模型:①()2xQ x a b =⋅+;②()3log Q x a x b =⋅+;③()12Q x a x b =-+,请你根据上述数据,帮助这组同学从中选择最合适的一种函数模型来描述该产品在2022年8月份的日销售量()Q x 与x 的关系,并求出该函数的解析式;(2)在(1)的基础上,求出该公司在2022年8月份第1天到第12天中,该产品日销售收入()f x (单位,千元)的最小值.21.已知函数222,1,()log (1), 1.x x x f x x x ⎧+≤⎪=⎨->⎪⎩(1)作出函数()f x 的图象(不写作法),并根据图象写出函数()f x 的单调区间;(2)设函数()()=-g x f x k 有四个零点,,,m n a b ,且m n a b <<<,求m n ab ++的取值范围.22.已知函数3()log (91)xf x mx =++是偶函数,()33x xg x n -=-⋅是奇函数.(1)求实数,m n 的值;(2)若关于x 的不等式2()(())(3)f x g ag x g a <+在(0,)+∞上恒成立,求实数a 的取值范围.高一数学一、选择题:本题共8小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关系或运算中①0{0}∈,②0∈∅,③{}210x x ∅⊆+=,④{}(){}{}2,0,1x y x x y y x =⋂==正确的个数为()A.1B.2C.3D.4【答案】B 【解析】【分析】根据元素与集合的关系判断①②,根据子集概念判断③,根据集合的交集判断④.【详解】①0{0}∈正确;②空集不含任何元素,故0∈∅错误;③因为空集是任何集合的子集,故{}210x x ∅⊆+=正确;④因为{}R x y x ==,(){}2,x y y x =为点的集合,故{}(){}2,x y x x y y x =⋂==∅,故{}(){}{}2,0,1x y x x y y x =⋂==错误.所以正确的个数为2.故选:B2.已知幂函数2()(3)m f x m x =-在(0,)+∞上单调递减,则实数m 的值为()A.2-B.2C.D.2-或2【答案】A 【解析】【分析】根据幂函数的定义及单调性求解即可.【详解】因为幂函数2()(3)m f x m x =-在(0,)+∞上单调递减,所以231m -=且0m <,解得2m =-,故选:A3.下列每组中的两个函数是相同函数的是()A.(),()f x x g x ==B.22(),()(1)f x x g x x ==-C.2()2lg ,()lg f x x g x x == D.()lg(1)(1),()lg(1)lg(1)f x x xg x x x =+-=++-【答案】D【解析】【分析】根据函数定义域与解析式进行判断即可.【详解】选项A 中,函数()g x x ==,即(),()f x g x 的对应关系不同,故不是同一函数;选项B 中,显然(),()f x g x 的对应关系不同,故不是同一函数;选项C 中,函数()2lg f x x =的定义域为()0,∞+,2()lg g x x =的定义域为(,0)(0,)-∞+∞ ,不是同一函数;选项D 中,函数()(),f x g x 的定义域为()1,1-,且()lg(1)lg(1)lg(1)(1)()=++-=+-=g x x x x x f x ,所以是同一个函数;故选:D .4.若角α的终边过点()5,12,则cos sin αα-=()A.513B.713C.713-D.513-【答案】C 【解析】【分析】根据三角函数的定义求得正确答案.13=,所以5127cos sin 131313αα-=-=-.故选:C5.函数f (x )=2x e x +-的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1)D.(1,2)【答案】C 【解析】【详解】试题分析:()()()()2102220,1120,0020,1120f e f e f e f e ---=--<-=--<=+-=+- ()()100f f ∴<,所以零点在区间(0,1)上考点:零点存在性定理6.已知弧长为4π的扇形圆心角为6π,则此扇形的面积为()A.24πB.36πC.48πD.96π【答案】C 【解析】【分析】根据题意求出扇形的半径,再根据扇形的面积公式即可得解.【详解】解:设扇形的半径为R ,因为弧长为4π的扇形圆心角为6π,所以46R ππ=,所以24R =,所以此扇形的面积为214826R ππ⨯=.故选:C .7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20⁓79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车,都属于违法驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg/mL.如果停止喝酒以后,他血液中的酒精含量会以每小时25%的速度减少,要保证他不违法驾车,则他至少要休息(其中取lg 20.30,lg 30.48==)()A.7小时B.6小时C.5小时D.4小时【答案】B 【解析】【分析】根据已知条件列不等式,由此求得正确答案.【详解】设需要休息x 小时,依题意,()3100125%100204xx⎛⎫⨯-=⨯< ⎪⎝⎭,32410x⎛⎫< ⎪⎝⎭,两边取以10为底的对数得32lg lg 410x <,所以lg 2lg10lg 210.310.75.8lg 3lg 4lg 32lg 20.4820.30.12x --->===≈---⨯,所以至少需要6小时.故选:B8.已知1122log log a b <且a 、b 都不等于1,则下列不等式不一定成立的是()A.11a b< B.若0m >,则b b m a a m+<+C.11()()43a b< D.11log log 22ab <【答案】D 【解析】【分析】由1122log log a b <且,a b 都不等于1,则得0a b >>,然后根据不等式性质可对A 判断,利用作差法可对B 判断,利用指数函数性质可对C 判断,利用对数函数性质及特殊值可对D 判断.【详解】由题意知1122log log a b <且,a b 都不等于1,所以0a b >>,对A :由0a b >>,所以11a b<,故A 一定成立;对B :()()()()()0b a m a b m m b a b b m a a m a a m a a m +-+-+-==<+++,故B 一定成立;对C :111443abb⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 一定成立;对D :由0a b >>,不妨设3,2a b ==,则3311log log 123>=-,21log 12=-,故D 不一定成立.故选:D.二、选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求.9.下列说法正确的是()A.命题“m ∃∈N N ”的否定为“m ∃∈N N ”B.命题“a ∀∈R ,一元二次方程210x ax --=有实根”的否定为假命题C.“x 、y 为无理数”是“x y +为无理数”的充分不必要条件D.“a b >”是“22ac bc >”的必要不充分条件【答案】BD 【解析】【分析】A.利用含有一个量词的命题的否定的定义判断;B.利用判别式判断; C.举例判断;D.利用充分条件和必要条件的定义判断.【详解】A.因为命题“m ∃∈N N ”是存在量词命题,所以其否定全称量词命题,即为“m ∀∈N N ”,故错误;B.因为240=∆+>a ,所以命题“a ∀∈R ,一元二次方程210x ax --=有实根”是真命题,所以其否定为假命题,故正确;C.若x y ==,则0x y +=,故不充分,故错误;D.当0c =时,22ac bc =,故充分性不成立,当22ac bc >时,则()20c a b ->,即20c >,且0a b ->,则a b >,故必要性成立,故正确;故选:BD10.设函数()(0)af x x a x=+≠,则()A.当0x >时,函数()f x 有最小值为B.当a<0时,函数()f x 是增函数C.当0,4x a >=时,函数()f x 有最小值为4D.存在正实数m ,使得函数()f x 在[,)m +∞上单调递增【答案】CD 【解析】【分析】选项A ,举特殊情况a<0时,()(0)af x x a x=+≠在区间(0,)+∞上单调递增,此时函数()f x 没有最小值;选项B ,函数()f x 在0x =处不连续,函数()f x 不是增函数;选项C ,利用基本不等式求出最小值即可;选项D ,对a 的取值分类讨论,其中0a >时,利用复合函数和对勾函数寻找正实数m 判断单调性即可.【详解】函数()(0)af x x a x=+≠的定义域是{|0}x x ≠,对于选项A ,当a<0时,在区间(0,)+∞上函数y x =和ay x=都单调递增,故()(0)af x x a x=+≠在区间(0,)+∞上单调递增,此时函数()f x 没有最小值,选项A 错误;对于选项B ,定义域是{|0}x x ≠,函数()f x 在0x =处不连续,函数()f x 不是增函数,选项B 错误;对于选项C ,0,4x a >=,则44x x +≥=(2x =时等号成立),函数()f x 有最小值为4,选项C 成立;对于选项D ,当a<0时,()(0)af x x a x=+≠在区间(0,)+∞上单调递增,此时存在正实数m ,使得函数()f x 在[,)m +∞上单调递增;当0a >12x x ≤<,121212121212()()()()()()x x x x a a af x f x x x x x x x ---=+-+=,12x x ≤<得:120x x -<,120x x a >>,10x x a ->,所以12())0(f x f x -<,12()()f x f x <成立,()(0)af x x a x=+≠在区间+∞),使得函数()f x在+∞)上单调递增;选项D 正确;故选:CD.11.下列四组图象中,每组分别都是两个函数的图象,其中两个函数图象与解析式对应可能正确的是()A.B.C.D.【答案】ABD 【解析】【分析】根据每个选项中两个函数的图象,求出实数a 的取值范围,然后观察每个选项中实数a 的范围是否一致,即可得出合适的选项.【详解】对于A 选项,指数函数1xxa y a -=⎛⎫= ⎪⎝⎭在R 上单调递减,则101a <<,可得1a >,对数函数log a y x =在()0,∞+上为增函数,则1a >,A 满足条件;对于B 选项,对数函数log a y x =在()0,∞+上为减函数,则01a <<,由幂函数a y x =在第一象限内的图象可知,01a <<,取13a =,令()13a f x x x ===,该函数的定义域为R ,()()f x f x -===-,此时函数a y x =为奇函数,B 满足条件;对于C 选项,函数y ax a =-为减函数,且该函数的图象交y 轴于点()0,a -,由图可得02a a >⎧⎨-<-⎩,解得2a >,函数a y x=的图象在第二、四象限,则a<0,C 不满足条件;对于D 选项,函数y ax a =-为减函数,且该函数的图象交y 轴于点()0,a -,由图可得001a a <⎧⎨<-<⎩,解得10a -<<,由幂函数a y x =在第一象限的图象可知,a<0,取67a =-,令()67a g x x x -==={}0x x ≠,()()g x g x -==,此时,函数a y x =为偶函数,合乎题意,D 满足条件.故选:ABD.12.设函数()f x 满足:对任意实数x 、y 都有,()()()4f x y f x f y +=+-且当0x >时,()4f x >.设()()4g x f x =-.则下列命题正确的是()A.(2023)(2023)8f f -+= B.函数()f x 有对称中心(0,4)C.函数()g x 为奇函数D.函数()g x 为减函数【答案】ABC【解析】【分析】令0x y ==,可得()04f =,再令2023,2023x y ==-,判断选项A ;令y x =-,即可判断选项B ;由()()4g x f x =-,判断选项C ;令,0y x ∈>R ,利用函数的单调性定义进行判断选项D.【详解】由对于任意实数,x y ,()()()4f x y f x f y +=+-,令0x y ==,则()()()0004f f f =+-,即()04f =,再令2023,2023x y ==-,则()()()020*******f f f =+--,即()()202320238f f +-=,故A 正确;令y x =-,则()()()04f f x f x =+--,即()()8f x f x +-=,故B 正确;由()()4g x f x =-,则()()()()440g x g x f x f x +-=-+--=,即()g x 是奇函数,故C 正确;对于任意,0y x ∈>R ,则x y y +>,当0x >时,()4f x >,则()()()40f x y f y f x +-=->,所以()f x 单调递增,即()g x 单调递增,故D 错误.故选:ABC三、填空题:本题共4小题.13.函数24()23x f x a -=+(0a >,且1a ≠)必过定点__________.【答案】()25,【解析】【分析】根据指数函数的性质,即可求解.【详解】因为01(0a a =>,且1)a ≠,所以令240x -=,得2x =,此时5y =,所以函数()f x 必过定点()2,5.故答案为:()2,514.已知函数()f x 是定义在R 上的偶函数,且对区间(],0-∞上的任意1x ,2x ,当12x x ≠时,都有()()12120f x f x x x -<-.若实数t 满()()213f t f t +≤-,则t 的取值范围是______.【答案】24,3⎡⎤-⎢⎥⎣⎦【解析】【分析】根据函数的奇偶性和单调性之间的关系建立不等式,解之可得答案.【详解】因为对区间(],0-∞上的任意1x ,2x ,当12x x ≠时,都有()()12120f x f x x x -<-,所以函数()f x 在(],0-∞上单调递减,又函数()f x 是定义在R 上的偶函数,所以函数()f x 在[)0,+∞上单调递增,实数t 满()()213f t f t +≤-,所以213t t +≤-,两边平方得23+1080t t -≤,解得243t -≤≤,故答案为:24,3⎡⎤-⎢⎥⎣⎦.15.已知函数()2112x ax f x +-⎛⎫=⎪⎝⎭在[]1,2上单调递减,则实数a 的取值范围是___________.【答案】[)2,-+∞【解析】【分析】根据复合函数单调性求出()f x 在,2a ⎡⎫-+∞⎪⎢⎣⎭上单调递减,再由()f x 在[]1,2上单调递减,得到12a -≤,进而求得a 的取值范围.【详解】令21t x ax =+-,则12t y ⎛⎫= ⎪⎝⎭.因为21t x ax =+-在,2a ⎛⎫-∞- ⎪⎝⎭上单调递减,在,2a ⎡⎫-+∞⎪⎢⎣⎭上单调递增,12t y ⎛⎫= ⎪⎝⎭在R 上单调递减,所以()f x 在,2a ⎛⎫-∞- ⎪⎝⎭上单调递增,在,2a ⎡⎫-+∞⎪⎢⎣⎭上单调递减.因为()f x 在[]1,2上单调递减,所以有12a -≤,解得2a ≥-.故答案为:[)2,-+∞16.设函数()2log f x 的定义域为1,44⎡⎤⎢⎥⎣⎦,且满足()21log 1x f x x -=+,则不等式1142042x x f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的解集是_______.【答案】11,2⎛⎤-- ⎥⎝⎦【解析】【分析】由题意利用换元法得到关于t 的函数,判断出()f t 的奇偶性和单调性,然后将不等式变形,由单调性和定义域得到关于x 的不等式,求解即可.【详解】令2log t x =,则2t x =,由1,44x ⎡⎤∈⎢⎥⎣⎦,得[]2,2t ∈-,所以21()21t t f t -=+,[]2,2t ∈-,因为()211221()212121t t t t t t f t f t ------===-=-+++,所以函数()f t 为奇函数,因为212()12121t t t f t -==-++,而21t y =+在其定义域内单调递增,则221t y =+在其定义域内单调递减,所以函数()f t 单调递增,而不等式1142042x x f f ⎛⎫⎛⎫⎛⎫⎛⎫-+-< ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭可变形为111422422x x x f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-<--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以11242242x x ⎛⎫⎛⎫-≤-<-≤ ⎪ ⎪⎝⎭⎝⎭,由1244x ⎛⎫-≤- ⎪⎝⎭,解得12x ≤-,由1222x ⎛⎫-≤ ⎪⎝⎭,解得2x ≥-,由114242x x ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,令12x m ⎛⎫= ⎪⎝⎭,得220m m --<,即12m -<<,所以1122x ⎛⎫-<< ⎪⎝⎭,则1x >-,综上,112x -<≤-.故答案为:11,2⎛⎤-- ⎥⎝⎦.【点睛】方法点睛:本题考查函数的性质,利用函数的奇偶性和单调性解不等式,脱掉“f ”是解有关函数不等式的常用方法.四、解答题:本题共6小题,解答应写出必要的文字说明,证明过程或演算步骤.17.计算下列各式的值:(1)0(π4)-+;(2)52log 323log 9log 8lg 2lg 55⨯++-.【答案】(1)4(2)2-【解析】【分析】(1)根据指数幂以及根式的运算求解;(2)根据对数的运算求解.【小问1详解】原式=1134-=-+;【小问2详解】原式=()22323321036192log log lg ⨯+-=+-=-.18.已知角α终边上有一点()P m,且sin (0)4m m α=>.(1)求m 的值,并求cos α与tan α的值;(2)化简并求()()()π11πcos πcos cos 229πcos πsin πsin 2αααααα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭⎛⎫---+ ⎪⎝⎭的值.【答案】(1)m =cos 4α=-,tan 3α=-(2)3-【解析】【分析】(1)直接利用三角函数的定义依次计算得到答案.(2)根据诱导公式化简得到原式等于tanα,计算得到答案.【小问1详解】sin4mα==,0m>,解得m=.故cos4α==-,tan3α==-.【小问2详解】()()()11πcosπcos coscos sin sin22tan9πcos sin cos3cosπsinπsinπ2ααααααααααααα⎛⎫⎛⎫++-⎪ ⎪-⎝⎭⎝⎭===--⎛⎫---+⎪⎝⎭.19.设点(),x y是奇函数()f x图象上的动点,且1x>时满足3xy x y=++.(1)求1x<-时,函数()f x的解析式;(2)用定义法证明:函数()f x在(),1-∞-上单调递减;(3)当1x>时,求x y+的最小值.【答案】(1)()()311xf x xx-=-<-+(2)证明见解析(3)6【解析】【分析】(1)根据题意,求出当1x>时,函数()f x的解析式,然后利用奇函数的性质可求出当1x<-时,函数()f x的解析式;(2)任取1x、()2,1x∞∈--且12x x<,作差()()12f x f x-,变形后判断()()12f x f x-的符号,结合函数单调性的定义可得出结论;(3)当1x>时,可得出4121x y xx+=-++-,利用基本不等式可求得x y+的最小值.【小问1详解】当1x>时,由3xy x y=++得()13y x x-=+,则()31xf x yx+==-,当1x<-时,1x->,则()3311x xf xx x-+--==--+,因为函数()f x 为奇函数,则()()31x f x f x x -=--=-+.所以,()()311x f x x x -=-<-+.【小问2详解】由(1)知()()341111x f x x x x -=-=-+<-++,对任意的1x 、()2,1x ∞∈--且12x x <,有()()()()()21121212124444411111111x x f x f x x x x x x x -⎛⎫⎛⎫-=---=-= ⎪ ⎪++++++⎝⎭⎝⎭,因为121x x <<-,210x x ->,110x +<,210x +<,所以,()()120f x f x ->,即()()12f x f x >,所以,()f x 在(),1∞--上单调递减.【小问3详解】由(1)知,当1x >时,344112111x x y x x x x x x ++=+=++=-++---2426≥+=+=,当且仅当()4111x x x -=>-时,即当3x y ==时,等号成立,故x y +的最小值为6.20.学校数学学习小组在假期社会实践活动中,对某公司的一种产品销售情况的调查发现:受不可抗力因素影响,该种产品在2022年8月份(价格浮动较大的一个月,以31天计)的最后7天无法进行销售,日销售单价()P x (单位:千元/千克)与第x 天(124x ≤≤,*x ∈N )的函数关系满足()151k P x x =++(k 为正实数).因公司数据保存不当,只能查到该产品的日销售量()Q x (单位:千克)与x 的如下数据:()416Q =,()617Q =,()()1213Q Q >,已知第4天该产品的日销售收入为256千元(日销售收入=日销售单价⨯日销售量).(1)给出以下三种函数模型:①()2xQ x a b =⋅+;②()3log Q x a x b =⋅+;③()12Q x a x b =-+,请你根据上述数据,帮助这组同学从中选择最合适的一种函数模型来描述该产品在2022年8月份的日销售量()Q x 与x 的关系,并求出该函数的解析式;(2)在(1)的基础上,求出该公司在2022年8月份第1天到第12天中,该产品日销售收入()f x (单位,千元)的最小值.【答案】(1)()11220,124,N 2Q x x x x *=--+≤≤∈;(2)最小值为250千元.【解析】【分析】(1)由第4天该产品的日销售收入及()416Q =求出k ,再由销量的变化关系及函数模型选择函数()Q x 的关系式,再代入计算作答.(2)利用(1)的函数模型求出()f x 的表达式,再求出当12x ≤时,()f x 的最小值作答.【小问1详解】当4x =时,由(15)162561k x +⋅=+,得5k =,即5()151P x x =++,(124x ≤≤,*x ∈N ),因为()416Q =,()617Q =,则()()46Q Q <,而()()1213Q Q >,即日销售量数据有增有减,显然0a ≠,模型①②都是单调函数,不符合题意,选择模型③,将()416Q =,()617Q =代入模型③得:4121661217a b a b ⎧-+=⎪⎨-+=⎪⎩,解得1220a b ⎧=-⎪⎨⎪=⎩,所以模型③的函数解析式为()11220,124,N 2Q x x x x *=--+≤≤∈.【小问2详解】由(1)知,当112,N x x *≤≤∈时,5()151P x x =++,()11(12)201422Q x x x =--+=+,因此51512752715)(14)15)[(1)]205[3(1)]121222()(1(f x x x x x ++=+++=+++++=+205250≥+,当且仅当273(1)1x x +=+,即2x =时取等号,所以当2x =时,该产品日销售收入()f x 最小,最小值为250千元.【点睛】思路点睛:涉及实际应用问题,在理解题意的基础上,找出分散的数量关系,联想与题意有关的数学知识和方法,恰当引入变量,将实际问题转化、抽象为数学问题作答.21.已知函数222,1,()log (1), 1.x x x f x x x ⎧+≤⎪=⎨->⎪⎩(1)作出函数()f x 的图象(不写作法),并根据图象写出函数()f x 的单调区间;(2)设函数()()=-g x f x k 有四个零点,,,m n a b ,且m n a b <<<,求m n ab ++的取值范围.【答案】(1)答案见解析(2)652,8⎛⎤ ⎥⎝⎦【解析】【分析】(1)根据二次函数及对数函数的图象作出函数图象,再根据函数图象写出单调区间即可;(2)依题意()f x 的图象与直线y k =有四个不同的公共点,根据二次函数的对称性可求出m n +,根据对数函数的性质可求出,a b 的关系,进而可得出答案.【小问1详解】()f x 图象如图所示:()f x 的单调递增区间:()()1,1,2,∞-+,()f x 的单调递减区间:()(),1,1,2∞--;【小问2详解】依题意()f x 的图象与直线y k =有四个不同的公共点,其横坐标分别为,,,m n a b ,且m n a b <<<,由二次函数图象对称性可知:2m n +=-,由()()2log 1log 1a b --=-知()()111a b --=,则111b a =+-,11121111a ab a a a a a a =+=++=++----,111m n ab a a ∴++=+--,由(]0,3k ∈,得9,28a ⎡⎫∈⎪⎢⎣⎭,令1t a =-,则1,18t ⎡⎫∈⎪⎢⎣⎭,故1m n ab t t++=+,由对勾函数的性质可得函数1y t t =+在1,18⎡⎫⎪⎢⎣⎭上单调递减,所以652,8m n ab ⎛⎤++∈ ⎥⎝⎦,即m n ab ++的取值范围为652,8⎛⎤ ⎥⎝⎦.22.已知函数3()log (91)x f x mx =++是偶函数,()33x x g x n -=-⋅是奇函数.(1)求实数,m n 的值;(2)若关于x 的不等式2()(())(3)f x g ag x g a <+在(0,)+∞上恒成立,求实数a 的取值范围.【答案】22.1m =-,1n =23.4,2⎡-+⎣【解析】【分析】(1)根据奇函数偶函数的性质运算即可求出参数,注意检验.(2)首先根据()33x x g x -=-的单调性化简不等式,进一步通过换元法,将不等式转换为()()240,0h t t at a t =-++>>恒成立即可,分类讨论即可求解.【小问1详解】由题知函数()(),f x g x 定义域均为R ,∵()f x 是偶函数,∴()()11.f f =-即3310log 10log 3m m +=-,即 1.m =-此时()3()log 91x f x x =+-,而此时()()()3333()log 91log 91log 3log 33x x x x x f x x -=+-=+-=+,所以()()()3log 33x x f x f x --=+=,且定义域关于原点对称,满足题意,∵()g x 是奇函数,∴()000330, 1.g n n =-⋅==此时()33x xg x -=-,所以()()()3333x x x x g x g x ---=-=--=-,且定义域关于原点对称,满足题意.【小问2详解】()33x x g x -=-在R 上单调递增,故有()()23f x ag x a <+对()0,x ∞∈+恒成立,又()()()3333()log 91log 91log 3log 33x x x x x f x x -=+-=+-=+,∴()()()322log 3333333x x x x x x a a a -+---<+=++对()0,x ∞∈+恒成立.令33x x t ,-=-由()0,x ∞∈+知()0,t ∞∈+.则有24at a t <++对()0,t ∞∈+恒成立.即240t at a -++>对()0,t ∞∈+恒成立.令()()240.h t t at a t =-++>只需()min 0h t >即可.又()h t 对称轴为2a t =,当02a ≤即0a ≤时,()h t 在()0,∞+上单调递增,只需()040h a =+≥即可.∴40a .-≤≤当02a >即0a >时,()h t 在02a ⎛⎤ ⎥⎝⎦,上单调递减,在2a ∞⎛⎫+ ⎪⎝⎭,上单调递增.∴()2min40.24a a h t h a ⎛⎫==-++> ⎪⎝⎭解得22a -<<+∴02a <<+综上所述,a 的取值范围为4,2.⎡-+⎣【点睛】关键点睛:第一问的关键是利用奇偶函数的性质记得一定要检验,第二问的关键是利用函数单调性以及换元法来求解.。
高一12月月考数学试题(含答案)
高一12月月考数学试题(含答案)数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.) 1.⎪⎭⎫ ⎝⎛-π 623sin 的值等于 . 2.设α角属于第二象限,且2cos 2cos αα-=,则2α角属于第 象限.3.4tan 3cos 2sin 的值的符号为 .4.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中,最小正周期为π的函数有 个.5.已知点P(θcos ,θsin )在第三象限,则角θ的终边落在第______象限.6.设k = 80cos ,则= 100tan ____________ .7.已知()sin 1f x ax b x =++,若(5)7f =,则(5)f -=8.函数y =||xx sin sin +x x cos cos ||+||x x tan tan 的值域是 . 9.如果 αα α α cos 5sin 3cos 2sin +-= - 5,那么αtan 的值为 . 10.如果ααcos sin +=43,那么ααcos sin -的值为 .11.若(cos )cos3f x x =,那么(sin30)f ︒的值为 . 12.若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤,则集合B A 为 .13.函数y=2sin(2x+6π)(x ∈[-π,0])的单调递减区间是 .14.已知sin θ=1-a 1+a ,cos θ=3a -11+a ,若θ是第二象限角,则实数a 的值是________.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(14分)已知角α的终边经过点P (4a ,- 3a )(a ≠0),求 2sin α + cos α的值;16.(14分) 已知扇形的周长为30,当它的半径R 和圆心角α各取何值时,扇形的面积最大?并求出扇形面积的最大值.17.(15分)已知2tan =α,求下列各式的值:(1)ααααcos 9sin 4cos 3sin 2--;(2)αααα2222cos 9sin 4cos 3sin 2--;(3)αααα22cos 5cos sin 3sin 4--.18.(15分)已知)62sin()(π+-=x x f 求:(1)函数的最小正周期;(2)函数的单调增区间;(3)若63ππ≤≤-x ,求函数的值域。
12月月考高一数学
高一数学月考试题一、选择题(本大题共10小题,每小题5分,共50分)1、若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y x x上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个 2、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个B .1个C .2个D .3个3、一个水平放置的平面图形的斜二测直观图是一个底角为 45, 腰和上底边均为1的等腰梯形,则这个平面图形的面积是 ( ) A.2221+B. 22+C. 21+D. 221+ 4、已知函数:①y =2x;②y =log 2x ;③y =x -1;④12y x =;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②5、已知圆柱的轴截面是边长为4的正方形,则圆柱 的表面积是 ( )A .16πB .8πC .24πD . 32π6. 已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为:( )A 、7B 、-5C 、3D 、-18、计算3log 213lg lg52+-的结果为(A)2 (B)1 (C)3 (D)-1 9、 设y 1=40.9,y 2=lo 4.3,y 3=()1.5,则( ) A.y 3>y 1>y 2B.y 2>y 1>y 3C.y 1>y 2>y 3D.y 1>y 3>y 210、已知直线l ⊥平面α,直线m ⊂平面β ,有以下四个命题:①α∥β => l ⊥m ②α⊥β => l ∥m ③l ∥m => a ⊥β ④l ⊥m => α∥β其中正确的两个命题是( )(A )①与② B) ③与④ (C) ②与④ (D) ①与③二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11、已知矩形的长为a 2,宽为a ,将此矩形卷成一个圆柱,则此圆柱的体积为_________.12.幂函数223()(1)m m f x m m x +-=--在(0,)+∞上为增函数,则m =___________.13、一个棱锥的三视图如图所示,则这个棱锥的体积为_____.14、 已知长方体的全面积是11,十二条棱长度之和是24,则这个长方体的一条对角线长为 15、A 、B 、C 是球O 上的三点,⊿ABC 是边长为33cm 的正三角形,球O 的半径为4cm,则球心O 到平面ABC 的距离是密 封 线 内 不 准 答 题姓 名 班 级 考三、解答题(本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算步骤)16. (本小题12分)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
2024学年河南省顶级名校高一上学期12月月考数学试题及答案
高一12月月考数学试题第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}lg 0A x x =>,{}0,1,2,3B =,则A B = ( )A.{}2,3B.{}1,2,3 C.()1,+∞ D.()2,32.已知5cos 13α=-,且α为第二象限角,则sin α=( )A.1213-B.513-C.1213D.1253.函数()2log 27f x x x =+-的零点一定位于区间( )A.()1,2 B.()2,3 C.()3,4 D.()5,64.()tan 420-︒的值为()A. C.5.“11x<”是“1x >”的( )条件A.充分非必要 B.必要非充分C.充要D.既非充分也非必要6.已知3cos 35πα⎛⎫-= ⎪⎝⎭,则sin 6πα⎛⎫+= ⎪⎝⎭( )A.45±B.45C.45-D.357.若对于任意的0x >,不等式()2310x a x +-+≥恒成立,则实数a 的取值范围为( )A.[)5,+∞ B.()5,+∞ C.(],5-∞ D.(),5-∞8.设函数()2,01,0x x f x x x -⎧≤=⎨->⎩,则满足()()12f x f x +<的x 的取值范围是( )A.(],1-∞ B.()1,+∞ C.[)1,+∞ D.(),1-∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分9.下列结论中,正确的有()A.()sin sin x x π-=B.()tan tan x x π+=-C.3cos sin 2x x π⎛⎫-=⎪⎝⎭ D.3cos sin 2x x π⎛⎫+= ⎪⎝⎭10.若0x y >>,则下列结论正确的是( )A.33xy> B.33x y> C.1122log log x y> D.11x y>11.若a ,()0,b ∈+∞,1a b +=,则下列说法正确的是( )A.ab 的最大值为14B.11a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是4C.144a b -的最大值为2 D.12a b+的最小值为3+12.函数()21,321,xx af x x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-++>⎩则下列结论正确的是( )A.当0a =时,函数()f x 的单调增区间为()0,1B.不论a 为何值,函数()f x 既没有最小值,也没有最大值C.不论a 为何值,函数()f x 的图象与x 轴都有交点D.存在实数a ,使得函数()f x 为R 上的减函数第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系中,点()tan2022,sin2022P ︒︒位于第______象限.14.函数23x y a+=-(0a >,且1a ≠)的图象过定点A ,则点A 的坐标是______.15.设25abm ==,且211a b+=,则m =______.16.若扇形周长为10,当其面积最大时,其扇形内切圆的半径r 为______.四、解答题:本题共6小题,共70分.第17题10分,其他每题12分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)化简求值:(1)23log 3log 4lg2lg5⋅--;(2)27sin cos tan cos 6336ππππ⎛⎫-+ ⎪⎝⎭.18.(本小题满分12分)已知()()()3cos tan 2021sin 223sin sin 2f ππαπαααππαα⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+ ⎪⎝⎭.(1)化简()fα;(2)若α是第四象限角,且20211cos 24πα⎛⎫+=⎪⎝⎭,求()f α的值.19.(本小题满分12分)已知二次函数()241f x ax x =--.(1)当a 取何值时,不等式()0f x <对一切实数x 都成立;(2)若()f x 在区间()1,1-内恰有一个零点,求实数a 的取值范围。
四川省成都2023-2024学年高一上学期12月月考数学试题含答案
成都高2026届高一上期数学12月考试(答案在最后)一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.6730︒'化为弧度是()A.3π8B.38C.673π1800D.6731800【答案】A 【解析】【分析】先将角统一成度的形式,然后利用角度与弧度的互化公式求解即可【详解】π3π673067.51808'︒=⨯=(弧度).故选:A2.不等式2210x x --<的解集是()A.11,2⎛⎫- ⎪⎝⎭B.()1,2- C.1,12⎛⎫-⎪⎝⎭D.()2,1-【答案】C 【解析】【分析】利用了一元二次不等式的解法求解.【详解】解:不等式2210x x --<,可化为(1)(21)0x x -+<,解得112x -<<,即不等式2210x x --<的解集为1,12⎛⎫- ⎪⎝⎭.故选:C .3.已知函数()()32,20243f x ax bx f =+-=,则()2024f -=()A.-7B.-5C.-3D.3【答案】A 【解析】【分析】按题意取值即可【详解】因为()320242024202423f a b =⨯+⨯-=,所以3202420245a b ⨯+⨯=,所以()32024202420242527f a b -=-⨯-⨯-=--=-.故选:A.4.已知sin 5β=-,π02β-<<,则cos β=()A.5B.5±C.5-D.5【答案】D 【解析】【分析】由已知,利用同角公式计算得解.【详解】由π02β-<<,得cos 0β>,而5sin 5β=-,所以25cos 5β==.故选:D5.已知函数()f x 的图象是连续不断的,有如下的,()x f x 对应值表,那么函数()f x 在区间[1,6]上的零点至少有()x1234567()f x 123.521.5-7.8211.57-53.7-126.7-129.6A.2个B.3个C.4个D.5个【答案】B 【解析】【分析】根据函数值符号变化,由零点存在性定理可得.【详解】由数表可知,(2)0,(3)0,(4)0,(5)0f f f f ><><.则(2)(3)0<f f ,(3)(4)0f f <,(4)(5)0f f <,又函数()f x 的图象是连续不断的,由零点存在性定理可知,函数分别在(2,3),(3,4),(4,5)上至少各一个零点,因此在区间[1,6]上的零点至少有3个.故选:B.6.已知0.3281log ,log 27, 1.15a b c -=-==,则,,a b c 的大小关系为()A.c<a<bB.b<c<aC.b a c<< D.c b a<<【答案】D 【解析】【分析】直接由对数函数、指数函数的单调性、运算性质即可得解.【详解】由题意33228221log log 5log 27log 3log 35a b =-=>===,00.3822log 27log 3log 21 1.1 1.1b c -==>==>=,所以,,a b c 的大小关系为c b a <<.故选:D.7.某市一天内的气温()Q t (单位:℃)与时刻t (单位:时)之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段[]0,t 内最高温度与最低温度的差),()C t 与t 之间的函数关系用下列图象表示,则下列图象最接近的是().A. B.C. D.【答案】D【解析】【分析】根据()Q t 的图象确定()C t 的变化趋势,确定正确选项.【详解】由题意()C t ,从0到4逐渐增大,从4到8不变,从8到12逐渐增大,从12到20不变,从20到24又逐渐增大,从4到8不变,是常数,该常数为2,只有D 满足,故选:D .8.若定义在(,0)(0,)-∞+∞ 上的函数()f x 同时满足:①()f x 为奇函数;②对任意的1x ,2(0,)x ∈+∞,且12x x ≠,都有()()2112120x f x x f x x x -<-,则称函数()f x 具有性质P .已知函数()f x 具有性质P ,则不等式2(4)(2)2f x f x x --<+的解集为()A.()()3,22,1--⋃-- B.()2(),31,-∞-- C.()),31(,2(2,)-∞--+∞ D.(,3)(2,)-∞-+∞ 【答案】B 【解析】【分析】令()()f x F x x=,故()F x 在()0,∞+上单调递减,并得到()()f x F x x=在(,0)(0,)-∞+∞ 上为偶函数,分2x >和2x <两种情况,得到不等式,求出答案.【详解】不妨设120x x >>,()()()()211221121200x f x x f x x f x x f x x x -<⇒-<-,故()()()()12211212f x f x x f x x f x x x <⇒<,令()()f x F x x=,故()F x 在()0,∞+上单调递减,其中()()f x F x x=定义域为(,0)(0,)-∞+∞ ,又()f x 在(,0)(0,)-∞+∞ 上为奇函数,故()()()()()f x f x f x F x F x xxx---====--,所以()()f x F x x=在(,0)(0,)-∞+∞ 上为偶函数,当20x ->,即2x >时,222(4)(2)(4)(2)224f x f x f x f x x x x ----<⇒<+--,即()()224F x F x -<-,()()224F x F x -<-,故22422x x x x ->-=-⋅+,又20x ->,故21x +<,解得32-<<-x 或2<<1x -,与2x >求交集得到空集;当20x -<即2x <时,222(4)(2)(4)(2)224f x f x f x f x x x x ----<⇒>+--,即()()224F x F x ->-,()()224F x F x ->-,故22422x x x x -<-=-⋅+,又20x ->,故21x +>,解得1x >-或3x <-,与2x <取交集得(),31,2()x -∞--∈ .故选:B二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中正确的有()A.命题p :0x ∃∈R ,200220x x ++<,则命题p 的否定是x ∀∈R ,2220x x ++≥B.“x y >”是“x y >”的必要不充分条件C.命题“x ∀∈Z ,20x >”是真命题D.“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件【答案】AD 【解析】【分析】利用特称量词命题的否定求解选项A ;利用不等式的性质确定选项B ;利用全称量词命题的真假判断选项C;利用一元二次方程根与系数的关系确定选项D.【详解】命题p 的否定是x ∀∈R ,2220x x ++≥,故A 正确;x y >不能推出x y >,例如21->,但21-<;x y >也不能推出x y >,例如23>-,而23<-;所以“x y >”是“x y >”的既不充分也不必要条件,故B 错误;当0x =时,20x =,故C 错误;关于x 的方程220x x m -+=有一正一负根44000m m m ->⎧⇔⇔<⎨<⎩,所以“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件,故D 正确.故选:AD.10.下列结论正确的是()A.7π6-是第三象限角B.若圆心角为π3的扇形的弧长为π,则该扇形的面积为3π2C.若角α的终边上有一点()3,4P -,则3cos 5α=-D.若角α为锐角,则角2α为钝角【答案】BC 【解析】【分析】利用象限角的定义可判断A 选项;利用扇形的面积公式可判断B 选项;利用三角函数的定义四可判断C 选项;取π4α=可判断D 选项.【详解】对于A 选项,因为7π5π2π66-=-且5π6为第二象限角,故7π6-是第二象限角,A 错;对于B 选项,若圆心角为π3的扇形的弧长为π,则该扇形的半径为π3π3r ==,因此,该扇形的面积为113πππ3222S r ==⨯=,B 对;对于C 选项,若角α的终边上有一点()3,4P -,则3cos 5α==-,C 对;对于D 选项,因为α为锐角,不妨取π4α=,则π22α=为直角,D 错.故选:BC.11.《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AFBC ⊥于点F ,则下列推理正确的是()①由图1和图2面积相等得ab d a b=+;②由AE AF≥可得2a b+≥;③由ADAE ≥可得211a b≥+;④由AD AF ≥可得222a b ab +≥.A.①B.②C.③D.④【答案】ABCD 【解析】【分析】根据图1,图2面积相等,可求得d 的表达式,可判断A 选项正误,由题意可求得图3中,,AD AE AF 的表达式,逐一分析B 、C 、D 选项,即可得答案.【详解】对于①:由图1和图2面积相等得()S ab a b d ==+⨯,所以abd a b =+,故①正确;对于②:因为AFBC ⊥,所以12a b AF ⨯⨯=,所以AF =,设图3中内接正方形边长为t ,根据三角形相似可得a t t ab -=,解得abt a b=+,所以AE a b==+,因为AE AF ≥,所以a b ≥+2a b+≥,故②正确;对于③:因为D 为斜边BC的中点,所以2AD =,因为AD AE ≥,所以2a b≥+211a b≥+,故③正确;对于④:因为AD AF ≥,所以2≥,整理得:222a b ab +≥,故④正确;故选:ABCD【点睛】解题的关键是根据题意及三角形的性质,利用几何法证明基本不等式,求得,,AD AE AF 的表达式,根据图形及题意,得到,,AD AE AF 的大小关系,即可求得答案,考查分析理解,计算化简的能力.12.已知函数12()22(R)x f x x x a a -=-++∈,则下列结论正确的是()A.函数()f x 在()1,+∞上单调递减B.函数()f x 的图象关于直线x =1对称C.存在实数a ,使得函数()f x 有三个不同的零点D.存在实数a ,使得关于x 的不等式()5f x ≥的解集为(][),13,-∞-+∞ 【答案】BD 【解析】【分析】对函数()f x 变形,并分析函数()f x 的性质,再判断选项ABC ,利用函数性质解不等式判断D 作答.【详解】R a ∈,函数12()(1)21x f x x a -=-++-的定义域为R ,对于A ,当1x >时,21()(1)21x f x x a -=-++-,而2(1)1y x a =-+-,12x y -=在()1,+∞上都单调递增,因此函数()f x 在()1,+∞上单调递增,A 错误;对于B ,因为12(2)(1)21()xf x x a f x --=-++-=,因此函数()f x 的图象关于直线x =1对称,B 正确;对于C ,对任意实数a ,由选项A 知,函数()f x 在[1,)+∞上单调递增,则函数()f x 在[1,)+∞上最多一个零点,由对称性知,函数()f x 在(,1]-∞上最多一个零点,因此函数()f x 在R 上最多两个零点,C 错误;对于D ,当2a =-时,12()(1)235x f x x -=-+-≥,而(1)(3)5f f -==,由对称性及选项A 知,()f x 在(),1-∞上单调递减,当1x ≤时,得1x ≤-,当1x ≥时,得3x ≥,即()5f x ≥的解集为(][),13,-∞-+∞ ,所以存在实数a ,使得关于x 的不等式()5f x ≥的解集为(][),13,-∞-+∞ ,D 正确.故选:BD【点睛】思路点睛:涉及分段函数解不等式问题,先在每一段上求解不等式,再求出各段解集的并集即可.第II 卷(非选择题)三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡上.13.3223827--⎛⎫-+= ⎪⎝⎭______.【答案】14-##-0.25【解析】【分析】直接由分数指数幂以及根式互化运算,以及整数指数幂运算即可求解.)3232112332433482122733----⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤⎢⎥+=-+⎢⎥ ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦(1222191223344--⎛⎫⎛⎫=--+=--+=- ⎪ ⎪⎝⎭⎝⎭.故答案为:14-.14.已知函数()()122log 2f x x x t =-+-的定义域是(),8m m +,则函数()f x 的单调增区间为______.【答案】()1,5##[)1,5【解析】【分析】先根据定义域求出,m t 的值,再结合复合函数的单调性求出单调区间.【详解】因为函数()()122log 2f x x x t =-+-的定义域是(),8m m +,所以,8m m +为220x x t -+-=的两个根,所以22401t t ∆=->⇒<则()823815m m m m m t t ++==-⎧⎧⇒⎨⎨⨯+==-⎩⎩,即()()212log 215f x x x =-++,令()12log h x x =,则()h x 在()0,∞+单调递减,令()()22215116g x x x x =-++=--+,则()g x 为开口向下,对称轴为1x =的抛物线,且()035g x x >⇒-<<,所以()3,1x ∈-时,()g x 单调递增;()1,5x ∈时,()g x 单调递减;因为()()()()212log 215f x x x h g x =-++=,所以函数()f x 的单调增区间为()1,5.故答案为:()1,515.已知1x ,2x 分别是关于x 的方程ln 2023x x =,e 2023x x =的根,则12x x =________【答案】2023【解析】【分析】令1232023ln ,e ,xy x y y x ===,画出函数1232023ln ,e ,xy x y y x===的图象,由图象的对称性即可得出答案.【详解】由已知条件有2023ln x x =,2023e x x =,令1232023ln ,e ,x y x y y x ===,画出函数1232023ln ,e ,xy x y y x===的图象,曲线1ln y x =和2e xy =关于直线y x =对称,曲线32023y x =关于32023y x=,设曲线3y 分别与12,y y 交于点121220232023,,,A x B x x x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则点,A B 关于直线y x =对称,而点112023,A x x ⎛⎫ ⎪⎝⎭关于直线y x =对称点为112023,x x ⎛⎫ ⎪⎝⎭,即为点222023,B x x ⎛⎫ ⎪⎝⎭,则212023x x =,所以122023x x =.故答案为:2023.16.已知函数()f x 的定义域为R ,对任意实数m ,n ,都有()()()2f m n f m n f m -++=,且当0x >时,()0f x <.若()24f =-,2()(42)1f x m a m <-+-对任意[]1,1x ∈-,[)1,m ∈+∞恒成立,则实数a 的取值范围为______.【答案】(),1-∞-【解析】【分析】根据题设条件证明函数的单调性和奇偶性确定[]1,1x ∈-内的最大值为(1)2f -=,从而可得22(42)1m a m <-+-,再分离参变量即可求实数a 的取值范围.【详解】取0,m n ==则有()()()000f f f +=,所以()00f =,取0,,m n x ==则有()()()00f x f x f -+==,所以()f x 为奇函数,任意1212,,,x x x x ∈>R 则120x x ->,因为()()()2f m n f m n f m -++=,所以()()()2f m f m n f m n -+=-,令112,22x x m n x ==-,则有()11111222222x x x x f x f x f x ⎛⎫⎛⎫-+-=-+⎪ ⎪⎝⎭⎝⎭,即()()()12120f x f x f x x -=-<,所以()f x 在定义域R 上单调递减,所以()f x 在[]1,1x ∈-上单调递减,令()()()1,0,1124m n f f f ==+==-,所以()12f =-,所以max ()(1)(1)2f x f f =-=-=,因为2()(42)1f x m a m <-+-对任意[]1,1x ∈-,[)1,m ∈+∞恒成立,所以22(42)1m a m <-+-对任意[)1,m ∈+∞恒成立,分离变量可得342a m m+<-,因为函数3y m m =-对任意[)1,m ∈+∞恒成立,所以min 132y =-=-,所以422a +<-解得1a <-,故答案为:(),1-∞-.四.解答题:本题共6小题.17题10分,18—22题每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.17.设m 为实数,U =R ,集合{}2log (2)1A xx =-≤∣,{2}B x m x m =≤≤+∣.(1)若1m =,求A B ⋃,()U A B ⋂ð;(2)若A B ⋂≠∅,求实数m 的取值范围.【答案】17.{|14}x A B x =≤≤⋃,(){|2U A B x x ⋂=≤ð或3}x >18.04m <≤【解析】【分析】(1)先求出集合,A B ,由交集、并集和补集的定义求解即可;(2)由交集的定义求解即可.【小问1详解】由2log (2)1x -≤可得:022x <-≤,则24x <≤,所以{|24}A x x =<≤,当1m =时,{|13}B x x =≤≤,所以{|14}x A B x =≤≤⋃,{|23}A B x x ⋂=<≤(){|2U C A B x x ⋂=≤或3}x >.【小问2详解】易知2m m <+恒成立,A B ⋂≠∅即224m <+≤或24m <≤解得02m <≤或24m <≤所以04m <≤.18.已知点()1,P t 在角θ的终边上,且sin 3θ=-.(1)求t 和cos θ的值;(233的值.【答案】(1)t =cos 3θ=(2【解析】【分析】(1)三角由三角函数的定义即可求解.(2)由三角函数定义、商数关系进行切弦互换即可.【小问1详解】由三角函数的定义知:6sin 3θ==-,则0t <,于是解得t =3cos 3θ==.【小问2详解】已知终边过点(1,得tan θ=(()3333312151+===-.19.杭州亚运会田径比赛于2023年10月5日收官.在最后两个竞技项目男女马拉松比赛中,中国选手何杰以2小时13分02秒夺得男子组冠军,这是中国队亚运史上首枚男子马拉松金牌.人类长跑运动一般分为两个阶段,第一阶段为前1小时的稳定阶段,第二阶段为疲劳阶段.现一60kg 的复健马拉松运动员进行4小时长跑训练,假设其稳定阶段作速度为115km /h ν=的匀速运动,该阶段每千克体重消耗体力1114Q v t ∆=⋅(1t 表示该阶段所用时间).疲劳阶段由于体力消耗过大变为22155v t =-的减速运动(2t 表示该阶段所用时间),疲劳阶段速度降低,体力得到一定恢复,该阶段每千克体重消耗体力222241v t Q t ⋅∆=+.已知该运动员初始体力为010000kJ Q =,不考虑其他因素,所用时间为t (单位:h ),请回答下列问题:(1)请写出该运动员剩余体力Q 关于时间t 的函数()Q t ;(2)该运动员在4小时内何时体力达到最低值,最低值为多少?【答案】(1)()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩(2)在2h t =时,运动员体力有最小值5200kJ【解析】【分析】(1)先写出速度v 关于时间t 的函数,进而求出剩余体力Q 关于时间t 的函数;(2)分01t <≤和14t <≤两种情况,结合函数单调性,结合基本不等式,求出最值.【小问1详解】由题可先写出速度v 关于时间t 的函数()()15,011551,14t v t t t <≤⎧=⎨--<≤⎩,代入1ΔQ 与2ΔQ 公式可得()()()1000060415,01601415516400,1411t t Q t t t t t -⋅⋅⨯<≤⎧⎪=⎡⎤-⋅--⎨⎣⎦-<≤⎪-+⎩解得()100003600,0148004001200,14t t Q t t t t -<≤⎧⎪=⎨++<≤⎪⎩;【小问2详解】①稳定阶段中()Q t 单调递减,此过程中()Q t 最小值min ()(1)6400Q t Q ==;②疲劳阶段4800()4001200(14)Q t t t t=++<≤,则有4()400120040012005200Q t t t ⎛⎫=++≥+⨯ ⎪⎝⎭;当且仅当4t t=,即2t =时,“=”成立,所以疲劳阶段中体力最低值为5200kJ ,由于52006400<,因此,在2h t =时,运动员体力有最小值5200kJ .20.我们知道,函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图像关于点(),P m n 成中心对称图形的充要条件是函数()y f x m n =+-为奇函数.已知函数4()42x f x =+.(1)利用上述结论,证明:函数()f x 的图像关于1,12⎛⎫ ⎪⎝⎭成中心对称图形;(2)判断函数()f x 的单调性(无需证明),并解关于x 的不等式:()()212f x ax a f x ++++<.【答案】(1)证明见解析(2)4()42x f x =+为减函数,答案见解析【解析】【分析】(1)由题,证明1()()12g x f x =+-为奇函数即可;(2)由题可得4()42x f x =+为减函数,又结合(1)结论可知()()212f x ax a f x ++++<()()()221110f x ax a f x x a x a ⇔+++<-⇔+++>,后分类讨论a 的值解不等式即可.【小问1详解】证明:由题意,只需证明1()()12g x f x =+-为奇函数,又1214414()()11122241424x x xx g x f x +-=+-=-=-=+⋅++,易知函数()g x 定义域为R .R R ,,x x ∀∈-∈1114414()()1144114x x x x x x g x g x ------====-+++,所以()g x 为奇函数,所以()f x 的图像关于1(,1)2成中心对称图形.【小问2详解】易知24x y =+为增函数,且240x +>,对任意的x ∈R 恒成立,所以4()42x f x =+为减函数.又由(1)知,点(,())x f x 与点(1,(1))x f x --关于点1(,1)2成中心对称,即()(1)2f x f x +-=,所以原不等式等价于2(1)2()(1)f x ax a f x f x +++<-=-,所以211x ax a x +++>-,即2(1)0x a x a +++>,由2(1)0x a x a +++=解得121x a x =-=-,,当1a >时,原不等式解集为{|x x a <-或1}x >-;当1a =时,原不等式解集为{|1}x x ≠-;当1a <时,原不等式解集为{|1x x <-或}x a >-.【点睛】关键点点睛:本题涉及函数新定义,以及利用新定义结合函数单调性解决问题.本题关键是读懂信息,第一问将证明函数对称性转化为证明函数奇偶性,第二问则利用所得结论将函数不等式转化为含参二次不等式.21.定义:对于函数()y f x =,当[],x a b ∈时,值域为11,b a⎡⎤⎢⎥⎣⎦,则称区间[],a b 为函数()f x 的一个“倒值映射区间”.已知一个定义在[]3,3-上的奇函数()f x ,当(]0,3x ∈时,()1112f x x =--.(1)求()f x 的解析式;(2)求函数()f x 在[]1,3内的“倒值映射区间”;(3)求函数()f x 在定义域内的所有“倒值映射区间”.【答案】21.()111,3020,0111,032x x f x x x x ⎧-++-≤<⎪⎪==⎨⎪⎪--<≤⎩22.[]1,223.[]1,2和[]2,1--【解析】【分析】(1)利用奇函数的性质求得()f x 在[)3,0x ∈-上的解析式,结合()00f =,从而求解函数()f x 的解析式;(2)根据函数()f x 在[]1,3上的单调性建立方程组求解即可;(3)根据区间的定义知0a b ab <⎧⎨>⎩,分03a b <<≤和30a b -≤<<讨论,分析函数()f x 的单调性,建立方程组求解即可.【小问1详解】()f x 是定义在[]3,3-上的奇函数,则()00f =,当[)3,0x ∈-时,则(]()110,3,111122x f x x x -∈-=---=-+,又()f x 是奇函数,则()()1112f x f x x =--=-++,所以()111,3020,0111,032x x f x x x x ⎧-++-≤<⎪⎪==⎨⎪⎪--<≤⎩.【小问2详解】设13a b ≤<≤,函数()3122f x x =-,因为()f x 在[]1,3上递减,且()f x 在[],a b 上的值域为11,b a⎡⎤⎢⎥⎣⎦,所以()()311223112213f b b b f a a a a b ⎧=-=⎪⎪⎪=-=⎨⎪≤<≤⎪⎪⎩,解得12a b =⎧⎨=⎩,所以函数()f x 在[]1,3内的“倒值映射区间”为[]1,2.【小问3详解】因为()f x 在[],a b 时,函数值()f x 的取值区间恰为11,b a ⎡⎤⎢⎥⎣⎦,其中a b ¹且0,0a b ≠≠,所以11a b b a<⎧⎪⎨<⎪⎩,则0a b ab <⎧⎨>⎩,只考虑03a b <<≤或30a b -≤<<,①当03a b <<≤时,因为函数()f x 在()0,1上单调递增,在[]1,3上单调递减,故当(]0,3x ∈时,()max ()11f x f ==,则11a≤,所以,13a ≤<,则13a b ≤<≤,由(2)知,此时()f x 的“倒值映射区间”为[]1,2;②当30a b -≤<<时,可知因为函数()f x 在[]3,1--上单调递减,()1,0-上单调递增,故当[)3,0x ∈-时,()min ()11f x f =-=-,则11b≥-,所以,31b -<≤-,当[]()133,1,22x f x x ∈--=--在[]3,1--上递减,且()f x 在[],a b 上的值域为11,b a ⎡⎤⎢⎥⎣⎦,所以()()131221312231f b b b f a a a a b ⎧=--=⎪⎪⎪=--=⎨⎪-≤<≤-⎪⎪⎩,解得21a b =-⎧⎨=-⎩,所以()f x 的“倒值映射区间”为[]2,1--;综上,函数()f x 在定义域内的“倒值映射区间”为[]1,2和[]2,1--.22.已知函数()()3log 31x f x mx =++是偶函数.(1)求m 的值;(2)设函数()()311log 322x g x a a x f x ⎛⎫=⋅-+- ⎪⎝⎭(R a ∈),若()g x 有唯一零点,求实数a 的取值范围.【答案】(1)12-(2)0a >或10a =--【解析】【分析】(1)根据偶函数性质()()f x f x -=代入即可求解;(2)令3x t =,转化为关于t 的一元二次函数,对a 分类讨论即可求解.【小问1详解】依题意,因为()f x 的定义域为R 的偶函数,所以()()f x f x -=,所以()()33log 31log 31x x mx mx -++=+-,所以()()333313log 31log log 31log 33x x x x x mx mx mx ⎛⎫+++=-=+ ⎝⎭--⎪所以3log 3x mx x mxmx --=-=-所以()210m x +=,即12m =-.【小问2详解】由(1)知()()31log 312x f x x =+-所以()()()333111log 3log 3log 31222x x x g x a a x f x a a x ⎛⎫⎛⎫=⋅-+-=⋅--++ ⎪ ⎪⎝⎭⎝⎭,令()0g x =,()333131log 3=log 31log 23x x x x a a x +⎛⎫⋅-+-= ⎪⎝⎭,即1313=23x xx a a +⋅-,整理得()21313102x x a a ⎛⎫-+-= ⎪⎝⎭,其中1302x a ⎛⎫-> ⎪⎝⎭,所以0a ≠,令3x t =,则得211102at a t ⎛⎫-+-=⎪⎝⎭,①当0a >时,1302x ->,即12t >,所以方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间1,2⎛⎫+∞ ⎪⎝⎭上有唯一解,则方程对应的二次函数()21112m t at a t ⎛⎫=-+- ⎪⎝⎭,恒有()010m =-<,13022m ⎛⎫=-< ⎪⎝⎭,13602m a a⎛⎫+=> ⎪⎝⎭,所以当0a >时,方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间1,2⎛⎫+∞ ⎪⎝⎭上有唯一解.②当0a <时,1302x -<,即102t <<,方程211102at a t ⎛⎫-+-= ⎪⎝⎭在区间10,2⎛⎫ ⎪⎝⎭上有唯一解,因为方程对应的二次函数()21112m t at a t ⎛⎫=-+- ⎪⎝⎭的开口向下,恒有()010m =-<,13022m ⎛⎫=-< ⎪⎝⎭,所以满足恒有2114021112022a a a a ⎧⎛⎫∆=++=⎪ ⎪⎝⎭⎪⎨+⎪⎪<<⎩,解得10a =--综上所述,当0a >或10a =--时,()g x 有唯一零点.【点睛】方法点睛:(1)利用偶函数的性质()()f x f x -=代入原函数即可求解参数;。
云南省2023_2024学年高一数学上学期12月月考试题含解析
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷第1页至第2页,第II 卷第3页至第4页,考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第I 卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的)1.已知集合{31}A xx =-<≤∣,{13}∣=-<≤B x x ,则A B = ()A.(3,3]- B.(]1,1-C.[1,3]- D.(1,3]2.命题“x ∀≥,23x ≥”的否定为()A.“x ∀≤,23x ≥”B.“x ∃<23x <”C.“x ∀≥,23x <”D.“x ∃≥23x <”3.已知扇形的圆心角是60 ,半径为3,则扇形的面积为()A.60B.120C.2π3D.3π24.在平面直角坐标系中,角α的终边经过点(P -,则πsin 2α⎛⎫-=⎪⎝⎭()A.12-B. C.32D.125.已知0b a <<,2a b +=,则()A.01a << B.12b <<C.02a b <-< D.2ab a >6.已知函数()f x 为奇函数,函数()g x 为偶函数,2()()1f x g x x x +=-+,则(2)f =()A.2- B.1- C.1D.27.已知函数π()3cos 2([0,π])3f x x x ⎛⎫=-∈ ⎪⎝⎭,且()()()121265f x f x x x ==≠,则12x x +=()A.5π6B.4π3 C.5π3D.2π38.已知偶函数()f x 的定义域为R ,若()f x 在[)0,∞+上单调递减且()13f =,则满足()3log 3f x ≤的x 的取值范围是()A.[)3,∞+ B.10,3⎛⎤ ⎥⎝⎦C.1,33⎡⎤⎢⎥⎣⎦ D.[)10,3,3⎛⎤⋃+∞ ⎥⎝⎦二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知命题2:540p x x -+<,那么命题p 成立的一个充分不必要条件是()A.1x ≤ B.13x <<C.24x << D.4x ≥10.已知5sin 3α=-,且cos 0α>,则()A .tan 0α< B.sin cos 0αα+>C.2tan 1α> D.α为第四象限角11.已知函数π()2sin cos cos 26f x x x x ⎛⎫=+- ⎪⎝⎭,下列结论正确的是()A.()f x 的最小正周期是πB.()f x 的单调递增区间为πππ,π(Z)36k k k ⎡⎤-++∈⎢⎥⎣⎦C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.要得到()2g x x =的图象,只需把()f x 的图象向左平移π6个单位12.对任意两个实数,a b ,定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()22f x x =-,()g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是()A.函数()F x 是奇函数B.方程()0F x =有三个解C.函数()F x 在区间[]1,1-上单调递减D.函数()F x 有4个单调区间第II 卷(非选择题,共90分)注意事项:第II 卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.三、填空题(本大题共4小题,每小题5分,共20分)13.已知0,0x y >>,且141x y+=,则x y +的最小值为__________.14.已知命题:p 若,αβ为第二象限角,且αβ>,则sin sin αβ>.能说明命题p 为假命题的一组,αβ的值可以是α=______,β=______.15.设ω是正实数,已知函数()sin cos f x x x ωω=-在区间(0,π)上恰有两个零点,则ω的最大值是______.16.已知函数2()26f x x kx =-+在[1,3]上的最大值为10-,则实数k 的值为______.四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.已知()tan π2α-=-.(1)求()()πsin 3sin π23πcos cos 3π2αααα⎛⎫++-- ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值;(2)求22sin sin cos ααα+的值.18.已知集合{}260A xx x =--<∣,{}22230B x x mx m =+-<∣.(1)若集合{93}B xx =-<<∣,求实数m 的值;(2)若0m ≥,“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.19.已知,αβ为锐角,3tan 4α=,cos()5αβ+=-.(1)求sin 2cos 2αα-的值;(2)求tan()αβ-的值.20.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π02ϕ<<)的部分图象如图所示,其中()f x 的图象与x 轴的一个交点的横坐标为π12-.(1)求这个函数的解析式,并写出它的单调区间;(2)求函数()f x 在区间π,212π⎡⎤-⎢⎥⎣⎦上的最大值和最小值.21.已知函数24()x f x x+=(),(,00,x ∈-∞⋃+∞.(1)判断()f x 的奇偶性,并说明理由;(2)判断()f x 在(2,)+∞上的单调性,并用定义证明;(3)求()f x 在[8,2]--上的值域.22.已知函数()42x x f x a =-⋅.(1)当2a =时,求()f x 在[2,2]-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.2023级高一年级教学测评月考卷(四)数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷第1页至第2页,第II 卷第3页至第4页,考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.第I 卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的)1.已知集合{31}A xx =-<≤∣,{13}∣=-<≤B x x ,则A B = ()A.(3,3]- B.(]1,1-C.[1,3]- D.(1,3]【答案】B 【解析】【分析】用集合的交集运算求出即可.【详解】集合{31}A x x =-<≤∣,{13}∣=-<≤B x x ,则{11}A B xx ⋂=-<≤∣,故选:B.2.命题“x ∀≥,23x ≥”的否定为()A.“x ∀≤,23x ≥”B.“x ∃<23x <”C.“x ∀≥,23x <”D.“x ∃≥23x <”【答案】D【解析】【分析】利用全称命题的否定形式判定即可.【详解】命题“x∀≥,23x≥”的否定为:“x∃≥,23x<”.故选:D.3.已知扇形的圆心角是60 ,半径为3,则扇形的面积为()A.60B.120C.2π3 D.3π2【答案】D【解析】【分析】利用扇形的面积公式计算即可.【详解】因为扇形的圆心角是60 ,半径为3,所以扇形的面积260π33π3602S⨯==,故选:D.4.在平面直角坐标系中,角α的终边经过点(P-,则πsin2α⎛⎫-=⎪⎝⎭()A.12-B. C.32 D.12【答案】A【解析】【分析】根据三角函数的定义及诱导公式计算即可.【详解】因为角α的终边经过点(P-,则1cos2α==-,故π1 sin cos22αα⎛⎫-==-⎪⎝⎭.故选:A.5.已知0b a <<,2a b +=,则()A.01a << B.12b <<C.02a b <-< D.2ab a >【答案】C 【解析】【分析】利用不等式的性质结合特殊值法一一判定即可.【详解】取 1.2a =,0.8b =,满足0b a <<,2a b +=,故A ,B ,D 错误,因为0b a <<,2a b +=,则02b a <<<,故02a b <-<.故选:C.6.已知函数()f x 为奇函数,函数()g x 为偶函数,2()()1f x g x x x +=-+,则(2)f =()A.2- B.1- C.1 D.2【答案】A 【解析】【分析】根据题意,由函数的奇偶性可得()f x x =-,然后代入计算,即可得到结果.【详解】根据题意,由2()()1f x g x x x +=-+①得2()()1f x g x x x -+-=++,因为()f x 为奇函数,()g x 为偶函数,所以()()f x f x -=-,()()g x g x -=,所以2()()1f x g x x x -+=++②,由①②得2()2f x x =-,所以()f x x =-,则(2)2f =-.故选:A.7.已知函数π()3cos 2([0,π])3f x x x ⎛⎫=-∈ ⎪⎝⎭,且()()()121265f x f x x x ==≠,则12x x +=()A.5π6B.4π3 C.5π3D.2π3【答案】B【解析】【分析】根据题意,由条件代入计算可得1π2cos 235x ⎛⎫-= ⎪⎝⎭,2π2cos 235x ⎛⎫-= ⎪⎝⎭,再由[0,π]x ∈,代入计算,即可得到结果.【详解】π()3cos 2([0,π])3f x x x ⎛⎫=-∈ ⎪⎝⎭,且()()()121265f x f x x x ==≠,则1π63cos 235x ⎛⎫-= ⎪⎝⎭,即1π2cos 235x ⎛⎫-= ⎪⎝⎭,同理可得,2π2cos 235x ⎛⎫-= ⎪⎝⎭,又1x ,2[0,π]x ∈,则1ππ5π2,333x ⎡⎤-∈-⎢⎣⎦,2ππ5π2,333x ⎡⎤-∈-⎢⎥⎣⎦,21052<< ,12ππ222π33x x ∴-+-=⨯,解得124π3x x +=.故选:B.8.已知偶函数()f x 的定义域为R ,若()f x 在[)0,∞+上单调递减且()13f =,则满足()3log 3f x ≤的x 的取值范围是()A.[)3,∞+ B.10,3⎛⎤ ⎥⎝⎦C.1,33⎡⎤⎢⎥⎣⎦ D.[)10,3,3⎛⎤⋃+∞ ⎥⎝⎦【答案】D 【解析】【分析】利用函数的奇偶性及单调性计算即可.【详解】因为偶函数()f x 的定义域为R ,且()f x 在[)0,∞+上单调递减,所以()f x 在(,0)-∞上单调递增,因为()13f =,所以()13f -=,所以()()3log 31f x f ≤=±,所以3log 1x ≥或3log 1x ≤-,解得3x ≥或103x <≤,所以x 的取值范围是[)10,3,3⎛⎤⋃+∞ ⎥⎝⎦.故选:D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知命题2:540p x x -+<,那么命题p 成立的一个充分不必要条件是()A.1x ≤ B.13x <<C.24x << D.4x ≥【答案】BC 【解析】【分析】由命题的充分不必要条件结合不等式解得.【详解】由2540x x -+<,解得14x <<,则13x <<和24x <<都是14x <<的充分不必要条件,故选:BC.10.已知5sin 3α=-,且cos 0α>,则()A.tan 0α< B.sin cos 0αα+>C.2tan 1α> D.α为第四象限角【答案】ACD 【解析】【分析】利用同角三角函数的关系及三角函数的符号一一判定选项即可.【详解】sin 3α=-,cos 0α>,2cos 3α∴==,sin tan 0cos 2ααα∴==-<,故A 正确;25tan 14α=>,故C 正确;2sin cos 03αα-+=<,故B 错误;因为5sin 03α=-<,且cos 0α>,所以α为第四象限角,故D 正确.故选:ACD.11.已知函数π()2sin cos cos 26f x x x x ⎛⎫=+- ⎪⎝⎭,下列结论正确的是()A.()f x 的最小正周期是πB.()f x 的单调递增区间为πππ,π(Z)36k k k ⎡⎤-++∈⎢⎥⎣⎦C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.要得到()2g x x =的图象,只需把()f x 的图象向左平移π6个单位【答案】AB 【解析】【分析】根据两角差的余弦公式及辅助角公式,进而结合正弦函数的性质及平移变换判断各选项即可.【详解】πππ()2sin cos cos 2sin 2cos 2cos sin 2sin 666f x x x x x x x ⎛⎫=+-=++ ⎪⎝⎭ 33πsin 222226x x x ⎛⎫=+=+ ⎪⎝⎭,对于A ,()f x 的最小正周期为2ππ2T ==,故A 正确;对于B ,令πππ2π22π(Z)262k x k k -+≤+≤+∈,解得ππππ(Z)36k x k k -+≤≤+∈,()f x ∴的单调递增区间为πππ,π(Z)36k k k ⎡⎤-++∈⎢⎥⎣⎦,故B 正确;对于C ,当π12x =时,ππππ20121263f ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,()f x ∴的图象不关于点π,012⎛⎫ ⎪⎝⎭对称,故C 错误;对于D ,()f x 的图象向左平移π6个单位后,解析式为πππ2666f x x ⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦π222x x ⎛⎫=+= ⎪⎝⎭,故D 错误.故选:AB.12.对任意两个实数,a b ,定义{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()22f x x =-,()g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是()A.函数()F x 是奇函数B.方程()0F x =有三个解C.函数()F x 在区间[]1,1-上单调递减D.函数()F x 有4个单调区间【答案】BD【解析】【分析】根据新定义的函数及函数的单调性与奇偶性结合函数的图象一一分析选项即可.【详解】令()2222(2)(1)0x x x x x x --=+-=+-<,解得11x -<<,所以当11x -<<时,22x x <-;当1x ≤-或1x ≥时,2||2x x ≥-;所以()()(){}222,1,10min ,,012,1x x x x F x f x g x x x x x ⎧-≤-⎪--<≤⎪==⎨<<⎪⎪-≥⎩,作出函数()y F x =的图象,如图所示,对于A ,由图象可得关于y 轴对称,所以()F x 为偶函数,故A 错误;对于B ,因为()y F x =的图象与x 轴有3个交点,所以方程()0F x =有三个解,故B 正确;对于C ,由图象可知函数()F x 在[]1,1-上不单调递减,故C 错误;对于D ,由图象可知函数()F x 在(],1-∞-和[]0,1上单调递增,在()1,0-和()1,+∞上单调递减,所以函数()F x 有4个单调区间,故D 正确,故选:BD.第II 卷(非选择题,共90分)注意事项:第II 卷用黑色碳素笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.三、填空题(本大题共4小题,每小题5分,共20分)13.已知0,0x y >>,且141x y+=,则x y +的最小值为__________.【答案】9【解析】【分析】根据题意,将原式化为()14x y x y x y ⎛⎫+=++ ⎪⎝⎭,再由基本不等式,即可得到结果.【详解】因为0,0x y >>,且141x y+=,则()144559y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4y x x y=时,即3,6x y ==时,等号成立,所以x y +的最小值为9.故答案为:914.已知命题:p 若,αβ为第二象限角,且αβ>,则sin sin αβ>.能说明命题p 为假命题的一组,αβ的值可以是α=______,β=______.【答案】①.8π3②.2π3【解析】【分析】只要找到一组满足题意的角即可.【详解】取2π8π2π33α=+=,2π3β=,则αβ>,但sin sin αβ=,不满足sin sin αβ>,∴命题p 为假命题,∴能说明命题p 为假命题的一组,αβ的值可以是83πα=,23πβ=.答案为:8π3;2π315.设ω是正实数,已知函数()sin cos f x x x ωω=-在区间(0,π)上恰有两个零点,则ω的最大值是______.【答案】94【解析】【分析】先用辅助角公式化简函数式,再根据三角函数的性质计算即可.【详解】由π()sin cos 4f x x x x ωωω⎛⎫=-=- ⎪⎝⎭,由π()0,x ∈,0ω>,所以πππ,π444x ωω⎛⎫-∈-- ⎪⎝⎭,因为函数()sin cos f x x x ωω=-在区间(0,π)上恰有两个零点,则ππ(π,2π]4ω-∈,解得59,44ω⎛⎤∈ ⎥⎝⎦.故答案为:9416.已知函数2()26f x x kx =-+在[1,3]上的最大值为10-,则实数k 的值为______.【答案】172##8.5【解析】【分析】根据二次函数的对称性讨论最值取值情况即可得实数k 的值.【详解】函数2()26f x x kx =-+开口向上,对称轴x k =,区间[1,3]的中点2x =,当2k ≤时,|3||1|k k -≥-,所以3x =离对称轴较远,所以max ()(3)96610f x f k ==-+=-,解得2526k =>,不符合2k ≤;当2k >时,|3|1k k -<-∣,所以1x =离对称轴较远,所以max ()(1)12610f x f k ==-+=-,解得1722k =>,符合条件.所以k 的值为172.故答案为:172四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.已知()tan π2α-=-.(1)求()()πsin 3sin π23πcos cos 3π2αααα⎛⎫++-- ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值;(2)求22sin sin cos ααα+的值.【答案】(1)7-;(2)2.【解析】【分析】(1)(2)利用诱导公式及同角三角函数的商数关系计算即可.【小问1详解】因为()tan π2α-=-,所以tan 2α=.πsin 3sin(π)cos 3sin 13tan 16273πsin cos tan 121cos cos(3π)2αααααααααα⎛⎫++-- ⎪+++⎝⎭====--+-+-+⎛⎫--- ⎪⎝⎭;【小问2详解】2222222sin sin cos 2tan tan 822sin sin cos 2sin cos tan 141ααααααααααα++++===+++.18.已知集合{}260A x x x =--<∣,{}22230B x x mx m =+-<∣.(1)若集合{93}B xx =-<<∣,求实数m 的值;(2)若0m ≥,“x A ∈”是“x B ∈”的充分不必要条件,求实数m 的取值范围.【答案】(1)3(2)[3,)+∞【解析】【分析】(1)根据题意,由一元二次不等式的解集,结合韦达定理代入计算,即可得到结果;(2)根据题意,由条件可得A B ≠⊂,然后分0m =与0m >讨论,代入计算,即可得到结果.【小问1详解】因为{}22230{93}B xx mx m x x =+-<=-<<∣∣,所以方程22230x mx m +-=的两根分别为9-和3,由韦达定理得2932,933,m m -+=-⎧⎨-⨯=-⎩解得3m =.所以实数m 的值为3.【小问2详解】由260x x --<,得23x -<<,{23}A xx =-<<∣,由于“x A ∈”是“x B ∈”的充分不必要条件,则A B ≠⊂,当0m =时,{}20B x x =<=∅∣,此时A B ≠⊂不成立;当0m >时,{}22230{3}B xx mx m x m x m =+-<=-<<∣∣,因为A B ≠⊂,则有32,3,m m -≤-⎧⎨≥⎩且等号不同时成立,解得3m ≥,综上所述,实数m 的取值范围是[3,)+∞.19.已知,αβ为锐角,3tan 4α=,5cos()5αβ+=-.(1)求sin 2cos 2αα-的值;(2)求tan()αβ-的值.【答案】(1)1725(2)3841-【解析】【分析】(1)利用同角三角函数的关系及二倍角的正弦余弦公式即可求解;(2)根据二倍角正切公式及同角三角函数的关系,利用凑配法及两角差的正切公式即可求解.【小问1详解】,αβ 为锐角,3tan 4α=,3sin 5α∴=,4cos 5α=,3424sin 22sin cos 25525ααα∴==⨯⨯=,2447cos 22cos 1215525αα=-=⨯⨯-=,17sin 2cos 225αα∴-=【小问2详解】3tan 4α=,222tan 24tan 21tan 7134916ααα⨯∴==--=,,αβ 为锐角,0παβ∴<+<,sin()αβ∴+=,sin()tan()2cos()55αβαβαβ++===-+,tan()tan[2()]αβααβ∴-=-+242tan 2tan()387241tan 2tan()41127ααβααβ+-+===-+⋅+-⨯.20.已知函数()sin()f x A x ωϕ=+(0A >,0ω>,π02ϕ<<)的部分图象如图所示,其中()f x 的图象与x 轴的一个交点的横坐标为π12-.(1)求这个函数的解析式,并写出它的单调区间;(2)求函数()f x 在区间π,212π⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π()2sin 26f x x ⎛⎫=+⎪⎝⎭,递增区间是πππ,π(Z)36k k k ⎡⎤-+∈⎢⎥⎣⎦;递减区间是π2ππ,π(Z)63k k k ⎡⎤++∈⎢⎥⎣⎦(22-.【解析】【分析】(1)根据函数图象可得A 及周期,即可求出ω,再利用待定系数法求出ϕ,利用正弦函数的单调性即可求解;(2)根据正弦函数的性质由整体代换法求解.【小问1详解】由图2A =,知4ππ4π612T ⎛⎫--== ⎪⎝⎭,πT ∴=,2π2Tω∴==,ππ2sin 266f ϕ⎛⎫⎛⎫=⨯+ ⎪ ⎪⎝⎭⎝⎭,π02ϕ<<,则π6ϕ=,π()2sin 26f x x ⎛⎫∴=+ ⎪⎝⎭,由πππ22π,2π622x k k ⎡⎤+-++⎢⎣∈⎥⎦,可得πππ,π(Z)36x k k k ⎡⎤∈-+∈⎢⎥⎣⎦,故()f x 的递增区间是πππ,π(Z)36k k k ⎡⎤-+∈⎢⎥⎣⎦;由ππ3π22π,2π622x k k ⎡⎤+∈++⎢⎥⎣⎦,可得π2ππ,π(Z)63x k k k ⎡⎤∈++∈⎢⎥⎣⎦,故()f x 的递减区间是π2ππ,π(Z)63k k k ⎡⎤++∈⎢⎥⎣⎦【小问2详解】当12ππ,2x ⎡⎤∈-⎢⎥⎣⎦时,π5ππ2,663x ⎡⎤+∈-⎢⎥⎣⎦,当ππ263x +=,即π12x =时,()f x 取得最大值为ππππ2sin 22sin 123(126)f ⎛⎫=⨯+== ⎪⎝⎭当ππ262x +=-,即π3x =-时,()f x 取得最大值为πππ2sin 22(6)33f ⎡⎤⎛⎫⎛⎫=⨯-+=-⎢⎥ ⎪ ⎪⎝⎭⎣⎦-⎝⎭;()f x ∴在区间π,212π⎡⎤-⎢⎥⎣⎦上的最大值是2-.21.已知函数24()x f x x+=(),(,00,x ∈-∞⋃+∞.(1)判断()f x 的奇偶性,并说明理由;(2)判断()f x 在(2,)+∞上的单调性,并用定义证明;(3)求()f x 在[8,2]--上的值域.【答案】(1)奇函数,理由见解析(2)()f x 在(2,)+∞上为单调递增,证明见解析(3)17,42⎡⎤--⎢⎥⎣⎦.【解析】【详解】解:(1)函数()f x 是奇函数,()f x 的定义域为(,0)(0,)-∞+∞ ,关于原点对称,因为22()44()()x x f x f x x x-++-===---,所以()f x 在(,0)(0,)-∞+∞ 上是奇函数.(2)()f x 在(2,)+∞上为增函数.证明:任取122x x >>,则()()2212121244x x f x f x x x ++-=-()()2222122112221112124444x x x x x x x x x x x x x x +-++--==()()()()1212211212121244x x x x x x x x x x x x x x -+---==,因为122x x >>,所以120x x >,120x x ->,1240x x ->,则()()120f x f x ->,即()()12f x f x >,故()f x 在(2,)+∞上为增函数.(III )结合(1)(2)知()f x 在(,2]-∞-上为增函数,即()f x 在[8,2]--上单调递增,当8x =-时,()f x 取得最小值,且最小值为64417(8)82f +-==--;当2x =-时,()f x 取得最大值,且最大值为44(2)42f +-==--,故()f x 在[8,2]--上的值域为17,42⎡⎤--⎢⎥⎣⎦.22.已知函数()42x x f x a =-⋅.(1)当2a =时,求()f x 在[2,2]-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.【答案】(1)最小值为1-,最大值为8(2)6【解析】【分析】(1)根据题意,设12,44x t ⎡⎤=∈⎢⎥⎣⎦,由换元法,结合二次函数的值域,代入计算,即可得到结果;(2)根据题意,令222x x λ-=+≥=,结合二次函数的最值,分类讨论,即可得到结果.【小问1详解】当2a =时,()2()422222x x xx f x =-⋅=-⋅,设12,44x t ⎡⎤=∈⎢⎥⎣⎦,则2()2h t t t =-,开口向上,对称轴1t =,所以函数()h t 在1,14⎡⎤⎢⎥⎣⎦上单调递减,(1,4]上单调递增,所以min ()(1)1h t h ==-,max ()(4)8h t h ==,所以()f x 在[2,2]-上的最小值为1-,最大值为8.【小问2详解】()()()4242x x x x g x f x f x a a --=+-=-⋅+-⋅()4422x x x x a --=+-⋅+()()222222x x x x a ---⋅++-=,设222x x λ-=+≥=,当且仅当22-=x x ,即0x =时取得等号,所以22y a λλ=--,[2,)λ∈+∞,对称轴2a λ=.当22a ≤,即4a ≤时,22y a λλ=--,在[2,)+∞上单调递增,则当2λ=时,min 2211y a =-=-,解得132a =,不满足题意;当22a >,即4a >时,22y a λλ=--在22a ⎡⎤⎢⎥⎣⎦,上单调递减,,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以2a λ=时,2min 2114a y =--=-,解得6a =或6a =-(舍去),综上,实数a 的值为6.。
高一数学12月月考试题 理
2021-2021学年高一年级12月月考试题数学〔理〕试卷考试时间是是:120分钟;满分是:150分第I 卷〔选择题〕一、 选择题〔此题一共12道小题,每一小题5分,一共60分〕 1. cos570°=〔 〕A .﹣B .C .﹣D .2. 设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤那么1(2)f f ⎛⎫⎪⎝⎭的值是〔 〕A .89 B .2716- C .1516D .18 3.设a=sin14°+cos14°,b=sin16°+cos16°,c=,那么a ,b ,c 大小关系〔 〕A .a <b <cB .b <a <cC .c <b <aD .a <c <b4.以下四式中不能..化简为PQ 的是 ( ) A. ()BQ PA AB ++ B. ()()QC BA PC AB -++ C. CQ QP QC +- D. BQ AB PA -+5.函数y=a x与y=﹣log a x 〔a >0,且a ≠1〕在同一坐标系中的图象只可能是〔 〕A .B .C .D .6. 以下向量组中,可以把向量()3,2a =表示出来的是〔 〕A .()()120,0,1,2e e ==B .()()122,3,2,3e e =-=-C .()()123,5,6,10e e ==D .()()121,2,5,2e e =-=- 7.为了得到函数)(2sin R x x y ∈=的图象,可以把函数))(63sin(R x x y ∈+=π的图象上所有点的〔 〕A .纵坐标不变,横坐标伸长到原来的23倍,然后向左平移6π个单位 B . 纵坐标不变,横坐标伸长到原来的23倍,然后向右平移12π个单位C . 纵坐标不变,横坐标缩短到原来的32倍,然后向右平移6π个单位D .纵坐标不变,横坐标缩短到原来的32倍,然后向左平移12π个单位8. 3π=+B A ,那么3tan tan 3tan tan -++B A B A 的值等于 ( )A. 32-B. 32C. 0D. 31- 9、假设函数2sin 2y x =的图象向左平移12π个单位长度,那么平移后图象的对称轴为〔 〕A.()26k x k Z ππ=-∈ B. ()212k x k Z ππ=-∈ C. ()26k x k Z ππ=+∈ D. ()212k x k Z ππ=+∈ 10. 假设3tan 4α= ,那么2cos 2sin 2αα+=(A)6425 (B) 4825 (C) 1 (D)162511.函数f 〔x 〕=log 〔x 2﹣ax+3a 〕在[2,+∞〕单调递减,那么a 的取值范围〔 〕 A .〔﹣∞,4]B .[4,+∞〕C .[﹣4,4]D .〔﹣4,4] 12.P 是△ABC 所在平面内一点,假设=λ+,其中λ∈R ,那么P 点一定在〔 〕A .△ABC 内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上第II 卷〔非选择题〕二、填空题〔此题一共4道小题,每一小题5分,一共20分〕13.假设f 〔cosx 〕=cos2x ,那么f 〔sin15°〕= .14.奇函数f 〔x 〕是定义在〔﹣3,3〕上的减函数,且满足不等式f 〔x ﹣3〕+f 〔x 2﹣3〕<0,那么不等式解集为 .15. 函数()()sin f x A x ωϕ=+ (,,A ωϕ是常数,0,0A ω>>)的局部图象如下图,以下结论:①最小正周期为π; ②将()f x 的图象向左平移6π个单位,所得到的函数是偶函数;③()01f =; ④12141113f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭. 其中正确命题的序号是 . 16. 点O 在△ABC 内部,且满足+2+2=,那么△ABC 的面积与凹四边形ABOC 面积之比为 .三、解答题〔此题一共6道小题,第17题10分,第18-22题,每一小题12分,一共60分〕17.集合A={x|2a+1≤x ≤3a ﹣5},B={x|3≤x ≤22},〔1〕当a=10时,求A∩B,A∪B; 〔2〕求能使A ⊆B 成立的a 的取值范围. 18. 函数()4tan sin cos 323f x x x x ππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭.〔Ⅰ〕求()f x 的最小正周期;〔Ⅱ〕求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的单调递增区间.19. 函数x x a a x f 2sin 2cos 221)(---=的最小值为)(a g ,R a ∈. 〔1〕求)(a g ; 〔2〕假设21)(=a g ,求a 及此时)x f (的最大值.20.函数f 〔x 〕=sinωx﹣cosωx +1〔其中ω>0,x ∈R 〕的最小正周期为6π.〔1〕求ω的值; 〔2〕设α,β∈[0,],f 〔3α﹣〕=,f 〔3β+π〕=,求cos〔α+β〕的值.21.函数B x A x f ++=)sin()(ϕω〔A >0,0>ω,2πϕ<〕的最小正周期为π2,最小值为2-,且当65π=x 时,函数获得最大值4. 〔I 〕求函数)(x f 的解析式; 〔Ⅱ〕求函数)(x f 的单调递增区间;〔Ⅲ〕假设当⎥⎦⎤⎢⎣⎡∈67,6ππx 时,方程1)(+=m x f 有解,务实数m 的取值范围.22.函数f 〔x 〕=6cos2+sinωx﹣3〔ω>0〕在一个周期内的图象如下图,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形. 〔1〕求ω的值及函数f 〔x 〕的值域; 〔2〕假设f 〔x 0〕=,且x 0∈〔﹣,〕,求f 〔x 0+1〕的值.励志赠言经典语录精选句;挥动**,放飞梦想。
2022-2023学年安徽省芜湖市安徽师范大学附属中学高一上学期12月月考数学试题(解析版)
2022-2023学年安徽省芜湖市安徽师范大学附属中学高一上学期12月月考数学试题一、单选题1.已知集合{}{}22log 1,30A xx B x x x =≤=-≤∣∣,则A B ⋃=( ) A .[]0,3 B .[]2,3C .(],3-∞D .][(),23,∞∞-⋃+【答案】A【分析】根据对数函数单调性解不等式化简集合A ,由二次不等式化简B ,直接计算并集即可. 【详解】{}{}22log 1(0,2],30[0,3]A x x B x x x =≤==-≤=∣∣,[0,3]A B ∴⋃=,故选:A2.已知条件:0p a ≥,0b ≥,条件2:(,)2a b q ab a b R +⎛⎫≤∈ ⎪⎝⎭,则p 是q 成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件【答案】A【分析】根据充分条件、必要条件的概念,由不等式的性质及取特殊值即可得解. 【详解】当0a ≥,0b ≥时,由()20a b -≥得222a b ab +≥, 所以2224a b ab ab ++≥,所以22a b ab +⎛⎫≤ ⎪⎝⎭,∴p q ⇒,即p 是q 的充分条件,取特殊值1a =-,0b =,满足22a b ab +⎛⎫≤ ⎪⎝⎭成立,但0a ≥不成立,即q p ⇒/, 所以p 是q 成立的充分非必要条件. 故选:A .3.若函数()2ln2xf x =,且()2f m =,则实数m 的值为( )A .eB .2eC .ln2D .2ln2【答案】B【分析】利用换元法求出()f x 的解析式,然后可得答案.【详解】因为()2ln2xf x =,所以令2x t =,则2log x t =,所以()2ln ln 2log ln 2ln ln 2tf t t t =⋅=⋅=,所以()ln f x x =, 因为()ln 2f m m ==,所以2e m =, 故选:B.4.已知函数()f x 的定义域为()1,+∞,则函数()()23xF x f =- )A .(]2,3B .(]2,3-C .[]2,3-D .(]0,3【答案】A【分析】()F x 的定义域为()24,xy f y =-=列出不等式组求解即可.【详解】由题可知,223123330x x x x x >⎧->⎧⇒⇒<≤⎨⎨≤-≥⎩⎩,故函数()F x 的定义域为(]2,3, 故选:A .5.下列命题中,正确的有( )个 ①若R A =,R B =,f :211x y x →=+,则它是函数; ②若函数()1f x -的定义域是()1,2,则函数()2f x 的定义域为10,2⎛⎫⎪⎝⎭;③幂函数23y x -=与4y x =图像有且只有两个交点;④当0b >时,方程210xb --=恒有两个实根.A .1B .2C .3D .4【答案】C【分析】对于①,由映射和函数的定义判断即可; 对于②,由抽象函数的定义求解即可; 对于③,结合幂函数的性质判断;对于④,将问题转化为21xy =-与y b =的图象交点个数的问题,作出图象即可判断.【详解】对于①,对应:21R,R,:1A B f x y x ==→=+是映射,也是函数;符合映射,函数的定义,故①对;对于②,若函数()1f x -的定义域是(1,2),则1x -()()10,1,20,10,2x x ⎛⎫∈∴∈⇒∈ ⎪⎝⎭故函数()2f x 的定义域为102⎛⎫⎪⎝⎭,,故②对对于③,幂函数23321y xx-==为偶函数,在(,0)-∞上单调递增,在(0,)+∞上单调递减且图像过()()1,1,1,1- ,4y x =为偶函数,在(,0)-∞上单调递减,在(0,)+∞上单调递增且图像过()()1,1,1,1- 所以两个图像有且只有两个交点;故③对;于④,当1x >时,21x -单调递增,且函数值大于1,所以当1b >时,方程210xb --=只有一个实根.故④错;故选:C6.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合.若角α终边上一点P 的坐标为2π2πcos ,sin 33⎛⎫ ⎪⎝⎭,则sin tan αα=( )A .32-B .3C 3D .32【答案】A【分析】计算得到132P ⎛- ⎝⎭,在根据三角函数定义计算得到答案.【详解】2π2πcos ,sin 33P ⎛⎫ ⎪⎝⎭,即132P ⎛- ⎝⎭,则223sin x y α==+tan 3yxα==-故3sin tan 2αα=-.故选:A7.若4π5cos 513α⎛⎫+=- ⎪⎝⎭,则7πsin 10α⎛⎫-= ⎪⎝⎭( ) A .513- B .1213- C .513D .1213【答案】C【分析】结合诱导公式求得正确答案.【详解】7π7π4π3π4π5sin sin sin cos 101052513αααα⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-=-+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:C8.已知1sin cos 2αα-=,则sin 1tan αα-的值为( ) A .34-B .34C .316-D .316【答案】A【分析】先把已知的等式平方得到3sin cos 8αα=,再化简代入即得解.【详解】由1sin cos 2αα-=, 所以112sin c 4os αα-=, ∴3sin cos 8αα=,所以sin sin sin cos 3sin 1tan cos sin 41cos ααααααααα===----. 故选:A .二、多选题9.下列选项正确的是( ) A .3sin cos 2παα⎛⎫-= ⎪⎝⎭B .5rad 7512π=︒ C .若α终边上有一点()43P ,-,则4sin 5α=-D .若一扇形弧长为2,圆心角为60°,则该扇形的面积为6π【答案】BD【分析】利用诱导公式可判断A ,利用弧度与角度之间的转化公式可判断B ,利用任意角的三角函数定义可判断C ,利用扇形的弧长和面积公式可判断D【详解】对于A ,3sin cos 2⎛⎫-=- ⎪⎝⎭παα,故A 错;对于B ,55rad 180751212π=⨯︒=︒,故B 正确;对于C ,若α终边上有一点()43P ,-,则3sin 5α==,故C 不正确;对于D ,若一扇形弧长为2,圆心角为60°,则该扇形的半径为6π,面积为16622ππ⨯⨯=,故D 正确.故选:BD10.已知函数()22log log 28x xf x =⋅,若()()12f x f x =(其中12x x ≠),则1219x x +的可能取值有( )A .34B .32C .2D .4【答案】BCD【分析】根据题设条件可得1216x x =,根据基本不等式可求最小值. 【详解】()()()()22222log 1log 3log 4log 3f x x x x x =-⋅-=-+,因为()()12f x f x =,故()()2221212222log 4log 3log 4log 3x x x x -+=-+,故()()21222122log log log log 40x x x x -+-=,而12x x ≠,故2122log log 40x x +-=即1216x x =,而120,0x x >>,由基本不等式可得121932x x +≥,当且仅当124,123x x ==时等号成立, 故1219x x +的可能取值为3242,,(均验证12x x ≠). 故选:BCD.11.已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数不可能为( ) A .4 B .5 C .6 D .7【答案】ACD【分析】根据题意,先作出()f x 的图像,再令()t f x =,将问题转化为()f x 与21y x =-的交点的个数,进而得到交点横坐标的范围,从而分类讨论0=t 与12t <<两种情况,结合()f x 的图像即可判断得()0g x =的零点的个数,由此得解.【详解】根据指数函数与对数函数的性质,结合函数图像的变换作出()f x 的图像,如图,令()t f x =,则11e 22et -≥-=-,令()0g x =,则()210f t t -+=,即()21f t t =-,在图中再作直线21y x =-,由图象可知()f x 与21y x =-有两个交点,其横坐标设为11,t t ,则210,12t t =<<,当0=t 时,结合图像可知()t f x =有2个不等实根; 当12t <<时,结合图像可知()t f x =有3个不等实根; 综上:可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:ACD..12.已知正数x ,y ,z 满足3515x y z ==,则下列说法中正确的是( ) A .122x y z ⎛+> ⎝B .3515x y z >>C .1112x y z+= D .24xy z >【答案】AD【分析】把指数式化成相应的对数式,运用对数的运算法则及换底公式和基本不等式可求得结果. 【详解】解:,,0x y z >,令3515(1)x y z t t ===>,则3log x t =,5log y t =,15log z t =.对于A ,351515log log lg15lg15lg5lg3lg5lg3122242log log lg3lg5lg3lg5lg3lg52t t x y x y z z z t t ⎛⎫+=+=+=+=++>+⨯=> ⎪⎝⎭122x y z ⎛∴+> ⎝,A 选项正确;对于B ,55log 3log 243t tx==,33log 5log 125t t y ==, 因为1t >,所以5335x y x y>⇒<,B 选项错误; 对于C ,35111111log 3log 5log 352log 2log 2t t t x y t t z+=+=+=,C 选项错误; 对于D ,22lg15lg15(lg3lg5)lg3lg5lg3lg52224lg3lg5lg3lg5lg5lg3lg5lg3xy x y z z z ⎛⎫+=⋅=⋅==++>+⨯= ⎪⎝⎭,所以24xy z >,D 选项正确; 故选:AD.三、填空题13.已知命题:0p x ∃>,使得23250x x +-<,则p ⌝为_______ 【答案】0x ∀>,23250x x +-≥.【分析】存在量词命题(特称命题)的否定,∃改为∀,对结论否定. 【详解】由题意,:0p x ∃>,使得23250x x +-<, 则:0p x ⌝∀>,23250x x +-≥. 故答案为:0x ∀>,23250x x +-≥.14.已知α是第二象限角,且|2|4α+,则α的集合是______________. 【答案】3ππ,π,222⎛⎫⎛⎤-- ⎪ ⎥⎝⎭⎝⎦【分析】先写出终边在第二象限的角,然后根据不等式|2|4α+得到α的范围,再通过对k 赋值具体求出α的值或范围. 其中 3.14π≈.【详解】∵α是第二象限角,∴()π2ππ2π,2k k k Z α+<<+∈*.∵|2|4α+,∴62α-.当0k =时,由()*得π2απ<<,且[]ππ,π6,2=,222⎛⎫⎛⎤⋂- ⎪ ⎥⎝⎭⎝⎦; 当1k =-时,由()*得3ππ2α-<<-,且[]33π,π6,2π,π22⎛⎫⎛⎫--⋂-=-- ⎪ ⎪⎝⎭⎝⎭;当k 为其他整数时,满足条件的角α不存在. 所以,所求α的集合是3ππ,π,222⎛⎫⎛⎤-- ⎪ ⎥⎝⎭⎝⎦.【点睛】本题考查象限角的概念和对k 赋值的思想,属于中档题.第一象限角的集合{}0000270360360360,k k k Z αα-+⋅<<-+⋅∈, 第二象限角的集合{}0000270360180360,k k k Z αα-+⋅<<-+⋅∈,第三象限角的集合{}0000180********,k k k Z αα-+⋅<<-+⋅∈, 第四象限角的集合{}00090360360,k k k Z αα-+⋅<<⋅∈.对k 赋值时,先取=0k ,再取1,1k k ,再取2,2k k , ,这样可以保证对k 取值不重复不遗漏.15.已知函数()()2log 41xf x ax =++是偶函数,函数()()22222f x x xg x m -=++⋅的最小值为3-,则实数m 的值为_________.【答案】52-【分析】由偶函数定义结合对数运算可得1a =-,进而整理可得()()222222x x x xg x m --=+++,利用换元法令22x x t -=+,根据题意结合分类讨论解决二次函数的最值问题. 【详解】∵函数()f x 是偶函数,则()()0f x f x --=,故()()()222241log 41log 41log 2log 4221041x xxx x ax ax ax ax x a --+++-++=+=+=+=+,∴1a =-,则()()()()2222log 41log 41lo 22g 2log x x x x xf x x -=+-=+-=+, 可得:()()()22222222222f x x x x x x xg x m m ---==++⋅+++,令222x x t -=+≥=,当且仅当22-=x x ,即0x =时等号成立,则222222x x t -=-+, 由题意可得:2222y t mt t mt =-+=+-在[)2,+∞上的最小值为3-, ∵22t t y m +-=的对称轴为2mt =-,则有: 若22m-≤,即4m ≥-时,22t t y m +-=在[)2,+∞上单调递增,当2t =时取到最小值, 则22223m +-=-,解得:52m =-;若22m ->,即4m <-时,22t t y m +-=在2,2m ⎡⎫-⎪⎢⎣⎭上单调递减,在,2m ⎡⎫-+∞⎪⎢⎣⎭上单调递增,当2m t =-时取到最小值,则22223224m m m m ⎛⎫⎛⎫-+⨯--=--=- ⎪ ⎪⎝⎭⎝⎭,解得:2m =±(舍去); 综上所述:52m =-.故答案为:52-.16.设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,()3f x ax bx =+.若()()036f f +=,则20232f ⎛⎫= ⎪⎝⎭______.【答案】158【分析】由题设条件得()()11f x f x +=--+与()()22f x f x +=-+,利用赋值法得到8260a b a b --=⎧⎨+=⎩,从而求得当[]1,2x ∈时,()3f x x x =-+,再由上述两等式推得()f x 是以4为周期的函数,由此可求得20232f ⎛⎫ ⎪⎝⎭的值.【详解】因为()1f x +为奇函数,则()()11f x f x +=--+, 令0x =,则()()11f f =-,故()10f =,则0a b +=, 令=1x -,则()()0282f f a b =-=--,又因为()2f x +为偶函数,则()()22f x f x +=-+, 令1x =,则()()310f f ==,因为()()036f f +=,所以826a b --=,联立8260a b a b --=⎧⎨+=⎩,解得11a b =-⎧⎨=⎩,所以当[]1,2x ∈时,()3f x x x =-+.又因为()()()()()()()221111f x f x f x f x f x +=-+=--+=--+=-,即()()2f x f x +=-,则()()()()42f x fx f x +=-+=,所以函数()f x 是以4为周期的函数, 故202311325342222f f f f⎛⎫⎛⎫⎛⎫⎛⎫=⨯-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33315228⎡⎤⎛⎫=--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 故答案为:158.四、解答题 17.求值:12203388()0.51)27-+-+;(2)2log 3312514log 8lg lg 25lg()162-+-+-- 【答案】(1)2π+;(2)112.【分析】(1)利用根式运算、指数运算计算作答.(2)根据给定条件,利用对数运算法则及对数性质计算作答.【详解】(112203233388()0.51)2219132[()]1234447πππ--=-++-+=+-+-=++.(2)()()2232log 3log 331225134log 8lg lg 25lg 2log 2lg54lg 22lg53lg 21622-⎛⎫+-+-----+--⎪⎝⎭ 391193lg5lg 2lg10222=-++-=+=. 18.已知不等式3514x x -≤-的解集是A ,不等式2x m ->的解集是B . (1)当4m =时,求A B ⋂;(2)如果x A ∈是x B ∈的充分条件,求实数m 的取值范围. 【答案】(1)1,22⎡⎫⎪⎢⎣⎭;(2)[)3,6,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.【分析】(1)根据题意,求得,A B ,再结合集合的交运算,求解即可; (2)根据集合之间的包含关系,列出关于m 的不等式,求解即可.【详解】(1)3514x x -≤-,即2104x x -≤-,也即()()2140x x --≤且4x ≠,解得1,42x ⎡⎫∈⎪⎢⎣⎭,即1,42A ⎡⎫=⎪⎢⎣⎭; 当4m =时,2x m ->即42x ->,解得6x >或2x <,即()(),26,B =-∞⋃+∞; 故A B ⋂1,22⎡⎫=⎪⎢⎣⎭.(2)2x m ->,则2x m <-或2x m >+,即()(),22,B m m =-∞-⋃++∞, 由题可知,A B ⊆,则42m ≤-或122m >+,解得[)3,6,2m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.故实数m 的取值范围为:[)3,6,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.19.(1)请化简:()()()()()9sin cos 3cos cos 211cos 2sin sin sin 22ππαπαπααπππαπααα⎛⎫----+ ⎪⎝⎭⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭.(2)已知02x π-<<,1sin cos 5x x +=,求sin cos x x -.【答案】(1)tan α-;(2)75-【分析】(1)根据诱导公式化简即可(2)计算sin cos x x -的平方,分析sin ,cos x x 的大小即可求值. 【详解】(1)原式=()()()()()sin cos cos sin cos sin cos cos αααααααα⋅-⋅-⋅-⋅-⋅⋅-223sin cos cos sin αααα⋅=-⋅ tan α=-(2)因为1sin cos 5x x +=,两边平方得112sin cos 25x x +=,有242sin cos 25x x =-所以()249sin cos 12sin cos 25x x x x -=-= 又因为02x π-<<,所以sin 0x <,cos 0x >,则sin cos 0x x -<所以7sin cos 5x x -=-.【点睛】本题主要考查了三角函数的诱导公式,同角三角函数的关系,正余弦函数的性质,属于中档题. 20.求证:sin cos 11sin sin cos 1cos αααααα-++=+-.【答案】证明见解析【分析】从左边开始,将式子变形为(sin cos 1)(sin cos 1)(sin cos 1)(sin cos 1)αααααααα-++++-++,进而将式子化简,结合同角三角函数的平方关系进行变形,最后证得答案. 【详解】左边(sin cos 1)(sin cos 1)(sin cos 1)(sin cos 1)αααααααα-+++=+-++222(sin 1)cos (sin cos )1αααα+-=+- ()()2222sin 2sin 11sin sin cos 2sin cos 1ααααααα++--=++-22sin 2sin 12sin cos 1αααα+=+- 2sin (sin 1)1sin 2sin cos cos αααααα++===右边所以原等式成立.21.已知函数f (x )=sinx ,g (x )=lnx . (1)求方程()2f x f x π⎛⎫=- ⎪⎝⎭在[0,2π]上的解;(2)求证:对任意的a ∈R ,方程f (x )=ag (x )都有解;(3)设M 为实数,对区间[0,2π]内的满足x 1<x 2<x 3<x 4的任意实数xi (1≤i ≤4),不等式()()()()()()122334Mf x f x f x f x f x f x -+-+-成立,求M 的最小值.【答案】(1)π4或5π4;(2)详见解析;(2)4【解析】(1)利用诱导公式化简()2f x f x π⎛⎫=- ⎪⎝⎭,结合同角三角函数的基本关系式求得tan x 的值,由此求得方程的解.(2)将a 分成0a =和0a ≠两种情况,结合零点存在性证得结论成立.(3)先证得4M ≥,再证得()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,由此求得M 的最小值为4.【详解】(1)因为,()()πsin ,2f x x f x f x ⎛⎫==- ⎪⎝⎭,所以πsin sin 2x x ⎛⎫=- ⎪⎝⎭,即sin cos x x =,且[]0,2πx ∈.若cos 0x =,则sin 0x =,与22sin cos 1x +=矛盾.所以cos 0x ≠,从而tan 1x =.又[]0,2πx ∈,所以π4x =或5π4x =. (2)当0a =时,由()()f x ag x =得sin 0x =,即πx =是该方程的一个解;当0a ≠时,令()1ln sin h x x x a =-.因为()h x 的图像在区间22,a ae e -⎡⎤⎢⎥⎢⎥⎣⎦上连续不断,且2221211sin 0a a h e e a a a a a --⎛⎫⎛⎫=--≤-+=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2221211sin 0a a h e e a a a a a -⎛⎫⎛⎫=-≥-=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,根据零点存在性定理可知,存在220,aax e e -⎛⎫∈⎪ ⎪⎝⎭,使得()00h x =.因此,当0a ≠时,方程()()f x ag x =有解0x x =.综上所述,对任意a R ∈,方程()()f x ag x =都有解. (3)先证:4M ≥. 取1234π3π0,,,2π22x x x x ====,122334sin sin sin sin sin sin 1214M x x x x x x ≥-+-+-=++=. 再证:当123402πx x x x ≤<<<≤时,都有()()()()()()1223344f x f x f x f x f x f x ≥-+-+-,即1223344sin sin sin sin sin sin x x x x x x --≥+-+.①若2πx ≤,因为234π2πx x x ≤<<≤,于是2341sin ,sin ,sin 0x x x -≤≤,所以2334sin sin 1,sin sin 1x x x x -≤-≤,而12sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤.②若3πx ≤,1223sin sin 1,sin sin 1x x x x -≤-≤,34sin sin 2x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤;③若23πx x <<,1223sin sin 1,sin sin 2x x x x -≤-≤,34sin sin 1x x -≤,所以122334sin sin sin sin sin sin 4x x x x x x --+-+≤,于是对任意满足条件的1234x x x x <<<,都有1223344sin sin sin sin sin sin x x x x x x --≥+-+. 综上所述,M 的最小值为4.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,考查零点存在性定理,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,考查分析、思考与解决问题的能力,属于难题.22.已知函数()2(,)f x x ax b a b =++∈R .(1)若1b =,且()f x 在[]2,2-上存在零点,求实数a 的取值范围;(2)若对任意1][a n ∈-,,存在[]2,3x ∈-使()0f x >,求实数b 的取值范围; (3)若存在实数a ,使得当,][0x b ∈时,()110f x ≤≤恒成立,求实数b 的最大值. 【答案】(1)(][)2-∞+∞,-2,;(2)6b >-;(3)10.【分析】(1)由1b =时,()21()f x x ax a R =++∈,令0f x,当0x ≠时,分离参数1a x x ⎛⎫=-+ ⎪⎝⎭,再令()1g x x x=+,得出()g x 的单调性,从而得出()g x 的值域,可得实数a 的取值范围; (2)由()0f x >得20x ax b ++>,即2,b x ax >--令()2h x x ax =--,则()h x 的对称轴为2a x =-,由[]1,a n ∈-得对称轴的范围122a x =-≤,从而得()h x 当[]2,3x ∈-的最小值为()393h a =--,再由[]1,a n ∈-,得()36h ≤-,可得b 的范围;(3)()f x 的对称轴为2ax =-,根据对称轴与区间[0,]b 的关系分情况讨论()f x 的单调性,求出最值,根据1()10f x ≤≤列出不等式组,化简得出b 的取值范围,从而得到实数b 的最大值.【详解】(1)由1b =时,()21()f x x ax a R =++∈,令()210f x x ax =++=,当0x ≠时,1a x x ⎛⎫=-+ ⎪⎝⎭,令()1g x x x=+,则()g x 的定义域为()(),00,-∞+∞,设120x x <<,则()()()()211212*********x x g x g x x x x x x x x x -⎛⎫⎛⎫-=+-+=- ⎪ ⎪⎝⎭⎝⎭,当1201x x 时,()()120g x g x ->,当121x x <<时,()()120g x g x -<, 所以()g x 在0,1上单调递减,在1,上单调递增,因为()g x 是定义域为()(),00,-∞+∞的奇函数, 所以()g x 在1,0上单调递减,在(),1-∞-上单调递增,当2,2x时,()2g x ≥或()2g x ≤-,所以12x x ⎛⎫-+≤- ⎪⎝⎭或12x x ⎛⎫-+≥ ⎪⎝⎭,所以要使()f x 在2,2x 上存在零点,则需2a ≤-或2a ≥. 故:实数a 的取值范围是2a ≤-或2a ≥.(2)由()0f x >得20x ax b ++>,即2,b x ax >--令()2h x x ax =--,则()h x 的对称轴为2a x =-,当[]1,a n ∈-时,对称轴122a x =-≤, 所以当[]2,3x ∈-时,()h x 的最小值为()393h a =--,而[]1,a n ∈-,所以()()3939316h a =--≤--⨯-=-,所以要使对任意1][a n ∈-,,存在[]2,3x ∈-使()0f x >,则需6b >-; (3)2()f x x ax b =++的对称轴为2a x =-. ①若0a ≥,则0()2af x -≤∴在[0,)b 上单调递增,()()20110f b f b b ab b =≥⎧⎪⎨=++≤⎪⎩, 由210b ab b ++≤,得1010b a b--≥≥, 解不等式组21100b b b ≥⎧⎨--≥⎩,得1b ≤≤. ②若022a b <-<,即0b a -<<时,()f x 在0,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在,2a b ⎛⎤- ⎥⎝⎦单调递增,且()()0f b f >,22124()10a a f b f b b ab b ⎧⎛⎫-=-≥⎪ ⎪∴⎨⎝⎭⎪=++≤⎩.214101a b b a b⎧≥+⎪⎪∴⎨⎪--≥⎪⎩,即1101b b ≥⎧⎪⎨>⎪⎩,得110b <<.③若022b a b <≤-<,即20b a b -<<-<时,()f x 在0,2a ⎡⎤-⎢⎥⎣⎦单调递减,在,2a b ⎛⎤- ⎥⎝⎦单调递增,且()()0f f b >,2124(0)10a a fb f b ⎧⎛⎫-=-≥⎪ ⎪∴⎨⎝⎭⎪=≤⎩,即110b b >⎧⎨≤⎩,则110b <≤. ④若2ab -≥,即2a b ≤-时,()f x 在[0,)b 上单调递减, 2(0)10()1f b f b b ab b =≤⎧∴⎨=++≥⎩, 1011b a b b ≤⎧⎪∴⎨≥--⎪⎩,即10112b b b b ≤⎧⎪⎨--≤-⎪⎩,则b ∈∅. 综上, b 的取值范围是[1,10],b 的最大值为10.【点睛】本题考查二次函数的零点和其值域等问题,以及恒成立,存在等较综合的问题,属于难度题.对于不等式的存在性的问题时,常有以下情形:(1)0 x D ∃∈,使不等式()0f x A >成立,则max f ()x A >; (2)0 x D ∃∈,使不等式()0f x B <成立,则()min f x B <;(3)0 x D ∃∈,使不等式()()00f x g x >成立,则max ()()(),()0F x f x g x F x =-∴>; (4)0 x D ∃∈,使不等式()()00f x g x <成立,则min ()()(),()0F x f x g x F x =-∴<; (5)1 x D ∃∈,2 x E ∃∈,均有()()12f g x x >恒成立,则max min ()()f x g x >; (6)1 x D ∃∈,2 x E ∃∈,均有()()12f x g x <恒成立,则min max ()()f x g x <.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年秋季期高一12月月考试卷
理科数学
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1、已知集合{|6}A x N x =∈≤, {}
230B x R x x =∈-,则A B ⋂=( )
A.
{}3,4,5,6 B. {|36}x x <≤ C. {}4,5,6 D. {|036}x x x <<≤或
2.若幂函数m x y =是偶函数,且在()∞+,
0上是减函数,则实数m 的值可能为( ) A.
21 B.2- C.2
1
- D. 2 3.设集合A =B ={(x ,y )|x ∈R ,y ∈R },从A 到B 的映射f :(x ,y )→(x +2y ,2x ﹣y ),则在映射f 下B 中的元素(1,1)对应的A 中元素为( )
4.函数图象与x 轴均有交点,但不宜用二分法求交点横坐标的是( )
5、幂函数
a
x x f =)(的图
象过点)9,3(,那么函数)(x f 的单调递增区间是( ) A .),2(+∞-B .[)+∞,0C .)2,(-∞D .(]0,∞-
6.方程2log 20x x +-=在下列哪个区间必有实数解( )
A (1,2)
B (2,3)
C (3,4)
D (4,5)
7.函数f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2, +∞) B .[2,4] C .(﹣∞,2] D .[0,2]
8.方程2sin cos 0x x k ++=有解,则实数k 的取值范围为 ( ) A .514k -
≤≤ B .514k -≤≤C .504k ≤≤D . 5
04
k -≤≤
9、定义在R 上的偶函数)(x f 满足:对任意的),](0,(,2121x x x x ≠-∞∈0)
()(1
212<--x x x f x f ,
则( )
A .)1()2()3(f f f <-<-
B .)3()2()1(-<-<f f f
C .)3()1()2(-<<-f f f
D .)2()1()3(-<<-f f f 10. 函数f (x )=22x x -的零点个数为( )
A .0
B .1
C .2
D .3
11.已知奇函数f (x )在x ≥0时的图象如图所示,则不等式xf (x )<0的解集为( )
A .(1,2)
B .(﹣2,﹣1)
C .(﹣2,﹣1)∪(1,2)
D .(﹣1,1)
12.如果函数()f x 上存在两个不同点A 、B 关于原点对称,则称A 、B 两点为一对友好点,
记作,A B ,规定,A B 和,B A 是同一对,已知cos 0
()lg()0x x f x x x ⎧≥=⎨
--<⎩
,则函数
()f x 上共存在友好点 ( )
A .14对
B .3对
C .5对
D .7对
二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.两个球的体积之比为8∶27,那么这两个球的表面积之比为_______. 14. 函数)32(log )(2
2
1--=x x x f 的单调递增区间是_________.
15. 已知2a =5b
=10,则1a +1b
=________.
16. .若函数
有两个零点,则实数的取值范围是______.
三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)
已知集合R U a x x C x x B x x A =>=<<=≤≤=},|{},51|{},73|{. (Ⅰ)求B A C B A U )(,;
(Ⅱ)若φ≠C A ,求a 的取值范围.
18、(本小题满分12分)已知集合,
,且
. (1)求集合A ;
(2)若,求集合B,
.
19.(12分)设,
(1)在下列直角坐标系中画出f (x )的图象;
(2)用单调性定义证明该函数在[2,+∞)上为单调递增函数.
20.(本小题满分12分)已知函数
(1)求不等式的解集; (2)若
,试求函数
的值域(可直接写出结果.......); (3)在(2)的条件下,求证:函数的周期为
. 21. (本小题满分12分) 已知函数||2)(2x x x f -=. (Ⅰ)判断函数)(x f 的奇偶性;
(Ⅱ)画出函数)(x f 的图象,并指出单调区间和最小值.
22、已知函数f (x ) (Ⅰ)求函数f (x )的定义域; (Ⅱ)判定f (x )的奇偶性并证明;
(Ⅲ)用函数单调性定义证明:f (x )在(1,+∞)上是增函数.
理科数学答案
1.C
2.B
3.C
4.B
5.B
6.A
7.B
8.A
9. B10.D11.C12.D 13. 4∶9 14. (-∞,-1) 15. 216.
5.(本小题满分10分)
解:(Ⅰ)R U x x B x x A =<<=≤≤=},51|{},73|{
}73|{},71|{><=≤<=∴x x x A C x x B A U 或
}51|{<<=x x B 又
}31|{}71|{<<=≤<=∴x x B A C x x B A U ),(
(Ⅱ)},|{},73|{a x x C x x A >=≤≤= φ≠C A
7>∴a
即a 的取值范围为),7(+∞
18、(1){}11|<≤-=x x A ;
(2){}10|≤<=y y B ,
{}10|<<=y y B A .
19.解:(1)图象如图所示:
(2)设2≤x1<x2,则f ( x1)﹣f ( x2) =2x1﹣2x2=2(x1﹣x2) ∵x1<x2,
∴x1﹣x2<0,f ( x1)<f ( x2), f (x )在[2,+∞)时单调递增. 20.解:(1)
(2)当时;当时;
函数
的值域为
(3
)
函数
的周期为
A .(本小题满分12分)
解:(Ⅰ) ||2)(2x x x f -=
)(||2||2)()(22x f x x x x x f =-=---=-∴
即)()(x f x f =-∴
)(x f ∴是偶函数.
(Ⅱ)⎪⎩
⎪⎨⎧<-+=+≥--=-=-=0,1)1(20
,1)1(2||2)(2
2222
x x x x x x x x x x x f )(x f ∴的图象如下:
由图象可知:函数)(x f 的单调递增区间为[][)+∞-,1,0,1;
单调递减区间为(][]1,0,1,-∞-. 1)(min -=x f
22、(Ⅰ)由1-x2≠0,得x ≠±1,即f (x )的定义域{x|x ≠±1}…(4分); (Ⅱ)f (x )为偶函数.
∵f (x )定义域关于原点对称,且f (-x )=f (x ) ∴f (x )为偶函数;…(8分) (III )证明:略。